JP3158262B2 - Current generation method and facilities in aquaculture area - Google Patents

Current generation method and facilities in aquaculture area

Info

Publication number
JP3158262B2
JP3158262B2 JP24568292A JP24568292A JP3158262B2 JP 3158262 B2 JP3158262 B2 JP 3158262B2 JP 24568292 A JP24568292 A JP 24568292A JP 24568292 A JP24568292 A JP 24568292A JP 3158262 B2 JP3158262 B2 JP 3158262B2
Authority
JP
Japan
Prior art keywords
water
pumping
sea
depth
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24568292A
Other languages
Japanese (ja)
Other versions
JPH0662701A (en
Inventor
道男 牧野
Original Assignee
海洋工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋工業株式会社 filed Critical 海洋工業株式会社
Priority to JP24568292A priority Critical patent/JP3158262B2/en
Publication of JPH0662701A publication Critical patent/JPH0662701A/en
Application granted granted Critical
Publication of JP3158262B2 publication Critical patent/JP3158262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、養殖海域に海流を生
成すると共に、海底付近の淨化及び溶存酸素量の改善を
目的とした養殖海域における海流生成方法及び施設に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a facility for generating an ocean current in an aquaculture area for the purpose of generating an ocean current in an aquaculture area, for purifying near the seabed and improving the amount of dissolved oxygen.

【0002】[0002]

【従来の技術】従来、養殖方法又は海水淨化方法として
間欠空気揚水装置を用いた技術が知られている(特開平
2−104226号)。
2. Description of the Related Art A technique using an intermittent air pumping apparatus is conventionally known as a culturing method or a method for purifying seawater (Japanese Patent Laid-Open No. 2-104226).

【0003】[0003]

【発明により解決すべき課題】前記従来の方法は、海水
を循環流動させることにより、海面付近の溶存酸素量の
多い海水を海底に導き、海底の溶存酸素量を改善するも
のであって、多大の成果を揚げている。
According to the conventional method, seawater having a large amount of dissolved oxygen near the sea surface is guided to the seabed by circulating seawater to improve the amount of dissolved oxygen on the seabed. The results are getting better.

【0004】然し乍ら、海底付近に有機浮游物の層があ
る場合には、これをそのまま水面付近に揚水すると、前
記有機浮游物と、これにより生じた有害物(例えば硫化
水素など)が養殖海域に拡散し、養殖物(貝又は魚類)
に悪影響を及ぼすおそれがあった。また従来は、養殖海
域における海流については考慮されていなかった。
[0004] However, if there is a layer of organic floating substances near the sea floor, if this is pumped to the water surface as it is, the organic floating substances and harmful substances (for example, hydrogen sulfide and the like) generated by the organic floating substances will reach the aquaculture area. Spread and cultured (shellfish or fish)
Could be adversely affected. Conventionally, currents in aquaculture areas have not been considered.

【0005】養殖海域に適度の海流を生成すると、養殖
物に酸素を供給するのみならず栄養分を供給することに
なり、病菌耐性が大きくなると共に、美味の養殖物を収
穫できる特徴がある。
When an appropriate current is generated in the cultivated sea area, nutrients are supplied in addition to supplying oxygen to the cultivated product, thereby increasing the resistance to disease-causing bacteria and having the characteristic that a delicious cultivated product can be harvested.

【0006】[0006]

【課題を解決するための手段】然るにこの発明は、海底
側の揚水開始位置を調節すると共に、海面側の拡散水深
を調節することによって、前記従来の問題点を解決した
のである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems by adjusting the pumping start position on the sea bottom side and adjusting the diffusion water depth on the sea surface side.

【0007】即ちこの発明によれば、養殖海域へ配置さ
れた複数の養殖設備の中間部水面下へ、設置水深の調節
手段を付加した間欠空気揚水装置を直立設置し、海底側
の揚水開始位置を調節すると共に、前記間欠空気揚水装
置から気泡弾を間欠的に放出して揚水流を惹起して、
底側から海面側へ揚水した海水の海面側の適度の水深の
養殖海域に拡散させ、海面付近に海流を生成することを
特徴とする養殖海域における海流生成方法であり、海底
側の揚水開始位置を順次海底に近接させ、有機浮遊物層
を順次処理し、海底側の水質を改善することを特徴とし
た上記記載の養殖海域における海流生成方法である。さ
らに、海面側の拡散水の流動水深を、間欠空気揚水装置
の設置位置及び加圧空気の供給量を調整して養殖設備の
深さに対応させることを特徴とした上記記載の養殖海域
における海流生成方法である。
[0007] That is, according to the present invention, the intermediate portion underwater plurality of farming equipment arranged to aquaculture waters, upright installed intermittent airlift device obtained by adding the adjustment means of the installation depth, seafloor side
And the pumping start position of the
The intermittent discharge of bubble bombs from the tank causes a pumping flow, which diffuses the seawater from the seafloor side to the sea surface at an appropriate depth on the sea side, and spreads the sea current near the sea surface. it is currents generation method in aquaculture waters, characterized in that generation to, brought close to sequentially seabed the pumping start position seabed side, organic suspended matter layer
Are sequentially processed to improve the water quality on the sea bottom side . In addition, the intermittent air pump
The method according to the above description, wherein the installation position and the supply amount of the pressurized air are adjusted to correspond to the depth of the culture facility.

【0008】前記において、海底付近に有機浮游物の層
(例えば水底から3〜5m 上方に亘る層)がある場合に
は、揚水筒の下端を、該有機浮游物の層より若干上(例
えば30cm〜50cm位上)にする。このようにして間欠
空気揚水装置を稼動すると、海面付近の溶存酸素量の多
い海水が、海底の有機浮游物の上層付近を流動し、該部
の溶存酸素量を増大させることにより、好気性菌の繁殖
を促し、これによって有機浮游物を分解して気化し、一
部無機物は水底に沈積させる。そこで揚水筒の下端を若
干下降(例えば50cm〜1m )させて、前記と同様に揚
水による上下対流を続行すれば、前記と同様に海底側の
有機浮游物を処理することができる。従って有機浮游物
の層の厚さによっても揚水筒の下降回数は異なるが、前
記操作を繰り返すことによって海底側の水質改善を急速
に進めることができる。
In the above description, when there is a layer of an organic floating substance near the seabed (for example, a layer extending 3 to 5 m above the water bottom), the lower end of the pumping cylinder is slightly above the layer of the organic floating substance (for example, 30 cm). ~ 50cm above). When the intermittent air pumping system is operated in this manner, seawater having a large amount of dissolved oxygen near the sea surface flows near the upper layer of the organic floating matter on the seabed, and increases the dissolved oxygen amount in the portion, thereby causing aerobic bacteria. Breeding, which breaks down organic vapors and vaporizes them, depositing some minerals on the bottom of the water. Therefore, if the lower end of the pumping cylinder is slightly lowered (for example, 50 cm to 1 m) and the vertical convection by pumping is continued in the same manner as described above, the organic floating matter on the sea bottom can be treated in the same manner as described above. Therefore, although the number of times of lowering of the water pumping cylinder varies depending on the thickness of the layer of the organic floating matter, it is possible to rapidly improve the water quality on the sea bottom side by repeating the above operation.

【0009】前記における揚水筒の下端の設置位置、下
降設置量、下降設置の日時間隔等は、有機浮游物の密
度、層の厚薄、新規流入物の有無、水深、揚水筒の容量
(目的水域に対する能力)、水温等各種条件により異な
るので、最良条件は各種実験によらなければ不明であ
る。
The installation position of the lower end of the pumping cylinder, the amount of descending installation, the date and time interval of descending installation, and the like are determined by the density of organic floats, the thickness of the layer, the presence or absence of new inflows, the water depth, the capacity of the pumping cylinder (target water area). The best conditions are not known without various experiments because they vary depending on various conditions such as water temperature and water temperature.

【0010】然し乍ら、淡水における経験によれば、前
記のような逐次下降手段をとることなく、数週間〜拾数
週間でほぼ完全に改善された。この場合の水深は3m 〜
30m であり、揚水筒の容量は水量5万トン〜100万
トンに対し、直径50cm、長さ15m の揚水筒1本〜直
径20cm、長さ1.5m の揚水筒数本であった。例え
ば、水深20m 〜30m の場合には直径50cm、長さ1
0m 〜15m の揚水筒1本で、100万トンの水量を2
週間で改善した実績がある。
However, experience with fresh water has shown that the improvement was almost complete in a few weeks to a few weeks without the need for such a sequential descent. The water depth in this case is 3m ~
The pumping cylinder had a capacity of 50,000 to 1,000,000 tons and one pumping cylinder with a diameter of 50 cm and a length of 15 m to 20 cm in diameter and several 1.5 m in length. For example, when the water depth is 20m to 30m, the diameter is 50cm and the length is 1cm.
One 1m to 15m pump cylinder can supply 1 million tons of water
There is a track record of improvement over a week.

【0011】また水深1m 〜3m の池の場合には、直径
20cm、長さ150cmの揚水筒1本につき2万トンの水
を2週間で改善した実績がある。尤も浅い水深の場合
に、夏季(表水20℃〜25℃)には殺藻剤を併用し、
必要に応じ凝集剤を用いた。
In the case of a pond having a depth of 1 m to 3 m, there is a record of improving 20,000 tons of water per pumping cylinder having a diameter of 20 cm and a length of 150 cm in two weeks. In the case of shallow water depth, algaecide is used together in summer (20 ° C to 25 ° C).
A flocculant was used as needed.

【0012】前記水質の改善とは、溶存酸素量の全水の
平均化と、有機浮游物の処理(分解し、無機質の沈澱
化)、水温の均一化などがある。前記のように水底側の
溶存酸素量が水面とほぼ等しくなると共に、水底側の水
温が高くなれば、必然的に好気性菌が繁殖して、急速に
有機物を処理することになる。
The improvement of the water quality includes averaging of the amount of dissolved oxygen in all the water, treatment of organic floating substances (decomposition and precipitation of inorganic substances), and uniformization of water temperature. As described above, if the amount of dissolved oxygen on the water bottom side is almost equal to the water surface and the water temperature on the water bottom side is high, aerobic bacteria will inevitably propagate and organic matter will be rapidly processed.

【0013】水温に関し、全体均一に近くなる為に(水
深20m で温度差1〜2℃)、全体の水温が低下(例え
ば夏季でも18℃以下となり農業用水に不適当)するお
それがあるという危惧が表明されたことがある。然し乍
ら、春又は初夏から揚水装置を運転することにより、全
水温度と表水温度との差を1℃〜2℃に保つことができ
る。例えば表水温度23℃の場合には、全水温度21℃
〜22℃となり、農業用水としても問題を生じるおそれ
はない。
With respect to the water temperature, there is a concern that the water temperature may be lowered (for example, 18 ° C. or less even in summer and unsuitable for agricultural water) because the water temperature becomes almost uniform (temperature difference is 1 to 2 ° C. at a water depth of 20 m). Has been expressed. However, by operating the pumping apparatus from spring or early summer, the difference between the total water temperature and the surface water temperature can be kept at 1 ° C to 2 ° C. For example, when the surface water temperature is 23 ° C., the total water temperature is 21 ° C.
To 22 ° C., and there is no possibility of causing a problem as agricultural water.

【0014】この発明の対象たる海域は、陸上における
ダム、湖、沼と異なり、海水量が厖大な海域へ連続して
いるので、前記ダム等の経験は役に立たないとする危惧
がある。然し乍ら、水はその性質上、抵抗の少ない方向
へ流れるので、適度の距離に抵抗物を設定すれば、湾な
どの上下対流を実現できる。例えば、図2のような湾内
において、海水の流動はほぼ閉水域(例えばダム)と同
様の動作をするものと思われる。
The sea area to which the present invention is applied is different from dams, lakes, and swamps on land, and since the sea area is continuous to an enormous sea area, there is a fear that the experience of the dams and the like may not be useful. However, because of its nature, water flows in the direction of low resistance, so that by setting a resistor at an appropriate distance, vertical convection in a bay or the like can be realized. For example, in a bay as shown in FIG. 2, the flow of seawater seems to behave almost like a closed area (eg, a dam).

【0015】即ち揚水装置による揚水は、揚水筒を中心
として放射状に拡散するので、恰も投石により生じた波
紋のように同心的に拡散する。従って複数の揚水筒の揚
水は、隣接揚水筒の揚水の衝突位置で下降するが、衝突
しない場合には湾岸に到達し(図1)、大きな上下対流
圏を画くものと考えられる。また揚水は、表水と混合し
て、混合水の水温と同温の水深を放射状に拡散する。例
えば、水深15m で表水20℃で底水15℃の温度差が
ある場合には、混合水は19℃前後となり、海流の水深
hは2m 前後となる(図1)。
That is, the water pumped by the water pumping device diffuses radially around the pumping cylinder, and concentrically spreads as if it were a ripple caused by a stoning. Therefore, the pumping of the plurality of pumping cylinders descends at the collision point of pumping of the adjacent pumping cylinders. However, when there is no collision, the pumping reaches the shore (FIG. 1), and is considered to form a large vertical troposphere. Pumping mixes with surface water and diffuses radially at the same temperature as the temperature of the mixed water. For example, when there is a temperature difference of 20 ° C. and 15 ° C. of bottom water at a depth of 15 m, the mixed water is around 19 ° C., and the depth h of the ocean current is around 2 m (FIG. 1).

【0016】そこで貝筏とか、養殖魚の付近に海流を生
じ、酸素および海水中の栄養分の供給に有効であり、か
つ前記貝などの生物に活性を付与するものである。
Therefore, a sea current is generated in the vicinity of a shell raft or cultured fish, which is effective for supplying oxygen and nutrients in seawater, and imparts an activity to the organism such as the shellfish.

【0017】[0017]

【作用】この発明によれば、海面付近に海流を生成する
ので、養殖貝等に活性を付与する。
According to the present invention, since an ocean current is generated near the sea surface, activity is imparted to cultured shellfish and the like.

【0018】また揚水筒の下端位置を逐次深くすること
によって、有機浮游物の層が厚い場合であっても、これ
を上部から逐次処理するので、海面付近の養殖生物に有
機浮游物の悪影響を及ぼすおそれはない。
Further, by gradually increasing the lower end position of the pumping cylinder, even if the layer of the organic floating substance is thick, the organic floating substance is sequentially processed from the upper part. There is no danger.

【0019】[0019]

【実施例】図1、2、3において、湾1内のかき筏2、
2の間に揚水装置3、3を適宜配置する。揚水装置3の
揚水筒4の上端には浮子5が固定され、下端には索条6
を介して錘り7を吊下することにより、揚水筒4は垂直
に保たれている。前記揚水筒4の下端は、有機浮游物層
8の上面より、若干上位付近に臨ませてある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIGS.
The pumping devices 3 and 3 are appropriately disposed between the two. A float 5 is fixed to an upper end of a pumping cylinder 4 of the pumping device 3, and a rope 6 is fixed to a lower end thereof.
The lifting cylinder 4 is kept vertical by suspending the weight 7 via the. The lower end of the pumping cylinder 4 is slightly higher than the upper surface of the organic floating layer 8.

【0020】前記における揚水装置3の空気室9は、通
常、揚水筒4の下端外側へ嵌装設置されるが、揚水筒4
が長く、その下端の水深が大きく(例えば10m 〜20
m )なる場合には空気室9を揚水筒4の中間部へ嵌装設
置することができる。
The air chamber 9 of the pumping device 3 is usually fitted and installed outside the lower end of the pumping cylinder 4.
Is long, and the water depth at the lower end is large (for example,
m), the air chamber 9 can be fitted and installed in the middle of the pumping cylinder 4.

【0021】前記、空気室9は、内筒12の外側へ所定
間隔をおいて、外筒31を装着し、前記内筒12と外筒
31との間に仕切筒32を装着し、内筒12の下部、仕
切筒32の上部及び揚水筒9の内筒12との対向壁に夫
々連通孔13、14、15を穿設したものである。
The air chamber 9 is provided with an outer cylinder 31 at a predetermined interval outside the inner cylinder 12 and a partition cylinder 32 between the inner cylinder 12 and the outer cylinder 31. The communication holes 13, 14, and 15 are formed in the lower portion of 12, the upper portion of the partition tube 32, and the wall facing the inner tube 12 of the water pumping tube 9, respectively.

【0022】そこで揚水筒4の空気室9へホース10か
ら矢示26のように加圧空気を供給すれば、空気室9内
の水位は逐次下降する。そこで水位11が空気室の内筒
12の下部に設けた連通孔14に達すると、空気室9内
の空気は、連通孔13、14、15を経て矢示16、1
7、18のように揚水筒4内に入り、気泡彈19を形成
し、揚水筒4内を矢示20のよに上昇する。前記気泡彈
19が揚水筒4内を上昇すると、揚水筒4内の上方の水
は同方向へ押し上げられ、下方の水も同方向へ吸い上げ
られるので、揚水筒4の下端から矢示21のように吸水
される。一方押し上げられた揚水は、揚水筒4の上端か
ら矢示22のように吹き上げられる(図1)。この場合
に揚水筒4の上端と海面23との距離は、1m 〜5m あ
るのが普通であるが、揚水が最高流速(例えば1.2m
/sec )の時には揚水が海面23より若干盛り上り22
a、ついで矢示24、24のように放射状に下降しつつ
海面付近の水と混合し、混合水の水温に見合う水深部分
を矢示25、25のように拡散する。前記における揚水
の流速は、気泡彈19の前後が最高(例えば1.2m /
sec )であり、その後次の気泡彈が上昇するまでは逐次
流速が低下する(例えば0.6m /sec )。前記、気泡
彈19の発生間隔は、空気室9の容量及び送気量によっ
て異なるが、通常10秒〜30秒位である。気泡彈19
の間隔が小さいと、揚水の流速に間欠的変化がなくなる
為に、拡散範囲が小さくなる(例えば揚水筒を中心とす
る半径10m の範囲)。また間隔が大きくなると、最高
流速と最低流速の差が大きくなり、揚水量が小さくな
る。
Then, if pressurized air is supplied from the hose 10 to the air chamber 9 of the water pumping cylinder 4 as shown by an arrow 26, the water level in the air chamber 9 falls sequentially. Then, when the water level 11 reaches the communication hole 14 provided in the lower part of the inner cylinder 12 of the air chamber, the air in the air chamber 9 flows through the communication holes 13, 14, 15, as indicated by arrows 16, 1.
As shown in FIGS. 7 and 18, the water enters the water pumping cylinder 4, forms a bubble 19, and rises in the water pumping cylinder 4 as indicated by an arrow 20. When the bubble bubble 19 rises in the pumping cylinder 4, the upper water in the pumping cylinder 4 is pushed up in the same direction, and the lower water is also sucked up in the same direction. Water is absorbed. On the other hand, the pumped water is blown up from the upper end of the water pumping cylinder 4 as shown by an arrow 22 (FIG. 1). In this case, the distance between the upper end of the pumping cylinder 4 and the sea surface 23 is generally 1 m to 5 m, but the pumping speed is the highest (for example, 1.2 m).
/ Sec), the pumping slightly rises above the sea surface 23
a. Then, while descending radially as indicated by arrows 24 and 24, it mixes with water near the sea surface, and diffuses a water depth portion corresponding to the temperature of the mixed water as indicated by arrows 25 and 25. The flow rate of the pumping water is highest around the bubble 19 (for example, 1.2 m /
sec), and thereafter the flow velocity gradually decreases (for example, 0.6 m / sec) until the next bubble rises. The generation interval of the bubble bubbles 19 varies depending on the capacity of the air chamber 9 and the amount of air supply, but is usually about 10 seconds to 30 seconds. Bubble bubble 19
Is small, the intermittent change in the flow rate of the pumping water is eliminated, so that the diffusion range becomes small (for example, a radius of 10 m around the pumping cylinder). Also, when the interval is large, the difference between the maximum flow velocity and the minimum flow velocity becomes large, and the amount of pumped water becomes small.

【0023】前記において、揚水筒4の下端と、海底と
の間隔を調節するには、索条6の長さを調節する場合、
揚水筒4の一部を伸縮型(例えば実公昭63−2159
号)とする場合、揚水装置を吊下型にして、海面からの
吊下高さを調節する場合など、公知の技術を採用するこ
とができる。
In the above, in order to adjust the distance between the lower end of the pumping cylinder 4 and the seabed, when adjusting the length of the rope 6,
A part of the pumping cylinder 4 is of a telescoping type (for example, Jiko 63-2159).
), A known technique such as a case where the pumping device is a suspension type and the suspension height from the sea surface is adjusted, or the like.

【0024】前記において、気泡彈19の間隔が小さく
なると、揚水筒4の上端部には海底側の水ばかりとな
り、海面水と混合しないので、水温の関係でそのまま下
降し(例えば揚水筒を中心とする半径10m 位)広範囲
の海流を生成することができない。然し乍ら気泡彈19
の間隔が適度の場合には、揚水筒4の上端から気泡彈1
9が放出されると、流速が最大となると共に、揚水筒上
端部の海水と、揚水とが混合しつつ盛り上る。ついで盛
り上った海水は放射状に拡散する。一方流速が低下して
拡散水の量が揚水の量を上回るようになると、揚水筒4
の上方の水面は一旦凹弧面22bになる。ついでこの凹
弧面22bを水平に戻す為に、海面23の海水が四方か
ら矢示33のように揚水筒4上に集る。この場合の海水
は揚水でないことは勿論、混合水でもないので、飽和状
態まで酸素を溶かした飽和海水であり、水温も海面温度
である。従って表面海水が揚水筒4上に集った時に、再
び揚水筒4から海底側の水が多量に吹き上げられるの
で、結局揚水と海水とは混合し、前記のように混合水温
となって、その温度に対応した水深を放射状に拡散する
のである。
In the above description, when the space between the bubbles 19 becomes small, only the water on the sea bottom is formed at the upper end of the water pumping cylinder 4 and does not mix with the sea surface water. It is not possible to generate a wide range of ocean currents. However, bubble bubbles 19
If the distance between the air bubbles is moderate, the bubble bubble 1
When 9 is discharged, the flow velocity becomes maximum, and the seawater at the upper end of the pumping cylinder and the pumping water rise while mixing. The rising seawater then diffuses radially. On the other hand, when the flow velocity decreases and the amount of diffusion water exceeds the amount of pumped water, the pumping cylinder 4
The water surface above becomes a concave arc surface 22b once. Then, in order to return the concave arc surface 22b to a horizontal position, the seawater on the sea surface 23 collects on the pumping cylinder 4 as indicated by an arrow 33 from all directions. In this case, the seawater is not pumped water nor mixed water, so it is saturated seawater in which oxygen is dissolved to a saturated state, and the water temperature is the sea surface temperature. Therefore, when the surface seawater collects on the pumping cylinder 4, a large amount of water on the seafloor side is blown up again from the pumping cylinder 4, so that the pumped water and the seawater eventually mix, and the mixed water temperature becomes as described above. It diffuses radially at the depth corresponding to the temperature.

【0025】前記における揚水装置3を中心とする放射
状拡散は、揚水筒4を中心とする波紋となるから、筏2
などの障害物に突き当った場合においても、容易にその
後方へ回り込むことになり、波紋が中断されるおそれは
ない。
Since the radial diffusion centering on the pumping device 3 in the above becomes a ripple centering on the pumping cylinder 4, the raft 2
Even if the vehicle collides with an obstacle such as the above, the vehicle easily wraps around to the rear, and there is no possibility that the ripples will be interrupted.

【0026】従って複数の養殖筏を配置した海域の中央
部へ揚水装置3を設置した場合に、養殖筏をさけて波紋
が拡散するが、拡散により海流を生じれば、必然的に筏
に吊した養殖篭内の海水にも流動を生じ、結局養殖魚介
類を海流内へ配置した場合と同一の効果を奏することに
なる。
Therefore, when the water pumping device 3 is installed at the center of the sea area where a plurality of culture rafts are arranged, ripples are diffused around the culture rafts, but if a sea current is generated by the diffusion, the ripples are inevitably hung on the rafts. Then, the seawater in the cultured basket also flows, and eventually the same effect as when the cultured fish and shellfish are arranged in the ocean current is exerted.

【0027】前記拡散した水は、湾岸27に達して、矢
示28のように下方へ方向変換し、更に矢示29、31
のように海底30に沿って揚水装置4に近接し、矢示2
1、21のように揚水筒4内に吸入されて、上下循環対
流を完結する。尚、湾1の出口に拡散した水の対流は不
十分になるけれども、図2のような形状の湾の場合に
は、波紋の性質上湾岸27から大部分が反転するので支
障を生じるおそれがない。
The diffused water reaches the bay shore 27 and changes its direction downward as indicated by arrow 28.
As shown in FIG.
It is sucked into the pumping cylinder 4 as indicated by 1, 21 to complete the vertical convection. Although the convection of water diffused at the outlet of the bay 1 becomes insufficient, in the case of a bay having a shape as shown in FIG. Absent.

【0028】最も湾1の出口が広い場合には、湾口部へ
反転用の揚水装置を設置するか、反転させる為に手段を
構じる(例えば海面から水深3m 位に亘って網を張る)
ことができる。尤も湾1の出口側からの反転はなくと
も、揚水の為の吸水は支障なく行なわれるので、反転手
段を構じる必要性がない場合が多い。
When the outlet of the bay 1 is the widest, a pumping device for inversion is installed at the mouth of the bay, or a means is provided for inversion (for example, a net is formed from the sea surface to a depth of about 3 m).
be able to. However, even if there is no reversal from the exit side of the bay 1, the water absorption for pumping is performed without any trouble, and there is often no need to configure the reversing means.

【0029】[0029]

【発明の効果】この発明によれば、養殖水域の海面付近
に海流を生成させるので、養殖生物に酸素及び栄養分を
供給する効果がある。また海水を上下対流循環させるの
で、海底付近の溶存酸素量を改善し、有機浮遊物を微生
物で分解処理して浄水する効果がある。また、海面側の
拡散水の流動水深を養殖設備の深さに対応させることが
できるので、少ないエネルギーで済み効率的である。
According to the present invention, since an ocean current is generated near the sea surface in the culture water area, there is an effect of supplying oxygen and nutrients to the cultured organism. Since raise and lower convection circulating sea water, to improve the amount of dissolved oxygen in the vicinity of the seabed, the organic suspended matter microorganism
It has the effect of purifying water by decomposing it with a substance . Also, on the sea side
The flow depth of the divergent water should correspond to the depth of the aquaculture equipment.
Since it is possible, it requires less energy and is more efficient.

【0030】次に揚水筒の下端を逐次下降し(叉は下端
位置を調節)、海底付近の有機浮遊物を上部から下部へ
合理的に逐次処理して、有機物質を含む海水が揚水され
ることを未然に防止し、海面付近の養殖生物に悪影響を
及ぼさないなどの諸効果がある。
Next, the lower end of the pumping cylinder is successively lowered (or the lower end position is adjusted), and the organic suspended matter near the sea bottom is rationally and sequentially processed from the upper part to the lower part, so that seawater containing organic substances is Has various effects, such as preventing water from being pumped out and not adversely affecting cultured organisms near the sea surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例の一部断面図。FIG. 1 is a partial sectional view of an embodiment of the present invention.

【図2】同じく揚水装置の配置を示す平面図。FIG. 2 is a plan view showing the arrangement of the pumping device.

【図3】同じく揚水装置の一部を切断した正面図。FIG. 3 is a front view in which a part of the water pumping device is cut.

【符号の説明】[Explanation of symbols]

1 湾 2 かき筏 3 揚水装置 4 揚水筒 5 浮子 7 錘り 8 有機浮游物層 9 空気室 10 ホース 12 内筒 13、14、15 連通孔 19 気泡彈 23 海面 27 湾岸 30 海底 DESCRIPTION OF SYMBOLS 1 Bay 2 Shaft raft 3 Pumping device 4 Pumping cylinder 5 Float 7 Weight 8 Organic floating material layer 9 Air chamber 10 Hose 12 Inner cylinder 13, 14, 15 Communication hole 19 Bubbles 23 Sea surface 27 Bayside 30 Sea bottom

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 養殖海域へ配置された複数の養殖設備の
中間部水面下へ、設置水深の調節手段を付加した間欠空
気揚水装置を直立設置し、海底側の揚水開始位置を調節
すると共に、前記間欠空気揚水装置から気泡弾を間欠的
に放出し揚水流を惹起して、海底側から海面側へ揚水し
た海水の海面側の適度の水深の養殖海域に拡散させ、海
面付近に海流を生成することを特徴とする養殖海域にお
ける海流生成方法。
1. An intermittent air pumping device equipped with means for adjusting the installation water depth is installed upright below the middle water surface of a plurality of aquaculture facilities disposed in the aquaculture area, and the pumping start position on the sea bottom side is adjusted.
And intermittently release bubble bombs from the intermittent air pumping device.
Seawater generated in the cultivated sea area, characterized in that the seawater is discharged from the seafloor to cause a pumping current, diffused into the cultivated sea area at an appropriate depth on the sea surface side, and the seawater generated near the sea surface is pumped from the seabed side to the sea surface side. Method.
【請求項2】 海底側の揚水開始位置を順次海底に近接
させ、有機浮遊物層を順次処理し、海底側の水質を改善
することを特徴とした請求項1記載の養殖海域における
海流生成方法。
2. The pumping start position on the seafloor side is sequentially approached to the seafloor, and the organic suspended matter layer is sequentially processed to improve the water quality on the seafloor side.
2. The method according to claim 1, wherein the current is generated.
【請求項3】 海面側の拡散水の流動水深を、間欠空気
揚水装置の設置位置及び加圧空気の供給量を調整して
殖設備の深さに対応させることを特徴とした請求項1記
載の養殖海域における海流生成方法。
3. The intermittent air flow rate of the diffusion water on the sea surface side
The method according to claim 1, wherein an installation position of the pumping device and a supply amount of pressurized air are adjusted to correspond to a depth of the culture facility.
JP24568292A 1992-08-21 1992-08-21 Current generation method and facilities in aquaculture area Expired - Fee Related JP3158262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24568292A JP3158262B2 (en) 1992-08-21 1992-08-21 Current generation method and facilities in aquaculture area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24568292A JP3158262B2 (en) 1992-08-21 1992-08-21 Current generation method and facilities in aquaculture area

Publications (2)

Publication Number Publication Date
JPH0662701A JPH0662701A (en) 1994-03-08
JP3158262B2 true JP3158262B2 (en) 2001-04-23

Family

ID=17137248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24568292A Expired - Fee Related JP3158262B2 (en) 1992-08-21 1992-08-21 Current generation method and facilities in aquaculture area

Country Status (1)

Country Link
JP (1) JP3158262B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160032232A (en) * 2013-07-18 2016-03-23 가부시키가이샤 에코·플랜 Vertical circulation method for closed water area and vertical circulation device
CN113461183A (en) * 2021-07-20 2021-10-01 福州水研环境科技有限公司 Method and device for creating vertical convection of deep water
JP7297351B1 (en) * 2023-01-25 2023-06-26 古川精機株式会社 Biological fattening equipment for aquaculture

Also Published As

Publication number Publication date
JPH0662701A (en) 1994-03-08

Similar Documents

Publication Publication Date Title
US5344557A (en) Incubator for biological cleaning of fluids
US9266759B2 (en) Methods and apparatus for aeration of liquid medium and liquid medium treatment system
US9084973B2 (en) Methods and apparatus for aeration of liquid medium and vectoring flow control
US4436675A (en) Multistage water purification apparatus
US5741443A (en) Oxygenation of stratified water
US11684046B2 (en) Aquaculture cage comprising a main chamber and a peripheral ring chamber
US6223689B1 (en) Nelson trawlers aquaculture unit
EP0478605B1 (en) Device for organic neutralization and removal of phosphorus compounds present in water basins
US9573830B2 (en) Methods and apparatus for controlled scrubbing and aeration of liquid medium
JP3158262B2 (en) Current generation method and facilities in aquaculture area
JP2911078B2 (en) Water flow generation device and method for purifying closed water area using the same
KR20170071340A (en) Fish cage apparatus type of buoyancy -fluctuation
AU2019101636A4 (en) Water Treatment Apparatus
JPH0433520B2 (en)
JPS63194721A (en) Agitating device for stored water
JP4023853B2 (en) Lake water purification system
JP2001293467A (en) Cleaning method of cultivation water and device therefor
JPS62204898A (en) Aeration apparatus
CN205258117U (en) Float formula aeration dissolved oxygen biological cycle water treatment facilities and water processing system
CN101198553A (en) Suspending type water correction device
KR20170058703A (en) Water Circulation System for Removing Water-bloom
JPH06343993A (en) Intermittent air pumping-up method and device for sea water
JPS63240989A (en) Method and device for purifying water in shallow water region
EP0366317B1 (en) Method and apparatus for improving the quality of a large amount of water
JPS638472Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees