JP2009207986A - Method for suppressing propagation of algae in sewage treatment water and device therefor - Google Patents

Method for suppressing propagation of algae in sewage treatment water and device therefor Download PDF

Info

Publication number
JP2009207986A
JP2009207986A JP2008052908A JP2008052908A JP2009207986A JP 2009207986 A JP2009207986 A JP 2009207986A JP 2008052908 A JP2008052908 A JP 2008052908A JP 2008052908 A JP2008052908 A JP 2008052908A JP 2009207986 A JP2009207986 A JP 2009207986A
Authority
JP
Japan
Prior art keywords
reaction tank
biological reaction
water
algae
water area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008052908A
Other languages
Japanese (ja)
Inventor
Minoru Suzuki
穣 鈴木
Yuji Okayasu
祐司 岡安
Natsuki Hisaoka
夏樹 久岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research and Development Agency Public Works Research Institute
Original Assignee
Public Works Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Public Works Research Institute filed Critical Public Works Research Institute
Priority to JP2008052908A priority Critical patent/JP2009207986A/en
Publication of JP2009207986A publication Critical patent/JP2009207986A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for suppressing the propagation of algae in a closed water area and a device therefor which can inexpensively suppress the propagation of algae without taking effort. <P>SOLUTION: A biological reaction tank 2 having screens 21, 22 where the inflow or outflow of water is possible at the upper part and the lower part, and storing microorganism holding carriers S capable of carrying microorganisms is installed in the vicinity of the surface layer of a closed water area, the biological reaction tank 2 is aerated from the lower part with an aeration means 3, a mild rising stream is generated at the inside of the biological reaction tank 2, a mild lowering stream is generated at the outside of the biological reaction tank 2, further, the microorganism holding carriers S are fluidized, and the operation is continued, thus, trace metal oxidizing microorganisms oxidizing trace metals required for the propagation of algae are carried on the surfaces of the microorganism holding carriers S spontaneously, and, by the trace metal oxidizing microorganisms carried on the microorganism holding carriers S, trace metals included in the water of the closed water area made to flow in from the lower part of the biological reaction tank 2 are oxidized and insolubilized, thus the oxidized trace metal oxides are settled by the lowering current. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、ダム貯水池などの閉鎖的な水域において、藻類の増殖を抑制する方法、及びその装置に関するものである。   The present invention relates to a method and an apparatus for suppressing the growth of algae in a closed water area such as a dam reservoir.

ダム貯水池や湖沼などの閉鎖的な水域に汚濁水が流入すると、その閉鎖水域内の栄養塩類(リン、窒素などの化合物)の濃度が高まって富栄養化し、そして、夏季などの水温上昇に伴って藻類が大量発生することがある。このような閉鎖水域に藻類が大量発生すると、それ自体が景観障害であると共に、藻類が岸に打ち上げられて腐敗すると悪臭を放ったり、その水域を水道水の水源としているような場合は水道水から異臭味がしたりするという問題がある。   When polluted water flows into closed water areas such as dam reservoirs and lakes, the concentration of nutrients (compounds such as phosphorus and nitrogen) in the closed water areas increases and eutrophication occurs. Algae may be generated in large quantities. When a large amount of algae occur in such a closed water area, it itself is a landscape obstacle, and when algae are launched on the shore and decays, it gives off a foul odor, or the water area is used as a source of tap water. There is a problem that it has a strange odor.

このような問題を解決するために、従来から、ダム貯水池などの湖沼の湖底付近で曝気循環を行い、水温躍層(日射で温められた比較的高温低密度の水域と、それより深い比較的低温高密度の水域との境界であり、密度差が大きくこれらの水域同士の水の交換が殆どおこらない層のこと)を破壊して表層水温を低下させると共に、藻類を有光層以深に引き込むことにより、藻類の異常増殖を抑制することが行われていた。しかし、大規模な装置が必要であり設備費が高く、且つ、十分な効果を上げていない例が多く見られる。   In order to solve such problems, conventionally, aeration circulation is carried out near the bottom of lakes such as dam reservoirs, etc., and water warming layers (relatively hot and low-density water areas heated by solar radiation and deeper relatively It is a boundary with low-temperature and high-density water areas, and it is a layer where there is a large density difference and water exchange between these water areas hardly occurs, and the surface water temperature is lowered and algae is drawn deeper than the light layer. Therefore, suppression of abnormal growth of algae has been performed. However, there are many examples where a large-scale apparatus is required, the equipment cost is high, and sufficient effects are not achieved.

また、特許文献1には、アオコを溶解及び凝集させる能力を有する微生物を固定化した生分解性プラスチック担体を散布するアオコの除去方法が開示されている。しかし、この特許文献1に記載のアオコの除去方法では、生分解性とは云え、閉鎖水域へプラスチック担体を直接的に添加するため、環境への2次汚染や生態系の撹乱を生じさせてしまうという問題がある。   Patent Document 1 discloses a method for removing sea cucumber by spraying a biodegradable plastic carrier on which microorganisms having the ability to dissolve and agglomerate the sea bream are immobilized. However, in the method for removing sea cucumber described in Patent Document 1, although it is biodegradable, a plastic carrier is added directly to a closed water area, causing secondary pollution to the environment and disturbance of the ecosystem. There is a problem of end.

特許文献2には、閉鎖性水域の表層水に設置され、微生物を表面に担持する底泥固定化担体が充填された分解処理槽を有し、その分解処理槽の下部から曝気装置により空気曝気を行うことにより、前記閉鎖性水域に発生する藍藻類及びミクロシスチンの異常増殖を抑制する藍藻類及びミクロシスチンの処理装置が記載されている。この特許文献2に記載の藍藻類及びミクロシスチンの処理装置は、特許文献1に記載のアオコの除去方法と同様に、微生物を担持する担体に有効な微生物を選別して固定化したり、底泥を採取して担体の1つ1つに固定化したりしなければならず、手間が掛かるという問題がある。また、効果においても十分ではないという問題もある。   Patent Document 2 has a decomposition treatment tank that is installed in surface water in a closed water area and is filled with a bottom mud immobilization support that supports microorganisms on its surface, and is aerated by an aeration device from the lower part of the decomposition treatment tank. A treatment apparatus for cyanobacteria and microcystin that suppresses abnormal growth of cyanobacteria and microcystin generated in the closed water area is described. The treatment apparatus for cyanobacteria and microcystin described in Patent Document 2 selects and immobilizes effective microorganisms on a carrier for supporting microorganisms, as in the method for removing blue-green leaves described in Patent Document 1, There is a problem that it is necessary to collect the sample and immobilize it on each carrier, which takes time. There is also a problem that the effect is not sufficient.

特開2000−254686号公報JP 2000-254686 A 特開2005−205336号公報JP 2005-205336 A

そこでこの発明は、前記従来の技術の問題点を解決し、手間が掛からず安価で藻類の増殖を抑制することのできる閉鎖水域における藻類増殖抑制方法、及びその装置を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the problems of the conventional techniques described above, and to provide a method for suppressing algal growth in a closed water area and a device therefor which can suppress the growth of algae at low cost without taking time. .

前記課題を解決するために、請求項1に記載の発明は、ダム貯水池などの閉鎖水域において藻類の増殖を抑制する方法であって、上部及び下部に水の流入又は流出が可能なスクリーンを有し、微生物を担持可能な微生物保持担体を収容する生物反応槽を前記閉鎖水域の表層付近に設置し、曝気手段により前記生物反応槽を下方から曝気して、前記生物反応槽の内側に緩やかな上昇流と生物反応槽の外側に緩やかな下降流を発生させると共に、前記微生物保持担体を流動化させることを継続することで藻類の増殖に必要な微量金属を酸化する微量金属酸化微生物を前記微生物保持担体の表面に自然発生的に担持させ、この微生物保持担体に担持させた微量金属酸化微生物により前記生物反応槽の下部から流入させた前記閉鎖水域の水に含まれる前記微量金属を酸化して不溶化させ、この微量金属酸化微生物により酸化した微量金属酸化物を前記下降流で沈降させることを特徴とする。   In order to solve the above-mentioned problem, the invention described in claim 1 is a method for suppressing the growth of algae in a closed water area such as a dam reservoir, and has a screen capable of inflow or outflow of water at an upper part and a lower part. A biological reaction tank containing a microorganism-supporting carrier capable of supporting microorganisms is installed near the surface layer of the closed water area, and the biological reaction tank is aerated from below by aeration means, and is gently placed inside the biological reaction tank. A micro metal oxide microorganism that oxidizes a trace metal necessary for the growth of algae by generating a gentle downward flow on the outside of the bioreactor with an upward flow and continuing to fluidize the microorganism holding carrier. Included in the water of the closed water area that is naturally supported on the surface of the holding carrier and is introduced from the lower part of the biological reaction tank by the trace metal oxidation microorganisms supported on the microorganism holding carrier. Serial trace metals oxidized to insolubilize the, and wherein the precipitating trace metal oxide oxidized by the trace metal oxide microorganism by the downflow.

請求項2に記載の発明は、請求項1に記載の閉鎖水域における藻類増殖抑制方法に用いられる装置であって、上部及び下部に水の流入又は流出が可能なスクリーンを有し、微生物を担持可能な微生物保持担体を収容する生物反応槽と、この生物反応槽の下方に所定間隔離間して連結され、空気を送り込んで曝気する曝気手段と、前記生物反応槽を所定深さに吊り下げる連結部材とを有し、前記閉鎖水域の水面付近を移動可能な水面移動手段と、を備えたことを特徴とする。   Invention of Claim 2 is an apparatus used for the algal growth suppression method in the closed water area of Claim 1, Comprising: It has a screen which can inflow or outflow of water in the upper part and the lower part, and carries microorganisms A biological reaction tank containing a possible microorganism-supporting carrier; an aeration unit that is connected to the lower part of the biological reaction tank at a predetermined interval and aerated by sending air; and a connection that suspends the biological reaction tank to a predetermined depth And a water surface moving means capable of moving around the water surface of the closed water area.

請求項3に記載の発明は、請求項2において、微生物保持担体は、比重が1程度の樹脂製であることを特徴とする。   The invention described in claim 3 is characterized in that, in claim 2, the microorganism holding carrier is made of a resin having a specific gravity of about 1.

請求項4に記載の発明は、請求項2又は3において、連結部材は、その長さが調整可能となっており、水温躍層の深さに応じて生物反応槽の設置深さが変更可能となっていることを特徴とする。   The invention according to claim 4 is the invention according to claim 2 or 3, wherein the length of the connecting member can be adjusted, and the installation depth of the biological reaction tank can be changed according to the depth of the water temperature climbing layer. It is characterized by becoming.

請求項1に記載の発明は、前記のように、上部及び下部に水の流入又は流出が可能なスクリーンを有し、微生物を担持可能な微生物保持担体を収容する生物反応槽を前記閉鎖水域の表層付近に設置し、曝気手段により前記生物反応槽を下方から曝気して、前記生物反応槽の内側に緩やかな上昇流と生物反応槽の外側に緩やかな下降流を発生させると共に、前記微生物保持担体を流動化させることを継続することで藻類の増殖に必要な微量金属を酸化する微量金属酸化微生物を前記微生物保持担体の表面に自然発生的に担持させ、この微生物保持担体に担持させた微量金属酸化微生物により前記生物反応槽の下部から流入させた前記閉鎖水域の水に含まれる前記微量金属を酸化して不溶化させ、この微量金属酸化微生物により酸化した微量金属酸化物を前記下降流で沈降させるので、溶解性マンガンをはじめとする藻類の増殖に必要な微量金属を藻類が摂取できない状態にして、閉鎖水域の藻類増殖ポテンシャルを大幅に低減することができる。そのため、夏場の藻類の大量発生を確実に防ぐことができ、景観障害、悪臭、異臭味等の問題を解決することができる。そのうえ、作業の手間も掛からず設備費や運転費も安価である。   As described above, the invention according to claim 1 has a biological reaction tank having a screen capable of inflowing or outflowing water at the upper and lower portions and containing a microorganism holding carrier capable of supporting microorganisms. Installed in the vicinity of the surface layer, aerating means aerate the biological reaction tank from below, generating a gentle upward flow inside the biological reaction tank and a gentle downward flow outside the biological reaction tank, and holding the microorganism A trace amount of metal oxidation microorganisms that oxidize trace metals necessary for algae growth by allowing fluidization of the support to be naturally supported on the surface of the microorganism support carrier, Trace metals oxidized by the trace metal oxidation microorganisms by oxidizing and insolubilizing the trace metals contained in the water of the closed water area introduced from the lower part of the biological reaction tank by the metal oxidation microorganisms Since precipitate the product in the downflow, trace metals required for growth of algae and other soluble manganese algae in a state that can not intake, it is possible to significantly reduce the algae growth potential of the closure body of water. Therefore, a large amount of algae in summer can be surely prevented, and problems such as landscape obstacles, bad odors and off-flavors can be solved. In addition, no labor is required and the equipment and operating costs are low.

請求項2に記載の発明は、上部及び下部に水の流入又は流出が可能なスクリーンを有し、微生物を担持可能な微生物保持担体を収容する生物反応槽と、この生物反応槽の下方に所定間隔離間して連結され、空気を送り込んで曝気する曝気手段と、前記生物反応槽を所定深さに吊り下げる連結部材を有し、前記閉鎖水域の水面付近を移動可能な水面移動手段と、を備えたので、水面移動手段で容易に閉鎖水域全域又は特定場所に移動して生物処理し、藻類の増殖に必要な微量金属を沈降させて藻類が摂取できない状態にすることができ、藻類増殖を抑制すべき場所の藻類増殖ポテンシャルを大幅に低減することができる。そのため、夏場の藻類の大量発生を確実に防ぐことができると共に、景観障害、悪臭、異臭味等の問題を解決することができる。そのうえ、作業の手間も掛からず設備費や運転費も安価である。   The invention described in claim 2 has a biological reaction tank having a screen capable of inflow or outflow of water at the upper part and the lower part and containing a microorganism holding carrier capable of supporting microorganisms, and a predetermined part below the biological reaction tank. Aeration means connected at intervals and aerated by sending air; and a water surface moving means having a connecting member for suspending the biological reaction tank to a predetermined depth and capable of moving in the vicinity of the water surface of the closed water area. Because it is equipped, it can easily move to the whole closed water area or a specific place with water surface moving means, biological treatment, settle the trace metals necessary for algae growth and make it impossible for algae to ingest, The algal growth potential of the place to be suppressed can be greatly reduced. Therefore, a large amount of algae in summer can be surely prevented, and problems such as landscape obstacles, bad odor, and off-flavor can be solved. In addition, no labor is required and the equipment and operating costs are low.

請求項3に記載の発明は、請求項2において、微生物保持担体は、比重が1程度の樹脂製であるので、前記効果に加え、微生物保持担体をより効果的に流動化させることができ、微量金属酸化微生物の生物反応を促進することができる。このため、微量金属の酸化が効率的に短期間で可能となる。   The invention according to claim 3 is that in claim 2, since the microorganism holding carrier is made of a resin having a specific gravity of about 1, in addition to the above effects, the microorganism holding carrier can be fluidized more effectively, Biological reactions of trace metal oxidizing microorganisms can be promoted. For this reason, it is possible to efficiently oxidize trace metals in a short period of time.

請求項4に記載の発明は、請求項2又は3において、連結部材は、その長さが調整可能となっており、水温躍層の深さに応じて生物反応槽の設置深さが変更可能となっているので、つまり、季節の移り変わりに伴って変化する水温躍層の深さや厚さに応じて、生物反応槽の設置深さを変えられるので、閉鎖水域の水温躍層より上方の表層水に含まれる微量金属を効率的に酸化することができる。このため、藻類の増殖を効率的に短期間で抑制することができる。   The invention according to claim 4 is the invention according to claim 2 or 3, wherein the length of the connecting member can be adjusted, and the installation depth of the biological reaction tank can be changed according to the depth of the water temperature climbing layer. In other words, since the depth of the water temperature change layer and the thickness of the water temperature change layer that changes with the change of the season can be changed, the surface layer above the water temperature increase layer in the closed water area Trace metals contained in water can be efficiently oxidized. For this reason, the growth of algae can be efficiently suppressed in a short period of time.

この発明の一実施の形態を、図面を参照して説明する。   An embodiment of the present invention will be described with reference to the drawings.

先ず、本発明に係る藻類増殖抑制装置の実施の形態について図1、2を用いて説明する。
図1は、本発明の実施の形態に係る藻類増殖抑制装置の概要構成を示す構成説明図であり、図2は、本発明の実施の形態に係る微生物保持担体の写真である。図1中の符号1は、藻類増殖抑制装置であり、この藻類増殖抑制装置1は、生物反応槽2と、曝気手段3と、水面移動手段である台船4とから主に構成され、ダム貯水池などの閉鎖水域において藻類の増殖を抑制する装置である。
First, an embodiment of the algal growth suppression device according to the present invention will be described with reference to FIGS.
FIG. 1 is a configuration explanatory diagram showing a schematic configuration of an algal growth suppression device according to an embodiment of the present invention, and FIG. 2 is a photograph of a microorganism holding carrier according to an embodiment of the present invention. Reference numeral 1 in FIG. 1 is an algae growth suppression device, and this algae growth suppression device 1 is mainly composed of a biological reaction tank 2, an aeration means 3, and a trolley 4 which is a water surface movement means. This device suppresses the growth of algae in a closed water area such as a reservoir.

この生物反応槽2は、主に上部及び下部が開口した筒状の反応槽本体20からなり、上部に後述の微生物保持担体Sを通さず水の流入・流出が可能なスクリーン21と、同様に下部に微生物保持担体Sを通さず水の流入・流出が可能なスクリーン22とを有し、下部から水を流入して上部から流出可能に構成され、図に示すように、水温躍層の水深の略半分程度の深さ、即ち、表層水の略中央の深さに設置される。このスクリーン21,22は、耐蝕性を考慮して、ステンレス製とするとよい。また、この生物反応槽2内には、微生物を担持可能な微生物保持担体Sが収容されている。   This biological reaction tank 2 is mainly composed of a cylindrical reaction tank main body 20 having an opening at the top and bottom, and is similar to a screen 21 that allows inflow and outflow of water without passing through a microorganism holding carrier S described later on the upper part. It has a screen 22 that allows the inflow / outflow of water without passing through the microorganism holding carrier S in the lower part, and is configured to allow water to flow in from the lower part and outflow from the upper part. It is installed at a depth of about half of the depth of water, that is, at a depth approximately in the center of the surface water. The screens 21 and 22 are preferably made of stainless steel in consideration of corrosion resistance. Further, in this biological reaction tank 2, a microorganism holding carrier S capable of supporting microorganisms is accommodated.

この微生物保持担体Sは、表面に微生物が付着し易いようにある程度の凹凸があり、空気曝気により容易に流動化するものであれば形状及び材質については特に限定されないが本実施の形態では、図2に示すように、樹脂から中空円筒状に成形され、比重が1程度になるよう調整されている。このように、本実施の形態に係る微生物保持担体Sは、中空円筒状に形成されているので、体積に比して表面積を大きく取ることができ、このため、多くの微生物を担持して生物反応を促進することができる。また、比重が1程度の樹脂製であるので、下部から曝気するだけで容易に流動化する。   The microorganism holding carrier S is not particularly limited in shape and material as long as it has a certain degree of unevenness so that microorganisms can easily adhere to the surface and can be easily fluidized by air aeration. As shown in FIG. 2, the resin is molded into a hollow cylindrical shape and adjusted so that the specific gravity is about 1. As described above, since the microorganism holding carrier S according to the present embodiment is formed in a hollow cylindrical shape, the surface area can be increased as compared with the volume. The reaction can be promoted. Further, since it is made of a resin having a specific gravity of about 1, it can be easily fluidized simply by aeration from the bottom.

曝気手段3は、散気板30と、空気圧送手段である圧送パイプ31とコンプレッサー32と、から主に構成され、複数の固定棒33で生物反応槽2の下方に所定間隔離間して連結されている。この曝気手段3の空気圧送手段であるコンプレッサー32から圧送パイプ31を介して空気を散気板30に送り込んで、生物反応槽2を下方から曝気し、図の矢印で示すように、生物反応槽2の内側に緩やかな上昇流と生物反応槽2の外側に緩やかな下降流を発生させるようになっている。また、生物反応槽2に収容されている微生物保持担体Sは、この曝気手段3の曝気により流動化して、満遍なく閉鎖水域の水と接触する。このため、担持する微生物による生物反応で閉鎖水域の水を処理することができる。
なお、固定棒33は、メンテナンス等を考慮して長さを調節できるようにしてもよい。
The aeration means 3 is mainly composed of a diffuser plate 30, a pressure feeding pipe 31 that is a pneumatic feeding means, and a compressor 32, and is connected to a lower part of the biological reaction tank 2 by a plurality of fixing rods 33 at a predetermined interval. ing. Air is fed into the diffuser plate 30 from the compressor 32 which is the pneumatic feeding means of the aeration means 3 through the pressure feeding pipe 31, and the biological reaction tank 2 is aerated from below, and as shown by the arrows in the figure, the biological reaction tank A gentle upward flow is generated inside 2 and a gentle downward flow is generated outside the biological reaction tank 2. Further, the microorganism holding carrier S accommodated in the biological reaction tank 2 is fluidized by the aeration of the aeration means 3 and uniformly contacts the water in the closed water area. For this reason, the water of a closed water area can be processed by the biological reaction by the microorganisms to carry.
Note that the length of the fixing rod 33 may be adjusted in consideration of maintenance or the like.

ところで、従来から藻類の増殖に必要な微量金属(例えば、マンガンMn)を酸化する微量金属酸化微生物が存在することが知られている。しかし、これらの微量金属酸化微生物は、増殖速度が遅く、浮遊状態ではダム貯水池などの閉鎖水域でも大量に増殖することができない。しかし、前述のように、微生物保持担体Sを入れた生物反応槽2を設置し、下方から曝気手段3で曝気することを継続することにより、つまり、好気的な条件下で一定期間流動化し続けることにより、微生物保持担体Sの表面に微量金属酸化微生物を付着増殖させることができる。   By the way, it is conventionally known that there are trace metal oxidizing microorganisms that oxidize trace metals (for example, manganese Mn) necessary for algae growth. However, these trace metal oxidation microorganisms have a slow growth rate, and in a floating state, they cannot grow in large quantities even in closed water areas such as dam reservoirs. However, as described above, by installing the biological reaction tank 2 containing the microorganism holding carrier S and continuing aeration with the aeration means 3 from below, that is, fluidizing for a certain period under aerobic conditions. By continuing, the trace amount metal-oxidized microorganisms can adhere and grow on the surface of the microorganism-supporting carrier S.

台船4は、人が操縦する一般的な船であるが、水面移動手段の一実施の形態として例示するものであり、生物反応槽2と曝気手段を吊り下げて水面付近に留まれるだけの浮力を有し、エンジンやモータなどの駆動手段と水中スクリューやプロペラなどの推進手段を備えて、閉鎖水域の水面上の所定の場所へ移動可能に構成されていればよく、例えば、無線で操縦可能な水中スクリューと浮きとを備えて岸などの離れた場所から操縦できるようにしてもよいし、プログラムにより自動でランダムに水面上を動いて閉鎖水域の水面全域を移動して処理できるようにしてもよい。   The trolley 4 is a general ship that is maneuvered by a person, but is exemplified as an embodiment of the water surface moving means, and only hangs the biological reaction tank 2 and the aeration means and stays near the water surface. It only needs to have buoyancy, drive means such as an engine or motor, and propulsion means such as a submersible screw or propeller, so that it can be moved to a predetermined location on the surface of a closed water area. It may be possible to steer from remote locations such as shores with possible underwater screws and floats, or it will move automatically over the water surface by the program and move across the water surface of the closed water area for processing. May be.

この台船4は、台船4と生物反応槽2の反応槽本体20とを連結する連結手段である複数の可変固定棒40を有し、生物反応槽2を所定の深さ、つまり、水温躍層の水深の略半分程度の深さに吊り下げられるようになっている。また、この可変固定棒40は、その長さが調節可能であり、季節により変化する水温躍層の水深に応じて生物反応槽2の設置深さを変更可能となっている。   This barge 4 has a plurality of variable fixing rods 40 as connecting means for connecting the barge 4 and the reaction tank body 20 of the biological reaction tank 2, and the biological reaction tank 2 has a predetermined depth, that is, a water temperature. It is designed to be hung to about half the depth of the water layer. Further, the length of the variable fixing rod 40 can be adjusted, and the installation depth of the biological reaction tank 2 can be changed according to the water depth of the water warming layer that changes according to the season.

次に、水温躍層について図3を用いて説明する。図3は、水温躍層と藻類増殖抑制装置の設置位置を示す説明図である。水温躍層とは、前記背景技術でも述べたが、太陽光線が届き日射で温められた比較的高温低密度の水域(表層水)と、それより深く、即ち、有光層以深の比較的低温高密度の水域との境界(界面層)であり、図の水温の水深による変化曲線に示すように、水温がこの層で急激に変化する。このため、両水域の密度差が大きくこれらの水域同士の水の交換が殆どおこらない、つまり、この層を超えて水の対流循環がおこなわれなくなる。この水温躍層は、当然地域により差はあるが、日本では一般的に気温が高く、日射が強くなる春先頃から形成され始め、夏に最深(5m程度)となり、晩秋頃に消滅する。   Next, the water temperature climbing layer will be described with reference to FIG. FIG. 3 is an explanatory diagram showing the installation positions of the water temperature climatic layer and the algal growth suppression device. As described in the background art, the water temperature striking layer is a relatively high temperature and low density water area (surface water) heated by solar radiation and deeper than that, that is, a relatively low temperature deeper than the light layer. This is a boundary (interface layer) with a high-density water area, and the water temperature changes abruptly in this layer as shown in the change curve of the water temperature depending on the water depth in the figure. For this reason, there is a large density difference between the two water areas, and there is almost no exchange of water between these water areas, that is, convective circulation of water does not occur across this layer. Naturally, the water temperature rises in different regions, but in Japan, it begins to form in early spring when the temperature is generally high and the solar radiation is strong, reaches the deepest in summer (about 5m), and disappears in late autumn.

次に、藻類増殖抑制装置1の動作、即ち、本発明に係る閉鎖水域における藻類増殖抑制方法の実施の形態について図1、3を用いて説明する。
先ず、台船4で藻類の増殖が危惧される閉鎖水域の所定位置に春先に移動し、そこで、可変固定棒40の長さを調整して、水温躍層を破壊せずに、水面から水温躍層までの表層水の略中央となるように生物反応槽2(及び曝気手段3)を設置する(図3参照)。このように、表層水の略中央に設置すると効率よく表層水中に含まれる微量金属を酸化・不溶化することができる。
Next, operation | movement of the algal growth suppression apparatus 1, ie, embodiment of the algal growth suppression method in the closed water area which concerns on this invention is demonstrated using FIG.
First of all, in the spring, the boat 4 moves to a predetermined position in the closed water area where the growth of algae is a concern. Then, the length of the variable fixing rod 40 is adjusted, and the water temperature rises from the water surface without destroying the water temperature rise layer. The biological reaction tank 2 (and the aeration means 3) is installed so as to be approximately in the center of the surface water up to the layer (see FIG. 3). Thus, when it is installed in the approximate center of the surface water, the trace metals contained in the surface water can be efficiently oxidized and insolubilized.

次に、曝気手段3を一定期間継続動作させ、生物反応槽2内の微生物保持担体Sを好気的な条件下で一定期間流動化し続けることにより、比較的増殖速度が遅い微量金属酸化微生物(例えば、溶解性マンガンを酸化して不溶化する微生物)を微生物保持担体Sの表面に自然発生的に担持させる。   Next, the aeration means 3 is continuously operated for a certain period, and the microorganism holding carrier S in the biological reaction tank 2 is continuously fluidized for a certain period under an aerobic condition, whereby a trace metal oxidation microorganism having a relatively slow growth rate ( For example, a microorganism that oxidizes soluble manganese and insolubilizes it) is naturally supported on the surface of the microorganism-supporting carrier S.

そして、この微量金属酸化微生物の生物反応により図1の矢印方向に流れる水に含まれる微量金属を酸化して不溶化する。不溶化された微量金属酸化物は、次第に凝集して行き、徐々に大きな粒子となっていく。   Then, the trace metal contained in the water flowing in the direction of the arrow in FIG. 1 is oxidized and insolubilized by the biological reaction of the trace metal oxidizing microorganism. The insolubilized trace metal oxide gradually aggregates and gradually becomes large particles.

曝気手段3の動作を継続すると、図1の矢印で示すように、生物反応槽2の内側に緩やかな上昇流と生物反応槽2の外側に緩やかな下降流が発生し、即ち、表層水内を循環対流する静かな流れが発生する。また、微量金属酸化物は比重が水より重いので、微量金属酸化物の粒子の大きさが1μm程度ぐらいになると、この下降流の流れに乗って、徐々に沈降して行く。また、この流れはとても緩やかなものなので、微量金属酸化物の粒子が流れの下端に達すると流れから脱して、そのまま水温躍層を超えて沈降して行く。
なお、前述のように、水温躍層を超えて水の循環はおこなわれないので、表層水に含まれる微量金属を殆ど酸化・不溶化すれば、光合成を利用して増殖する藻類は、増殖に必要な溶解性マンガンをはじめとする微量金属を摂取することができず、結果的に、大発生することができなくなる。
When the operation of the aeration means 3 is continued, as shown by the arrows in FIG. 1, a gentle upward flow is generated inside the biological reaction tank 2 and a gentle downward flow is generated outside the biological reaction tank 2, that is, in the surface water. A quiet flow is generated that circulates through In addition, since the specific gravity of the trace metal oxide is heavier than that of water, when the trace metal oxide particle size is about 1 μm, the trace metal oxide is gradually settled on the downward flow. In addition, since this flow is very gentle, when the trace amount of metal oxide particles reaches the lower end of the flow, it escapes from the flow and settles over the water temperature crushing layer as it is.
As mentioned above, water does not circulate beyond the water temperature layer, so if the trace metals contained in the surface water are almost oxidized and insolubilized, algae that grow using photosynthesis are necessary for growth. Trace metals such as soluble manganese cannot be ingested, and as a result, they cannot be generated greatly.

以上説明したように、本実施の形態に係る閉鎖水域における藻類増殖抑制方法によれば、従来技術のようにダム貯水池などの閉鎖水域にある全水量を対象として生物反応処理するのではなく、表層水のみを対象としているので、最も藻類増殖の可能性のある水域において集中的に、且つ素早く短期間で藻類の増殖に必要な微量金属の濃度を下げることにより、表層水における藻類増殖のポテンシャルを低減することができる。このため、閉鎖水域において夏場の藻類の大量発生を確実に防ぐことができ、景観障害、悪臭、異臭味等の問題を解決することができる。そのうえ、微生物を選別して固定化するような作業手間も掛からず設備費や運転費も安価である。   As described above, according to the method for suppressing algal growth in a closed water area according to the present embodiment, the biological reaction treatment is not performed on the total amount of water in the closed water area such as a dam reservoir as in the prior art, but the surface layer. Since only water is targeted, the potential for algae growth in surface water can be reduced by reducing the concentration of trace metals required for algae growth in a concentrated and quick manner in the most algae-prone waters. Can be reduced. For this reason, a large amount of summer algae can be reliably prevented in a closed water area, and problems such as landscape obstruction, bad odor, and off-flavor can be solved. In addition, the labor and labor for selecting and immobilizing microorganisms are not required, and the equipment and operating costs are low.

(効果確認実験)
本発明の閉鎖水域における藻類増殖抑制方法の藻類増殖の抑制効果を確認するため、藻類の異常増殖が問題となっているダム貯水池(三春ダム)の流入河川において、以下に示す実験を行った。図4は、実験装置の概要を示す説明図、表1は、図4の実験装置の各水系の水質と藻類の増殖量をクロロフィルa量で示す表である。
図4に示す、I系は、河川水を採取し、砂等を沈殿槽により除去した後、その水を直接試料とする系であり、II系は、I系の水を前述の微生物保持担体が収容された容量5Lの反応槽において10L/hの速度で処理した、即ち、I系の水を30分間担体処理(微量金属酸化微生物をはじめとする微生物保持担体に担持される微生物の生物反応により処理すること)した系であり、同様に、III系は、I系の水を容量5Lの反応槽において2.5L/hの速度、即ち、I系の水を120分間担体処理した系である。これら3系統の試料を数回に分けて採取して、実験室に持ち帰り、各系の水質(全リン、全窒素、溶解性マンガンの濃度)を測定し、その後、ダム貯水池に発生していた藻類をごく微量植種した後8〜10日培養して、増殖した藻類の量をクロロフィルaの濃度で計測した。その計測結果を平均(数回分を平均)したものを以下の表1に示す。
(Effect confirmation experiment)
In order to confirm the algal growth inhibitory effect of the algal growth suppression method in the closed water area of the present invention, the following experiment was conducted in the inflow river of the dam reservoir (Miharu dam) where abnormal algal growth is a problem. FIG. 4 is an explanatory diagram showing an outline of the experimental apparatus, and Table 1 is a table showing the water quality of each water system and the amount of algae grown by the amount of chlorophyll a in the experimental apparatus of FIG.
The system I shown in FIG. 4 is a system in which river water is collected, sand and the like are removed by a sedimentation tank, and then the water is directly used as a sample. In a reaction vessel with a capacity of 5 liters, in which water is treated with carrier I for 30 minutes (biological reaction of microorganisms supported on a microorganism-supporting carrier including trace metal oxidation microorganisms) Similarly, system III is a system in which system I water is treated at a rate of 2.5 L / h in a reaction tank having a capacity of 5 L, that is, system I water is treated for 120 minutes. is there. Samples of these three systems were collected in several batches and taken back to the laboratory to measure the water quality of each system (total phosphorus, total nitrogen, soluble manganese concentration), and then occurred in the dam reservoir After a very small amount of algae was inoculated, the algae was cultured for 8 to 10 days, and the amount of the grown algae was measured by the concentration of chlorophyll a. Table 1 below shows the average of the measurement results (average of several times).

上記表1から分かるように、I系〜III系の水は、一般的に富栄養化の原因と考えられているリンや窒素の濃度において差はないが、II系、III系のいずれの水で培養した場合でもI系の水と比較して明らかに、クロロフィルaの濃度が減少しており、藻類増殖が抑制されていることが認められる。これは、リンや窒素の濃度において差がないことから微生物保持担体に担持されている微量金属微生物の働きにより溶解性マンガンが酸化・不溶化されたことにより、藻類の増殖に必要な微量金属(溶解性マンガン)の摂取が阻害されたからと考えられる。   As can be seen from Table 1 above, the I- to III-based waters are generally the same as the causes of eutrophication, but there is no difference in the concentration of phosphorus and nitrogen. Even in the case of culturing with, the concentration of chlorophyll a is clearly reduced as compared with the water of system I, and it is recognized that the growth of algae is suppressed. This is because there is no difference in the concentration of phosphorus and nitrogen, so the soluble manganese is oxidized and insolubilized by the action of the trace metal microorganisms supported on the microorganism-supporting carrier. It is thought that the intake of (manganese) was inhibited.

以上のように、この発明の実施の形態を説明してきたが、あくまでも一例を示すものであり、生物反応槽、曝気手段、水面移動手段は、従来技術と置換可能である。その場合であっても、前記効果を奏することは明らかである。また、図面で示した各構成の形状や材質等は、あくまでも好ましい一例を示すものであり、その実施に際しては特許請求の範囲に記載した範囲内で、任意に設計変更・修正ができるものである。なお、藻類とは、主に水中に生息する光合成生物(植物)の総称であり、海藻類や植物プランクトンなどを含む意味で使用している。この海藻類は、アオノリなどの緑藻類、コンブやワカメなどの褐藻類、アサクサノリなどの紅藻類といったそれぞれ色も形も生活様式も異なる3群を含み、植物プランクトンは、渦鞭毛藻類や珪藻類,ミドリムシ類などを含んでいる。   As described above, the embodiment of the present invention has been described. However, the embodiment is merely an example, and the biological reaction tank, the aeration means, and the water surface moving means can be replaced with conventional techniques. Even in such a case, it is clear that the above-described effect is achieved. In addition, the shape, material, and the like of each configuration shown in the drawings are merely preferable examples, and can be arbitrarily changed and modified within the scope described in the claims in the implementation. . Algae is a general term for photosynthetic organisms (plants) that mainly live in water, and is used to include seaweeds and phytoplankton. This seaweed includes three groups with different colors, shapes, and lifestyles, such as green algae such as aonori, brown algae such as kombu and wakame, and red algae such as sea cucumber. It includes the kind.

この発明の実施の形態に係る藻類増殖抑制装置の概要構成を示す構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a structure explanatory drawing which shows the general | schematic structure of the algal growth suppression apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る微生物保持担体の写真である。2 is a photograph of a microorganism holding carrier according to an embodiment of the present invention. 水温躍層と藻類増殖抑制装置の設置位置を示す説明図である。It is explanatory drawing which shows the installation position of a water temperature climbing layer and an algae growth suppression apparatus. 本発明の効果確認実験の実験装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the experimental apparatus of the effect confirmation experiment of this invention.

符号の説明Explanation of symbols

1 藻類増殖抑制装置
2 生物反応槽
20 反応槽本体
21 スクリーン
22 スクリーン
3 曝気手段
30 散気板
31 圧送パイプ(空気圧送手段)
32 コンプレッサー(空気圧送手段)
4 台船(水面移動手段)
40 可変固定棒(連結手段)
S 微生物保持担体
DESCRIPTION OF SYMBOLS 1 Algal growth suppression apparatus 2 Biological reaction tank 20 Reaction tank main body 21 Screen 22 Screen 3 Aeration means 30 Aeration plate 31 Pressure feed pipe (pneumatic feed means)
32 Compressor (pneumatic feed means)
4 trolley (water surface movement means)
40 Variable fixing rod (connecting means)
S Microbe holding carrier

Claims (4)

ダム貯水池などの閉鎖水域において藻類の増殖を抑制する方法であって、
上部及び下部に水の流入又は流出が可能なスクリーンを有し、微生物を担持可能な微生物保持担体を収容する生物反応槽を前記閉鎖水域の表層付近に設置し、曝気手段により前記生物反応槽を下方から曝気して、前記生物反応槽の内側に緩やかな上昇流と生物反応槽の外側に緩やかな下降流を発生させると共に、前記微生物保持担体を流動化させることを継続することで藻類の増殖に必要な微量金属を酸化する微量金属酸化微生物を前記微生物保持担体の表面に自然発生的に担持させ、
この微生物保持担体に担持させた微量金属酸化微生物により前記生物反応槽の下部から流入させた前記閉鎖水域の水に含まれる前記微量金属を酸化して不溶化させ、
この微量金属酸化微生物により酸化した微量金属酸化物を前記下降流で沈降させることを特徴とする閉鎖水域における藻類増殖抑制方法。
A method for suppressing the growth of algae in a closed water area such as a dam reservoir,
A biological reaction tank containing a microorganism holding carrier capable of supporting microorganisms is installed near the surface layer of the closed water area, having a screen capable of inflow or outflow of water at the upper part and the lower part, and the biological reaction tank is formed by aeration means. By aeration from below, a gentle upward flow is generated inside the biological reaction tank and a gentle downward flow is generated outside the biological reaction tank, and the microbial holding carrier is continuously fluidized to grow algae. A trace metal oxidation microorganism that oxidizes a trace metal necessary for spontaneously carrying on the surface of the microorganism-supporting carrier,
Oxidizing and insolubilizing the trace metal contained in the water of the closed water area introduced from the lower part of the biological reaction tank by the trace metal oxidation microorganisms supported on the microorganism holding carrier,
A method for inhibiting algal growth in a closed water area, characterized in that the trace metal oxide oxidized by the trace metal oxidation microorganism is settled in the downward flow.
請求項1に記載の閉鎖水域における藻類増殖抑制方法に用いられる装置であって、
上部及び下部に水の流入又は流出が可能なスクリーンを有し、微生物を担持可能な微生物保持担体を収容する生物反応槽と、
この生物反応槽の下方に所定間隔離間して連結され、空気を送り込んで曝気する曝気手段と、
前記生物反応槽を所定深さに吊り下げる連結部材を有し、前記閉鎖水域の水面付近を移動可能な水面移動手段と、
を備えたことを特徴とする閉鎖水域における藻類増殖抑制装置。
It is an apparatus used for the algal growth suppression method in the closed water area according to claim 1,
A biological reaction tank having a screen capable of inflow or outflow of water at the upper part and the lower part and containing a microorganism-supporting carrier capable of supporting microorganisms;
Aeration means connected to the lower part of the biological reaction tank at a predetermined interval and aerated by sending in air;
A water surface moving means having a connecting member for suspending the biological reaction tank to a predetermined depth, and capable of moving in the vicinity of the water surface of the closed water area;
An apparatus for inhibiting algal growth in a closed water area, comprising:
前記微生物保持担体は、比重が1程度の樹脂製であることを特徴とする請求項2に記載の閉鎖水域における藻類増殖抑制装置。   The algae growth-suppressing device in a closed water area according to claim 2, wherein the microorganism holding carrier is made of a resin having a specific gravity of about 1. 前記連結部材は、その長さが調整可能となっており、水温躍層の深さに応じて前記生物反応槽の設置深さが変更可能となっていることを特徴とする請求項2又は3に記載の閉鎖水域における藻類増殖抑制装置。   The length of the connecting member can be adjusted, and the installation depth of the biological reaction tank can be changed according to the depth of the water temperature climbing layer. The algal growth suppression apparatus in the closed water area as described in 2.
JP2008052908A 2008-03-04 2008-03-04 Method for suppressing propagation of algae in sewage treatment water and device therefor Withdrawn JP2009207986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052908A JP2009207986A (en) 2008-03-04 2008-03-04 Method for suppressing propagation of algae in sewage treatment water and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008052908A JP2009207986A (en) 2008-03-04 2008-03-04 Method for suppressing propagation of algae in sewage treatment water and device therefor

Publications (1)

Publication Number Publication Date
JP2009207986A true JP2009207986A (en) 2009-09-17

Family

ID=41181661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052908A Withdrawn JP2009207986A (en) 2008-03-04 2008-03-04 Method for suppressing propagation of algae in sewage treatment water and device therefor

Country Status (1)

Country Link
JP (1) JP2009207986A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296973B1 (en) 2012-05-25 2013-08-14 대덕대학산학협력단 Aeration device for self-electric generation type water purifying system
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae
WO2016159870A1 (en) * 2015-03-31 2016-10-06 Cube 2 Pte Ltd Moving bed bioreactor and water treatment process
JPWO2015137227A1 (en) * 2014-03-14 2017-04-06 国立研究開発法人土木研究所 Algae growth suppression apparatus and method
CN108002520A (en) * 2017-12-21 2018-05-08 常州大学 A kind of simple river water body prosthetic device
CN110683632A (en) * 2019-10-31 2020-01-14 天津市华博水务有限公司 Integrated treatment equipment for in-situ treatment and improvement of water body
CN114436476A (en) * 2022-02-14 2022-05-06 汕头市弘东环境治理有限公司 Processing system that confluence system overflow pollutes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296973B1 (en) 2012-05-25 2013-08-14 대덕대학산학협력단 Aeration device for self-electric generation type water purifying system
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae
JPWO2015137227A1 (en) * 2014-03-14 2017-04-06 国立研究開発法人土木研究所 Algae growth suppression apparatus and method
WO2016159870A1 (en) * 2015-03-31 2016-10-06 Cube 2 Pte Ltd Moving bed bioreactor and water treatment process
CN107428576A (en) * 2015-03-31 2017-12-01 立方2号私人有限公司 Moving-bed bioreactor and method for treating water
CN108002520A (en) * 2017-12-21 2018-05-08 常州大学 A kind of simple river water body prosthetic device
CN110683632A (en) * 2019-10-31 2020-01-14 天津市华博水务有限公司 Integrated treatment equipment for in-situ treatment and improvement of water body
CN114436476A (en) * 2022-02-14 2022-05-06 汕头市弘东环境治理有限公司 Processing system that confluence system overflow pollutes

Similar Documents

Publication Publication Date Title
JP2009207986A (en) Method for suppressing propagation of algae in sewage treatment water and device therefor
US5549828A (en) Method and apparatus for in Situ water purification including sludge reduction within water bodies by biofiltration and for hypolimnetic aeration of lakes
US5344557A (en) Incubator for biological cleaning of fluids
MXPA05007119A (en) Water circulation systems for ponds, lakes, and other bodies of water.
CN105948390B (en) Floating type river channel bottom pollutant removing and purifying device and method
CN103991963A (en) Integrated floating water body purification device
CN110054378B (en) River and lake bottom repairing device and method
KR102092918B1 (en) Method for Management of Fish-raising Farm Using Nano-bubble and Micro-bubble
CN107428576A (en) Moving-bed bioreactor and method for treating water
KR101834375B1 (en) Stagnant water bodies and river restoration system
CN106630163A (en) Floating type biological grid purification device for landscape water body
JP3641700B2 (en) Water quality improvement system for closed water areas
JP4430851B2 (en) Tubular body for sewage purification and sewage purification method using the same
JPH05220466A (en) Method and apparatus for automatic adding and stirring and method for using apparatus for automatic adding and stirring and method for cleaning water in pond, lake or river by means of apparatus for automatic adding and stirring and apparatus for cleaning water of pond, lake or river by means of automatic adding and stirring
JP4734166B2 (en) Water bottom purification equipment
CN205258117U (en) Float formula aeration dissolved oxygen biological cycle water treatment facilities and water processing system
JP2001259680A (en) Aeration device and aeration method
CN206352076U (en) A kind of floatation type biological grid purifier of landscape water body
JPH0523694A (en) Method for cleaning off organic deposit resulting from spilled crude oil or waste water on water bottom
CN206828184U (en) A kind of fixed-bed bioreactor
JP2000126789A (en) Water purifying mechanism of lakes, marshes or rivers
JP6560515B2 (en) Waste water treatment equipment
CN204022560U (en) Integrated floating type water purifying device
JP3158262B2 (en) Current generation method and facilities in aquaculture area
KR100824724B1 (en) Water purification system of stagnanted water using water stream and bio-media

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510