JP2013081945A - Waste water processor and waste water processing method - Google Patents

Waste water processor and waste water processing method Download PDF

Info

Publication number
JP2013081945A
JP2013081945A JP2013024386A JP2013024386A JP2013081945A JP 2013081945 A JP2013081945 A JP 2013081945A JP 2013024386 A JP2013024386 A JP 2013024386A JP 2013024386 A JP2013024386 A JP 2013024386A JP 2013081945 A JP2013081945 A JP 2013081945A
Authority
JP
Japan
Prior art keywords
water
treated
reaction tank
treated water
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013024386A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fukuzaki
康博 福崎
Yasuhiro Nakamura
安宏 中村
Yuki Kawakubo
祐貴 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2013024386A priority Critical patent/JP2013081945A/en
Publication of JP2013081945A publication Critical patent/JP2013081945A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the quality of water in a reaction tank for UASB processing to keep the water in a condition where the reactivity of microorganisms is enhanced.SOLUTION: A waste water processor 1 includes a reaction tank 10 which supplies to-be-processed water from a bottom 100 to cause a microbial mass to come in contact with the to-be-processed water and then discharges it from the upper part of the reaction tank 10 as processed water, and a pH adjusting tank 18 which adjusts the pH of part of processed water flowing out of the reaction tank 10. The pH adjusting tank 18 is connected to the side face of the reaction tank 10 via a return pipe 181b or return pipe 181c. Part of processed water discharged out of the reaction tank 10 is adjusted in pH so that the pH of the processed water stays within a pH range in which the reactivity of the microbial mass is enhanced. The processed water with an adjusted pH is injected into a bed 19 in the reaction tank 10, which bed 19 is a place separated from the processed water supply portion 100 in the direction of distribution of processed water.

Description

本発明は、流動性の微生物塊(微生物からなる自己造粒汚泥であるグラニュールや核となる物質を含んだ微生物膜)を利用した廃水処理技術に関するものである。   The present invention relates to a wastewater treatment technique using a flowable microbial mass (granule which is a self-granulating sludge composed of microorganisms or a microbial film containing a substance serving as a nucleus).

上向流嫌気性汚泥床(UASB:Upflow Anaerobic Sludge Bed)法は微生物塊を充填した反応槽の底部から被処理水を供給し、この供給によって生ずる上向水流のもとで被処理水に含まれる有機物や窒素化合物を微生物塊と接触させ微生物の代謝反応により分解する方法である(例えば、特許文献1〜4等)。   The Upflow Anaerobic Sludge Bed (UASB) method supplies treated water from the bottom of a reaction tank filled with microbial mass, and is included in the treated water under the upward water flow generated by this supply. In which organic substances and nitrogen compounds are brought into contact with microbial masses and decomposed by metabolic reactions of microorganisms (for example, Patent Documents 1 to 4).

UASB法は微生物担体となる充填材を必要とせず、高密度に凝集した微生物塊を用いることにより非常に高い負荷を処理できることを最大の特徴とする。微生物塊とは微生物が自己造粒化したグラニュールと呼ばれる形態や核となる物質を含んだ微生物膜が該当する。グラニュールや有核微生物膜などの微生物塊は、沈降性に優れたものが多く、反応槽底部より被処理水を供給すると適切な上向流速において、反応槽上部の浮遊微生物塊が少なく、反応槽の下方に多く微生物塊が沈殿・滞留し汚泥床(ベッド)と呼ばれる状態を形成する。   The UASB method is characterized by the fact that it does not require a filler as a microbial carrier and can handle a very high load by using a densely aggregated microbial mass. The microbial mass corresponds to a microbial membrane containing a substance called a granule or a nucleus that is self-granulated. Many microbial masses, such as granules and nucleated microbial membranes, have excellent sedimentation properties. When treated water is supplied from the bottom of the reaction tank, there are few floating microbial masses at the top of the reaction tank at an appropriate upward flow rate. Many microbial masses settle and stay below the tank, forming a state called a sludge bed (bed).

また、含アンモニア廃水では、前段として好気性細菌によりアンモニアを硝酸に酸化する硝化処理と、後段で嫌気性の従属栄養細菌により有機物を利用して硝酸を窒素ガスに還元する脱窒処理があるが、近年、アンモニアと亜硝酸から脱窒することができる嫌気性アンモニア酸化(通称:アナモックス)細菌が注目され、本方法においてもUASB法が適用されている。アナモックス細菌を用いる場合、前段ではアンモニアを約半量亜硝酸まで硝化することで、後段のアナモックス細菌による脱窒処理が可能であり、好気処理に要する曝気動力が大幅に削減される。また、後段のアナモックス反応は独立栄養細菌によるため、従属栄養細菌による脱窒で必要とされた有機物が不要となる。その結果、C/N比の低い廃水で必要とされていた有機物供給が不要となるなど非常に優れた窒素処理方式である。アナモックス反応槽で適用可能な窒素負荷はプロセスにより異なるが、実証試験では、2.8〜5.4kg−N/m3/日であると報告されている(例えば、非特許文献2)。 In the case of ammonia-containing wastewater, there are a nitrification treatment in which ammonia is oxidized to nitric acid by an aerobic bacterium in the previous stage, and a denitrification treatment in which the nitric acid is reduced to nitrogen gas by using organic substances by anaerobic heterotrophic bacteria. In recent years, anaerobic ammonia oxidizing (commonly known as anammox) bacteria that can be denitrified from ammonia and nitrous acid have attracted attention, and the UASB method is also applied in this method. In the case of using anammox bacteria, by nitrifying ammonia to about half amount of nitrous acid in the former stage, denitrification treatment by the latter stage anammox bacteria is possible, and the aeration power required for the aerobic treatment is greatly reduced. Further, since the latter stage of anammox reaction is based on autotrophic bacteria, the organic matter required for denitrification by heterotrophic bacteria is not required. As a result, it is a very excellent nitrogen treatment system, such as eliminating the need to supply organic matter that was required for wastewater with a low C / N ratio. Although the nitrogen load applicable in the anammox reactor varies depending on the process, it has been reported in the verification test to be 2.8 to 5.4 kg-N / m 3 / day (for example, Non-Patent Document 2).

また、UASB法では、反応槽内の微生物が高活性を維持した状態となるように、反応槽内の水質(被処理水のpHや反応物質濃度など)を制御する。例えば、特許文献1では、反応槽内の被処理水注入点付近を攪拌することで、被処理水注入部の局部的な亜硝酸性窒素濃度の上昇に起因するアナモックス細菌の失活または活性低下を防止している。また、特許文献2では、亜硝酸性窒素を含有する被処理水の流入点を反応槽の高さ方向に複数設け、最下段(最上流)における亜硝酸性窒素注入濃度を300mg−N/L以下とすることで、被処理水注入部の局部的な亜硝酸性窒素濃度の上昇に起因するアナモックス細菌の失活または活性低下を防止している。   In the UASB method, the water quality in the reaction tank (such as the pH of the water to be treated and the concentration of reactants) is controlled so that the microorganisms in the reaction tank maintain a high activity. For example, in Patent Document 1, anammox bacteria are deactivated or reduced in activity due to a local increase in nitrite nitrogen concentration in the treated water injection part by stirring the vicinity of the treated water injection point in the reaction tank. Is preventing. Moreover, in patent document 2, multiple inflow points of the to-be-processed water containing nitrite nitrogen are provided in the height direction of a reaction tank, and the nitrite nitrogen injection density | concentration in the lowest stage (uppermost stream) is 300 mg-N / L. By making it below, the inactivation or the activity reduction of the anammox bacteria resulting from the local increase in nitrite nitrogen concentration in the treated water injection part is prevented.

特開2003−033795号公報Japanese Patent Laid-Open No. 2003-033795 特開2003−033793号公報JP 2003-033793 A 特開昭62−279891号公報JP-A-62-279891 特開平9−225491号公報JP-A-9-225491

福崎康博、外5名、“アナモックス反応による高濃度窒素排水の高速処理技術”、用水と廃水、株式会社産業用水調査会、2010年9月、第52巻、第9号、p.719−727Yasuhiro Fukuzaki, 5 others, “High-speed treatment technology of high-concentration nitrogen wastewater by anammox reaction”, Water and wastewater, Industrial Water Research Committee, September 2010, Vol. 52, No. 9, p. 719-727 アナモックス反応を利用した窒素除去技術の評価に関する報告書、日本下水道事業団技術評価委員会、平成22年3月Report on Evaluation of Nitrogen Removal Technology Using Anammox Reaction, Japan Sewerage Corporation Technical Evaluation Committee, March 2010

しかしながら、反応槽内の水質が、被処理水(または、被処理水と希釈水との混合水)を注入することによって回避されない場合(例えば、微生物反応処理の進行に伴うpHの上昇など)には、被処理水を反応槽に分散投入するだけでは反応槽の水質を微生物が高活性となる状態に維持できないおそれがある。例えば、特許文献2には、アナモックス細菌の活性阻害は、亜硝酸性窒素濃度50〜200mg/L程度から生じ、高濃度ほど阻害作用が大きくなるとされており、被処理水中の亜硝酸性窒素濃度が高濃度となった場合には、単に被処理水を分散投入に変更しただけでは、アナモックス細菌の活性を阻害する要因の解消が困難である。   However, when the water quality in the reaction tank cannot be avoided by injecting water to be treated (or mixed water of the water to be treated and dilution water) (for example, an increase in pH accompanying the progress of microbial reaction treatment). There is a possibility that the water quality of the reaction tank cannot be maintained in a state in which the microorganisms are highly active simply by dispersing and supplying the water to be treated into the reaction tank. For example, Patent Document 2 discloses that anammox bacterium activity inhibition occurs from a nitrite nitrogen concentration of about 50 to 200 mg / L, and the higher the concentration, the greater the inhibitory action. When the concentration of water becomes high, it is difficult to eliminate the factor that inhibits the activity of anammox bacteria simply by changing the water to be treated to dispersed input.

また、反応槽内の水質を微生物が高活性となる状態に維持するために被処理水に混合される希釈水を増加させると、希釈水の注入にコストがかる、または反応槽への希釈水の通水量が増大する。反応槽への希釈水の通水量が増大すると、反応槽において通水速度が律速となって負荷が制限されるおそれがある。さらには、希釈水に一定以上の溶存酸素濃度が存在する場合、反応槽内の嫌気性雰囲気を壊す可能性があるため、希釈水の注入の際には、溶存酸素の反応槽への持込に十分注意しなければいけない。   Moreover, if the dilution water mixed with the water to be treated is increased in order to maintain the water quality in the reaction tank in a state in which the microorganisms are highly active, the injection of the dilution water is costly, or the dilution water to the reaction tank Water flow increases. When the flow rate of the dilution water to the reaction tank increases, the water flow rate is limited in the reaction tank, and the load may be limited. Furthermore, when dissolved oxygen concentration above a certain level exists in the dilution water, the anaerobic atmosphere in the reaction tank may be destroyed. Therefore, when injecting dilution water, dissolved oxygen is brought into the reaction tank. You must be careful enough.

したがって、効率よく安定した嫌気性アンモニア酸化処理を行うためには、アナモックス細菌の活性を阻害してしまうような環境にならないように工夫しなければいけない。同時に、高活性のアナモックス細菌を反応槽に維持し、且つ、処理反応により多くのアナモックス細菌を関与させることも必要となる。   Therefore, in order to perform an efficient and stable anaerobic ammonia oxidation treatment, it is necessary to devise an environment that would inhibit the activity of anammox bacteria. At the same time, it is necessary to maintain highly active anammox bacteria in the reaction tank and to involve more anammox bacteria in the treatment reaction.

そこで、本発明の廃水処理装置及びこの装置による廃水処理方法は、UASB型反応槽にて、この反応槽で処理された処理水のpHを、反応槽内に保持された微生物が窒素除去反応を高活性で行うことに適したpHに調整し、このpH調整された処理水を反応槽のベッドに注入して、このベッド中のpHが微生物塊を形成する微生物の反応活性維持に適したpHとなるように制御することを特徴としている。   Therefore, the wastewater treatment apparatus of the present invention and the wastewater treatment method using this apparatus are the UASB type reaction tank, the pH of the treated water treated in this reaction tank, and the microorganisms held in the reaction tank carry out the nitrogen removal reaction. The pH is adjusted to a pH suitable for carrying out at a high activity, and the pH-adjusted treated water is injected into the bed of the reaction tank, and the pH in the bed is suitable for maintaining the reaction activity of the microorganisms forming the microbial mass. It is characterized by controlling to become.

すなわち、上記課題を解決する本発明の廃水処理装置は、被処理水を上昇水流のもとで微生物と接触させて当該被処理水中の窒素化合物を分解する廃水処理装置であって、前記被処理水を底部から供給して前記微生物と接触させた後に処理水として上部から排出させる反応槽と、前記反応槽から排出された処理水の一部を前記微生物の反応活性が高くなるpH範囲となるように調整するpH調整槽と、前記反応槽内のベッドであって、前記被処理水の供給部から前記被処理水の流通方向に離間した箇所に、前記pH調整槽でpH調整された処理水を注入する経路と、を備えたことを特徴としている。   That is, the wastewater treatment apparatus of the present invention that solves the above problems is a wastewater treatment apparatus that decomposes nitrogen compounds in the water to be treated by bringing the water to be treated into contact with microorganisms under an ascending water flow. A reaction tank in which water is supplied from the bottom and brought into contact with the microorganisms and then discharged from the top as treated water, and a part of the treated water discharged from the reaction tank has a pH range in which the reaction activity of the microorganisms becomes high. PH adjustment tank to be adjusted and a bed in the reaction tank, the pH adjusted in the pH adjustment tank at a location away from the treated water supply unit in the flow direction of the treated water And a path for injecting water.

また、本発明の廃水処理装置は、上記廃水処理装置において、前記pH調整された処理水がベッドの高さの50%以下の箇所に注入されるように、前記pH調整された処理水を注入する経路が備えられたことを特徴としている。   Further, the wastewater treatment apparatus of the present invention injects the pH-adjusted treated water so that the pH-adjusted treated water is injected into a portion of 50% or less of the bed height in the wastewater treatment apparatus. It is characterized by having a route to perform.

また、本発明の廃水処理装置は、上記廃水処理装置において、前記pH調整された処理水は、前記被処理水と混合されることなく注入されることを特徴としている。   Moreover, the wastewater treatment apparatus of the present invention is characterized in that, in the wastewater treatment apparatus, the pH-adjusted treated water is injected without being mixed with the treated water.

また、本発明の廃水処理装置は、上記廃水処理装置において、前記pH調整された処理水を注入する経路は、前記反応槽の前記被処理水の流通方向に対して複数備えられたことを特徴としている。   The wastewater treatment apparatus of the present invention is characterized in that, in the wastewater treatment apparatus, a plurality of paths for injecting the pH-adjusted treated water are provided with respect to a flow direction of the treated water in the reaction tank. It is said.

また、上記課題を解決する本発明の廃水処理装置は、被処理水を上昇水流のもとで微生物と接触させて当該被処理水中の窒素化合物を分解する廃水処理装置であって、前記被処理水を底部から供給して前記微生物と接触させた後に処理水として上部から排出させる反応槽と、前記反応槽から排出された処理水の一部を、前記微生物の反応活性が高くなるpH範囲となるように調整するpH調整槽と、前記反応槽の内部に設けられ、前記微生物と前記被処理水との反応で生じた気泡と前記微生物とを分離するための気泡分離部材と、前記気泡分離部材の下方であって、前記被処理水の供給部から前記被処理水の流通方向に離間した箇所に、前記pH調整槽でpH調整された処理水を注入する経路と、を備えたことを特徴としている。   Moreover, the wastewater treatment apparatus of the present invention that solves the above-mentioned problems is a wastewater treatment apparatus that decomposes nitrogen compounds in the water to be treated by bringing the water to be treated into contact with microorganisms under an ascending water flow. A reaction tank for supplying water from the bottom and bringing it into contact with the microorganism and then discharging it from the top as treated water, and a pH range in which a part of the treated water discharged from the reaction tank has a higher reaction activity of the microorganism, A pH adjusting tank to be adjusted, a bubble separating member provided in the reaction tank, for separating bubbles generated by a reaction between the microorganisms and the water to be treated and the microorganisms, and the bubble separation A path for injecting the treated water pH-adjusted in the pH-adjusting tank at a location below the member and spaced apart from the treated-water supply unit in the flow direction of the treated water. It is a feature.

また、上記課題を解決する本発明の廃水処理方法は、被処理水と微生物とを接触反応させる反応槽と、前記反応槽で処理された後の処理水のpHを前記微生物の反応活性が高くなるpH範囲となるように調整するpH調整槽と、を備えた廃水処理装置による廃水処理方法であって、前記被処理水を前記反応槽の底部から供給して、前記被処理水を前記微生物と接触させた後に処理水として前記反応槽の上部から排出させ、前記排出された処理水の一部を前記pH調整槽で、前記微生物の反応活性が高くなるpH範囲となるように調整し、前記反応槽のベッドであって、前記被処理水の供給部から前記被処理水の流通方向に離間した箇所に、前記pH調整された処理水を注入することを特徴としている。   In addition, the wastewater treatment method of the present invention that solves the above-described problems includes a reaction tank in which the water to be treated and microorganisms are brought into contact with each other, and the pH of the treated water that has been treated in the reaction tank has a high reaction activity of the microorganisms. A wastewater treatment method using a wastewater treatment apparatus comprising a pH adjustment tank that is adjusted to be in a pH range, wherein the treated water is supplied from the bottom of the reaction tank, and the treated water is supplied to the microorganism. After being brought into contact with water, it is discharged from the upper part of the reaction tank as treated water, and a part of the discharged treated water is adjusted in the pH adjusting tank so as to be in a pH range in which the reaction activity of the microorganism is increased, In the reaction tank bed, the pH-adjusted treated water is injected into a location separated from the treated water supply unit in the flow direction of the treated water.

また、上記課題を解決する本発明の廃水処理方法は、被処理水と微生物とを接触反応させる反応槽と、前記反応槽の内部に設けられ、前記微生物と前記被処理水との反応で生じた気泡と前記微生物とを分離するための気泡分離部材と、前記反応槽で処理された後の処理水の一部を前記微生物の反応活性が高くなるpH範囲となるように調整するpH調整槽と、を備えた廃水処理装置による廃水処理方法であって、前記被処理水を前記反応槽の底部から供給して、前記被処理水を前記微生物と接触させた後に処理水として前記反応槽の上部から排出させ、前記排出された処理水の一部を前記pH調整槽で前記微生物の反応活性が高くなるpH範囲となるように調整し、前記気泡分離部材の下方であって、前記被処理水の供給部から前記被処理水の流通方向に離間した箇所に、前記pH調整槽でpH調整された処理水を注入することを特徴としている。   Moreover, the wastewater treatment method of the present invention that solves the above-mentioned problems is provided by a reaction between the water to be treated and the microorganisms in contact with each other, and the reaction between the microorganisms and the water to be treated. PH adjusting tank for adjusting a part of the treated water after being treated in the reaction tank to be in a pH range in which the reaction activity of the microorganism becomes high And a wastewater treatment method using a wastewater treatment apparatus comprising: supplying the treated water from the bottom of the reaction tank; and bringing the treated water into contact with the microorganisms and then treating the treated water as treated water. A part of the discharged treated water is adjusted in the pH adjusting tank so as to be in a pH range in which the reaction activity of the microorganism is high, and is below the bubble separation member and is to be treated The treated water from the water supply unit In spaced locations in the flow direction, it is characterized by injecting the treated water that has been pH adjusted by the pH adjustment tank.

以上の発明によれば微生物塊の活性を維持し、UASB処理の高負荷化に貢献することができる。   According to the above invention, the activity of microbial mass can be maintained and it can contribute to the high load of UASB process.

発明の参考例に係る廃水処理システムを示した概略構成図である。It is the schematic block diagram which showed the wastewater treatment system which concerns on the reference example of invention. 発明の参考例に係る廃水処理システムの反応槽の高さ方向の被処理水のpH変化を示す図である。It is a figure which shows the pH change of the to-be-processed water of the height direction of the reaction tank of the wastewater treatment system which concerns on the reference example of invention. 発明の実施形態1に係る廃水処理装置を示した概略構成図である。It is the schematic block diagram which showed the waste water treatment apparatus which concerns on Embodiment 1 of invention. (a)pH調整された処理水を反応槽の側面から注入しない場合の反応槽の高さ(H)と反応槽内のpH値との関係を示す図、(b)pH調整された処理水を反応槽の側面から注入した場合の反応槽の高さ(H)と反応槽内のpH値との関係を示す図である。(A) The figure which shows the relationship between the height (H) of a reaction tank when not injecting pH adjusted treated water from the side surface of a reaction tank, and the pH value in a reaction tank, (b) pH adjusted treated water It is a figure which shows the relationship between the height (H) of the reaction tank at the time of inject | pouring from the side surface of a reaction tank, and the pH value in a reaction tank. 発明の実施形態2に係る廃水処理装置を示した概略構成図である。It is the schematic block diagram which showed the waste water treatment apparatus which concerns on Embodiment 2 of invention.

[参考例]
本発明に先だって、発明者らは、参考例として図1に示す廃水処理装置5において、反応槽50にアナモックス細菌を植種して、アンモニア性窒素と亜硝酸性窒素とを反応させた。そして、この反応槽50の高さ方向のpH変化を測定した。
[Reference example]
Prior to the present invention, the inventors inoculated anammox bacteria in the reaction tank 50 in the wastewater treatment apparatus 5 shown in FIG. 1 as a reference example, and reacted ammonia nitrogen and nitrite nitrogen. And the pH change of the height direction of this reaction tank 50 was measured.

(装置の構成)
図1に示すように、参考例に係る反応処理装置5は、pH調整槽18と、反応槽50と、気泡捕集管12とを備える。
(Device configuration)
As shown in FIG. 1, the reaction processing apparatus 5 according to the reference example includes a pH adjusting tank 18, a reaction tank 50, and a bubble collecting tube 12.

反応槽50の底部500に、後述の人工廃水槽51を供給管101を介して接続した。そして、被処理水を反応槽50の底部500から供給して、反応槽50内のベッド19と接触させた後に処理水として上部から排出させた。被処理水は反応槽50の下端部に接続された供給管101を介してポンプP1によって供給した。図1に示すように、反応槽50は円筒状に形成した。また、反応槽50の底部500付近の内周面は微生物塊を底部に集積しやすく、被処理水との接触効率を高められるように下細りのテーパー状に形成した。   An artificial wastewater tank 51 described later was connected to the bottom 500 of the reaction tank 50 via a supply pipe 101. And to-be-processed water was supplied from the bottom part 500 of the reaction tank 50, and after making it contact with the bed 19 in the reaction tank 50, it was discharged | emitted from the upper part as treated water. The water to be treated was supplied by the pump P <b> 1 through the supply pipe 101 connected to the lower end of the reaction tank 50. As shown in FIG. 1, the reaction vessel 50 was formed in a cylindrical shape. Further, the inner peripheral surface of the reaction tank 50 in the vicinity of the bottom 500 is formed in a tapered shape so that the microbial mass can be easily collected on the bottom and the contact efficiency with the water to be treated can be improved.

さらに、反応槽50の上部側面には、処理水の一部を反応槽50に返送させる循環配管172を設けた。そして、反応槽50の側面には、反応槽50の高さ方向に複数の採水管7a〜7fを設けた。   Furthermore, a circulation pipe 172 for returning a part of the treated water to the reaction tank 50 is provided on the upper side surface of the reaction tank 50. A plurality of water sampling tubes 7 a to 7 f were provided on the side surface of the reaction tank 50 in the height direction of the reaction tank 50.

気泡捕集管12は、陣笠状に形成された捕集コーン121とこの捕集コーン121の上端開口部に円筒部122が鉛直に接続されることで構成されており、反応槽50内に同槽と同軸に配置される。気泡捕集管12は、ベッド19から生じた気泡を捕集して、反応槽50の天井部に接続された円筒部122を介して大気中に排出した。   The bubble collection tube 12 is configured by a collection cone 121 formed in a Jinkasa shape and a cylindrical portion 122 connected vertically to the upper end opening of the collection cone 121. Arranged coaxially with the tank. The bubble collecting tube 12 collected bubbles generated from the bed 19 and discharged them into the atmosphere via the cylindrical portion 122 connected to the ceiling portion of the reaction tank 50.

pH調整槽18を、反応槽50と循環配管172を介して設け、処理水の一部を循環配管172を介してpH調整槽18に移送した。さらに、pH調整槽18にはpH計18aを設け、pH調整槽18で処理水のpHを0.5MのH2SO4で所定のpHに調整した。そして、ポンプP2により循環配管181を介してpH調整された処理水を反応槽50に再び循環させた。 The pH adjustment tank 18 was provided via the reaction tank 50 and the circulation pipe 172, and part of the treated water was transferred to the pH adjustment tank 18 via the circulation pipe 172. Furthermore, the pH adjustment tank 18 was provided with a pH meter 18a, and the pH of the treated water was adjusted to a predetermined pH with 0.5 M H 2 SO 4 in the pH adjustment tank 18. Then, the treated water whose pH was adjusted by the pump P2 was circulated through the reaction tank 50 again through the circulation pipe 181.

人工廃水槽51は、供給管101を介して反応槽50の底部500と接続した。人工廃水槽51には、溶存酸素濃度(DO)計51a、及びpH計51bを備えた。そして、人工廃水槽51の被処理水を、供給管101を介してポンプP1により反応槽50に供給した。なお、参考例では、人工廃水槽51に、表1に示す組成に調整された被処理水を予め備えておき、被処理水の溶存酸素濃度が0.5mg/L以下となるように窒素ガスによる脱気を行った。   The artificial wastewater tank 51 was connected to the bottom 500 of the reaction tank 50 via the supply pipe 101. The artificial wastewater tank 51 was provided with a dissolved oxygen concentration (DO) meter 51a and a pH meter 51b. And the to-be-processed water of the artificial wastewater tank 51 was supplied to the reaction tank 50 with the pump P1 through the supply pipe | tube 101. FIG. In the reference example, the artificial wastewater tank 51 is preliminarily provided with treated water adjusted to the composition shown in Table 1, and nitrogen gas is used so that the dissolved oxygen concentration of the treated water is 0.5 mg / L or less. Was degassed.

Figure 2013081945
Figure 2013081945

上記構成からなる廃水処理装置5において、高負荷運転における反応槽50内を流通する被処理水のpH特性を調査するために、窒素容積負荷(NLR)を7.0kg−N/m3/日として、アナモックス細菌の存在下でアンモニア性窒素と亜硝酸性窒素とを反応させた。そして、採水管7a〜7fから被処理水を採取し、採取した被処理水のpHを測定した。アナモックス反応中の反応槽50の高さ方向における被処理水のpH変化を図2に示す。 In the wastewater treatment apparatus 5 having the above-described configuration, the nitrogen volume load (NLR) is set to 7.0 kg-N / m 3 / day in order to investigate the pH characteristics of the water to be treated flowing in the reaction tank 50 in the high load operation. As described above, ammonia nitrogen and nitrite nitrogen were reacted in the presence of anammox bacteria. And the to-be-processed water was extract | collected from the water sampling pipes 7a-7f, and pH of the extract | collected to-be-processed water was measured. FIG. 2 shows the pH change of the water to be treated in the height direction of the reaction tank 50 during the anammox reaction.

アナモックス細菌による反応は、下記の(1)式で示される反応式が提案されている。
1.0NH4 ++1.32NO2 -+0.066HCO3 -+0.13H+
1.02N2+0.26NO3 -+0.066CH20.50.15+2.03H2O…(1)
(1)式によれば、アナモックス反応が進行するにしたがって、被処理水中のH+が消費されるので、図2に示すように、反応槽50の上部にある被処理水ほどpHが高くなっている。このpH変化は、反応槽50へ流入する被処理水のpH緩衝性が低い場合に顕著となる。
For the reaction by anammox bacteria, the reaction formula shown by the following formula (1) has been proposed.
1.0NH 4 + + 1.32NO 2 + 0.066HCO 3 + 0.13H +
1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O (1)
According to the equation (1), as the anammox reaction proceeds, H + in the water to be treated is consumed, so that the water to be treated at the top of the reaction tank 50 has a higher pH as shown in FIG. ing. This pH change becomes significant when the pH buffering property of the water to be treated flowing into the reaction tank 50 is low.

図2では、反応槽50の被処理水のpHは、反応槽50最下部の流入部500でpH7.5であるが、反応槽50の最下部より高さ180mmの位置(ベッド高さの約50%に相当)にある採水管7aで採取された被処理水で既にpH8.43であり、アナモックス反応に好適とされるpH範囲(pH6.5〜8.0)を超えている。そして、この好適pHの上限(pH8.0)を逸脱するのは、反応槽50の最下部より高さ100mm(ベッドの高さの24%に相当)の位置である。   In FIG. 2, the pH of the water to be treated in the reaction tank 50 is pH 7.5 at the inflow portion 500 at the bottom of the reaction tank 50, but at a position 180 mm higher than the bottom of the reaction tank 50 (about the bed height). The water to be treated collected by the water collection pipe 7a at 50% is already pH 8.43, which exceeds the pH range (pH 6.5 to 8.0) suitable for the anammox reaction. Then, the position deviating from the upper limit (pH 8.0) of the preferable pH is a position 100 mm (corresponding to 24% of the bed height) from the lowermost part of the reaction tank 50.

また、採水管7bの位置から上方に行くにしたがって、反応槽50を流通する被処理水のpHの上昇が緩やかになっている。すなわち、反応槽50の底部500から被処理水を流入させると、図2のように、特に、微生物塊の存在するベッド19領域内のほぼ全てにおいてpH変化が起こっている。そして、反応槽50内のpHは、反応槽50下部の流入部500の上向流側の近傍でアナモックス細菌の好適pHの上限を逸脱してしまう。   Further, the pH of the water to be treated flowing through the reaction tank 50 increases gradually as it goes upward from the position of the water sampling pipe 7b. That is, when the water to be treated is introduced from the bottom 500 of the reaction tank 50, as shown in FIG. 2, the pH change occurs particularly in almost all the bed 19 region where the microbial mass exists. Then, the pH in the reaction tank 50 deviates from the upper limit of the preferred pH of the anammox bacteria in the vicinity of the upward flow side of the inflow portion 500 at the lower part of the reaction tank 50.

このことから、反応槽50底部500から被処理水を供給する場合、アナモックス細菌の活性を維持できる領域は流入部付近にあるベッド19部分に限られることとなる。   From this, when the water to be treated is supplied from the bottom portion 500 of the reaction tank 50, the region where the activity of the anammox bacteria can be maintained is limited to the bed 19 portion in the vicinity of the inflow portion.

そして、好適pHの上限を逸脱し、活性が阻害される部分に存在するアナモックス細菌は反応への寄与が低いので、ベッド19領域に多量のアナモックス細菌を保持していても、窒素除去性能の向上は期待できないおそれがある。また、窒素容積負荷(NLR)をさらに高く設定した高負荷処理運転をするほど(1)式の反応が速く進むので、底部500に供給される被処理水の流入初期pHから変化するベッド19領域内での上向流方向のpH変化は速くなる。すると、ますます、好適pHの上限を逸脱による活性阻害の影響を受けるベッド19領域が広くなるため、アナモックス細菌の全体量は十分確保されていても、その細菌量に比例した窒素除去性能の向上は期待できず、逆に、窒素除去性能が低下する場合もあり得る。また、この阻害により過負荷となった場合、処理水中に基質濃度が高いまま残留することとなるため、pH調整された処理水の希釈効果がなくなり、処理が加速度的に悪化することとなるおそれもある。   And since the anammox bacteria existing in the part where the activity deviates from the upper limit of the preferred pH is low, the nitrogen removal performance is improved even if a large amount of anammox bacteria is retained in the bed 19 region. May not be expected. Further, since the reaction of the formula (1) proceeds faster as the high load treatment operation with the nitrogen volume load (NLR) set to be higher, the bed 19 region that changes from the inflow initial pH of the treated water supplied to the bottom portion 500. The pH change in the upward flow direction becomes faster. Then, since the bed 19 region that is affected by the inhibition of activity due to deviation from the upper limit of the preferred pH becomes wider, even if the total amount of anammox bacteria is sufficiently secured, the nitrogen removal performance in proportion to the amount of bacteria is improved. May not be expected, and conversely, the nitrogen removal performance may decrease. In addition, when this overload is caused by this inhibition, the substrate concentration remains in the treated water at a high level, so the dilution effect of the pH-adjusted treated water is lost, and the treatment may be accelerated. There is also.

また、ベッド19(参考例では、反応槽の底部より420mmの位置付近まで堆積)の上方に気泡とともに浮上した微生物塊は、pHによる活性阻害を受けるためほとんど窒素除去に寄与しない。さらに、上部での滞留時間が長いほど、アナモックス細菌の活性が減少していく可能性がある。故に、気泡とともに浮上した微生物塊は速やかにベッド19内に戻す操作が必要であり、微生物塊は捕集コーン121に衝突することで、気泡と微生物塊とが分離され、気泡が分離された微生物塊は下降しベッド19内に戻る。   In addition, the microbial mass floating together with bubbles above the bed 19 (in the reference example, deposited up to a position near 420 mm from the bottom of the reaction tank) hardly inhibits nitrogen removal because it is inhibited by the activity due to pH. In addition, the longer the residence time at the top, the more likely the activity of anammox bacteria will decrease. Therefore, it is necessary to quickly return the microbial mass floating together with the bubbles to the inside of the bed 19, and the microbial mass collides with the collection cone 121 so that the bubbles and the microbial mass are separated, and the microorganisms from which the bubbles are separated are separated. The lump descends and returns to the bed 19.

上記参考例に係る廃水処理装置5における反応槽50でのpH変化の測定結果を鑑みて、発明者らは本発明を創作するにいたった。以下、図面を参照しながら本発明の実施の形態について説明する。   In view of the measurement result of the pH change in the reaction tank 50 in the wastewater treatment apparatus 5 according to the above reference example, the inventors have created the present invention. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[実施形態1]
図3、図4を参照して本発明の実施形態1に係る廃水処理装置1及びこの装置による廃水処理方法について詳細に説明する。
[Embodiment 1]
With reference to FIG. 3 and FIG. 4, the waste water treatment apparatus 1 which concerns on Embodiment 1 of this invention, and the waste water treatment method by this apparatus are demonstrated in detail.

(装置の構成)
図3に示すように、廃水処理装置1は反応槽10とpH調整槽18と、側面スクリーン13とを備える。そして、pH調整槽18に接続された返送管181からは、返送管181a〜181cが分岐している。
(Device configuration)
As shown in FIG. 3, the wastewater treatment apparatus 1 includes a reaction tank 10, a pH adjustment tank 18, and a side screen 13. Then, return pipes 181a to 181c are branched from the return pipe 181 connected to the pH adjusting tank 18.

反応槽10は被処理水を底部100から供給して、反応槽10の下部に堆積した微生物塊のベッド19と接触させた後に処理水として上部から排出させる。ベッド19(汚泥床)とは、反応槽10の下方に沈殿・滞留した微生物塊によって形成される層であり、微生物塊とは微生物が自己造粒化したグラニュールと呼ばれる形態や核となる物質を含んだ微生物膜が該当する。この微生物塊を形成する微生物としては、例えば、アナモックス細菌が挙げられる。反応槽10へ供給する窒素化合物の負荷量は、ベッド19の容積と被処理水の基質濃度や水量などにより決定される。そして、運転の継続に伴って増殖した微生物は、適宜、ベッド19の高さを所定の高さを維持するように定期的に引き抜かれる。したがって、反応槽10のベッド19の高さは、反応槽10の運転条件の一つとして予め設定されることとなる。   The reaction tank 10 is supplied with water to be treated from the bottom 100, brought into contact with a bed 19 of microbial masses deposited at the bottom of the reaction tank 10, and then discharged from the top as treated water. The bed 19 (sludge bed) is a layer formed by the microbial mass that has settled and stayed below the reaction tank 10, and the microbial mass is a substance called a granule in which microorganisms are self-granulated and forms a nucleus. Applicable to microbial membranes containing. Examples of microorganisms that form this microbial mass include anammox bacteria. The load of nitrogen compound supplied to the reaction tank 10 is determined by the volume of the bed 19, the substrate concentration of the water to be treated, the amount of water, and the like. And the microorganisms which proliferated with the continuation of a driving | running | working are regularly extracted so that the height of the bed 19 may be maintained the predetermined height suitably. Therefore, the height of the bed 19 of the reaction tank 10 is set in advance as one of the operating conditions of the reaction tank 10.

被処理水は反応槽10の下端部に接続された供給管101を介してポンプP1によって供給される。被処理水としては、例えば、アンモニアを含有する被処理水を図示省略の処理槽で、前もって好気性のアンモニア酸化細菌により処理することで、被処理水のアンモニアの一部を亜硝酸に変換した被処理水を用いることが挙げられる。被処理水については、特に限定するものではなく、例えば(1)式に示した反応が効率よく進行するように、アンモニア性窒素と亜硝酸性窒素などを含有した被処理水を供給すればよい。   The water to be treated is supplied by the pump P <b> 1 through the supply pipe 101 connected to the lower end of the reaction tank 10. As the water to be treated, for example, the water to be treated containing ammonia was treated with an aerobic ammonia-oxidizing bacterium in advance in a treatment tank (not shown) to convert a part of the ammonia to be treated into nitrous acid. For example, water to be treated is used. The water to be treated is not particularly limited, and for example, water to be treated containing ammonia nitrogen and nitrite nitrogen may be supplied so that the reaction shown in the formula (1) proceeds efficiently. .

反応槽10は円筒状に形成されている。また、反応槽10の底部100付近の内周面は微生物塊を底部に集積しやすく、被処理水との接触効率を高められるように下細りのテーパー状に形成されている。反応槽10の上部には、処理水を系外に流出させる流出配管171の他に、処理水の一部を反応槽10に返送させる循環配管172が処理水分離室17と連通して接続されている。循環配管172には処理水分離室17から移送された処理水のpHを調整するためのpH調整槽18が接続されている。   The reaction tank 10 is formed in a cylindrical shape. In addition, the inner peripheral surface of the reaction tank 10 near the bottom 100 is formed in a tapered shape so that the microbial mass can be easily collected on the bottom and the contact efficiency with the water to be treated can be improved. In addition to the outflow pipe 171 for flowing the treated water out of the system, a circulation pipe 172 for returning a part of the treated water to the reaction tank 10 is connected to the upper part of the reaction tank 10 in communication with the treated water separation chamber 17. ing. A pH adjustment tank 18 for adjusting the pH of the treated water transferred from the treated water separation chamber 17 is connected to the circulation pipe 172.

反応槽10内の液相は、(1)式に示した反応によってpHが8.5を超えることがあり、これにより微生物塊の活性が低下する場合がある。そこで、処理水のpHをpH調整槽18にて中性付近(例えば、pH7.1〜7.4)となるようにpH調整し、pH調整された処理水を反応槽10に返送することで微生物塊活性の安定化を図る。   The liquid phase in the reaction vessel 10 may have a pH exceeding 8.5 due to the reaction shown in the formula (1), which may reduce the activity of the microbial mass. Therefore, the pH of the treated water is adjusted to be near neutral (for example, pH 7.1 to 7.4) in the pH adjusting tank 18, and the treated water whose pH has been adjusted is returned to the reaction tank 10. Stabilize microbial mass activity.

pH調整槽18は、返送管181a及び供給配管101を介して、反応槽10の底部100に接続され、供給配管101より供給される被処理水は、pH調整槽18でpH調整された処理水により希釈される。また、pH調整槽18は、返送管181bまたは181cを介して反応槽10の側面と接続され、pH調整された処理水を反応槽10のベッド19の下部近傍に注入する。pH調整槽18は、pH調整用の薬液を注入するポンプと処理水を攪拌するための攪拌機とを備える。薬液は、水処理技術に適用される周知の薬剤(硫酸、塩酸など)を適用すればよい。なお、返送管181b、181cは、反応槽10を流通する被処理水の流れ方向(すなわち、反応槽10の高さ方向)に複数備え、反応槽10の処理状態に応じてpH調整された処理水の注入を制御してもよい。   The pH adjustment tank 18 is connected to the bottom 100 of the reaction tank 10 via a return pipe 181 a and a supply pipe 101, and the water to be treated supplied from the supply pipe 101 is treated water whose pH is adjusted in the pH adjustment tank 18. Diluted by The pH adjustment tank 18 is connected to the side surface of the reaction tank 10 via a return pipe 181b or 181c, and injects pH-adjusted treated water into the vicinity of the lower portion of the bed 19 of the reaction tank 10. The pH adjustment tank 18 includes a pump for injecting a chemical solution for pH adjustment and a stirrer for stirring the treated water. A well-known chemical | medical agent (a sulfuric acid, hydrochloric acid, etc.) applied to water treatment technology should just be applied for a chemical | medical solution. Note that a plurality of return pipes 181b and 181c are provided in the flow direction of the water to be treated flowing through the reaction tank 10 (that is, the height direction of the reaction tank 10), and the pH is adjusted according to the treatment state of the reaction tank 10. Water injection may be controlled.

なお、pH調整された処理水を注入する注入点は、反応槽10においてベッド19が堆積している箇所であれば特に限定するものではない。供給配管101から供給される被処理水は、アナモックス反応の活性が高くなるpH範囲となるようにpH調整されているので、pH調整された処理水を注入する注入点は、供給配管101から被処理水の流通方向に離間した箇所に備える。また、pH調整された処理水の注入点は、ベッド19にpH調整された処理水を注入できればよいので、注入点を反応槽10の側面に備えることに限定するものでもない。参考例で示したように、反応槽50の最下部より高さ180mm(ベッド19の高さの約50%に相当)で、アナモックス細菌の活性に対する好適pHの上限(pH8.0)を逸脱している。そこで、このpH調整された処理水の反応槽10内への注入点を、反応槽10内のベッド19高さの50%以下となる箇所とすると、ベッド19を流通する被処理水の水質をアナモックス細菌の活性を高い状態に維持や回復させることができる。   The injection point for injecting the pH-adjusted treated water is not particularly limited as long as the bed 19 is deposited in the reaction tank 10. Since the water to be treated supplied from the supply pipe 101 is adjusted to have a pH range in which the activity of the anammox reaction is high, an injection point for injecting the pH-adjusted treated water is supplied from the supply pipe 101. Provided at locations separated in the direction of treatment water flow. Moreover, the injection point of the pH-adjusted treatment water is not limited to providing the injection point on the side surface of the reaction tank 10 as long as the pH-adjusted treatment water can be injected into the bed 19. As shown in the reference example, the height is 180 mm (corresponding to about 50% of the height of the bed 19) from the lowermost part of the reaction tank 50, and deviates from the upper limit of suitable pH (pH 8.0) for the activity of anammox bacteria. ing. Therefore, when the injection point of the pH-adjusted treated water into the reaction tank 10 is set to be 50% or less of the height of the bed 19 in the reaction tank 10, the quality of the treated water flowing through the bed 19 is determined. The activity of anammox bacteria can be maintained or restored to a high state.

側面スクリーン13は反応槽10の上層部の微生物塊を含んだ液相を微生物塊と被処理水とに分離する。側面スクリーン13は円筒状に形成されたウェッジワイヤースクリーンなどのスリット状または格子状のスクリーンからなる。このスクリーンの目幅は、微生物塊と被処理水との固液分離に適するよう微生物塊の平均粒径よりも小径となるよう設定されている。側面スクリーン13は反応槽10と同径の円筒状に形成されるとともに反応槽10の上端付近の周側面に設置されている。そして、この上端付近の外周には側面スクリーン13を介して処理水が移送される処理水分離室17が設けられている。なお、液相に浸っている側面スクリーン13上部の反応槽10の内面部分をウェッジワイヤーなどのスリット状または格子状のスクリーンにすると、浮上した微生物塊が被処理水の流れによって流出側へ押し出され側面スクリーン13を閉塞しやすくなる。したがって、側面スクリーン13上部の反応槽10の内面部分は水の透過性のないことが望ましい。   The side screen 13 separates the liquid phase containing the microbial mass in the upper layer of the reaction tank 10 into the microbial mass and the water to be treated. The side screen 13 is formed of a slit-like or lattice-like screen such as a wedge wire screen formed in a cylindrical shape. The mesh width of the screen is set to be smaller than the average particle diameter of the microbial mass so as to be suitable for solid-liquid separation between the microbial mass and the water to be treated. The side screen 13 is formed in a cylindrical shape having the same diameter as the reaction vessel 10 and is installed on the peripheral side surface near the upper end of the reaction vessel 10. A treated water separation chamber 17 in which treated water is transferred via the side screen 13 is provided on the outer periphery near the upper end. If the inner surface of the reaction vessel 10 above the side screen 13 immersed in the liquid phase is made into a slit-like or lattice-like screen such as a wedge wire, the floating microorganism mass is pushed out to the outflow side by the flow of water to be treated. It becomes easy to block the side screen 13. Therefore, it is desirable that the inner surface portion of the reaction vessel 10 above the side screen 13 does not have water permeability.

(動作例の説明)
図3を参照しながら廃水処理装置1の動作例について説明する。
(Explanation of operation example)
An example of the operation of the wastewater treatment apparatus 1 will be described with reference to FIG.

被処理水はポンプP1によって供給管101を介して底部100から反応槽10内に供給される。反応槽10内に被処理水が供給されるとベッド19を構成する微生物塊によって被処理水中の窒素化合物が分解される。例えば、被処理水中に含まれる亜硝酸とアンモニア成分が、(1)式に例示した、微生物塊を構成する細菌類の一つであるアナモックス細菌による脱窒反応によって窒素ガスに転換される。微生物塊から発生した窒素ガスは上向水流によって反応槽10内の液面に向かって上昇する。また、最も生物活性が高くなっている底部100付近の微生物塊はガスの発生が激しく当該ガスの気泡の付着によって沈降性を失うことがあり上向水流に乗って上昇する。この気泡が付着した微生物塊が上昇する際には、上昇流から受ける流れの作用で気泡が付着していた微生物塊から離脱し、一部、気泡が離脱した微生物塊は自重により沈降してベッド19へ戻る。この過程で気泡が離脱しない微生物塊及び微生物塊から離脱した気泡は、反応槽10を上昇して液面付近へ移動する。上昇した気泡は、液面に達するとガスとして反応槽10内の気相に解放され排気管103から系外に排出される。また、この液面に浮上した時に気泡と分離された微生物塊は、自重によって下降しベッド19に向かって沈降する。そして、反応槽10のこの領域においても、まだ気泡が付着した微生物塊は、側面スクリーン13を介して系外に流出する処理水の流れに乗って側面スクリーン13と接触すると、一部の微生物塊から気泡が脱離してガスは気相中に解放され、気泡と分離された微生物塊は自重によって下降しベッド19に向かって沈降する。   The water to be treated is supplied into the reaction tank 10 from the bottom 100 via the supply pipe 101 by the pump P1. When the water to be treated is supplied into the reaction tank 10, the nitrogen compounds in the water to be treated are decomposed by the microbial mass constituting the bed 19. For example, nitrous acid and ammonia components contained in the water to be treated are converted into nitrogen gas by a denitrification reaction by an anammox bacterium which is one of the bacteria constituting the microbial mass exemplified in the formula (1). Nitrogen gas generated from the microbial mass rises toward the liquid level in the reaction tank 10 by the upward water flow. In addition, the microbial mass near the bottom 100 where the biological activity is the highest has a strong gas generation and may lose its sedimentation property due to adhesion of bubbles of the gas. When the microbial mass to which the bubbles are attached rises, it is detached from the microbial mass to which the bubbles have adhered by the action of the flow received from the upward flow, and the microbial mass from which the bubbles have partly settled is settled by its own weight. Return to 19. In this process, the microbial mass that does not separate from the bubbles and the bubbles separated from the microbial mass ascend the reaction tank 10 and move to the vicinity of the liquid level. When the rising bubbles reach the liquid level, they are released as gas into the gas phase in the reaction tank 10 and discharged from the exhaust pipe 103 to the outside of the system. Further, the microbial mass separated from the bubbles when floating on the liquid surface descends by its own weight and settles toward the bed 19. Even in this region of the reaction tank 10, the microbial mass to which bubbles still adhere comes into contact with the side screen 13 by riding on the flow of treated water flowing out of the system via the side screen 13. The bubbles are released from the gas, the gas is released into the gas phase, and the microbial mass separated from the bubbles descends by its own weight and settles toward the bed 19.

反応槽10の液面付近の上層まで上昇してきた被処理水は側面スクリーン13によって固液分離された後に処理水分離室17の流出配管171から系外に排出される。   The water to be treated that has risen to the upper layer near the liquid level in the reaction tank 10 is separated into solid and liquid by the side screen 13 and then discharged out of the system from the outflow pipe 171 of the treated water separation chamber 17.

pH調整槽18では、処理水分離室17から流出してきた処理水に対して、酸などのpH調整剤を添加して処理水のpHを微生物塊の反応活性が高くなるpH範囲となるように調整する。具体的には、処理水のpHが中性付近(pH7.1〜7.4)となるようにpH調整する。pH調整された処理水は、返送配管181から、返送管181b、181cを介してポンプP2によって反応槽10のベッド19下部近傍に注入される。その結果、反応槽10の液相環境を、微生物塊の生物活性を維持することができるpH範囲(例えば、pH7.5程度以下)にpH調整することができる。なお、被処理水の基質濃度を希釈するために一部の処理水は循環配管172を介してpH調整系に供された後に返送管181aを介して供給管101に循環供給される。   In the pH adjusting tank 18, a pH adjusting agent such as an acid is added to the treated water flowing out from the treated water separation chamber 17 so that the treated water has a pH range in which the reaction activity of the microbial mass is increased. adjust. Specifically, the pH is adjusted so that the pH of the treated water is around neutral (pH 7.1 to 7.4). The pH-adjusted treated water is injected from the return pipe 181 into the vicinity of the lower part of the bed 19 of the reaction tank 10 by the pump P2 through the return pipes 181b and 181c. As a result, the pH of the liquid phase environment of the reaction vessel 10 can be adjusted to a pH range (for example, about pH 7.5 or less) in which the biological activity of the microorganism mass can be maintained. In order to dilute the substrate concentration of the water to be treated, a part of the treated water is supplied to the pH adjustment system via the circulation pipe 172 and then circulated and supplied to the supply pipe 101 via the return pipe 181a.

(効果)
廃水処理装置1によれば、反応槽10のベッド19にpH調整された処理水を注入することで、ベッド19の水質をアナモックス細菌の活性が高い状態に維持できる水質となるように調整することができる。
(effect)
According to the wastewater treatment apparatus 1, by adjusting the pH-adjusted treated water to the bed 19 of the reaction tank 10, the water quality of the bed 19 is adjusted so that the water quality can be maintained in a state where the activity of anammox bacteria is high. Can do.

つまり、pH調整された処理水を反応槽10のベッド19の下部近傍に注入することで、生物処理によって上昇したpHを下げるとともに、反応槽10に供給された被処理水及びアナモックス反応で生じた反応生成物の希釈を同時に行うことができる。また、pH調整された処理水の返送により反応槽10に供給される被処理水を希釈することで、微生物塊の生物活性を阻害するような高濃度基質を微生物塊の活性を阻害しない濃度レベルとし、ベッド19の嫌気的生物活性を維持させることができる。その結果、微生物塊の活性を保てる領域を広くすることができるので、これにより高負荷で廃水処理を行うことができる。また、反応槽10の容積を有効利用することができるので、反応槽10の小型化を実現させることができる。   That is, by injecting the pH-adjusted treated water into the vicinity of the lower part of the bed 19 of the reaction tank 10, the pH increased by the biological treatment is lowered, and the treated water supplied to the reaction tank 10 and the anammox reaction are generated. The reaction products can be diluted simultaneously. Further, by diluting the water to be treated supplied to the reaction tank 10 by returning the pH-adjusted treated water, a high concentration substrate that inhibits the biological activity of the microbial mass can be obtained at a concentration level that does not inhibit the activity of the microbial mass. And the anaerobic biological activity of the bed 19 can be maintained. As a result, it is possible to widen the region where the activity of the microbial mass can be maintained, so that wastewater treatment can be performed with a high load. Moreover, since the volume of the reaction tank 10 can be used effectively, the reaction tank 10 can be downsized.

さらに、反応槽10に返送されるpH調整された処理水は、反応槽10を流通した処理水であるので溶存酸素濃度が低い。よって、ベッド19のpH調整を行うための返送水に、処理水を用いることで、アナモックス細菌に対する溶存酸素の影響を低減することができる。なお、返送管181b、181cから注入されるpH調整水は、実施形態のようにpH調整された処理水を返送させることに限定するものではなく、pH調整された溶液を注入すれば本発明の効果を得ることができる。   Furthermore, since the pH-adjusted treated water returned to the reaction tank 10 is treated water that circulates through the reaction tank 10, the dissolved oxygen concentration is low. Therefore, the influence of dissolved oxygen on the anammox bacteria can be reduced by using treated water for the return water for adjusting the pH of the bed 19. Note that the pH-adjusted water injected from the return pipes 181b and 181c is not limited to returning the pH-adjusted treated water as in the embodiment. If the pH-adjusted solution is injected, the pH-adjusted water is injected. An effect can be obtained.

また、pH調整された処理水を注入する返送管を反応槽10の高さ方向に複数備え、さらに、各返送管にバルブ(図示省略)を備えると、このバルブを調整することで、反応槽10での生物反応の変化(反応槽10の高さ方向におけるpHや基質濃度の変化)に応じて、pH調整や被処理水の希釈を行うことができる。   Further, when a plurality of return pipes for injecting the pH-adjusted treated water are provided in the height direction of the reaction tank 10 and each return pipe is provided with a valve (not shown), the reaction tank can be adjusted by adjusting the valve. PH adjustment and dilution of water to be treated can be performed according to changes in biological reaction at 10 (changes in pH and substrate concentration in the height direction of the reaction tank 10).

図4(a)に示すように、窒素容積負荷(NLR)7kg−N/m3/日のように高窒素容積負荷で廃水処理装置1を運転した場合、pH調整された処理水を注入しないと、反応槽10の被処理水のpHは、反応槽10の中位付近で既にpH8.5まで上昇している。このように、反応槽10内を流通する被処理水のpHが上昇すると、微生物塊の活性が阻害される可能性がある。一方、本発明の実施形態に係る廃水処理装置1は、pH調整された処理水を反応槽10の側面から注入することで、図4(b)に示すように、反応槽10での反応に伴うpH上昇を抑制していることがわかる。図4(b)では、pH調整された処理水を反応槽10内のベッド19であって、ベッド19の高さの50%以下となる反応槽10内のベッド19へ注入することで、図4(a)に示したように、反応槽10内のpHが8.0を逸脱しており、pH阻害によりアナモックス細菌による窒素除去反応が進まなくなった環境であっても、好適pH範囲内となるようにpH調整して、再びアナモックス反応を進めることができることを示している。すなわち、pH調整された処理水を反応槽10内においてベッド19高さの50%以下に位置するベッド19へ注入すると、高窒素負荷や被処理水のpH緩衝性が低い場合などの処理運転において、効果的に好適pH範囲の状態に維持や回復させる操作が可能となる。その結果、微生物塊が沈降して形成されるベッド19の有効領域(反応槽10におけるベッド19の活性を保つことができる領域)を広くすることができるので、高い負荷で廃水処理を行う場合においても、微生物塊の活性を高い状態に維持して嫌気性廃水処理を行うことができる。 As shown in FIG. 4A, when the wastewater treatment apparatus 1 is operated with a high nitrogen volume load such as a nitrogen volume load (NLR) of 7 kg-N / m 3 / day, the pH-adjusted treated water is not injected. Then, the pH of the water to be treated in the reaction tank 10 has already risen to pH 8.5 near the middle of the reaction tank 10. As described above, when the pH of the water to be treated flowing in the reaction tank 10 is increased, the activity of the microbial mass may be inhibited. On the other hand, the wastewater treatment apparatus 1 according to the embodiment of the present invention allows the reaction in the reaction tank 10 to react as shown in FIG. 4B by injecting the pH-adjusted treated water from the side surface of the reaction tank 10. It can be seen that the accompanying increase in pH is suppressed. In FIG. 4 (b), the pH-adjusted treated water is injected into the bed 19 in the reaction tank 10, which is 50% or less of the height of the bed 19. As shown in FIG. 4 (a), even in an environment where the pH in the reaction vessel 10 deviates from 8.0 and the nitrogen removal reaction by the anammox bacteria does not proceed due to pH inhibition, It is shown that the anammox reaction can be advanced again by adjusting the pH. That is, when the pH-adjusted treated water is injected into the bed 19 located at 50% or less of the bed 19 height in the reaction tank 10, in a treatment operation such as when the high nitrogen load or the pH buffering property of the treated water is low. Thus, it is possible to effectively maintain and recover the pH within a suitable pH range. As a result, since the effective area of the bed 19 formed by sedimentation of the microbial mass (area where the activity of the bed 19 in the reaction tank 10 can be maintained) can be widened, when wastewater treatment is performed at a high load. In addition, the anaerobic wastewater treatment can be performed while maintaining the activity of the microbial mass at a high level.

[実施形態2]
図5を参照して本発明の実施形態2に係る廃水処理装置2及びこの装置による廃水処理方法について詳細に説明する。
[Embodiment 2]
With reference to FIG. 5, the waste water treatment apparatus 2 which concerns on Embodiment 2 of this invention, and the waste water treatment method by this apparatus are demonstrated in detail.

図5に示された実施形態2に係る廃水処理装置2は、反応槽10内に微生物と被処理水との接触反応により生じたガスと微生物とを分離する気泡分離部材を備えること以外は、実施形態1に係る廃水処理装置1の構成と同じである。よって、実施形態1に係る廃水処理装置1と同様の構成については、同じ符号を付し、詳細な説明は省略する。   The wastewater treatment apparatus 2 according to Embodiment 2 shown in FIG. 5 is provided with a bubble separation member that separates the gas generated by the contact reaction between the microorganism and the water to be treated in the reaction tank 10 and the microorganism. The configuration is the same as that of the wastewater treatment apparatus 1 according to the first embodiment. Therefore, about the structure similar to the waste water treatment apparatus 1 which concerns on Embodiment 1, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

(装置の構成)
廃水処理装置2は反応槽10とpH調整槽18と、気泡分離スクリーン11と側面スクリーン13とを備える。そして、pH調整槽18に接続された返送管181からは、返送管181a〜181cが分岐している。
(Device configuration)
The wastewater treatment apparatus 2 includes a reaction tank 10, a pH adjustment tank 18, a bubble separation screen 11, and a side screen 13. Then, return pipes 181a to 181c are branched from the return pipe 181 connected to the pH adjusting tank 18.

気泡分離スクリーン11は反応槽10の底部100付近に滞留するベッド19から微生物反応の結果生じたガスの気泡を付着させた微生物塊と接触して当該微生物塊から気泡を分離させる。気泡分離スクリーン11は陣笠状に形成されたウェッジワイヤースクリーンなどのスリット状または格子状のスクリーンからなる。   The bubble separation screen 11 comes into contact with the microbial mass to which gas bubbles generated as a result of the microbial reaction are attached from the bed 19 staying near the bottom 100 of the reaction tank 10 to separate the bubbles from the microbial mass. The bubble separation screen 11 is formed of a slit-like or lattice-like screen such as a wedge wire screen formed in a camp shape.

実施形態2に係る廃水処理装置2では、気泡分離スクリーン11の下方の被処理水にpH調整された処理水を注入するように、反応槽10の側面に返送管181b、181cを備える。   In the wastewater treatment apparatus 2 according to the second embodiment, the return pipes 181b and 181c are provided on the side surface of the reaction tank 10 so as to inject the treated water whose pH is adjusted into the treated water below the bubble separation screen 11.

(動作例の説明)
図5を参照しながら廃水処理装置2の動作例について説明する。
(Explanation of operation example)
An example of the operation of the wastewater treatment apparatus 2 will be described with reference to FIG.

被処理水はポンプP1によって供給管101を介して底部100から反応槽10内に供給される。反応槽10内に被処理水が供給されるとベッド19を構成する微生物塊によって被処理水中の窒素化合物が分解される。例えば、被処理水中に含まれる亜硝酸とアンモニア成分などは、微生物塊を構成する細菌類の一つであるアナモックス細菌による脱窒反応によって窒素ガスに転換される。微生物塊から発生した窒素ガスなどの気泡は上向水流によって反応槽10内の液面に向かって上昇する。また、最も生物活性が高くなっている底部100付近の微生物塊はガスの発生が激しく当該ガスの気泡の付着によって沈降性を失うことがあり上向水流に乗って上昇する。   The water to be treated is supplied into the reaction tank 10 from the bottom 100 via the supply pipe 101 by the pump P1. When the water to be treated is supplied into the reaction tank 10, the nitrogen compounds in the water to be treated are decomposed by the microbial mass constituting the bed 19. For example, nitrous acid and ammonia components contained in the water to be treated are converted into nitrogen gas by a denitrification reaction by anammox bacteria, which is one of the bacteria constituting the microbial mass. Bubbles such as nitrogen gas generated from the microbial mass rise toward the liquid level in the reaction tank 10 by the upward water flow. In addition, the microbial mass near the bottom 100 where the biological activity is the highest has a strong gas generation and may lose its sedimentation property due to adhesion of bubbles of the gas.

前記気泡が付着した微生物塊はベッド19内に設置した気泡分離スクリーン11との接触により、迅速に気泡の脱離が行われることとなる。そのため、気泡が脱離した微生物塊は底部100付近に留まりやすくなるため、ベッド19の微生物塊の集積度を高められる。一方、ベッド19によって処理された被処理水は気泡分離スクリーン11によって固液分離された後に上昇流に乗って反応槽10の上層に向かって移行する。   The microbial mass to which the bubbles are attached is quickly desorbed by contact with the bubble separation screen 11 installed in the bed 19. For this reason, since the microbial mass from which the bubbles are detached easily stays in the vicinity of the bottom portion 100, the accumulation degree of the microbial mass in the bed 19 can be increased. On the other hand, the water to be treated which has been treated by the bed 19 is solid-liquid separated by the bubble separation screen 11, and then moves on the upward flow toward the upper layer of the reaction tank 10.

また、気泡を付着させた微生物塊は、側面スクリーン13を介して系外に流出する処理水の流れに乗って側面スクリーン13と接触すると、一部の微生物塊から気泡が脱離してガスは気相中に解放され、微生物塊はベッド19方向へ沈降する。   Further, when the microbial mass to which bubbles are attached rides on the flow of treated water flowing out of the system through the side screen 13 and comes into contact with the side screen 13, the bubbles are detached from a part of the microbial mass and the gas is removed. Released in the phase, the microbial mass settles towards the bed 19.

反応槽10の液面付近の上層まで上昇してきた被処理水は側面スクリーン13によって固液分離された後に処理水分離室17の流出配管171から系外に排出される。また、処理水分離室17の処理水の一部は、循環配管172を介してpH調整槽18に移送される。   The water to be treated that has risen to the upper layer near the liquid level in the reaction tank 10 is separated into solid and liquid by the side screen 13 and then discharged out of the system from the outflow pipe 171 of the treated water separation chamber 17. Further, part of the treated water in the treated water separation chamber 17 is transferred to the pH adjusting tank 18 through the circulation pipe 172.

pH調整槽18では、処理水分離室17から流出してきた処理水に対して、酸などのpH調整剤を添加して処理水のpHを中性付近(pH7.1〜7.4)まで調整する。pH調整された処理水は、返送配管181から、返送管181b、181cを介してポンプP2によって反応槽10の気泡分離スクリーン11の下方に供給される。その結果、反応槽10の液相環境を、微生物塊の生物活性を維持することができるpH範囲(例えば、pH7.5程度以下)にpH調整することができる。なお、被処理水の基質濃度を希釈するために一部の処理水はpH調整槽18でpH調整された後に返送管181aを介して供給管101に循環供給される。   In the pH adjustment tank 18, the pH of the treated water is adjusted to near neutrality (pH 7.1 to 7.4) by adding a pH adjusting agent such as an acid to the treated water flowing out from the treated water separation chamber 17. To do. The pH-adjusted treated water is supplied from the return pipe 181 to the lower side of the bubble separation screen 11 of the reaction tank 10 by the pump P2 through the return pipes 181b and 181c. As a result, the pH of the liquid phase environment of the reaction vessel 10 can be adjusted to a pH range (for example, about pH 7.5 or less) in which the biological activity of the microorganism mass can be maintained. In addition, in order to dilute the substrate concentration of to-be-processed water, a part of treated water is circulated and supplied to the supply pipe | tube 101 via the return pipe | tube 181a, after adjusting pH in the pH adjustment tank 18. FIG.

(効果)
廃水処理装置2によれば浮上する微生物塊から気泡を分離させるとともに、ベッド19において反応槽10の高さ方向の水質を微生物が高い活性を維持することができる水質に調節することができる。また、pH調整された処理水の注入箇所を反応槽10内に備えられた気泡分離スクリーン11の配置箇所に備えることで、本発明の実施形態1に係る廃水処理装置1の効果に加えて、pH調整された処理水の注入時の水勢により気泡分離スクリーン11への微生物塊の付着を防止するとともに、微生物塊に付着する気泡の分離を促進し、ベッド19の微生物塊の集積度を高めることができる。
(effect)
According to the wastewater treatment apparatus 2, air bubbles can be separated from the floating microbial mass, and the water quality in the height direction of the reaction tank 10 in the bed 19 can be adjusted to a water quality that allows the microorganisms to maintain high activity. Moreover, in addition to the effect of the wastewater treatment apparatus 1 according to Embodiment 1 of the present invention, by providing the injection location of the pH-adjusted treatment water in the arrangement location of the bubble separation screen 11 provided in the reaction vessel 10, To prevent the microbial mass from adhering to the bubble separation screen 11 due to the water flow at the time of injection of the pH-adjusted treated water, and to promote the separation of the air bubbles adhering to the microbial mass, thereby increasing the degree of accumulation of the microbial mass in the bed 19 Can do.

また、反応槽10内において、ベッド19や被処理水の水質は、反応条件や反応処理時間に応じて変化する場合がある。本発明の実施形態2に係る廃水処理装置2では、pH調整された処理水を気泡分離スクリーン11に応じた位置に注入することで、ベッド19の高さによらず、反応槽10の微生物活性を高い状態に制御することができる。つまり、ベッド19が気泡分離スクリーン11より下に堆積している場合には、ベッド19と気泡スクリーン11の間のpHを微生物塊の活性が阻害されないように制御することで、浮上した微生物塊が活性を維持した状態で再度ベッド19に返送される。よって、ベッド19の成長を促進することができる。また、気泡分離スクリーン11がベッド19に埋設した状態である場合、気泡が生成しているベッド19にpH調整された処理水を注入することで、微生物反応が活発な領域の水質を、微生物塊が高い活性を維持できる状態に制御することができる。   Moreover, in the reaction tank 10, the water quality of the bed 19 and the to-be-processed water may change according to reaction conditions and reaction processing time. In the wastewater treatment apparatus 2 according to Embodiment 2 of the present invention, the microbial activity of the reaction tank 10 is achieved regardless of the height of the bed 19 by injecting the pH-adjusted treated water into a position corresponding to the bubble separation screen 11. Can be controlled to a high state. That is, when the bed 19 is deposited below the bubble separation screen 11, the pH between the bed 19 and the bubble screen 11 is controlled so that the activity of the microorganism mass is not inhibited, so that It is returned to the bed 19 again while maintaining the activity. Therefore, the growth of the bed 19 can be promoted. Further, when the bubble separation screen 11 is embedded in the bed 19, the water quality in the region where the microbial reaction is active can be obtained by injecting treated water adjusted in pH into the bed 19 in which bubbles are generated. Can be controlled to maintain a high activity.

なお、この気泡分離スクリーン11にpH調整された処理水が直接当たるように返送管181b、181cを備えると、pH調整された処理水の水勢により気泡分離スクリーン11に付着した微生物塊を引きはがすことができる。   If the return pipes 181b and 181c are provided so that the pH-adjusted treated water directly hits the bubble separation screen 11, the microbial mass attached to the bubble separation screen 11 is peeled off due to the water pressure of the pH-adjusted treated water. Can do.

以上、実施形態1、2を挙げて説明したように、本発明の廃水処理装置及び廃水処理方法によれば、pH調整された処理水がベッドの下部近傍に注入されることで、反応槽内のpHの上昇が抑制されるとともに被処理水の基質(または、反応生成物)の希釈を十分に行うことができる。すなわち、アナモックス反応の進行に伴う被処理水のpH上昇を抑制するとともに、被処理水中の基質濃度がアナモックス細菌の活性を阻害する可能性がある濃度に上昇した場合には、阻害因子の影響を緩和するように制御することができる。よって、反応槽内の微生物塊の反応活性を高い状態に維持することができる。   As described above with reference to Embodiments 1 and 2, according to the wastewater treatment apparatus and the wastewater treatment method of the present invention, the pH-adjusted treated water is injected into the vicinity of the lower part of the bed, thereby The increase in pH of the water is suppressed, and the substrate (or reaction product) of the water to be treated can be sufficiently diluted. In other words, while suppressing the increase in pH of the treated water accompanying the progress of the anammox reaction, and the substrate concentration in the treated water increases to a concentration that may inhibit the activity of anammox bacteria, It can be controlled to relax. Therefore, the reaction activity of the microbial mass in the reaction tank can be maintained at a high level.

なお、本発明に係る廃水処理装置及び廃水処理方法は、上記の実施形態に限定されるものでなく、その効果を損なわない範囲で適宜設計変更が可能である。例えば、反応槽の形状は、円筒形に限定されるものではなく、断面矩形、多角形などの角筒状であってもよい。さらに、気泡分離スクリーンの形状は、陣笠状に形成されるものに限定されるものではなく、気泡分離スクリーンの面が水平に対して傾きを有していれば、反応槽が断面矩形の角筒状などの場合には反応槽の長手方向に伸びる水平に対して傾きをもった板状に形成してもよい。   The wastewater treatment apparatus and the wastewater treatment method according to the present invention are not limited to the above-described embodiment, and can be appropriately changed in design as long as the effects are not impaired. For example, the shape of the reaction vessel is not limited to a cylindrical shape, and may be a rectangular tube shape such as a rectangular cross section and a polygonal shape. Furthermore, the shape of the bubble separation screen is not limited to the shape formed in the Jinkasa shape, and if the surface of the bubble separation screen is inclined with respect to the horizontal, the reaction vessel has a rectangular tube with a rectangular cross section. In the case of a shape, it may be formed in a plate shape having an inclination with respect to the horizontal extending in the longitudinal direction of the reaction vessel.

また、実施形態ではアナモックス細菌により脱窒処理を行う形態を例示して説明したが、従来から実施されている嫌気性の従属栄養細菌(脱窒菌)による脱窒処理に本発明の廃水処理装置及び廃水処理方法を適用しても同様の効果を得ることができる。すなわち、従属栄養細菌が高い活性を維持することができるpH範囲は、中性付近pH付近であり、脱窒菌による反応は、下記の(2)、(3)式に示す反応が起こり、被処理水のpHは上昇すると考えられる。
NO2 -+3H+→1/2N2+H2O+OH- …(2)
NO3 -+5H+→1/2N2+2H2O+OH- …(3)
そこで、処理水をpH調整してベッドに供給することで、従属栄養細菌の活性が高くなるpH範囲となるように被処理水の水質を制御することができる。その結果、従属栄養細菌の活性を維持し、UASB処理を高負荷化で行うことができる。
Moreover, although the embodiment illustrated and demonstrated the form which performs a denitrification process with an anammox bacterium, the waste water treatment apparatus of this invention and the denitrification process by the anaerobic heterotrophic bacteria (denitrification bacteria) currently implemented conventionally and Even if the wastewater treatment method is applied, the same effect can be obtained. That is, the pH range in which the heterotrophic bacteria can maintain high activity is near neutral pH, and the reaction by denitrifying bacteria occurs as shown in the following formulas (2) and (3). The pH of the water is thought to increase.
NO 2 + 3H + → 1 / 2N 2 + H 2 O + OH (2)
NO 3 + 5H + → 1 / 2N 2 + 2H 2 O + OH (3)
Therefore, by adjusting the pH of the treated water and supplying it to the bed, the quality of the treated water can be controlled so that the pH of the heterotrophic bacteria becomes high. As a result, the activity of heterotrophic bacteria can be maintained and UASB treatment can be performed with a high load.

1,2,5…廃水処理装置
10,50…反応槽
11…気泡分離スクリーン(気泡分離部材)
13…側面スクリーン
18…pH調整槽
19…ベッド(微生物の堆積層)
181,181a〜181c…返送管
1, 2, 5 ... Waste water treatment device 10, 50 ... Reaction tank 11 ... Bubble separation screen (bubble separation member)
13 ... Side screen 18 ... pH adjustment tank 19 ... Bed (deposited layer of microorganisms)
181, 181 a to 181 c ... return pipe

Claims (7)

被処理水を上昇水流のもとで微生物と接触させて当該被処理水中の窒素化合物を分解する廃水処理装置であって、
前記被処理水を底部から供給して前記微生物と接触させた後に処理水として上部から排出させる反応槽と、
前記反応槽から排出された処理水の一部を、前記微生物の反応活性が高くなるpH範囲となるように調整するpH調整槽と、
前記反応槽内に堆積した前記微生物の堆積層であって、前記被処理水の供給部から前記被処理水の流通方向に離間した箇所に、前記pH調整槽で調整された処理水を注入する経路と、を備えた
ことを特徴とする廃水処理装置。
A wastewater treatment apparatus for decomposing nitrogen compounds in water to be treated by bringing the water to be treated into contact with microorganisms under a rising water flow,
A reaction vessel for supplying the water to be treated from the bottom and contacting it with the microorganisms and then discharging the treated water from the top;
A pH adjusting tank for adjusting a part of the treated water discharged from the reaction tank to be in a pH range in which the reaction activity of the microorganism is high;
The treated water adjusted in the pH adjusting tank is injected into a place where the treated water is accumulated in the reaction tank, and is separated from the treated water supply unit in the flow direction of the treated water. A wastewater treatment apparatus comprising a path.
前記pH調整された処理水を注入する経路は、前記pH調整された処理水が前記微生物の堆積層の高さの50%以下の箇所に注入されるように備えられた
ことを特徴とする請求項1に記載の廃水処理装置。
The path for injecting the pH-adjusted treated water is provided such that the pH-adjusted treated water is injected into a location that is 50% or less of the height of the microorganism deposition layer. Item 2. A wastewater treatment apparatus according to item 1.
前記pH調整された処理水は、前記被処理水と混合されることなく注入される
ことを特徴とする請求項1または請求項2に記載の廃水処理装置。
The wastewater treatment apparatus according to claim 1 or 2, wherein the pH-adjusted treated water is injected without being mixed with the treated water.
前記pH調整された処理水を注入する経路は、前記反応槽の前記被処理水の流通方向に対して複数備えられた
ことを特徴とする請求項1から請求項3のいずれか1項に記載の廃水処理装置。
The path | route which inject | pours the said pH-adjusted treated water is provided with two or more with respect to the distribution direction of the said to-be-processed water of the said reaction tank, The any one of Claims 1-3 characterized by the above-mentioned. Wastewater treatment equipment.
被処理水を上昇水流のもとで微生物と接触させて当該被処理水中の窒素化合物を分解する廃水処理装置であって、
前記被処理水を底部から供給して前記微生物と接触させた後に処理水として上部から排出させる反応槽と、
前記反応槽から排出された処理水の一部を、前記微生物の反応活性が高くなるpH範囲となるように調整するpH調整槽と、
前記反応槽の内部に設けられ、前記微生物と前記被処理水との反応で生じた気泡と前記微生物とを分離するための気泡分離部材と、
前記気泡分離部材の下方であって、前記被処理水の供給部から前記被処理水の流通方向に離間した箇所に、前記pH調整槽でpH調整された処理水を注入する経路と、を備えた
ことを特徴とする廃水処理装置。
A wastewater treatment apparatus for decomposing nitrogen compounds in water to be treated by bringing the water to be treated into contact with microorganisms under a rising water flow,
A reaction vessel for supplying the water to be treated from the bottom and contacting it with the microorganisms and then discharging the treated water from the top;
A pH adjusting tank for adjusting a part of the treated water discharged from the reaction tank to be in a pH range in which the reaction activity of the microorganism is high;
A bubble separating member provided in the reaction vessel, for separating the microorganisms from the bubbles generated by the reaction between the microorganisms and the water to be treated;
A path for injecting treated water pH-adjusted in the pH-adjusting tank into a location below the bubble separation member and spaced apart from the treated water supply unit in the flow direction of the treated water. A wastewater treatment apparatus characterized by that.
被処理水と微生物とを接触反応させる反応槽と、
前記反応槽で処理された後の処理水の一部を、前記微生物の反応活性が高くなるpH範囲となるように調整するpH調整槽と、
を備えた廃水処理装置による廃水処理方法であって、
前記被処理水を前記反応槽の底部から供給して、前記被処理水を前記微生物と接触させた後に処理水として前記反応槽の上部から排出させ、
前記pH調整槽で、前記排出された処理水の一部を、前記微生物の反応活性が高くなるpH範囲となるように調整し、
前記反応槽に堆積した前記微生物の堆積層であって、前記被処理水の供給部から前記被処理水の流通方向に離間した箇所に、前記pH調整された処理水を注入する
ことを特徴とする廃水処理方法。
A reaction tank for reacting water to be treated with microorganisms;
A pH adjusting tank for adjusting a part of the treated water after being treated in the reaction tank so as to be in a pH range in which the reaction activity of the microorganism is increased;
A wastewater treatment method using a wastewater treatment apparatus comprising:
Supplying the water to be treated from the bottom of the reaction tank, allowing the water to be treated to come into contact with the microorganisms and then discharging it from the top of the reaction tank as treated water;
In the pH adjustment tank, a part of the discharged treated water is adjusted so as to be in a pH range in which the reaction activity of the microorganism is increased,
The deposited layer of microorganisms deposited in the reaction tank, wherein the pH-adjusted treated water is injected into a place separated from the treated water supply unit in the flow direction of the treated water. Wastewater treatment method.
被処理水と微生物とを接触反応させる反応槽と、
前記反応槽の内部に設けられ、前記微生物と前記被処理水との反応で生じた気泡と前記微生物とを分離するための気泡分離部材と、
前記反応槽で処理された後の処理水の一部を、前記微生物の反応活性が高くなるpH範囲となるように調整するpH調整槽と、
を備えた廃水処理装置による廃水処理方法であって、
前記被処理水を前記反応槽の底部から供給して、前記被処理水を前記微生物と接触させた後に処理水として前記反応槽の上部から排出させ、
前記pH調整槽で、前記排出された処理水の一部を、前記微生物の反応活性が高くなるpH範囲となるように調整し、
前記気泡分離部材の下方であって、前記被処理水の供給部から前記被処理水の流通方向に離間した箇所に、前記pH調整槽でpH調整された処理水を注入する
ことを特徴とする廃水処理方法。
A reaction tank for reacting water to be treated with microorganisms;
A bubble separating member provided in the reaction vessel, for separating the microorganisms from the bubbles generated by the reaction between the microorganisms and the water to be treated;
A pH adjusting tank for adjusting a part of the treated water after being treated in the reaction tank so as to be in a pH range in which the reaction activity of the microorganism is increased;
A wastewater treatment method using a wastewater treatment apparatus comprising:
Supplying the water to be treated from the bottom of the reaction tank, allowing the water to be treated to come into contact with the microorganisms and then discharging it from the top of the reaction tank as treated water;
In the pH adjustment tank, a part of the discharged treated water is adjusted so as to be in a pH range in which the reaction activity of the microorganism is increased,
The treated water whose pH is adjusted in the pH adjusting tank is injected into a location below the bubble separation member and spaced from the supply portion of the treated water in the flow direction of the treated water. Wastewater treatment method.
JP2013024386A 2013-02-12 2013-02-12 Waste water processor and waste water processing method Pending JP2013081945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013024386A JP2013081945A (en) 2013-02-12 2013-02-12 Waste water processor and waste water processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024386A JP2013081945A (en) 2013-02-12 2013-02-12 Waste water processor and waste water processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011012065A Division JP5316553B2 (en) 2011-01-24 2011-01-24 Waste water treatment apparatus and waste water treatment method

Publications (1)

Publication Number Publication Date
JP2013081945A true JP2013081945A (en) 2013-05-09

Family

ID=48527716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024386A Pending JP2013081945A (en) 2013-02-12 2013-02-12 Waste water processor and waste water processing method

Country Status (1)

Country Link
JP (1) JP2013081945A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104609569A (en) * 2014-12-14 2015-05-13 罗福仲 Dried sweet potato processing waste water microbial deodorant feeding tank
JP2018126694A (en) * 2017-02-09 2018-08-16 学校法人 東洋大学 Processing apparatus and processing method of nitrogen containing sewage
WO2019198388A1 (en) * 2018-04-11 2019-10-17 株式会社日立製作所 Nitrogen treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104609569A (en) * 2014-12-14 2015-05-13 罗福仲 Dried sweet potato processing waste water microbial deodorant feeding tank
CN104609569B (en) * 2014-12-14 2016-03-30 罗福仲 A kind of dried sweet potato processing waste water microbial deodorant feed tank
JP2018126694A (en) * 2017-02-09 2018-08-16 学校法人 東洋大学 Processing apparatus and processing method of nitrogen containing sewage
WO2019198388A1 (en) * 2018-04-11 2019-10-17 株式会社日立製作所 Nitrogen treatment method
JP2019181378A (en) * 2018-04-11 2019-10-24 株式会社日立製作所 Nitrogen treatment method
JP7133339B2 (en) 2018-04-11 2022-09-08 株式会社日立製作所 Nitrogen treatment method

Similar Documents

Publication Publication Date Title
JP5316553B2 (en) Waste water treatment apparatus and waste water treatment method
US10494271B2 (en) Ecological method for denitrification and phosphorus removal in wastewater treatment process
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
JP5963668B2 (en) Wastewater treatment method
JP6423631B2 (en) Biological nitrogen removal method
JP2003047990A (en) Biological denitrifier
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
JP2013081945A (en) Waste water processor and waste water processing method
JP5874741B2 (en) Biological treatment method and apparatus for organic wastewater
JP2003039093A (en) Denitrification method and denitrification apparatus
JP5636862B2 (en) Waste water treatment equipment
JP2010137149A (en) Method and apparatus for biologically treating wastewater containing oil-and-fat in high concentration
TW201210953A (en) Method and device for biologically treating organic wastewater
CN110392672B (en) Aerated reactor with internal solids separation
CN109661376B (en) Biological treatment method for organic wastewater
JP4608771B2 (en) Biological denitrification equipment
JP2006122865A (en) Water treatment and carrier acclimatization method and its device
JP5077334B2 (en) Nitrogen removal treatment apparatus and nitrogen removal treatment method
JP2003033793A (en) Biological denitration equipment and biological denitration method
JP5558866B2 (en) Water treatment apparatus and water treatment method
JP2003033795A (en) Biological denitration equipment and biological denitration method
Ong et al. A novel high capacity biofilm reactor system for treatment of domestic sewage
JP5360091B2 (en) Nitrogen-containing wastewater treatment method and treatment equipment
JP6613043B2 (en) Waste water treatment method and waste water treatment equipment
JP4524897B2 (en) Biological denitrification equipment