JP3641700B2 - Water quality improvement system for closed water areas - Google Patents

Water quality improvement system for closed water areas Download PDF

Info

Publication number
JP3641700B2
JP3641700B2 JP2002212205A JP2002212205A JP3641700B2 JP 3641700 B2 JP3641700 B2 JP 3641700B2 JP 2002212205 A JP2002212205 A JP 2002212205A JP 2002212205 A JP2002212205 A JP 2002212205A JP 3641700 B2 JP3641700 B2 JP 3641700B2
Authority
JP
Japan
Prior art keywords
tank
water
closed
quality improvement
improvement system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002212205A
Other languages
Japanese (ja)
Other versions
JP2004050085A (en
Inventor
勝之 深川
喬 田中
Original Assignee
宇部工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部工業株式会社 filed Critical 宇部工業株式会社
Priority to JP2002212205A priority Critical patent/JP3641700B2/en
Publication of JP2004050085A publication Critical patent/JP2004050085A/en
Application granted granted Critical
Publication of JP3641700B2 publication Critical patent/JP3641700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Physical Water Treatments (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、湖沼、ダム湖等の閉鎖水域の貧酸素水、汚濁水域の浄化を目的とし、水道水源として用いる水域を拡大し、閉鎖水域を浄化する浄化技術に関する。
【0002】
【従来の技術】
近年において、湖沼、ダム湖等の閉鎖水域は、流域の河川から土砂や生活排水等の汚濁物質が流入し、水中の窒素やリン等の濃度が高まる富栄養化が進み、水道水源の水並びに閉鎖水域の水の汚染が進行している。
【0003】
汚染原因としては、水中に浮遊する流域河川等から流入した土砂等の無機物質等の増加、富栄養価に伴う微生物(代表的にはアオコ)の大量発生、貧酸素化の進行による微生物や小魚の死骸の分解物等が考えられ、これらの水中に漂う100μm以下の微粒子成分を除去することにより、閉鎖水域の水質を改善することが可能であることが想定される。
【0004】
このような汚染原因となる微粒子成分は、水中に均一に分散しているわけではなく、閉鎖水域の垂直分布における各水層によって分散している汚染源となる微粒子成分が異なる。
【0005】
ダム湖等の閉鎖水域の垂直分布は、おおまかに、表面近傍層、上層、中層、下層、底泥等の5層に分けることができる。
【0006】
表面近傍層は、光合成によりアオコ等の植物プランクトンが大量に発生する層である。植物プランクトンは、水中の二酸化炭素とともに、窒素やリン等を取り込み、水質の浄化を行う作用がある。しかし、アオコ等の植物プランクトンが大量発生すると、カビ臭等の異臭を発生し、更に、見た目を悪化するという問題がある。また、アオコ等の植物プランクトンは、一般に、その寿命が短いため、これらの植物プランクトンが死ぬと、表面近傍層からゆっくり沈降して上層および中層に拡散し、上層および中層で腐敗菌の発生を助長させて富栄養化を進行させ、該腐敗菌が炭酸ガスを発生して上層および中層の溶存酸素量が減少して、貧酸素化が進み、上層および中層域の水の浄化に役立つ好気性微生物、小魚等の生物の生存をおびやかす、と云う問題がある。
【0007】
上層は、水道水源となる層であり、一定の水質が維持されている層をいうが、ダム湖等においては、年々上層の深さが極端に浅くなっていているといわれ、場所によっては、上層水が1mの深さしかないダム湖等もある。
【0008】
中層は、死骸となったアオコや小魚の分解物、微生物等が沈降して浮遊する水域であり、アオコ等の死骸に発生した腐敗菌によって貧酸素化が進行している層である。また、中層には、河川流域から流入してきた微細な粘土粒子等が浮遊しており、粘土粒子等の無機物起源の粒子成分およびアオコの死骸等の有機物起源の粒子成分が滞留し、濁度(TS)が進行している層である。中層水中の無機物起源・有機物起源の粒子成分は、水中で負に帯電し、水和してコロイド粒子を形成しており、このコロイド粒子同士がお互いに反発しあって水中で安定な状態となっているため、下層域までなかなか沈降しない。
【0009】
表面層の水温と中層の水温の差がある季節の変換期には、中層の水温が、表面層の水温よりも高いため、閉鎖水域の上下循環が行われ、空気中の酸素がダム湖表面から中層水域まで到達し、水中の溶存酸素量が増大して、水中生物の生存が脅かされることは少ない。しかし、特に、夏期においては、表面層の水温が高く、中層の水温が低くなるため、閉鎖水域の上下循環は行われず、したがって、中層水中の溶存酸素が低減し、富栄養価が進んで、中層の貧酸素化、汚濁が進行し、上層が益々浅くなる、と云う問題を生じる。
【0010】
このように、上層水および中層水に、無機物起源、有機物起源の粒子成分が浮遊し、貧酸素水、汚濁水域が拡大している傾向にあるが、貧酸素水、汚濁水域は、上層水および中層水に限ったものではなく、ダム湖や湖沼等の閉鎖水域の水深によって貧酸素水、汚濁水域が変化する。水深が浅い閉鎖水域の底部近傍層は、後述の下層のように、嫌気状態となってはおらず、底部の方まで、無機物起源・有機物起源の粒子成分が浮遊した貧酸素水、汚濁水域が拡大した層となる場合がある。
【0011】
下層は、水質の汚染がさらに進行している水域であり、溶存酸素が殆どなくなった嫌気的条件となっており、リン、アンモニア、メタン、硫化水素等が多量に存在している層であると考えられている。
【0012】
底泥は、水中を沈降してきたアオコの死骸、粘土等が最終的に堆積している部分であり、大量の窒素、リン、その他河川から流入した有機物質も含んでいる。
【0013】
このようなダム湖等の閉鎖水域の浄化技術としては、閉鎖水域を上下に循環させる手段、浮遊物を凝集させる手段、曝気による水中微生物の活性化により有機物を除去する手段、底泥を機械的に汲み上げて除去する手段等、種々の手段を用いた技術が提案されている。
【0014】
例えば、特開平9−253698号公報にあっては、水底に向けて筒状構造体にエアリフト管を設け、酸素含有ガスを供給して水を曝気流動させながら、底泥を汲み上げ、凝集剤を添加して、凝集粒子を形成させた後、曝気を停止して懸濁粒子を水底に沈降させる底泥の処理方法が提案されている。
【0015】
特開平9−314174号公報にあっては、深層部に配置される装置本体と、該装置本体にコンプレッサー等によって高圧エアーを供給するエアー供給手段と、装置本体内部の流速および装置本体内部等の溶存酸素濃度を測定する手段と、測定した流速と溶存酸素濃度からエアー供給量を制御する制御手段からなる深層曝気装置により、閉鎖水域の下層および底泥の溶存酸素濃度を向上させる装置が提案されている。
【0016】
また、特開9−47749号公報にあっては、閉鎖水域の少なくとも一部を仕切り装置で囲み、該仕切った被処理水域の水を取水する取水手段と、取水された被処理水と濾材を接触させて浄化して被処理水として放出する濾過槽と、該濾過槽から放出された被処理水に存在する浮遊物質を沈降させたのち、閉鎖水域に流出する沈降槽とを備えた局所水域浄化システムが提案されている。
【0017】
【発明が解決しようとする課題】
しかしながら、前記凝集剤を添加して沈降させる底泥の処理方法にあっては、曝気流動によって、中層、下層および底泥を攪乱するため、下層および底泥中の汚染物質が、中層、さらに上層まで拡散し、一時的に上層水が汚染され、水道水源として使用することができなくなるという問題があった。また、凝集剤により、凝集させて沈降した汚染物質をそのまま底泥として堆積させているため、汚染物質の根本的な除去手段にはなっていない、と云う問題がある。
【0018】
前記深層曝気装置にあっては、処理対象となっている下層水を曝気して、閉鎖水域の溶存酸素を増加させる技術であり、中層水および下層水中の浮遊粒子成分の根本的な除去となってはいない、と云う問題がある。また、深層曝気装置のように、コンプレッサーによって高圧状態で水中に放出される気泡は、気泡の大きさを小さくすることが困難であり、気泡は水中を上昇するに従って、外圧(水圧)が低下するため、気泡径がより大きくなり、気泡が大きくなると、単位容積中に含まれる気泡と水との接触面積が少なくなる為、水中に浮遊する微粒子成分が気泡に付着しにくい、という問題がある。
【0019】
前記局所水域浄化システムにあっては、ダム湖等の閉鎖水域から浄水場を供給するため、ダム湖等の閉鎖水域の一部をブイを取り付けた仕切り装置で、囲んで処理する必要があり、処理作業が困難になる、と云う問題がある。また、局所水域浄化システムは、閉鎖水域の垂直分布のうち、特定の水層の浄化を目的とするものではないため、表面近傍層を浄化するための藻類用浄化装置(藻類除去装置)と、嫌気的条件(アンモニア性窒素成分)の浄化を行うための流動床式の浄化装置等、複数の装置が必要となる、という問題がある。
【0020】
このように従来の浄化システムにあっては、閉鎖水域を、上層、中層、下層のように垂直分布に分けられる水深の深い閉鎖水域において、表面近傍層と上層、若しくは下層と底泥の浄化を目的とするものはあるものの、水道水源として用いる上層を拡大し、無機物起源、有機物起源の粒子成分が浮遊し、貧酸素水、汚濁水域が拡大している中層水の浄化に目標を絞ったものはなかった。
【0021】
上層は水道水源として用いられる水域であるため、この上層の水域の拡大が要望されており、上層を拡大するためには、特に、水道水源として用いる上層及び中層を含む貧酸素水、汚濁水域の水質改善が要求されている。
【0022】
従来技術のように、散気若しくは曝気により閉鎖水域の溶存酸素を増大させると、中層、下層および底泥中の汚染源となる微粒子成分を表面近傍層および上層にまで散乱させてしまうことになり、下層や底泥中のリン、アンモニア、硫化水素等が中層、上層まで攪乱されてしまう、と云う問題があった。
【0023】
散気や曝気により上層が汚染されてしまうと、一時的に閉鎖水域の上層水を水道水源として用いることができず、公衆に多大な影響を及ぼす、と云う問題がある。
【0024】
従って、上層、中層、下層に分けられるような水深の深い閉鎖水域にあっては、底泥、中層および下層中の汚濁物質を、上層および表面近傍層まで攪乱してしまうような浄化方法は極力避け、一時的にではあっても上層が汚染されないような浄化システムを構築すべきである。
【0025】
更に、上層、中層、下層のように分けられない比較的浅い湖沼等の閉鎖水域においても、閉鎖水域の貧酸素水、汚濁水の原因となる種々の汚染源に着目し、各汚染源に適した手段で、総合的に種々の汚染源を分離、除去する一体的な浄化システムは構築されていなかった。
【0026】
そこで、本発明は、叙述の諸問題を鑑みて創案されたもので、上層、中層、下層のように分けられる水深の深い閉鎖水域の上層および表面近傍層を攪乱することなく、また、比較的浅い閉鎖水域にあっても、閉鎖水域中の貧酸素水、汚濁水域の種々の汚染源に適した物理的・生物的処理を行って閉鎖水域の貧酸素水、汚濁水域の水質を改善することを技術的課題とし、もって水道水源として一定の水質維持の確保が必要となる上層を拡大することができ、貧酸素水、汚濁水域の浄化を行う閉鎖水域の水質改善システムを提供することを目的とする。
【0027】
【課題を解決するための手段】
上記技術的課題を解決するために、
請求項1に記載した発明の手段は、閉鎖水域の貧酸素水、汚濁水域の水質を改善する、閉鎖水域の水質改善システムであること、
貧酸素水、汚濁水を上昇流として揚水する、揚水手段および下方から微細気泡を発生させる微細気泡発生手段を設けた第一槽と、該第一槽から流出した被処理水を、前記第一槽の上昇流の流速よりも遅い流速の下降流として流通して、被処理水中から浮上物及び沈降物を分離する機能を有し、浮上分離した浮上物除去手段および前記下降流の流通路に微生物担体を設けた第二槽と、該第二槽の下方から下降流として流出してきた被処理水を上昇流として閉鎖水域の上面に流出し、第二槽で沈降分離した沈降物を堆積しておく沈降物堆積手段および堆積した沈降物を除去する沈降物除去手段を設けた第三槽から成ること、にある。
【0028】
請求項1記載の発明にあっては、揚水手段および微細気泡発生手段を設けた第一槽において、閉鎖水域の貧酸素水、汚濁水中に浮遊する、汚染原因となる無機物・有機物の浮遊微粒子を微細気泡に付着させて、上昇流として揚水する。
【0029】
微細気泡とは、10〜30μm程度の気泡のことをいい、このような微細な気泡によって単位容積あたりの気泡の表面積を拡大して、浮遊微粒子の付着効果を増大する。
【0030】
第一槽においては、揚水量を、微細気泡に付着できない程度の大きい粒子も上昇流として流動できる程度の量に設定し、処理対象となる貧酸素水、汚濁水中の大きい粒子も上昇流として揚水する。
【0031】
第一槽において、微細気泡に付着して浮上してきた浮上微粒子は、第二槽において、浮上物として被処理水中から分離され、浮上物除去手段によって、除去される。浮上物除去手段としては、例えば、吸着フィルター、分離膜等を用いることが可能である。
【0032】
第二槽では、第一槽から第二槽に流出してきた下降流が、第一槽の上昇流よりも遅い流速で流通するように設定しているため、第一槽で微細気泡に付着した微粒子を、第二槽において、確実に水面上に浮上させ、浮上物除去手段によって除去することができる。
【0033】
また、第二槽には、微生物担体を設けているため、遅い流速でゆっくりと流れる下降流中に含まれる有機物起源の微粒子成分を、微生物担体に担持された有機物分解菌、アンモニア酸化菌、一部硝酸還元菌等の種々の微生物により生物的に分解除去する。第二槽は、第一槽から流入してきた微細気泡により、水中の溶存酸素が増大しているため、微生物が生息しやすく、微生物の活動が活発な環境となっており、微生物による有機物分解能が向上する。微生物担体としては、例えば、多孔質性の無定形炭素、ゼオライト等の多孔質性セラミック、炭素繊維等を用いた繊維質、多孔質性の合成樹脂等を用いることが可能である。
【0034】
そして、微細気泡に付着しないような大きい粒子は、第二槽の下降流から沈降し、被処理水中から分離される。第二槽において、被処理水中から分離した沈降物は、沈降物堆積手段上に堆積させ、沈降物除去手段によって除去する。沈降物除去手段としては、例えば、沈降物を吸引して、沈降物堆積手段上から除去する吸引ポンプ等を用いることが可能である。
【0035】
第二槽から第三槽に流入してきた被処理水は、第三槽において上昇流となって閉鎖水域に放出される。このように、被処理水は上昇流として放出されるため、清澄水となった被処理水中に沈降した大きな粒子が混入することはなく、第三槽は、整流槽としての機能を有している。
【0036】
第一槽、第二槽および第三槽からなる水質改善システムにあっては、閉鎖水域の表面近傍層および上層を攪乱することなく、システム内完結型の処理により貧酸素水、汚濁水中の汚濁、汚染原因となる有機物起源・無機物起源の微粒子成分を、物理的および生物的手段を用いて効率的に除去して水質を改善し、溶存酸素量を増大した清澄水を、水道水源として用いる上層に放出し、上層の水域を拡大することができる。なお、上層、中層、下層のように分けることができない比較的浅い湖沼等の閉鎖水域においては、本発明のシステム内完結型の処理を行うことにより、上層水の拡大のみならず、閉鎖水域を全体的に浄化することが可能となる。
【0037】
請求項2記載の発明の手段は、請求項1記載の発明の構成に加え、第一槽と第二槽に、第一槽から流出して第二槽に流入した被処理水の一部を再び下方から第一槽に還流する還流手段を設けたこと、にある。
【0038】
請求項2記載の発明にあっては、第一槽と第二槽との間に還流手段を設けたため、被処理水を第二槽に繰り返し流通させて、微生物担体に担持された微生物による生物的処理に必要な滞留時間を確保することができる。
【0039】
請求項3記載の発明の手段は、請求項1または2記載の閉鎖水域の水質改善システムにおいて、第一槽を、貧酸素水、汚濁水域まで到達する長さの内筒体とし、第二槽を、前記第一槽の外周に設け、該第一槽の壁部よりも水面上の高い位置となる壁部を備えた中筒体とし、第三槽を、前記第二槽の外周に設け、該第二槽の壁部よりも水面上で低い位置となる壁部を備えた外筒体としたこと、にある。
【0040】
請求項3記載の発明にあっては、内筒体である第一槽において、揚水手段によって上昇流となった被処理水が、第一槽の外周に設けた第二槽にオーバーフローして、第二槽に流入し、第二槽においてオーバーフローした被処理水中から、微細気泡に付着した微粒子成分が確実に浮上分離するとともに、中筒体である第二槽で、被処理水が自然な流動によって、第一槽の上昇流よりも遅い流速の下降流となり、微生物担体間をゆっくりと流通して、被処理水中の有機物起源の微粒子成分の生物的分解処理に必要な時間を確保するとともに、被処理水中から微細気泡に付着しない大きな粒子を沈降しやすくする。
【0041】
そして、第二槽から流出した被処理水は、第二槽の外周に設けた外筒体である第三槽にぶつかって、自然な流動によって、流速の遅い上昇流となり、沈降した粒子が被処理水中に混入することなく、第三槽から清澄化された被処理水として、閉鎖水域の上層に放出される。
【0042】
このように、第一槽、第二槽および第三槽を、三重槽構造としたため、処理中の被処理水を外部に放出することなく、槽内完結型の水質浄化システムとして、コンパクトに設計することができ、さらに、揚水に必要な少ない稼動力で、被処理水の自然な流動を利用して、物理的・生物的処理により貧酸素水、汚濁水域の水質改善を行うことができ、稼動コストの低い、省エネルギーな水質改善システムを提供することができる。
【0043】
請求項4記載の発明の手段は、請求項3記載の発明において、沈降物堆積手段を、第一槽の下部と第三槽の下部の間を閉塞する閉止板としたこと、にある。
【0044】
請求項4記載の発明にあっては、沈降物堆積手段を、第一槽と第三槽の間を塞ぐ閉止板とした簡易な構造で、第二槽において分離した沈降物を、中層水、下層水に混入させることなく、除去することができる。
【0045】
請求項5記載の発明の手段は、請求項4記載の発明において、閉止板を傾斜し、他の部位よりも低い集積部を設けたこと、にある。
【0046】
請求項5記載の発明にあっては、沈降物堆積手段である閉止板を傾斜して、他の部位よりも低い集積部を設けたため、閉止板に堆積した沈降物が、自然に下がっている集積部に集まり、沈降物の除去が容易となる。なお、集積部は、一箇所に限らず、複数箇所設けてもよい。
【0047】
請求項6記載の発明の手段は、請求項3、4または5記載の発明において、第二槽を、下方に従って縮径する円錐状の中筒体としたこと、にある。
【0048】
請求項6記載の発明にあっては、第二槽を、下方に従って縮径する円錐状の中筒体としたため、第二槽は、上部ほど表面積が広くなり、第一槽から第二槽に流入した下降流の流速を遅くすることができ、また、微細気泡が浮上する面積が広くなるため、微細気泡に付着した微細粒子の浮上に有利となる。
【0049】
また、第二槽となる中筒体は、下部ほど表面積が狭くなり、反対に第二槽の外周に設けた第三槽との間が広くなるため、第二槽から第三槽に流出した上昇流の流速を遅くして流動させることができ、大きい粒子の沈降に有利となる。
【0050】
請求項7記載の発明の手段は、請求項1または請求項2記載の発明において、第二槽を、第一槽で揚水した被処理水が水頭圧により流通する第一槽から連続した槽とし、第三槽を、第二槽に連設した槽としたこと、にある。
【0051】
請求項7記載の発明にあっては、第一槽、第二槽および第三槽を連続した構造とし、第一槽で揚水した被処理水を水頭圧によって流通するように構成したため、被処理水の自然な流動を利用して、稼動コストの低い、省エネルギー化を実現した水質改善システムを提供することができる。
【0052】
請求項8記載の発明の手段は、請求項1、2、3、4、5、6または7記載の発明において、第一槽、第二槽および第三槽にフロートを設けたこと、にある。
【0053】
請求項8記載の発明にあっては、第一槽、第二槽および第三槽を水面に浮上させるフロートを設けたため、フロートの浮力によって、ダム湖等の閉鎖水域の任意位置まで浮上移動させることができ、広範囲の閉鎖水域の貧酸素水、汚濁水域の水質改善を行うことができる。
【0054】
【発明の実施の形態】
以下、本発明の一実施例を、図面を参照にしながら説明する。図1は、閉鎖水域の水質改善システムの概略構成を示す説明図である。図2は、閉鎖水域に水質改善システムを設置した状態をしめす説明図である。なお、図中矢印は、被処理水の流動方向を示している。
【0055】
図1に示すように、水質改善システム1は、ダム湖等の閉鎖水域の貧酸素水、汚濁水を揚水する揚水手段である揚水装置7および下方から微細気泡を発生させる微細気泡発生手段である微細気泡発生器6とを備えた第一槽2と、該第一槽2の外周に設けた第一槽2と同心円状の中筒体である第二槽3と、該第二槽3の外周に設けた、第一槽2と同心円状の外筒体である第三槽4とから構成されている。
【0056】
第3図は、第一槽2、第二槽3及び第三槽4の各槽における貧酸素水、汚濁水域の浄化手段を示すフロー図である。以下、第一槽2、第二槽3及び第三槽4の各槽における浄化手段を図面に基づいて順次説明する。
【0057】
第一槽2は、貧酸素水、汚濁水域まで到達する長さを有する内筒体であり、該第一槽2に設けた揚水装置7は、モータおよび減速手段等を設けた駆動部から駆動軸を垂下設し、該駆動軸にスクリュー翼を設け、該スクリュー翼を回転駆動することにより、貧酸素水、汚濁水を上昇流として揚水する装置である。揚水装置7は、微細気泡に付着できないような、比較的大きな粒子も上昇流に乗せて浮上する揚水量となるように設定する。なお、揚水装置は、本例のものに限らず、プロペラ翼等を用いるもの、ポンプ形式によるもの等、種々の形式のものを用いることが可能である。
【0058】
微細気泡発生器6は、均一な微細気泡(10〜30μm)を発生する装置であり、閉鎖水域水面上から空気を取り入れ微細気泡を発生する。このような微細気泡は、例えば、30μmの微細気泡であると、1mmの大きさの気泡と比較して、表面積で33倍、同体積では37,000個分となる。また、10μmの微細気泡であると、1mmの大きさの気泡と比較して、表面積で100倍、同体積では1,000,000個分となり、水中への溶解度が増大するとともに、水と接触する表面積が増えるため、浮遊微粒子を付着しやすくする。
【0059】
微細気泡発生器6により、第一槽2の下方から微細気泡を発生させて、貧酸素水、汚濁水域に浮遊する無機物起源および有機物起源の浮遊微粒子を、微細気泡に付着させ、若しくは揚水装置7によって形成した上昇流に乗せて、第一槽2の水面近傍まで浮上させる。
【0060】
また、微細気泡を被処理水に混入して揚水しているため、被処理水の見かけ比重が低下し、揚水装置7の駆動力を低減して、効率良く揚水を行うことができる。
【0061】
被処理水は、第一槽2からオーバーフローして第二槽3に流入する。第二槽3は、第一槽2よりも水面上の高い位置となる壁部を備えた、中筒体である。
【0062】
第二槽3は、第一槽2で微細気泡に付着した微細な浮遊物を浮上分離し、上昇流に乗って第一槽2を上昇してきた上昇流中の比較的重い微粒子成分を沈降分離する機能を有する。第二槽3には、浮上分離した浮遊物質を吸着除去する浮遊物除去手段9と、第二槽3の流路に微生物担体10とを備えている。
【0063】
浮上物除去手段9は、例えば、第二槽3の水面付近に付設した吸着フィルター又は分離膜等を用いる。第一槽2で揚水された被処理水中の微細気泡に付着した微細粒子は、第二槽3において、流速が遅くなった被処理水中から浮上し、浮上物除去手段9によって除去される。
【0064】
第二槽3は、下方に従って縮径する円錐状の中筒体としている。本例のように、第二槽3を円錐状とするのではなく、管状の円筒体としてもよい。なお、第二槽3を円錐状の中筒体とすると、第二槽3の上部ほど表面積が拡大することとなり、第一槽2から流入してきた被処理水の流速が遅くなり、微細気泡に付着した微粒子成分の浮上分離を促進する。
【0065】
図4の第一槽2、第二槽3及び第三槽4の平面図に示すように、第二槽3には、複数の微生物担体10が放射状の垂下設されている。第二槽3は、第一槽2から微細気泡が混入した被処理水が流入するため、第二槽3中の溶存酸素が増大し、生物の生息に良好な環境となっている。このため、第二槽3に設けた微生物担体10には、多数の微生物が生息し、第二槽3中をゆっくり流通する下降流中の有機物起源の粒子成分を生物的に分解処理する。
【0066】
第二槽3を流通する下降流の流速は、第一槽2の上昇流よりも遅い流速となるように設定し、第二槽3において微生物による生物的な分解処理に必要な時間を確保する。例えば、揚水装置7の揚水量の制御や、第一槽2と第二槽3との間隔を調整する等の設計手段により、第二槽3の下降流の流速を適宜設定することが可能である。
【0067】
また、第一槽2と第二槽3との間には、第二槽3に流れ込んできた被処理水の一部を再び第一槽2に還流する還流手段となる還流口5を設けており、微生物処理に必要な滞留時間を調整している
【0068】
更に、第二槽3の下降流の流速を遅くすることによって、被処理水中の微細気泡に付着しないような大きな粒子の沈降を促進することができる。
【0069】
第二槽3は、下方に従って縮径する円錐状の中筒体としたため、第二槽3の下部ほど表面積が狭くなり、反対に第二槽3の外周に配置した第三槽4の表面積が広くなるため、第二槽3の下方から第三槽4に流入した被処理水の流速が遅くなり、ゆっくりとした上昇流となって第三槽4を通流し、被処理水中から大きな粒子の沈降を促進する。
【0070】
第三槽4と第一槽2の間には、第一槽2を中心として閉止板11を設け、該閉止板11は被処理水中から沈降した大きな粒子が堆積する、沈降物堆積手段として機能している。閉止板11上に堆積した沈降物を吸引ポンプ14等の沈降物除去手段によって定期的に除去する。閉止板11には、左右非対称となるように、他の部位よりも低い集積部11aを設けている。他部位よりも下がっている集積部11aに、閉止板11上に堆積した沈降物が自然に集まるため、一箇所に集められた沈降物を、簡単に吸引ポンプ14で除去することができる。なお、図示のように、閉止板11を左右非対称に傾斜させて、集積部11aを一箇所設ける場合のみならず、閉止板11の傾斜方向を変化させることにより、集積部11aを複数箇所設けてもよい。
【0071】
第一槽2に微細気泡を供給する微細気泡発生器6を、閉止板11の下方に設ける場合は、微細気泡発生器6から発生した微細気泡が効率よく第一槽2に流入するように、閉止板11を、第一槽2に付設する部位を上位に、第三槽4に付設する部位を下位となるように、傾斜させて設置するとよい。
【0072】
第三槽4は、第二槽3よりも水面上の低い位置となる壁部を備えた外筒体であるため、第二槽3において下降流となって第三槽4に流入してきた被処理水は、第三槽4の壁部にぶつかって上昇流となり、第三槽4の上部からオーバーフローして、閉鎖水域の水面上に放出される。
【0073】
第三槽4は被処理水を上昇流として流通させているため、被処理水中から沈降分離し、閉止板11上に堆積した沈降物が巻き上げられて被処理水中に混入することはなく、整流槽として機能する。
【0074】
水質改善システム1にあっては、第一槽2の揚水装置によって上昇流として揚水された貧酸素水、汚濁水を、第一槽2、第二槽3および第三槽4内で清澄水とする、槽内完結型のシステムとしたため、表面近傍層や上層に汚染物質を攪乱することなく、閉鎖水域の貧酸素水、汚濁水域の浄化し、水道水源として用いる上層を拡大することができる。また、上層、中層、下層のように分けられない比較的浅い湖沼等の閉鎖水域においては、閉鎖水域全体の水質改善を行うことができる。
【0075】
第一槽2、第二槽3および第三槽4の外周には、フロート12を設け、該フロート12と各槽とを連結する架台13を設けている。該フロート12を設けることにより、水質改善システム1を、ダム湖の任意位置まで浮上移動させることができる。例えば、閉鎖水域中の任意位置の各種水質を測定し、該測定結果によって、目的とする位置まで水質改善システム1を移動させて、広範囲の閉鎖水域の貧酸素水、汚濁水域の水質改善を行うことができる。
【0076】
水質改善システム1の第一槽2、第二槽3及び第三槽4は、同心円状の三重槽構造に限らず、図5(a)に示すように、楕円状の円筒体を偏心状に設けた三重槽構造としてもよく、その他図5(b)に示すように、円筒体に限らず、第一槽2、第二槽3及び第三槽4を、端面矩形状の管状体の三重槽構造としてもよく、図5(c)に示すように、端面矩形状の管状体を偏心状に三重槽構造としてもよい。
【0077】
図6は、水質改善システム1の他の実施形態を示し、第一槽2を、貧酸素水、汚濁水域に到達するように、垂直方向に長い内筒体を設けている。第三槽4と第一槽2の間に設ける閉止板11を、全体的に傾斜するように設け、自然に閉止板11上に堆積した沈降物が、他部位よりも低い集積部11aに集まるようにし、吸引ポンプ14による沈降物の除去を行いやすくしている。
【0078】
図7は、本発明の他の実施例を示す、水質改善システム1の概略構成を示す説明図である。図7に示すように、水質改善システム1は、揚水装置7及び下方から微細気泡を発生する微細気泡発生器6を設けた第一槽2で揚水した被処理水を、流通槽3aにオーバーフローさせ、流通槽3aに流通させている。そして、被処理水を流通槽3aを通じて、自然な下降流として第二槽3に流入し、第二槽3に連設した第三槽4から上昇流として閉鎖水域に流出する。
【0079】
第一槽2と第二槽3との間には、還流手段5を設け、第二槽3には、浮上分離した浮上物分離手段9及び微生物担体10を設けている。第三槽4には、被処理水中から沈降分離した沈降物を堆積し、他の部位よりも低い集積部11aを有する、第二槽3から連設した閉止板11及び閉止板11上に堆積し、集積部11aに集まった沈降物を吸引除去する吸引ポンプ14を設けている。そして、第一槽2、第二槽3および第三槽4は、フロート12および架台13により水面上に支持されている。
【0080】
図7に示すように、水質改善システム1を第一槽2、第二槽3及び第三槽4を三重槽構造とするのではなく、第一槽2から第三槽4まで連続した構造とし、槽内完結型のシステムとして、構成してもよい。
【0081】
【発明の効果】
本発明は、上記した構成となっているので、以下に示す効果を奏する。
請求項1記載の発明にあっては、閉鎖水域の貧酸素水、汚濁水域に浮遊する、汚染原因となる無機物起源・有機物起源の微粒子を第一槽で揚水し、第二槽において、被処理水中の無機物起源の微粒子を、浮上分離、沈降分離して物理的に処理するとともに、微生物担体に担持された微生物により被処理水中の有機物起源の微粒子成分を生物的に分解処理し、第三槽から清澄水を閉鎖水域に放出する。水質改善システムは、システム内完結型の処理を行うため、表面近傍層および上層を攪乱することなく、上層の水質を維持したまま、溶存酸素量を増大した清澄水を放出して、水道水源として用いる上層水の水域を拡大し、効率的にダム湖あるいは湖沼等の閉鎖水域の水質を改善することができる。また、上層、中層、下層に分けられないような比較的浅い湖沼等の閉鎖水域においては、閉鎖水域全体の水質を改善することができる。
【0082】
請求項2記載の発明にあっては、第一槽と第二槽との間に再び下方から第一槽に還流する還流手段を設けたため、微生物担体に担持された微生物処理に必要な滞留時間を調整することができる。
【0083】
請求項3記載の発明にあっては、第一槽、第二槽および第三槽を、三重槽構造としたため、槽内完結型の水質改善システムとして、スペースを取らないコンパクトな設計とすることができ、かつ、少ない稼動力で省エネルギー化を実現した閉鎖水域の水質改善システムを提供することができる。
【0084】
請求項4記載の発明にあっては、沈降物堆積手段を、第一槽と第三槽の間を塞ぐ閉止板とした簡易な構造で、第二槽において分離した沈降物を中層水や下層水中に混入させることなく、被処理水中から分離することができる。
【0085】
請求項5記載の発明にあっては、沈降物堆積手段である閉止板を傾斜し、他の部位よりも低い集積部を設けたため、閉止板上に堆積した沈降物が、自然に下がっている集積部に集まり、集まった沈降物を簡単に除去することができる。
【0086】
請求項6記載の発明にあっては、第二槽を下方に従って縮径する円錐状の中筒体としたため、第二槽の上部の表面積を拡大して、第一槽から第二槽に流入する被処理水の流速を遅くし、微細気泡に付着した微細粒子の浮上分離を促進するとともに、第二槽の下部の表面積を狭小として、第三槽の下部の表面積を拡大し、第二槽から第三槽に流入する被処理水の流速を遅くして、微細気泡に付着しない大きい粒子の沈降分離を促進し、浮上分離・沈降分離からなる物理的処理を効果的に行うことができる。
【0087】
請求項7記載の発明にあっては、第一槽、第二槽および第三槽を連続した構造とし、第一槽で揚水した被処理水を水頭圧によって流通するように構成したため、被処理水の自然な流動を利用して、稼動コストの低い、省エネルギー化を実現した水質改善システムを提供することができる。
【0088】
請求項8記載の発明にあっては、第一槽、第二槽および第三槽を水面に浮上させるフロートを設けたため、閉鎖水域の任意位置まで水質改善システムを移動させることができ、汚染度に応じて、効率良く、広範囲の閉鎖水域の貧酸素水、汚濁水域の水質改善を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す、水質改善システムの概略構成を示す説明図。
【図2】図1を閉鎖水域に設置した状態を示す説明図。
【図3】水質改善システムの浄化方法を示すフロー図。
【図4】図1に示す、水質改善システムの第一槽、第二槽、第三槽および微生物担体を示す平面図。
【図5】水質改善システムの第一槽、第二槽及び第三槽の実施例を示す説明図。
【図6】本発明の水質改善システムの他の実施形態の概略構成を示す説明図。
【図7】本発明の第二の実施例を示し、水質改善システムの概略構成を示す説明図。
【符号の説明】
1 ; 水質改善システム
2 ; 第一槽
3 ; 第二槽
3a ; 流通槽
4 ; 第三槽
5 ; 還流手段
6 ; 微細気泡発生器
7 ; 揚水装置
9 ; 浮上物除去手段
10 ; 微生物担体
11 ; 閉止板
11a; 集積部
12 ; フロート
13 ; 架台
14 ; 吸引ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification technique for purifying a closed water area by enlarging a water area used as a tap water source for the purpose of purifying anoxic water and polluted water areas in closed water areas such as lakes and dam lakes.
[0002]
[Prior art]
In recent years, in closed water areas such as lakes and dam lakes, pollutants such as earth and sand and domestic wastewater flow from rivers in the basin, and the eutrophication increases in the concentration of nitrogen and phosphorus in the water. Contamination of closed water is ongoing.
[0003]
Contamination causes include increases in inorganic substances such as sediment that flowed from river basins floating in water, large-scale generation of microorganisms (typically blue-green) associated with eutrophic value, microbes and small ones due to the progress of hypoxia A decomposition product of a fish carcass is considered, and it is assumed that it is possible to improve the water quality of the closed water area by removing these fine particle components of 100 μm or less floating in the water.
[0004]
The fine particle component that causes such contamination is not uniformly dispersed in water, but the fine particle component that is a contamination source dispersed by each water layer in the vertical distribution of the closed water area is different.
[0005]
The vertical distribution of a closed water area such as a dam lake can be roughly divided into five layers such as a surface near layer, upper layer, middle layer, lower layer, and bottom mud.
[0006]
The near-surface layer is a layer in which a large amount of phytoplankton such as sea lions is generated by photosynthesis. Phytoplankton has the effect of purifying water quality by taking in nitrogen, phosphorus, and the like together with carbon dioxide in water. However, when a large amount of phytoplankton such as blue sea urchins is generated, there is a problem that a strange odor such as a mold odor is generated and the appearance is further deteriorated. In addition, phytoplanktons such as blue seaweed generally have a short life span, so when these phytoplankton dies, they slowly settle from the layer near the surface and diffuse to the upper and middle layers, and promote the generation of spoilage bacteria in the upper and middle layers. Aerobic microorganisms that help to purify water in the upper and middle layers by promoting eutrophication, the spoilage bacteria generating carbon dioxide, reducing the amount of dissolved oxygen in the upper and middle layers, and proceeding with hypoxia There is a problem of threatening the survival of organisms such as small fish.
[0007]
The upper layer is a layer that serves as a tap water source, and is a layer that maintains a certain level of water quality, but in dam lakes, etc., the depth of the upper layer is said to be extremely shallow year by year. Some dam lakes have only 1m of upper water.
[0008]
The middle layer is a body of water where the dead sea cucumbers, small fish degradation products, microorganisms, etc. settle and float, and is a layer where hypoxia is progressing due to spoilage bacteria that have been produced on the carcasses such as sea cucumbers. In addition, fine clay particles that flowed in from the river basin are floating in the middle layer. Particle components derived from inorganic substances such as clay particles and organic particles such as dead bodies of blue-water remain, and turbidity ( TS) is a progressing layer. Particle components of inorganic and organic origin in the middle layer water are negatively charged in water and hydrated to form colloidal particles. These colloidal particles repel each other and become stable in water. Therefore, it does not settle down to the lower layer.
[0009]
During the conversion period in which there is a difference between the water temperature of the surface layer and the water temperature of the middle layer, the water temperature of the middle layer is higher than the water temperature of the surface layer. It is unlikely that the amount of dissolved oxygen in the water will increase and the survival of aquatic organisms will be threatened. However, especially in summer, the water temperature of the surface layer is high and the water temperature of the middle layer is low, so the vertical circulation of the closed water area is not performed, so the dissolved oxygen in the middle water is reduced, and the eutrophic value is advanced. The middle layer is poorly oxygenated and polluted, and the upper layer becomes shallower.
[0010]
In this way, particle components derived from inorganic substances and organic substances float in the upper water and middle water, and the oxygen-poor water and polluted water areas tend to expand. It is not limited to middle-layer water, and the anoxic water and polluted water areas change depending on the depth of the closed water areas such as dam lakes and lakes. The near-bottom layer of the closed water area where the water depth is shallow is not anaerobic like the lower layer described later, and the oxygen-poor water and polluted water area where inorganic and organic particle components floated are expanded to the bottom. It may become a layer.
[0011]
The lower layer is a water area where water pollution is further progressing, and it is an anaerobic condition in which dissolved oxygen is almost lost, and a layer containing a large amount of phosphorus, ammonia, methane, hydrogen sulfide, etc. It is considered.
[0012]
The bottom mud is the part where the dead carcass, clay, etc. that have settled in the water are finally deposited, and also contains a large amount of nitrogen, phosphorus, and other organic substances flowing from the river.
[0013]
The technologies for purifying closed water areas such as dam lakes include means for circulating the closed water areas up and down, means for aggregating suspended solids, means for removing organic matter by activating aquatic microorganisms by aeration, and mechanically removing bottom mud. Techniques using various means such as means for pumping and removing them are proposed.
[0014]
For example, in Japanese Patent Application Laid-Open No. 9-253698, an air lift pipe is provided in a cylindrical structure toward the bottom of the water, and oxygen-containing gas is supplied to aerate and flow the water while pumping up the bottom mud, A method of treating bottom mud has been proposed in which agglomerated particles are added to form agglomerated particles, and then aeration is stopped to allow suspended particles to settle on the water bottom.
[0015]
In Japanese Patent Laid-Open No. 9-314174, an apparatus main body arranged in a deep layer portion, an air supply means for supplying high-pressure air to the apparatus main body by a compressor or the like, a flow rate inside the apparatus main body, an inside of the apparatus main body, etc. A device that improves the dissolved oxygen concentration in the lower layer and bottom mud of the closed water area is proposed by means of a deep aeration device consisting of a means for measuring the dissolved oxygen concentration and a control means for controlling the air supply rate from the measured flow rate and dissolved oxygen concentration. ing.
[0016]
Further, in Japanese Patent Laid-Open No. 9-47749, at least a part of a closed water area is surrounded by a partition device, water intake means for taking water from the partitioned water area to be treated, water to be treated and filter medium taken up. A local water area comprising a filtration tank that is purified by contact and discharged as treated water; and a settling tank that flows out into a closed water area after settling floating substances present in the treated water discharged from the filtration tank A purification system has been proposed.
[0017]
[Problems to be solved by the invention]
However, in the bottom mud treatment method in which the flocculant is added and settled, the middle layer, the lower layer, and the bottom mud are disturbed by aeration flow. The upper layer water is temporarily contaminated and cannot be used as a tap water source. In addition, since the pollutants that have been agglomerated and settled by the flocculant are directly deposited as bottom mud, there is a problem that they are not a fundamental means for removing the pollutants.
[0018]
In the deep aeration apparatus, the lower layer water to be treated is aerated to increase the dissolved oxygen in the closed water area, which is a fundamental removal of suspended particle components in the middle layer water and the lower layer water. There is a problem that it is not. In addition, it is difficult to reduce the size of the bubbles released into the water in a high pressure state by the compressor as in the deep aeration apparatus, and the external pressure (water pressure) decreases as the bubbles rise in the water. For this reason, when the bubble diameter becomes larger and the bubbles become larger, the contact area between the bubbles contained in the unit volume and the water decreases, so that there is a problem that the fine particle component floating in the water is difficult to adhere to the bubbles.
[0019]
In the local water purification system, in order to supply a water purification plant from a closed water area such as a dam lake, it is necessary to surround and treat a part of the closed water area such as a dam lake with a partition device attached with a buoy. There is a problem that processing work becomes difficult. In addition, the local water purification system is not intended to purify a specific water layer in the vertical distribution of the closed water area, so the algae purification device (algae removal device) for purifying the surface vicinity layer, There is a problem that a plurality of devices such as a fluidized bed type purification device for purifying anaerobic conditions (ammonia nitrogen component) are required.
[0020]
Thus, in the conventional purification system, in the closed water area where the closed water area is divided into vertical distribution such as upper layer, middle layer, lower layer, purification of the near surface layer and upper layer, or lower layer and bottom mud is performed. Although there is a target, the upper layer used as a tap water source is expanded, and the target is focused on purifying middle-layer water in which inorganic and organic particulate components are floating and anoxic water and polluted water areas are expanding. There was no.
[0021]
Since the upper layer is a water area used as a tap water source, there is a demand for expansion of the upper water area. In order to expand the upper layer, in particular, oxygen-poor water and polluted water areas including the upper and middle layers used as a tap water source. Water quality improvement is required.
[0022]
If the dissolved oxygen in the closed water area is increased by aeration or aeration as in the prior art, the particulate component that becomes a contamination source in the middle layer, lower layer and bottom mud will be scattered to the surface near layer and the upper layer, There was a problem that phosphorus, ammonia, hydrogen sulfide, etc. in the lower layer and bottom mud were disturbed to the middle layer and upper layer.
[0023]
If the upper layer is contaminated by aeration or aeration, there is a problem that the upper layer water in the closed water area cannot be temporarily used as a tap water source, and has a great influence on the public.
[0024]
Therefore, in a closed water area with a deep water depth that can be divided into upper, middle, and lower layers, purification methods that disturb the pollutants in the bottom mud, middle layer, and lower layer to the upper layer and the surface near layer are as much as possible. Avoid and should build a purification system that will not contaminate the upper layer even temporarily.
[0025]
Furthermore, even in closed water areas such as shallow lakes that cannot be divided into upper, middle, and lower layers, pay attention to various pollution sources that cause anoxic water and polluted water in the closed water areas, and appropriate means for each pollution source. Therefore, an integrated purification system that totally separates and removes various pollution sources has not been constructed.
[0026]
Therefore, the present invention was devised in view of the various problems described above, and without disturbing the upper layer and the near-surface layer of a deep closed water area divided into an upper layer, a middle layer, and a lower layer, and relatively Even in shallow closed water areas, physical and biological treatments suitable for various sources of anoxic and polluted water in closed water areas should be carried out to improve the quality of the anoxic and polluted water areas in closed water areas. As a technical issue, the purpose is to provide a water quality improvement system for closed water areas that can expand the upper layers that need to maintain a certain level of water quality as a tap water source and purify poor oxygen water and polluted water areas. To do.
[0027]
[Means for Solving the Problems]
In order to solve the above technical problem,
The means of the invention described in claim 1 is a water quality improvement system for a closed water area that improves the anoxic water in a closed water area and the water quality in a polluted water area.
The first tank provided with the pumping means and the fine bubble generating means for generating fine bubbles from below, which pumps the oxygen-poor water and the polluted water as an upward flow, and the treated water that has flowed out of the first tank It flows as a downward flow with a flow rate slower than the flow rate of the upward flow of the tank, and has a function of separating the levitated matter and the sediment from the water to be treated. The second tank provided with the microorganism carrier and the treated water flowing out as a downward flow from the lower side of the second tank flowed out to the upper surface of the closed water area as an upward flow, and the sediment settled and separated in the second tank was deposited. And a third tank provided with a sediment removing means for removing the deposited sediment and a sediment removing means for removing the deposited sediment.
[0028]
In the first aspect of the invention, in the first tank provided with the pumping means and the fine bubble generating means, the suspended fine particles of inorganic / organic matter floating in the closed water area of the oxygen-poor water or the polluted water are caused. It is attached to fine bubbles and pumped up as an upward flow.
[0029]
The fine bubbles are bubbles of about 10 to 30 μm, and the surface area of the bubbles per unit volume is increased by such fine bubbles to increase the effect of adhering floating particles.
[0030]
In the first tank, the amount of pumped water is set to an amount that allows large particles that cannot adhere to fine bubbles to flow as an upward flow. To do.
[0031]
In the first tank, the levitated fine particles adhering to the fine bubbles and floating are separated from the water to be treated as levitated substances in the second tank and removed by the levitated substance removing means. As the floating substance removing means, for example, an adsorption filter, a separation membrane or the like can be used.
[0032]
In the second tank, since the downward flow flowing out from the first tank to the second tank is set to flow at a slower flow rate than the upward flow of the first tank, it adheres to the fine bubbles in the first tank. The fine particles can be surely floated on the water surface in the second tank and removed by the floating substance removing means.
[0033]
In addition, since the microbial carrier is provided in the second tank, the organic matter-derived fine particle components contained in the downward flow flowing slowly at a low flow rate are separated from the organic matter-decomposing bacteria, ammonia oxidizing bacteria, Biologically decomposed and removed by various microorganisms such as nitrate-reducing bacteria. In the second tank, dissolved oxygen in the water is increased due to the fine bubbles flowing in from the first tank, so that microorganisms are easy to live in and the environment of the microorganisms is active. improves. As the microbial carrier, for example, porous amorphous carbon, porous ceramics such as zeolite, fibers using carbon fibers, porous synthetic resins, and the like can be used.
[0034]
And the big particle which does not adhere to a fine bubble settles from the downward flow of a 2nd tank, and is isolate | separated from to-be-processed water. In the second tank, the sediment separated from the water to be treated is deposited on the sediment deposition means and removed by the sediment removal means. As the sediment removing means, for example, a suction pump for sucking the sediment and removing it from the sediment depositing means can be used.
[0035]
The treated water that has flowed into the third tank from the second tank becomes an upward flow in the third tank and is discharged to the closed water area. Thus, since the to-be-processed water is discharge | released as an upward flow, the big particle which settled in the to-be-processed water used as clarified water does not mix, and the 3rd tank has a function as a rectification tank. Yes.
[0036]
In the water quality improvement system consisting of the first tank, the second tank, and the third tank, the pollution in the anoxic water and polluted water is achieved by the complete treatment in the system without disturbing the surface layer and upper layer of the closed water area. The upper layer uses clear water with improved dissolved oxygen content as the source of tap water, effectively removing the organic and inorganic particulate components that cause pollution using physical and biological means. It is possible to expand the upper water area. In closed water areas such as shallow lakes that cannot be divided into upper, middle, and lower layers, the closed water area is not only expanded by performing the system-complete treatment in the present invention. It becomes possible to purify the whole.
[0037]
In addition to the structure of the invention described in claim 1, the means of the invention described in claim 2 is a method in which a part of the water to be treated that flows out of the first tank and flows into the second tank into the first tank and the second tank. A refluxing means for refluxing from the lower side to the first tank is provided.
[0038]
In the invention described in claim 2, since the reflux means is provided between the first tank and the second tank, the water to be treated is repeatedly circulated through the second tank, and the organism by the microorganisms supported on the microorganism carrier. It is possible to secure the residence time necessary for the treatment.
[0039]
According to a third aspect of the present invention, in the water quality improvement system for the closed water area according to the first or second aspect, the first tank is an inner cylinder having a length reaching the poor oxygen water and the polluted water area. Is provided on the outer periphery of the first tank, and is provided with a middle cylindrical body provided with a wall portion that is higher on the water surface than the wall portion of the first tank, and the third tank is provided on the outer periphery of the second tank. The outer cylindrical body is provided with a wall portion that is positioned lower on the water surface than the wall portion of the second tank.
[0040]
In the invention according to claim 3, in the first tank which is the inner cylinder, the water to be treated which has been raised by the pumping means overflows into the second tank provided on the outer periphery of the first tank, The fine particle components adhering to the fine bubbles surely float and separate from the water to be treated flowing into the second tank and overflowing in the second tank, and the water to be treated naturally flows in the second tank, which is an intermediate cylinder. By this, it becomes a downward flow with a slower flow rate than the upward flow of the first tank, slowly flows between the microbial carriers, and secures the time necessary for the biological decomposition process of the organic matter-derived fine particle components in the treated water, Large particles that do not adhere to fine bubbles from the water to be treated are easily settled.
[0041]
The treated water that has flowed out of the second tank collides with the third tank, which is an outer cylindrical body provided on the outer periphery of the second tank, and as a result of natural flow, it becomes an ascending flow with a slow flow velocity, and the settled particles are covered by the covered water. Without being mixed into the treated water, it is discharged to the upper layer of the closed water area as the treated water clarified from the third tank.
[0042]
Thus, because the first tank, the second tank and the third tank have a triple tank structure, it is designed as a compact water quality purification system in the tank without releasing the water to be treated during treatment to the outside. In addition, with the low operating power required for pumping water, the natural flow of treated water can be used to improve the quality of anoxic water and polluted water by physical and biological treatment. An energy-saving water quality improvement system with low operating costs can be provided.
[0043]
According to a fourth aspect of the present invention, there is provided the invention according to the third aspect, wherein the sediment depositing means is a closing plate that closes between a lower portion of the first tank and a lower portion of the third tank.
[0044]
In the invention according to claim 4, the sediment depositing means is a simple structure that closes the space between the first tank and the third tank, the sediment separated in the second tank, the middle layer water, It can be removed without mixing in the lower layer water.
[0045]
According to a fifth aspect of the present invention, in the invention according to the fourth aspect, the closing plate is inclined and a lower integrated portion is provided than other portions.
[0046]
In the invention of claim 5, since the closing plate which is the sediment depositing means is inclined and the accumulation portion lower than the other part is provided, the sediment deposited on the closing plate naturally falls. It collects in the accumulating part and the sediment can be easily removed. Note that the stacking unit is not limited to one place, and may be provided at a plurality of places.
[0047]
According to a sixth aspect of the present invention, in the third, fourth, or fifth aspect of the invention, the second tank is a conical middle cylindrical body that is reduced in diameter in the downward direction.
[0048]
In the invention of claim 6, since the second tank is a conical middle cylinder whose diameter is reduced in the downward direction, the surface area of the second tank is increased toward the upper part, and the first tank is changed to the second tank. The flow rate of the inflowing downflow can be reduced, and the area in which the fine bubbles float is increased, which is advantageous for the floating of the fine particles attached to the fine bubbles.
[0049]
Moreover, since the middle cylinder used as the second tank has a smaller surface area at the lower part and, conversely, the space between the third tank provided on the outer periphery of the second tank and the third tank, it flows out from the second tank to the third tank. The flow rate of the upward flow can be slowed down, which is advantageous for sedimentation of large particles.
[0050]
According to a seventh aspect of the present invention, in the first or second aspect of the present invention, the second tank is a tank that is continuous from the first tank in which the water to be treated pumped in the first tank is circulated by the head pressure. The third tank is a tank connected to the second tank.
[0051]
In the invention according to claim 7, since the first tank, the second tank and the third tank are configured to be continuous, and the treated water pumped up in the first tank is circulated by the head pressure, By utilizing the natural flow of water, it is possible to provide a water quality improvement system that realizes energy saving with low operating costs.
[0052]
The means of the invention described in claim 8 is that, in the invention described in claim 1, 2, 3, 4, 5, 6 or 7, a float is provided in the first tank, the second tank and the third tank. .
[0053]
In the invention according to claim 8, since the float for floating the first tank, the second tank and the third tank on the water surface is provided, the float is moved to an arbitrary position in a closed water area such as a dam lake by the float buoyancy. It is possible to improve the water quality of anoxic water and polluted water in a wide range of closed waters.
[0054]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of a water quality improvement system in a closed water area. FIG. 2 is an explanatory diagram showing a state in which a water quality improvement system is installed in a closed water area. In addition, the arrow in a figure has shown the flow direction of to-be-processed water.
[0055]
As shown in FIG. 1, the water quality improvement system 1 is a pumping device 7 that is a pumping unit for pumping up anoxic water and polluted water in a closed water area such as a dam lake, and a microbubble generating unit that generates microbubbles from below. A first tank 2 provided with a fine bubble generator 6; a second tank 3 that is a concentric middle cylinder with the first tank 2 provided on the outer periphery of the first tank 2; It is comprised from the 1st tank 2 and the 3rd tank 4 which are the concentric outer cylinders provided in the outer periphery.
[0056]
FIG. 3 is a flow diagram showing the means for purifying the oxygen-poor water and the polluted water area in each of the first tank 2, the second tank 3 and the third tank 4. Hereinafter, the purification means in each of the first tank 2, the second tank 3, and the third tank 4 will be sequentially described based on the drawings.
[0057]
The first tank 2 is an inner cylinder having a length that reaches the poor oxygen water and the polluted water area, and the pumping device 7 provided in the first tank 2 is driven from a drive unit provided with a motor, a speed reduction means, and the like. In this device, a shaft is suspended, screw wings are provided on the drive shaft, and the screw wings are rotationally driven to pump up oxygen-poor water and polluted water as an upward flow. The pumping device 7 is set so that a relatively large particle that cannot be attached to the fine bubbles is also lifted by the rising flow. The pumping device is not limited to the one in this example, and various types such as those using propeller blades, pumps, and the like can be used.
[0058]
The fine bubble generator 6 is a device that generates uniform fine bubbles (10 to 30 μm) and generates fine bubbles by taking in air from the water surface of the closed water area. Such microbubbles are, for example, 30 μm microbubbles, 33 times in surface area and 37,000 in the same volume as compared to 1 mm size bubbles. In addition, 10 μm fine bubbles are 100 times the surface area and 1,000,000 in the same volume compared to 1 mm size bubbles, increasing the solubility in water and increasing the surface area in contact with water. Therefore, it makes it easy to attach suspended particulates.
[0059]
Fine bubbles are generated from the lower side of the first tank 2 by the fine bubble generator 6, and the suspended fine particles originating from the inorganic substance and the organic substance floating in the poor oxygen water and the polluted water area are attached to the fine bubbles, or the pumping device 7. It is put on the upward flow formed by the above and floats to the vicinity of the water surface of the first tank 2.
[0060]
Moreover, since the fine bubbles are mixed with the water to be treated and pumped, the apparent specific gravity of the water to be treated is lowered, the driving force of the pumping device 7 is reduced, and the water can be pumped efficiently.
[0061]
The water to be treated overflows from the first tank 2 and flows into the second tank 3. The 2nd tank 3 is an intermediate cylinder provided with the wall part used as a higher position on the water surface than the 1st tank 2. As shown in FIG.
[0062]
The second tank 3 floats and separates the fine suspended matter adhering to the fine bubbles in the first tank 2, and settles and separates the relatively heavy particulate components in the upward flow that has risen up the first tank 2 on the upward flow. It has the function to do. The second tank 3 is provided with a suspended matter removing means 9 that adsorbs and removes floating substances that have been floated and separated, and a microorganism carrier 10 in the flow path of the second tank 3.
[0063]
The floating substance removing means 9 uses, for example, an adsorption filter or a separation membrane attached near the water surface of the second tank 3. The fine particles adhering to the fine bubbles in the for-treatment water pumped up in the first tank 2 float in the second-stage tank 3 from the for-treatment water whose flow velocity is slow, and are removed by the levitated substance removing means 9.
[0064]
The 2nd tank 3 is made into the conical intermediate cylinder which carries out diameter reduction according to the downward direction. As in this example, the second tank 3 may not be conical but may be a tubular cylindrical body. In addition, if the 2nd tank 3 is made into a cone-shaped intermediate cylinder body, a surface area will expand toward the upper part of the 2nd tank 3, the flow rate of the to-be-processed water which flowed in from the 1st tank 2 becomes slow, and it becomes a microbubble. Promotes floating separation of adhering fine particle components.
[0065]
As shown in the plan view of the first tank 2, the second tank 3, and the third tank 4 in FIG. 4, a plurality of microbial carriers 10 are provided in the second tank 3 in a radial manner. Since the to-be-processed water mixed with fine bubbles flows from the first tank 2 to the second tank 3, the dissolved oxygen in the second tank 3 increases, and the living environment for living organisms is favorable. For this reason, the microorganism carrier 10 provided in the second tank 3 is inhabited by a large number of microorganisms, and biologically decomposes the particulate components originating from the organic matter in the downward flow flowing slowly through the second tank 3.
[0066]
The flow rate of the downward flow flowing through the second tank 3 is set so as to be slower than the upward flow of the first tank 2, and the time required for biological decomposition treatment by microorganisms is ensured in the second tank 3. . For example, the flow rate of the downward flow of the second tank 3 can be set as appropriate by controlling the pumping amount of the pumping device 7 and adjusting the distance between the first tank 2 and the second tank 3. is there.
[0067]
Further, a reflux port 5 is provided between the first tank 2 and the second tank 3 as a reflux means for returning a part of the water to be treated flowing into the second tank 3 to the first tank 2 again. The residence time necessary for microbial treatment is adjusted
[0068]
Furthermore, by slowing down the flow velocity of the downward flow in the second tank 3, it is possible to promote sedimentation of large particles that do not adhere to the fine bubbles in the water to be treated.
[0069]
Since the second tank 3 is a conical middle cylinder whose diameter is reduced in the downward direction, the lower the surface of the second tank 3, the smaller the surface area. Since it becomes wider, the flow rate of the water to be treated flowing into the third tank 4 from the lower side of the second tank 3 becomes slow, and it flows slowly through the third tank 4 as an upward flow. Promotes settling.
[0070]
Between the 3rd tank 4 and the 1st tank 2, the closing plate 11 is provided centering on the 1st tank 2, and this closing plate 11 functions as a sediment accumulation means on which the big particle which settled from to-be-processed water accumulates. doing. The sediment deposited on the closing plate 11 is periodically removed by sediment removal means such as a suction pump 14. The closing plate 11 is provided with an accumulation portion 11a lower than other portions so as to be asymmetrical in the left-right direction. Since the sediment deposited on the closing plate 11 naturally gathers in the accumulation portion 11a that is lower than the other portion, the sediment collected in one place can be easily removed by the suction pump 14. In addition, as shown in the drawing, not only when the closing plate 11 is tilted asymmetrically to provide a single stacking portion 11a, but by changing the tilting direction of the closing plate 11, multiple stacking portions 11a are provided. Also good.
[0071]
When the fine bubble generator 6 for supplying fine bubbles to the first tank 2 is provided below the closing plate 11, the fine bubbles generated from the fine bubble generator 6 flow into the first tank 2 efficiently. The closing plate 11 may be installed in a tilted manner so that the part attached to the first tank 2 is at the upper position and the part attached to the third tank 4 is at the lower position.
[0072]
Since the third tank 4 is an outer cylindrical body having a wall portion that is at a lower position on the water surface than the second tank 3, the third tank 4 becomes a downward flow in the second tank 3 and flows into the third tank 4. The treated water collides with the wall of the third tank 4 and becomes an upward flow, overflows from the upper part of the third tank 4 and is discharged onto the water surface of the closed water area.
[0073]
Since the third tank 4 circulates the water to be treated as an upward flow, it settles and separates from the water to be treated, and the sediment deposited on the closing plate 11 is not rolled up and mixed into the water to be treated. Functions as a tank.
[0074]
In the water quality improvement system 1, the anoxic water and polluted water pumped up by the pumping device of the first tank 2 are treated with clarified water in the first tank 2, the second tank 3 and the third tank 4. Therefore, since the system is a complete system in the tank, the upper layer used as a tap water source can be expanded by purifying the oxygen-poor water and the polluted water area in the closed water area without disturbing the pollutants in the surface vicinity layer and the upper layer. Moreover, in a closed water area such as a relatively shallow lake that cannot be divided into upper, middle, and lower layers, the water quality of the entire closed water area can be improved.
[0075]
A float 12 is provided on the outer periphery of the first tank 2, the second tank 3, and the third tank 4, and a gantry 13 that connects the float 12 and each tank is provided. By providing the float 12, the water quality improvement system 1 can be levitated to an arbitrary position in the dam lake. For example, various water qualities at arbitrary positions in a closed water area are measured, and the water quality improvement system 1 is moved to a target position based on the measurement result, thereby improving the water quality of anoxic water and polluted water areas in a wide range of closed water areas. be able to.
[0076]
The first tank 2, the second tank 3 and the third tank 4 of the water quality improvement system 1 are not limited to the concentric triple tank structure, but an elliptical cylindrical body is eccentric as shown in FIG. It is good also as the provided triple tank structure, and as shown in FIG.5 (b), not only a cylindrical body but the 1st tank 2, the 2nd tank 3, and the 3rd tank 4 are the triple bodies of the end surface rectangular tubular body. It is good also as a tank structure, and as shown in FIG.5 (c), it is good also considering a tubular body of an end surface rectangular shape as a triple tank structure eccentrically.
[0077]
FIG. 6 shows another embodiment of the water quality improvement system 1, and an inner cylinder that is long in the vertical direction is provided so that the first tank 2 reaches the poor oxygen water and the polluted water area. The closing plate 11 provided between the third tank 4 and the first tank 2 is provided so as to incline as a whole, and sediment deposited on the closing plate 11 naturally gathers in the accumulation portion 11a lower than other parts. In this way, the sediment is easily removed by the suction pump 14.
[0078]
FIG. 7 is an explanatory diagram showing a schematic configuration of the water quality improvement system 1 according to another embodiment of the present invention. As shown in FIG. 7, the water quality improvement system 1 overflows the water to be treated pumped up in the first tank 2 provided with the pumping device 7 and the microbubble generator 6 that generates microbubbles from below into the flow tank 3a. Circulates in the circulation tank 3a. And the to-be-processed water flows in into the 2nd tank 3 as a natural downward flow through the distribution tank 3a, and flows out into the closed water area as an upward flow from the 3rd tank 4 connected to the 2nd tank 3. FIG.
[0079]
The reflux means 5 is provided between the first tank 2 and the second tank 3, and the levitated substance separating means 9 and the microorganism carrier 10 that are levitated and separated are provided in the second tank 3. In the third tank 4, sediment that has settled and separated from the water to be treated is deposited and deposited on the closing plate 11 and the closing plate 11 that are continuously provided from the second tank 3 and have a lower accumulation portion 11 a than other parts. In addition, a suction pump 14 is provided for sucking and removing the sediment collected in the accumulation portion 11a. The first tank 2, the second tank 3, and the third tank 4 are supported on the water surface by the float 12 and the gantry 13.
[0080]
As shown in FIG. 7, the water quality improvement system 1 does not have the first tank 2, the second tank 3, and the third tank 4 as a triple tank structure, but has a continuous structure from the first tank 2 to the third tank 4. The tank may be configured as a complete system.
[0081]
【The invention's effect】
Since the present invention has the above-described configuration, the following effects can be obtained.
In the invention described in claim 1, in the first tank, fine particles originated from inorganic substances and organic substances that cause pollution and float in the closed water area of the anoxic water and the polluted water area, and are treated in the second tank. The microparticles derived from inorganic substances in the water are physically separated by floating and settling, and the microparticle components derived from organic substances in the water to be treated are biologically decomposed by the microorganisms supported on the microorganism carrier, and the third tank To discharge clear water to the closed water area. Since the water quality improvement system performs a complete process in the system, it releases clear water with an increased amount of dissolved oxygen while maintaining the water quality of the upper layer without disturbing the upper surface layer and the upper layer. The water area of the upper water used can be expanded, and the water quality of the closed water area such as a dam lake or lake can be improved efficiently. Moreover, in a closed water area such as a relatively shallow lake that cannot be divided into an upper layer, a middle layer, and a lower layer, the water quality of the entire closed water region can be improved.
[0082]
In the invention according to claim 2, since a reflux means for refluxing from the lower side to the first tank again is provided between the first tank and the second tank, the residence time required for processing the microorganisms supported on the microorganism carrier Can be adjusted.
[0083]
In the invention described in claim 3, since the first tank, the second tank, and the third tank have a triple tank structure, as a water quality improvement system of the tank complete type, a compact design that does not take up space is adopted. It is possible to provide a water quality improvement system for a closed water area that can save energy with a small operating capacity.
[0084]
In the invention of claim 4, the sediment depositing means is a simple structure that closes the space between the first tank and the third tank, and the sediment separated in the second tank is the middle layer water or the lower layer. It can be separated from the water to be treated without being mixed in the water.
[0085]
In the invention according to claim 5, since the closing plate which is the sediment depositing means is inclined and the accumulation portion lower than other portions is provided, the sediment deposited on the closing plate naturally falls. The collected sediment can be easily removed by gathering in the accumulation section.
[0086]
In the invention according to claim 6, since the second tank is a conical middle cylinder whose diameter is reduced in the downward direction, the surface area of the upper part of the second tank is enlarged and flows into the second tank from the first tank. The flow rate of the water to be treated is slowed, the floating separation of fine particles adhering to the fine bubbles is promoted, the surface area of the lower part of the second tank is made narrower, the surface area of the lower part of the third tank is enlarged, and the second tank Thus, the flow rate of the water to be treated flowing into the third tank is slowed to promote the sedimentation / separation of large particles not adhering to the fine bubbles, and the physical treatment comprising the floating separation / sedimentation separation can be effectively performed.
[0087]
In the invention according to claim 7, since the first tank, the second tank and the third tank are configured to be continuous, and the treated water pumped up in the first tank is circulated by the head pressure, By utilizing the natural flow of water, it is possible to provide a water quality improvement system that realizes energy saving with low operating costs.
[0088]
In the invention according to claim 8, since the float that floats the first tank, the second tank, and the third tank on the water surface is provided, the water quality improvement system can be moved to an arbitrary position in the closed water area. Accordingly, it is possible to efficiently improve the water quality of anoxic water and polluted water areas in a wide range of closed water areas.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic configuration of a water quality improvement system according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a state where FIG. 1 is installed in a closed water area.
FIG. 3 is a flowchart showing a purification method of the water quality improvement system.
4 is a plan view showing a first tank, a second tank, a third tank, and a microorganism carrier of the water quality improvement system shown in FIG. 1. FIG.
FIG. 5 is an explanatory diagram showing examples of the first tank, the second tank, and the third tank of the water quality improvement system.
FIG. 6 is an explanatory diagram showing a schematic configuration of another embodiment of the water quality improvement system of the present invention.
FIG. 7 is an explanatory diagram showing a schematic configuration of a water quality improvement system according to a second embodiment of the present invention.
[Explanation of symbols]
1; Water quality improvement system
2; First tank
3; Second tank
3a; Distribution tank
4; Third tank
5; refluxing means
6; Microbubble generator
7; Pumping equipment
9; Floating object removal means
10; microbial carrier
11; Closure plate
11a; Accumulation part
12; float
13; Mount
14; suction pump

Claims (8)

閉鎖水域の貧酸素水、汚濁水域の水質を改善する、閉鎖水域の水質改善システムであって、貧酸素水、汚濁水を上昇流として揚水する、揚水手段および下方から微細気泡を発生させる微細気泡発生手段を設けた第一槽と、該第一槽から流出した被処理水を、前記第一槽の上昇流の流速よりも遅い流速の下降流として流通して、被処理水中から浮上物及び沈降物を分離する機能を有し、浮上分離した浮上物除去手段および前記下降流の流通路に微生物担体を設けた第二槽と、該第二槽の下方から下降流として流出してきた被処理水を上昇流として閉鎖水域の上面に流出し、第二槽で沈降分離した沈降物を堆積しておく沈降物堆積手段および堆積した沈降物を除去する沈降物除去手段を設けた第三槽から成る閉鎖水域等の水質改善システム。A water quality improvement system for closed water areas that improves the quality of anoxic water and polluted water areas in closed water areas, which pumps up the poor oxygen water and polluted water as an upward flow, and fine bubbles that generate fine bubbles from below. The first tank provided with the generating means and the water to be treated flowing out of the first tank are circulated as a descending flow having a flow rate slower than the flow rate of the upward flow of the first tank, A floater removing means having a function of separating sediment, a second tank provided with a microbial carrier in the flow path of the downflow, and a target to be discharged as a downflow from the lower side of the second tank From the third tank provided with sediment depositing means for draining water as an upward flow to the upper surface of the closed water area and depositing sediment settled and separated in the second tank and sediment removing means for removing the deposited sediment A water quality improvement system such as a closed water area. 第一槽と第二槽に、第一槽から流出して第二槽に流入した被処理水の一部を再び下方から第一槽に還流する還流手段を設けた請求項1記載の閉鎖水域の水質改善システム。2. The closed water area according to claim 1, wherein the first tank and the second tank are provided with reflux means for returning a part of the water to be treated flowing out from the first tank and flowing into the second tank from the lower side to the first tank again. Water quality improvement system. 第一槽を、貧酸素水、汚濁水域まで到達する長さの内筒体とし、第二槽を、前記第一槽の外周に設け、該第一槽の壁部よりも水面上の高い位置となる壁部を備えた中筒体とし、第三槽を、前記第二槽の外周に設け、該第二槽の壁部よりも水面上で低い位置となる壁部を備えた外筒体とした請求項1または2記載の閉鎖水域の水質改善システム。The first tank is an inner cylinder of a length that reaches the poor oxygen water and the polluted water area, the second tank is provided on the outer periphery of the first tank, and is higher on the water surface than the wall of the first tank. An outer cylindrical body provided with a wall portion that is provided on the outer periphery of the second tank, and has a lower wall position on the water surface than the wall portion of the second tank. The water quality improvement system for closed water areas according to claim 1 or 2. 沈降物堆積手段を、第一槽の下部と第三槽の下部の間を閉塞する閉止板とした請求項3記載の閉鎖水域の水質改善システム。The water quality improvement system for a closed water area according to claim 3, wherein the sediment depositing means is a closing plate for closing a space between the lower part of the first tank and the lower part of the third tank. 閉止板を傾斜し、他の部位よりも低い集積部を設けた請求項4記載の閉鎖水域の水質改善システム。The water quality improvement system of the closed water area of Claim 4 which provided the accumulation | storage part which inclined the closing plate and was lower than another site | part. 第二槽を、下方に従って縮径する円錐状の中筒体とした請求項3、4または5記載の閉鎖水域の水質改善システム。The water quality improvement system for a closed water area according to claim 3, 4 or 5, wherein the second tank is a conical middle cylindrical body whose diameter decreases in the downward direction. 第二槽を、第一槽で揚水した被処理水が水頭圧により流通する第一槽から連続した槽とし、第三槽を、第二槽に連設した槽とした請求項1または2記載の閉鎖水域の水質改善システム。The second tank is a tank continuous from the first tank in which the treated water pumped in the first tank is circulated by water head pressure, and the third tank is a tank connected to the second tank. Water quality improvement system for closed water areas. 第一槽、第二槽および第三槽にフロートを設けた請求項1、2、3、4、5、6または7記載の閉鎖水域の水質改善システム。The water quality improvement system of the closed water area of Claim 1, 2, 3, 4, 5, 6 or 7 which provided the float in the 1st tank, the 2nd tank, and the 3rd tank.
JP2002212205A 2002-07-22 2002-07-22 Water quality improvement system for closed water areas Expired - Fee Related JP3641700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212205A JP3641700B2 (en) 2002-07-22 2002-07-22 Water quality improvement system for closed water areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212205A JP3641700B2 (en) 2002-07-22 2002-07-22 Water quality improvement system for closed water areas

Publications (2)

Publication Number Publication Date
JP2004050085A JP2004050085A (en) 2004-02-19
JP3641700B2 true JP3641700B2 (en) 2005-04-27

Family

ID=31935206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212205A Expired - Fee Related JP3641700B2 (en) 2002-07-22 2002-07-22 Water quality improvement system for closed water areas

Country Status (1)

Country Link
JP (1) JP3641700B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101081714B (en) * 2006-05-31 2010-12-15 广州神阳高新技术有限公司 Automatic lifting foam discharge horizontal control device
CN102062073B (en) * 2010-11-23 2012-07-04 浙江大学 Centrifugal micron bubble pump adopting orifice throttling mode
JP5938005B2 (en) * 2013-05-15 2016-06-22 松江土建株式会社 Blue seam removal device
KR101657169B1 (en) * 2014-10-17 2016-09-20 그린파이너스(주) A Water Quality Purification Device
CN107512779A (en) * 2017-09-28 2017-12-26 云南恒碧环保科技有限公司 A kind of device of high efficiency purifying eutrophic water quality
CN109384356B (en) * 2018-11-06 2024-04-16 中建生态环境集团有限公司 Water quality purification and water landscape system
CN109574413B (en) * 2019-01-16 2022-10-28 南昌工程学院 Lake water quality control synthesizes treatment facility
CN114684940A (en) * 2022-06-02 2022-07-01 康小龙 Air-flotation precipitation purification device for sewage
CN116375218B (en) * 2022-11-07 2024-03-22 浙江卓锦环保科技股份有限公司 Immersed river and lake water quality purifying treatment device

Also Published As

Publication number Publication date
JP2004050085A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
CN101977853B (en) Method and device for the treatment of waste water
JP3183406B2 (en) Methods and reactors for water purification
CN101618925B (en) Sewage treatment device
CN102225803B (en) Biomembrane reactor, waste water treating system and method for treating waste water
CA2747588C (en) System and method for reducing pollution in a body of water
CN104150707B (en) The apparatus and method that a kind of blodisc is disposed of sewage
CN1785829A (en) Composite membrane bioreactor
CN103723896A (en) Integrated sewage disposal system and disposal method
CN1887741A (en) Airlift inner circulation sewage treating process and apparatus
JP2004237144A (en) Waste water disposal system
KR20170117247A (en) Sewage Treatment Apparatus with Granular Activated Sludge and Bio Membrane-reactor and a Method for Treating Sewage Threrewith
JP3641700B2 (en) Water quality improvement system for closed water areas
CN101468850A (en) Intermittent aeration film bioreactor and sewage treatment method using the same
CN111517570B (en) Sea wave-imitated ship sewage treatment and recycling system and method
CN203768177U (en) Integrated sewage treatment system
CN102531150A (en) Biological air floating treatment device
CN202080949U (en) Moving bed type biofilm reaction tank
JP2005000784A (en) Closed water area cleaning facility
CA2565052A1 (en) System for improved dissolved air floatation with a biofilter
CN200955030Y (en) Air-lift internal-circulation sewage treatment device
CN209583901U (en) Biochemistry pool MBBR technique coupling denitrification deep-bed filter denitrification dephosphorization system
CN208562060U (en) Sewage disposal system
CN113233707A (en) Air floatation, MBR (membrane bioreactor) and multi-medium filtration integrated smoke plant sewage treatment process equipment
CN201125186Y (en) Landscape water processing apparatus
KR102551132B1 (en) The System for Purifying Wasted Water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees