JP2010137149A - Method and apparatus for biologically treating wastewater containing oil-and-fat in high concentration - Google Patents

Method and apparatus for biologically treating wastewater containing oil-and-fat in high concentration Download PDF

Info

Publication number
JP2010137149A
JP2010137149A JP2008314767A JP2008314767A JP2010137149A JP 2010137149 A JP2010137149 A JP 2010137149A JP 2008314767 A JP2008314767 A JP 2008314767A JP 2008314767 A JP2008314767 A JP 2008314767A JP 2010137149 A JP2010137149 A JP 2010137149A
Authority
JP
Japan
Prior art keywords
aeration tank
wastewater
aeration
tank
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008314767A
Other languages
Japanese (ja)
Other versions
JP4875690B2 (en
Inventor
Ruriko Yoshizawa
留莉子 吉澤
Osamu Tanaka
田中  理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Kasei Kogyo KK
Original Assignee
Maezawa Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Kasei Kogyo KK filed Critical Maezawa Kasei Kogyo KK
Priority to JP2008314767A priority Critical patent/JP4875690B2/en
Publication of JP2010137149A publication Critical patent/JP2010137149A/en
Application granted granted Critical
Publication of JP4875690B2 publication Critical patent/JP4875690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological treatment apparatus reducing the amount of froth formed by treatment, easy to keep a treatment capacity and capable of effectively treating even wastewater containing oil-and-fat in high concentration discharged from a food factory. <P>SOLUTION: The biological treatment apparatus is equipped with four aeration tanks 7a, 7b, 7c and 7d connected in series to successively receive the inflow of wastewater to successively subject the wastewater to aeration treatment. These respective aeration tanks 7a, 7b, 7c and 7d are filled with carriers 17. Further, a sedimentation tank 21 for subjecting the wastewater after aeration treatment to solid-liquid separation to separate the same into treated water and sludge is connected to the fourth sedimentation tank 7d. Furthermore, a return means 24 for returning sludge to the first aeration tank 7a from the sedimentation tank 21 is provided to the sedimentation tank 21. The carrier filling amount of the whole of the respective aeration tanks 7a, 7b, 7c and 7d is set so that an n-hex. removing ratio showing an n-hex. removing amount per 1 m<SP>3</SP>of the carriers becomes 1-1.8 kg/m<SP>3</SP>×day. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ノルマルヘキサン抽出物質等の油脂を高濃度で含む排水を放流規制値まで処理するための高濃度油脂含有排水の生物処理方法および生物処理装置に関する。   The present invention relates to a biological treatment method and biological treatment apparatus for wastewater containing high-concentration fats and oils for treating wastewater containing high-concentration fats and oils such as normal hexane extract substances up to the discharge regulation value.

一般的に、食品工場の排水は高濃度の油脂分を含んでおり、この排水は、排水基準の1つとして用いられるノルマルヘキサン抽出物質(以下、n−hex.)を400〜500mg/Lという高濃度に含有していることもある。   Generally, wastewater from food factories contains a high concentration of fats and oils, and this wastewater has a normal hexane extract (hereinafter referred to as n-hex.) Used as one of wastewater standards of 400 to 500 mg / L. It may be contained in a high concentration.

従来、このような高濃度油脂含有排水を処理するために、凝集加圧浮上装置を代表とする物理化学処理法にて前処理を行い、その後、活性汚泥法に代表される生物処理法を行って処理していた。具体的には、n−hex.濃度が50〜100mg/Lになるまで油脂分を除去した後に、生物処理法で放流規制値まで処理する方法が広く行われてきた。   Conventionally, in order to treat such wastewater containing high-concentration fats and oils, pretreatment is performed by a physicochemical treatment method typified by an agglomeration pressure flotation device, and then a biological treatment method typified by an activated sludge method is performed. I was processing. Specifically, n-hex. After removing fats and oils until the concentration reaches 50 to 100 mg / L, a method of treating to the release regulation value by a biological treatment method has been widely performed.

しかし、この方法では前処理設備のメンテナンスが煩雑であり、また、前処理で発生するフロス量(産業廃棄物量)が多くなってしまう。   However, in this method, the maintenance of the pretreatment facility is complicated, and the amount of floss (amount of industrial waste) generated in the pretreatment increases.

そこで、高濃度油脂含有排水を直接に生物処理する方法が研究されている。例えば、エアレーションタンク内にリパーゼ等の酵素やバチルス等の特殊細菌を投入し、油分等の有機物処理能力を補完する方法等がその1つである。   Therefore, methods for directly biologically treating wastewater containing high-concentration fats and oils have been studied. One example is a method of adding an enzyme such as lipase or a special bacterium such as Bacillus into an aeration tank to supplement the ability to treat organic substances such as oil.

しかし、この方法では、処理能力を維持するために酵素や特殊細菌を継続的に投入する必要があるので、薬剤費等の維持費によりコストが高騰するという問題と、特殊細菌が優先種になるように維持する必要があり、処理能力を維持し難くなってしまうという問題とが考えられる。   However, in this method, it is necessary to continuously introduce enzymes and special bacteria in order to maintain the processing capacity, so that the cost increases due to maintenance costs such as drug costs, and special bacteria become a priority species. Therefore, there is a problem that it becomes difficult to maintain the processing capability.

一方、BOD高負荷生物処理槽を前段に設け、その後に活性汚泥法にて処理するという二段処理システムも普及しているが、油分に注目して多段の生物処理槽にて処理する技術は未だ十分には明確にされていない。具体的に前記二段処理システムでは、そのままの状態で高濃度油脂含有排水に対応することが困難であり、対応させるために曝気槽の数や微生物を担持し油分除去に必要な担体量等を厳密に定める必要がある。   On the other hand, a two-stage treatment system in which a BOD high-load biological treatment tank is installed in the previous stage and then treated by the activated sludge method is also widely used. It has not yet been clarified enough. Specifically, in the two-stage treatment system, it is difficult to cope with wastewater containing high-concentration fats as it is, and in order to cope with this, the number of aeration tanks and the amount of carrier necessary for removing oil by supporting microorganisms are reduced. It is necessary to determine strictly.

このような方法としては、担体を用いた複数、例えば3つの曝気槽を直列に接続し、これら各曝気槽に順次排水原水を流し、さらに、沈殿槽からの返送汚泥を活性汚泥槽に返送する方法であって、この活性汚泥槽のBOD容積負荷が0.8kg/m3・日以下である方法が知られている(例えば、特許文献1参照。)。
特開2008−142632号公報(第2−5頁、図1)
As such a method, a plurality of, for example, three aeration tanks using a carrier are connected in series, and raw water is sequentially flowed into each of these aeration tanks, and the return sludge from the settling tank is returned to the activated sludge tank. It is a method, Comprising: The method by which the BOD volumetric load of this activated sludge tank is 0.8 kg / m <3> * day or less is known (for example, refer patent document 1).
JP 2008-142632 A (page 2-5, FIG. 1)

しかしながら、上述した方法であっても、n−hex.濃度が300mg/Lを超える排水においては、担体に油分が蓄積して、この担体の流動が困難になる場合があるとの記載があり、食品工場で排出されるようなn−hex.濃度が400〜500mg/Lという高濃度油脂含有排水には対応しきれず、安定して処理できないという問題がある。   However, even with the method described above, n-hex. In wastewater having a concentration exceeding 300 mg / L, there is a description that oil may accumulate on the carrier, which may make it difficult to flow, and n-hex. There is a problem that wastewater containing high-concentration fats and oils having a concentration of 400 to 500 mg / L cannot be handled and cannot be treated stably.

本発明はこのような点に鑑みなされたもので、処理によるフロス量が少なくかつ処理能力を維持し易く、また、食品工場で排出するような高濃度油脂含有排水であっても効果的に処理できる生物処理方法および生物処理装置を提供することを目的とする。   The present invention has been made in view of such points, and it is easy to maintain a processing capacity with a small amount of froth by processing, and also effectively treats wastewater containing high-concentration fats and oils discharged at a food factory. An object of the present invention is to provide a biological treatment method and biological treatment apparatus that can be used.

請求項1に記載された高濃度油脂含有排水の生物処理方法は、ノルマルヘキサン抽出物質を含む高濃度油脂含有排水を、担体が充填され直列に接続した3または4槽の曝気槽に順次流入させ、これら各曝気槽にて順次曝気処理された排水を沈殿槽で処理水と汚泥とに分離し、この沈殿槽にて排水から分離された汚泥を前記曝気槽のうち最初に排水が流入する曝気槽に返送する高濃度油脂含有排水の生物処理方法であって、前記各曝気槽全体の担体充填量を、担体1mあたりのノルマルヘキサン抽出物質除去量を示すノルマルヘキサン抽出物質除去率が1〜1.8kg/m・日となるように設定したものである。 The biological treatment method for wastewater containing high-concentration fat according to claim 1 is a method of sequentially flowing wastewater containing high-concentration fat containing normal hexane extract into 3 or 4 aeration tanks filled with a carrier and connected in series. The waste water that has been aerated in each aeration tank is separated into treated water and sludge in the settling tank, and the sludge separated from the waste water in the settling tank is first aerated into the aeration tank. A biological treatment method for wastewater containing high-concentration fat to be returned to a tank, wherein the carrier filling amount of each aeration tank is a normal hexane extractable substance removal rate indicating a normal hexane extractable substance removal amount per 1 m 3 of the carrier. It is set to be 1.8 kg / m 3 · day.

請求項2に記載された高濃度油脂含有排水の生物処理方法は、請求項1に記載された高濃度油脂含有排水の生物処理方法において、4槽の曝気槽を備え、最初に排水が流入する一番目の曝気槽のBOD容積負荷を3〜6kg/m・日とするとともにこの一番目の曝気槽のDOを1〜6mg/Lの範囲で処理し、前記一番目の曝気槽から排水が流入する二番目の曝気槽のDOを1〜6mg/Lの範囲で処理し、前記二番目の曝気槽から排水が流入する三番目の曝気槽のDOを2〜5mg/Lの範囲で処理し、前記三番目の曝気槽から排水が流入する四番目の曝気槽のDOを2〜4mg/Lの範囲で処理するものである。 The biological treatment method for high-concentration fat-containing wastewater described in claim 2 is the biological treatment method for high-concentration fat-containing wastewater described in claim 1, comprising four aeration tanks, and the wastewater flows first. The BOD volume load of the first aeration tank is set to 3 to 6 kg / m 3 · day, and the DO of the first aeration tank is processed in the range of 1 to 6 mg / L, and the first aeration tank is drained. Treat the DO in the second aeration tank in the range of 1-6 mg / L, and treat the DO in the third aeration tank in which the waste water flows from the second aeration tank in the range of 2-5 mg / L. The DO of the fourth aeration tank into which waste water flows from the third aeration tank is processed in the range of 2 to 4 mg / L.

請求項3に記載された高濃度油脂含有排水の生物処理装置は、ノルマルヘキサン抽出物質を含む高濃度油脂含有排水の生物処理装置であって、担体が充填され排水が順次流入される直列に接続した3または4槽の曝気槽と、これら各曝気槽にて順次曝気処理された排水を処理水と汚泥とに分離する沈殿槽と、この沈殿槽にて排水から分離された汚泥を前記曝気槽のうち最初に排水が流入する一番目の曝気槽に返送する返送手段とを備え、前記各曝気槽全体の担体充填量は、担体1mあたりのノルマルヘキサン抽出物質除去量を示すノルマルヘキサン抽出物質除去率が1〜1.8kg/m・日となるように設定されているものである。 The biological treatment apparatus for wastewater containing high-concentration fat according to claim 3 is a biological treatment apparatus for wastewater containing high-concentration fat and oil containing a normal hexane extract, which is connected in series and filled with a carrier and sequentially into which the wastewater flows. 3 or 4 aeration tanks, a sedimentation tank that separates waste water that has been aerated in each aeration tank into treated water and sludge, and sludge separated from waste water in the precipitation tank Return means for returning to the first aeration tank into which the waste water flows first, and the carrier filling amount of each of the aeration tanks is the normal hexane extract substance indicating the amount of the normal hexane extract substance removed per 1 m 3 of the support. The removal rate is set to be 1 to 1.8 kg / m 3 · day.

請求項4に記載された高濃度油脂含有排水の生物処理装置は、請求項3に記載された高濃度油脂含有排水の生物処理装置において、4槽の曝気槽を備え、最初に排水が流入する一番目の曝気槽のBOD容積負荷を3〜6kg/m・日とするとともにこの一番目の曝気槽のDOを1〜6mg/Lの範囲で調整し、前記一番目の曝気槽から排水が流入する二番目の曝気槽のDOを1〜6mg/Lの範囲で調整し、前記二番目の曝気槽から排水が流入する三番目の曝気槽のDOを2〜5mg/Lの範囲で調整し、前記三番目の曝気槽から排水が流入する四番目の曝気槽のDOを2〜4mg/Lの範囲で調整するものである。 A biological treatment apparatus for wastewater containing high-concentration fat described in claim 4 is a biological treatment apparatus for wastewater containing high-concentration fat described in claim 3, comprising four aeration tanks, and the wastewater flows first. The BOD volume load of the first aeration tank is set to 3 to 6 kg / m 3 · day, and the DO of the first aeration tank is adjusted in the range of 1 to 6 mg / L. Adjust the DO of the second aeration tank in the range of 1 to 6 mg / L, and adjust the DO of the third aeration tank into which the wastewater flows from the second aeration tank in the range of 2 to 5 mg / L. The DO of the fourth aeration tank into which the waste water flows from the third aeration tank is adjusted in the range of 2 to 4 mg / L.

請求項1に記載された発明によれば、ノルマルヘキサン抽出物質を含む排水を、担体が充填され直列に接続した各曝気槽にて順次曝気処理し、この排水を沈殿槽で処理水と汚泥とに分離し、この沈殿槽にて分離された汚泥を前記曝気槽のうち最初に排水が流入する曝気槽に返送するので、処理によるフロス量を少なくできかつ処理能力を維持し易い。   According to the invention described in claim 1, waste water containing a normal hexane extract is sequentially aerated in each aeration tank filled with a carrier and connected in series, and this waste water is treated with treated water and sludge in a sedimentation tank. The sludge separated in the settling tank is returned to the aeration tank into which the wastewater flows first among the aeration tanks, so that the amount of froth by the treatment can be reduced and the processing capacity can be easily maintained.

また、前記各曝気槽全体の担体充填量を、担体1mあたりのノルマルヘキサン抽出物質除去量を示すノルマルヘキサン抽出物質除去率が1〜1.8kg/m・日となるように設定することにより、ノルマルヘキサンを効果的に除去でき、高濃度油脂含有排水を効果的に処理できる。 Moreover, the carrier filling amount of each aeration tank is set so that the normal hexane extract substance removal rate indicating the normal hexane extract substance removal amount per 1 m 3 of the carrier is 1 to 1.8 kg / m 3 · day. Thus, normal hexane can be effectively removed and wastewater containing high-concentration fat can be treated effectively.

請求項2に記載された発明によれば、一番目の曝気槽のBOD容積負荷を3〜6kg/m・日とし、DOを1〜6mg/Lの範囲で処理し、また、二番目の曝気槽のDOを1〜6mg/Lの範囲で、三番目の曝気槽のDOを2〜5mg/Lの範囲で、四番目の曝気槽のDOを2〜4mg/Lの範囲で処理することにより、前記各曝気槽にて生物処理能力が低下しにくいので安定して処理でき、曝気処理後の排水を沈殿槽にて処理水と汚泥とに分離し易くできる。 According to the invention described in claim 2, the BOD volume load of the first aeration tank is 3 to 6 kg / m 3 · day, the DO is processed in the range of 1 to 6 mg / L, and the second Treat the aeration tank DO in the range of 1-6 mg / L, the third aeration tank DO in the range of 2-5 mg / L, and the fourth aeration tank in the range of 2-4 mg / L. Therefore, since the biological treatment capacity is not easily lowered in each aeration tank, it can be stably treated, and the waste water after the aeration treatment can be easily separated into treated water and sludge in the precipitation tank.

請求項3に記載された発明によれば、担体が充填され直列に接続した3または4槽の曝気槽と、これら曝気槽にて曝気処理された排水を処理水と汚泥とに分離する沈殿槽と、この沈殿槽にて分離された汚泥を前記曝気槽のうち最初に排水が流入する一番目の曝気槽に返送する返送手段を備えているので、処理によるフロス量を少なくできかつ処理能力を維持し易い。   According to the invention described in claim 3, 3 or 4 aeration tanks filled with a carrier and connected in series, and a settling tank for separating waste water aerated in these aeration tanks into treated water and sludge And a return means for returning the sludge separated in the settling tank to the first aeration tank into which the waste water flows first in the aeration tank, so that the amount of floss by processing can be reduced and the processing capacity can be reduced. Easy to maintain.

また、前記各曝気槽全体の担体充填量を、担体1mあたりのノルマルヘキサン抽出物質除去量を示すノルマルヘキサン抽出物質除去率が1〜1.8kg/m・日となるように設定することにより、ノルマルヘキサンを効果的に除去できるので、高濃度油脂含有排水を効果的に処理できる。 Moreover, the carrier filling amount of each aeration tank is set so that the normal hexane extract substance removal rate indicating the normal hexane extract substance removal amount per 1 m 3 of the carrier is 1 to 1.8 kg / m 3 · day. Thus, normal hexane can be effectively removed, so that wastewater containing high-concentration fat can be treated effectively.

請求項4に記載された発明によれば、一番目の曝気槽のBOD容積負荷を3〜6kg/m・日とし、DOを1〜6mg/Lの範囲で調整し、また、二番目の曝気槽のDOを1〜6mg/Lの範囲で、三番目の曝気槽のDOを2〜5mg/Lの範囲で、四番目の曝気槽のDOを2〜4mg/Lの範囲で調整することにより、前記各曝気槽にて生物処理能力が低下しにくく安定して処理でき、沈殿槽にて処理水と汚泥とを分離し易くできる。 According to the invention described in claim 4, the BOD volume load of the first aeration tank is 3 to 6 kg / m 3 · day, the DO is adjusted in the range of 1 to 6 mg / L, and the second Adjust DO of the aeration tank in the range of 1-6 mg / L, DO of the third aeration tank in the range of 2-5 mg / L, and DO of the fourth aeration tank in the range of 2-4 mg / L. Thus, the biological treatment capacity is hardly lowered in each aeration tank and can be stably treated, and the treated water and sludge can be easily separated in the precipitation tank.

以下、本発明の第1の実施の形態の構成について図1を参照しながら詳細に説明する。   The configuration of the first embodiment of the present invention will be described in detail below with reference to FIG.

図1に示す高濃度油脂含有排水の生物処理装置1は、例えば食品工場等から排出されるのノルマルヘキサン抽出物質を含む油脂分を高濃度に含有する排水を処理するための装置である。   A biological treatment apparatus 1 for wastewater containing high-concentration fat and oil shown in FIG. 1 is an apparatus for treating wastewater containing a high-concentration fat and oil containing a normal hexane extract discharged from, for example, a food factory.

生物処理装置1は、排出手段2から排出される排水原水を貯留する調整槽3を備えている。   The biological treatment apparatus 1 includes an adjustment tank 3 that stores raw wastewater discharged from the discharge means 2.

この調整槽3には、散気口4が設けられ、この散気口4には配管5を介してブロア6が接続されている。そして、ブロア6にて散気口4から槽内に空気が送られ、排水が送られた空気により曝気されて攪拌される。   The adjustment tank 3 is provided with a diffuser port 4, and a blower 6 is connected to the diffuser port 4 via a pipe 5. Then, air is sent from the air diffuser 4 to the inside of the tank by the blower 6 and aerated and agitated by the air to which the drainage is sent.

また、調整槽3は、直列に接続した4つ槽の曝気槽7a,7b,7c,7dのうちの1つである一番目の曝気槽7aに流入管8を介して接続されている。   The adjustment tank 3 is connected to a first aeration tank 7a, which is one of four aeration tanks 7a, 7b, 7c, and 7d connected in series, via an inflow pipe 8.

流入管8には、流入ポンプ9および図示しない計量器が設けられている。調整槽3内の排水は、流入ポンプ9の駆動にて汲み上げられ、計量器によって計量されながら一定量ずつ一番目の曝気槽7aへ移送され、一番目の曝気槽7aから、二番目の曝気槽7b、三番目の曝気槽7cおよび四番目の曝気槽7dへ順次流入する。   The inflow pipe 8 is provided with an inflow pump 9 and a meter (not shown). The waste water in the adjustment tank 3 is pumped up by the driving of the inflow pump 9 and is transferred by a fixed amount to the first aeration tank 7a while being measured by the measuring instrument. From the first aeration tank 7a, the second aeration tank 7b sequentially flows into the third aeration tank 7c and the fourth aeration tank 7d.

各曝気槽7a,7b,7c,7dには、散気口11が設けられている。また、この散気口11には配管12を介してブロア13が接続され、配管12にはバルブ等の開閉手段14が設けられている。そして、ブロア13にて散気口11から槽内に空気が送られ、排水が送られた空気により曝気される。またこの曝気により排水中に酸素が供給される。   Each aeration tank 7a, 7b, 7c, 7d is provided with an air diffusion port 11. A blower 13 is connected to the air diffusion port 11 via a pipe 12, and the pipe 12 is provided with an opening / closing means 14 such as a valve. Then, air is sent from the air diffuser 11 to the inside of the tank by the blower 13 and aerated by the air to which the drainage is sent. In addition, oxygen is supplied into the waste water by this aeration.

各曝気槽7a,7b,7c,7dには、オーバーフロー部15が設けられ、このオーバーフロー部15の近傍には図示しない3mm幅のスリットが形成されたスクリーン16が設けられている。そして、各曝気槽7a,7b,7c,7dにおいて、オーバーフロー部15から排水がオーバーフローすることより、隣接する槽へ排水が流入する。   Each aeration tank 7a, 7b, 7c, 7d is provided with an overflow portion 15, and in the vicinity of the overflow portion 15, a screen 16 having a 3 mm wide slit (not shown) is provided. And in each aeration tank 7a, 7b, 7c, 7d, waste water flows into the adjacent tank because the waste water overflows from the overflow part 15.

各曝気槽7a,7b,7c,7dには、担体17が充填されている。担体17は、例えばポリウレタンを主成分とした10mm角の連続発泡体であり、細菌、原生動物および後生動物等の微生物を担持する。また、ブロア13から各曝気槽7a,7b,7c,7d内に送られる空気によって担体17を各曝気槽7a,7b,7c,7dの排水中で流動させることにより排水を生物処理する。   Each aeration tank 7a, 7b, 7c, 7d is filled with a carrier 17. The carrier 17 is a continuous foam of 10 mm square mainly composed of polyurethane, for example, and carries microorganisms such as bacteria, protozoa and metazoans. Further, the waste water is biologically treated by causing the carrier 17 to flow in the waste water of each aeration tank 7a, 7b, 7c, 7d by the air sent from the blower 13 into each aeration tank 7a, 7b, 7c, 7d.

四番目の曝気槽7dには、オーバーフロー部15に流入管18が接続されており、各曝気槽7a,7b,7c,7dにて曝気処理され、四番目の曝気槽7dからオーバーフローする排水は、流入管18を通って沈殿槽21に流入する。   An inflow pipe 18 is connected to the overflow section 15 in the fourth aeration tank 7d, and the waste water that is aerated in each aeration tank 7a, 7b, 7c, 7d and overflows from the fourth aeration tank 7d, It flows into the sedimentation tank 21 through the inflow pipe 18.

沈殿槽21は、曝気処理後の排水を、沈降分離により処理水と汚泥とに固液分離するものである。   The sedimentation tank 21 separates the waste water after the aeration treatment into treated water and sludge by sedimentation separation.

沈殿槽21には、オーバーフロー部22が設けられ、このオーバーフロー部22に放流管23が接続されており、オーバーフロー部22からオーバーフローする処理水が放流管23から放流される。   The sedimentation tank 21 is provided with an overflow part 22, and a discharge pipe 23 is connected to the overflow part 22, and treated water overflowing from the overflow part 22 is discharged from the discharge pipe 23.

また、沈殿槽21には、分離した汚泥を各曝気槽7a,7b,7c,7dのうち最初に排水が流入する一番目の曝気槽7aへ返送する返送手段24が設けられている。返送手段24は、一番目の曝気槽7aと沈殿槽21とを接続する返送管25および返送ポンプ26を有し、汚泥は、この返送ポンプ26の駆動にて沈殿槽21から汲み上げられ、返送管25を通って沈殿槽21から一番目の曝気槽7aへ返送される。   Further, the settling tank 21 is provided with a return means 24 for returning the separated sludge to the first aeration tank 7a into which the drainage flows first among the aeration tanks 7a, 7b, 7c, 7d. The return means 24 has a return pipe 25 and a return pump 26 that connect the first aeration tank 7a and the settling tank 21, and sludge is pumped up from the settling tank 21 by driving the return pump 26, and the return pipe 25 is returned from the settling tank 21 to the first aeration tank 7a.

ここで、各曝気槽7a,7b,7c,7d全体の担体充填量は、担体1mあたりのノルマルヘキサン抽出物質(n−hex.)の除去量を示すノルマルヘキサン抽出物質(n−hex.)除去率が1〜1.8kg/m・日となるように設定されている。 Here, the carrier filling amount of each aeration tank 7a, 7b, 7c, 7d is the normal hexane extract material (n-hex.) Indicating the removal amount of the normal hexane extract material (n-hex.) Per 1 m 3 of the support. The removal rate is set to be 1 to 1.8 kg / m 3 · day.

n−hex.除去率が1kg/m・日より低くなるように設定すると、排水量に対して担体量が多くなり過ぎるのでその分コストが高騰してしまう。 n-hex. If the removal rate is set to be lower than 1 kg / m 3 · day, the amount of the carrier becomes excessive with respect to the amount of the waste water, so that the cost increases accordingly.

また、生物処理を行うためには、各曝気槽7a,7b,7c,7d槽内で担体17が十分に流動できる空間的余裕が必要であり、具体的には、担体17の充填率を40%以下にすると、担体17の流動不良による処理障害を防止できるので好ましく、35%以下がより好ましい。よって、担体量を多くする程、担体17が十分に流動できる空間的余裕も多くする必要があるので、各曝気槽7a,7b,7c,7dの容量を大きくしなければならず、設備面でもコストが高騰してしまう。したがって、n−hex.除去率の下限を1kg/m・日と設定する。 In addition, in order to perform biological treatment, there is a need for a space that allows the carrier 17 to sufficiently flow in each of the aeration tanks 7a, 7b, 7c, and 7d. Specifically, the filling rate of the carrier 17 is set to 40. % Or less is preferable because it is possible to prevent processing failures due to poor flow of the carrier 17, and 35% or less is more preferable. Therefore, as the amount of the carrier increases, it is necessary to increase the space for the carrier 17 to flow sufficiently. Therefore, the capacity of each of the aeration tanks 7a, 7b, 7c, 7d must be increased. Costs will soar. Therefore, n-hex. The lower limit of the removal rate is set to 1 kg / m 3 · day.

一方、n−hex.除去率が1.8kg/m・日より高くなるように設定すると、各曝気槽7a,7b,7c,7dへ流入する排水の量が担体量に対して多くなり過ぎるので、微生物の処理能力を超え、排水を効果的に生物処理できず、放流規制値を満足する水質を得られなくなってしまうおそれがある。したがって、n−hex.除去率の上限を1.8kg/m・日と設定する。 On the other hand, n-hex. If the removal rate is set to be higher than 1.8 kg / m 3 · day, the amount of waste water flowing into each aeration tank 7a, 7b, 7c, 7d will be too much for the amount of carrier, so the ability of microbial treatment The waste water cannot be effectively biologically treated, and the water quality that satisfies the discharge regulation value may not be obtained. Therefore, n-hex. The upper limit of the removal rate is set to 1.8 kg / m 3 · day.

一番目の曝気槽7aは、BOD容積負荷が3〜6kg/m・日とされるとともに、DOが1〜6mg/Lの範囲に調整されている。なお、一番目の曝気槽7aのDOは、2〜3mg/Lの範囲で調整するとより好ましい。 The first aeration tank 7a has a BOD volumetric load of 3 to 6 kg / m 3 · day and a DO of 1 to 6 mg / L. The DO of the first aeration tank 7a is more preferably adjusted in the range of 2 to 3 mg / L.

また、二番目の曝気槽7bは、DOが1〜6mg/Lの範囲に調整され、三番目の曝気槽7cは、DOが2〜5mg/Lの範囲に調整され、四番目の曝気槽7dは、DOが2〜4mg/Lの範囲に調整されている。なお、二番目の曝気槽7bおよび三番目の曝気槽7cは、DOが3〜4mg/Lの範囲に調整するとより好ましい。   The second aeration tank 7b is adjusted to a DO of 1 to 6 mg / L, the third aeration tank 7c is adjusted to a DO of 2 to 5 mg / L, and the fourth aeration tank 7d. DO is adjusted in the range of 2 to 4 mg / L. The second aeration tank 7b and the third aeration tank 7c are more preferably adjusted to DO in the range of 3 to 4 mg / L.

一番目の曝気槽7aのBOD容積負荷が6kg/m・日を超える場合には、微生物の処理能力を超えてしまい、排水を効果的に生物処理できず、放流規制値を満足する水質を得られなくなってしまうおそれがある。したがって、一番目の曝気槽7aのBOD容積負荷の上限を6kg/m・日と設定する。 If the BOD volume load of the first aeration tank 7a exceeds 6 kg / m 3 · day, the microbial treatment capacity will be exceeded, and the wastewater cannot be effectively biologically treated. There is a risk that it will not be obtained. Therefore, the upper limit of the BOD volumetric load of the first aeration tank 7a is set to 6 kg / m 3 · day.

一方、BOD容積負荷を小さくする程、一番目の曝気槽7aの容量を大きくすることになるので、BOD容積負荷が3kg/m・日未満の場合には、処理能力は問題ないものの、一番目の曝気槽7aの容量が大きくなり過ぎるため、設備面のコストが高騰してしまう。したがって、一番目の曝気槽7aの下限を3kg/m・日と設定する。 On the other hand, the smaller the BOD volume load, the larger the capacity of the first aeration tank 7a. Therefore, when the BOD volume load is less than 3 kg / m 3 · day, there is no problem in processing capacity. Since the capacity of the second aeration tank 7a becomes too large, the cost of the equipment will rise. Therefore, the lower limit of the first aeration tank 7a is set to 3 kg / m 3 · day.

一番目の曝気槽7aでは、主に微生物としての細菌が生物処理を行っており、DOが1mg/L未満の場合には、この細菌が活動するのに十分な酸素を得られず、生物処理能力が低下してしまうおそれがある。また、曝気により排水中に酸素を供給するとともに担体17を排水中で流動させているので、DOを1mg/Lより低く調整するために曝気量を少なくすると、担体17が十分に流動せず、生物処理能力が低下してしまうおそれがある。したがって、一番目の曝気槽7aのDOの下限を1mg/Lと設定する。   In the first aeration tank 7a, bacteria as microorganisms are mainly subjected to biological treatment. When DO is less than 1 mg / L, sufficient oxygen cannot be obtained to activate the bacteria, and biological treatment is performed. There is a risk that the ability will decrease. Further, since oxygen is supplied into the wastewater by aeration and the carrier 17 is made to flow in the wastewater, if the amount of aeration is decreased in order to adjust DO to be lower than 1 mg / L, the carrier 17 does not flow sufficiently. Biological treatment capacity may be reduced. Therefore, the lower limit of DO of the first aeration tank 7a is set to 1 mg / L.

二番目の曝気槽7bでは、主に微生物としての細菌と原生動物とが生物処理を行っており、DOが1mg/L未満の場合には、これら細菌と原生動物とが活動するのに十分な酸素を得られず、生物処理能力が低下してしまうおそれがある。また、一番目の曝気槽7aと同様に、DOを1mg/Lより低く調整するための曝気量を少なくすると、担体17が十分に流動せず、生物処理能力が低下してしまうおそれがある。したがって、二番目の曝気槽7bのDOの下限を1mg/Lと設定する。   In the second aeration tank 7b, bacteria and protozoa as microorganisms are mainly biologically processed, and when DO is less than 1 mg / L, it is sufficient for these bacteria and protozoa to be active. Oxygen cannot be obtained, and the biological treatment capacity may be reduced. Similarly to the first aeration tank 7a, if the amount of aeration for adjusting DO to be lower than 1 mg / L is reduced, the carrier 17 may not flow sufficiently and the biological treatment capacity may be reduced. Therefore, the lower limit of DO of the second aeration tank 7b is set to 1 mg / L.

三番目の曝気槽7cおよび四番目の曝気槽7dでは、微生物としての細菌と原生動物と後生動物とが生物処理を行っており、DOが2mg/L未満の場合には、後生動物が活動するのに十分な酸素を得られず、生物処理能力が低下してしまうおそれがある。したがって、三番目の曝気槽7cおよび四番目の曝気槽7dのDOの下限を2mg/Lと設定する。なお、放線菌が発生した場合には、四番目の曝気槽7dのDOを、一時的に0.2〜0.5mg/Lに低下させて対応することがある。   In the third aeration tank 7c and the fourth aeration tank 7d, bacteria, protozoa, and metazoans are biologically treated as microorganisms, and when DO is less than 2 mg / L, metazoans are active. However, there is a risk that sufficient oxygen cannot be obtained and the biological treatment capacity is lowered. Therefore, the lower limit of DO of the third aeration tank 7c and the fourth aeration tank 7d is set to 2 mg / L. When actinomycetes are generated, the DO of the fourth aeration tank 7d may be temporarily reduced to 0.2 to 0.5 mg / L.

ここで、各曝気槽7a,7b,7c,7dの後段に設けられた沈殿槽21では、沈降分離による固液分離を行うため、無曝気として沈殿槽21内にて曝気処理後の排水を攪拌しない。なお、このような沈殿槽21のDOは1mg/L未満である。   Here, in the settling tank 21 provided in the subsequent stage of each aeration tank 7a, 7b, 7c, 7d, the wastewater after the aeration treatment is stirred in the settling tank 21 as non-aerated to perform solid-liquid separation by sedimentation separation. do not do. In addition, DO of such a precipitation tank 21 is less than 1 mg / L.

そして、沈殿槽21の直前である四番目の曝気槽7dのDOが4mg/Lを超えると、この四番目の曝気槽7dのDOと沈殿槽21のDOとの差が大きくなり、曝気処理後の排水が沈殿槽21に流入した際に急激にDOが低い状態になる。急激にDOが低い状態になると、微生物、特に後生動物が少ない酸素を奪い合い、NOやNO等からも無理に酸素を取り込む反応が起こる。また、この反応の副作用によりNガスが発生する。Nガスが発生すると、Nガスが汚泥に取り込まれ汚泥を浮上させてしまうので、沈殿槽21にて沈降分離による固液分離を行いにくくなるおそれがある。したがって、四番目の曝気槽7dのDOの上限を4mg/Lと設定する。 When the DO of the fourth aeration tank 7d immediately before the precipitation tank 21 exceeds 4 mg / L, the difference between the DO of the fourth aeration tank 7d and the DO of the precipitation tank 21 increases, and after the aeration treatment When the waste water flows into the sedimentation tank 21, the DO is suddenly lowered. When DO is rapidly lowered, microorganisms, particularly metazoans, scramble for little oxygen, and a reaction that forcibly takes in oxygen from NO 2 , NO 3, etc. occurs. Further, N 2 gas is generated due to the side effect of this reaction. When the N 2 gas is generated, the N 2 gas is taken into the sludge and floats up, which may make it difficult to perform solid-liquid separation by sedimentation in the sedimentation tank 21. Therefore, the upper limit of DO of the fourth aeration tank 7d is set to 4 mg / L.

また、各曝気槽7a,7b,7c,7dでは、他の槽への排水の流入による急激なDOの低下により、微生物の活性が低下して十分な生物処理が行われなくなることを防止するため、四番目の曝気槽7dへ向けてDOを順次低下させていく必要がある。   Moreover, in each aeration tank 7a, 7b, 7c, 7d, in order to prevent that the activity of microorganisms falls and sufficient biological treatment is not performed by the rapid fall of DO by the inflow of the waste_water | drain to another tank. It is necessary to gradually lower DO toward the fourth aeration tank 7d.

したがって、三番目の曝気槽7cのDOは、二番目の曝気槽7bのDOと四番目の曝気槽7dのDOとの間の値となるように設定することが好ましいので、三番目の曝気槽7cのDOの上限を5mg/Lの範囲に設定する。   Therefore, it is preferable to set the DO of the third aeration tank 7c to be a value between the DO of the second aeration tank 7b and the DO of the fourth aeration tank 7d. Therefore, the third aeration tank Set the upper limit of 7c DO in the range of 5 mg / L.

また、二番目の曝気槽7bのDOは、上述した三番目の曝気槽7cと同様の理由から、上限を6mg/Lに設定する。   Further, the upper limit of the DO of the second aeration tank 7b is set to 6 mg / L for the same reason as the third aeration tank 7c described above.

一番目の曝気槽7aでは、調整槽3から最初に排水が流入するので、高濃度のn−hex.を処理する特異な細菌が優先種となって急激にn−hex.を処理する。しかし、二番目の曝気槽7b以降では、この特異な細菌を優先種として維持する必要がない。したがって、一番目の曝気槽7aのDOの上限は、二番目の曝気槽7bの上限である6mg/Lと同程度でよい。   In the first aeration tank 7a, the waste water first flows from the adjustment tank 3, so that the n-hex. Peculiar bacterium which treats N-hex. Process. However, after the second aeration tank 7b, it is not necessary to maintain this unique bacterium as a preferred species. Therefore, the upper limit of DO of the first aeration tank 7a may be about the same as 6 mg / L which is the upper limit of the second aeration tank 7b.

なお、一番目の曝気槽7aでは、高負荷のn−hex.分解を行うので、多量のDOが必要とされるため、曝気量を高くして排水中に多くの酸素を供給しても、n−hex.分解による消費も大きい。したがって、一般的な風量では、実際のDOは2mg/L程度までしか上がらない。   In the first aeration tank 7a, a high load n-hex. Since the decomposition is performed, a large amount of DO is required. Therefore, even if the aeration amount is increased and a large amount of oxygen is supplied to the waste water, the n-hex. The consumption by decomposition is also large. Therefore, with a general air volume, the actual DO increases only to about 2 mg / L.

次に、上記一実施の形態の作用について説明する。   Next, the operation of the above embodiment will be described.

まず、排出手段2から調整槽3内へノルマルヘキサン抽出物質を含む高濃度油脂含有排水の排水原水が排出され、この排水原水が調整槽3内に貯留される。   First, the raw waste water of the high-concentration oil-containing waste water containing normal hexane extract material is discharged from the discharge means 2 into the adjustment tank 3, and this raw waste water is stored in the adjustment tank 3.

次いで、ブロア6にて散気口4から調整槽3内へ空気が送られ、この空気により調整槽3内の排水原水が曝気されて攪拌される。   Next, air is sent from the air diffuser 4 into the adjustment tank 3 by the blower 6, and the waste water in the adjustment tank 3 is aerated and stirred by this air.

排水原水が攪拌されることにより、排水原水の濃度のムラが無くなり、嫌気反応による悪臭の発生を低減できる。   By stirring the wastewater raw water, the concentration of the wastewater raw water is not uneven, and the generation of bad odor due to an anaerobic reaction can be reduced.

調整槽3にて攪拌しながら、流入ポンプ9の駆動にて調整槽3から排水を汲み上げ、流入管8を通して排水を一定量ずつ一番目の曝気槽7aへ流入させる。   While stirring in the adjustment tank 3, the inflow pump 9 is driven to pump up the waste water from the adjustment tank 3 and through the inflow pipe 8, the waste water is allowed to flow into the first aeration tank 7 a by a certain amount.

配管12に設けられた開閉手段14を開き、ブロア13にて散気口11から一番目の曝気槽7a内へ空気が送られ、この空気により排水が曝気されるとともに、排水中へ酸素が供給される。   Opening / closing means 14 provided in the pipe 12 is opened, air is sent from the air diffuser 11 to the first aeration tank 7a by the blower 13, and the waste water is aerated by this air and oxygen is supplied into the waste water. Is done.

このように、排水を曝気することにより、一番目の曝気槽7aの担体17が流動し、担体17にて担持した微生物によって排水が生物処理される。また、曝気量を調整することにより、排水へ供給する酸素量を調整して、一番目の曝気槽7a内のDOを調整する。   Thus, by aeration of the wastewater, the carrier 17 of the first aeration tank 7a flows, and the wastewater is biologically treated by the microorganisms supported by the carrier 17. Further, the amount of oxygen supplied to the waste water is adjusted by adjusting the amount of aeration, and the DO in the first aeration tank 7a is adjusted.

なお、担体17を槽内にて流動させることにより、担体17に過剰な汚泥や油膜等が付着することによる油膜肥大を防止できる。また、担体17にて担持した通気性嫌気菌および好気性微生物群の食物連鎖により余剰汚泥の発生を低減できる。   In addition, by causing the carrier 17 to flow in the tank, it is possible to prevent oil film enlargement due to excessive sludge, oil film, or the like adhering to the carrier 17. Further, the generation of excess sludge can be reduced by the food chain of the aerobic anaerobic bacteria and aerobic microorganisms carried by the carrier 17.

ここで、一番目の曝気槽7aでは、BOD容積負荷が3〜6kg/m・日とされ、DOが1〜6mg/Lの範囲に調整される。 Here, in the first aeration tank 7a, the BOD volumetric load is set to 3 to 6 kg / m 3 · day, and DO is adjusted to the range of 1 to 6 mg / L.

このように一番目の曝気槽7aのBOD容積負荷が3〜6kg/m・日とすることにより、一番目の曝気槽7a内において、微生物の処理能力を超えることを防止できるので、排水を効果的に生物処理して、放流規制値を満足する水質を得ることができる。また、一番目の曝気槽7aの容量に起因するコストの高騰を防止できる。 In this way, by setting the BOD volume load of the first aeration tank 7a to 3 to 6 kg / m 3 · day, it is possible to prevent the microorganisms from exceeding the treatment capacity in the first aeration tank 7a. It is possible to obtain a water quality that satisfies the release regulation value by biological treatment effectively. Further, it is possible to prevent the cost from rising due to the capacity of the first aeration tank 7a.

また、一番目の曝気槽7aのDOが1〜6mg/Lの範囲に調整されることにより、一番目の曝気槽7aの微生物、特に細菌が活動するのに十分な酸素を得ることができ、さらに、一番目の曝気槽7a内にて担体17が十分に流動できる曝気量を保てるので、生物処理能力が低下しにくく安定して排水を処理できる。   Moreover, by adjusting the DO of the first aeration tank 7a to the range of 1 to 6 mg / L, it is possible to obtain sufficient oxygen for the microorganisms, particularly bacteria, of the first aeration tank 7a to be active, Furthermore, since the amount of aeration at which the carrier 17 can sufficiently flow in the first aeration tank 7a can be maintained, the biological treatment capacity is unlikely to decrease and the wastewater can be treated stably.

一番目の曝気槽7aにて処理された排水は、オーバーフロー部15からオーバーフローして二番目の曝気槽7bへ流入する。   The wastewater treated in the first aeration tank 7a overflows from the overflow part 15 and flows into the second aeration tank 7b.

この際、オーバーフロー部15の近傍には、3mm幅のスリットが形成されたスクリーン16が設けられているので、10mm角の担体17はスリットを通過できず、排水のオーバーフローに伴う担体17の二番目の曝気槽7bへの移流を防止できる。   At this time, since the screen 16 having a slit of 3 mm width is provided in the vicinity of the overflow portion 15, the 10 mm square carrier 17 cannot pass through the slit, and the second carrier 17 associated with the overflow of drainage. To the aeration tank 7b can be prevented.

二番目の曝気槽7bでは、DOが1〜6mg/Lの範囲に調整された状態にて排水が一番目の曝気槽7aと同様に生物処理される。   In the second aeration tank 7b, the waste water is biologically treated in the same manner as the first aeration tank 7a in a state where DO is adjusted to the range of 1 to 6 mg / L.

このように二番目の曝気槽7bのDOが1〜6mg/Lの範囲に調整されることにより、二番目の曝気槽7bの微生物、特に細菌と原生動物とが活動するのに十分な酸素を得ることができ、また、二番目の曝気槽7b内にて担体17が十分に流動できる曝気量を保てるので、生物処理能力が低下しにくく安定して排水を処理できる。   Thus, by adjusting the DO of the second aeration tank 7b to the range of 1 to 6 mg / L, sufficient oxygen is available for the microorganisms of the second aeration tank 7b, particularly bacteria and protozoa to act. In addition, since the aeration amount that allows the carrier 17 to sufficiently flow in the second aeration tank 7b can be maintained, the biological treatment capacity is unlikely to decrease and the wastewater can be treated stably.

二番目の曝気槽7bにて処理された排水は、オーバーフロー部15からオーバーフローして三番目の曝気槽7cへ流入する。なお、オーバーフローの際は、一番目の曝気槽7aと同様にスクリーン16のスリットにて担体17の移流を防止できる。   The wastewater treated in the second aeration tank 7b overflows from the overflow part 15 and flows into the third aeration tank 7c. In the case of overflow, the carrier 17 can be prevented from advancing through the slits of the screen 16 as in the first aeration tank 7a.

三番目の曝気槽7cでは、DOが2〜5mg/Lの範囲に調整された状態にて排水が一番目の曝気槽7aおよび二番目の曝気槽7bと同様に生物処理される。   In the third aeration tank 7c, the waste water is biologically treated in the same manner as the first aeration tank 7a and the second aeration tank 7b with the DO adjusted to a range of 2 to 5 mg / L.

このように三番目の曝気槽7cのDOが2〜5mg/Lの範囲に調整されることにより、三番目の曝気槽7cの微生物、特に細菌と原生動物と後生動物とが活動するのに十分な酸素を得ることができ、また、三番目の曝気槽7c内にて担体17が十分に流動できる曝気量を保てるので、生物処理能力が低下しにくく安定して排水を処理できる。   Thus, by adjusting the DO of the third aeration tank 7c to the range of 2 to 5 mg / L, it is sufficient for the microorganisms of the third aeration tank 7c, particularly bacteria, protozoa, and metazoans to be active. In addition, since the amount of aeration at which the carrier 17 can sufficiently flow in the third aeration tank 7c can be maintained, the biological treatment capacity is unlikely to decrease and the wastewater can be treated stably.

三番目の曝気槽7cにて処理された排水は、オーバーフロー部15からオーバーフローして四番目の曝気槽7dへ流入される。なお、オーバーフローの際は、一番目の曝気槽7aおよび二番目の曝気槽7bと同様にスクリーン16のスリットにて担体17の移流を防止できる。   The wastewater treated in the third aeration tank 7c overflows from the overflow part 15 and flows into the fourth aeration tank 7d. In the case of overflow, the carrier 17 can be prevented from advancing through the slits of the screen 16 like the first aeration tank 7a and the second aeration tank 7b.

四番目の曝気槽7dでは、DOが2〜4mg/Lの範囲に調整された状態にて排水が一番目の曝気槽7a、二番目の曝気槽7bおよび三番目の曝気槽7cと同様に生物処理される。   In the fourth aeration tank 7d, the drainage is biological in the same manner as the first aeration tank 7a, the second aeration tank 7b, and the third aeration tank 7c with the DO adjusted to a range of 2 to 4 mg / L. It is processed.

このように四番目の曝気槽7dのDOが2〜4mg/Lの範囲に調整されることにより、四番目の曝気槽7dの微生物、特に細菌と原生動物と後生動物とが活動するのに十分な酸素を得ることができ、また、四番目の曝気槽7d内にて担体17が十分に流動できる曝気量を保てるので、生物処理能力が低下しにくく安定して処理できる。また、無曝気である沈殿槽21とのDOの差が大きくなり過ぎず、沈殿槽21における急激なDOの低下によるNガスの発生を防止して、汚泥が浮上して固液分離しにくくなることを防止できるので、曝気処理後の排水を沈殿槽21にて処理水と汚泥とに分離し易くできる。 Thus, the DO of the fourth aeration tank 7d is adjusted to the range of 2 to 4 mg / L, so that the microorganisms of the fourth aeration tank 7d, particularly bacteria, protozoa, and metazoans are active. Oxygen can be obtained, and since the aeration amount that allows the carrier 17 to flow sufficiently in the fourth aeration tank 7d can be maintained, the biological treatment capacity is not easily lowered and the treatment can be performed stably. Also, the difference in DO from the aeration tank 21 which is not aerated becomes too large, and the generation of N 2 gas due to the rapid decrease of DO in the precipitation tank 21 is prevented, so that sludge rises and solid-liquid separation is difficult. Therefore, the waste water after the aeration treatment can be easily separated into treated water and sludge in the sedimentation tank 21.

そして、各曝気槽7a,7b,7c,7d全体の担体充填量は、n−hex.除去率が1〜1.8kg/m・日となるように設定されている。 And the carrier filling amount of each aeration tank 7a, 7b, 7c, 7d is n-hex. The removal rate is set to be 1 to 1.8 kg / m 3 · day.

このように、各曝気槽7a,7b,7c,7d全体の担体充填量が、n−hex.除去率が1〜1.8kg/m・日となるように設定されることにより、担体17の流動不良による生物処理能力の低下を防止でき、また、微生物の処理能力を超えることなく安定して排水を生物処理できるので、n−hex.を効果的に除去でき、高濃度油脂含有排水を効果的に処理できる。また、担体量や各曝気槽7a,7b,7c,7dの容量に起因するコストの高騰を防止できる。 Thus, the carrier loading amount of each aeration tank 7a, 7b, 7c, 7d is n-hex. By setting the removal rate to be 1 to 1.8 kg / m 3 · day, it is possible to prevent a decrease in biological treatment capacity due to poor flow of the carrier 17, and it is stable without exceeding the treatment capacity of microorganisms. Since the wastewater can be biologically treated, n-hex. Can be effectively removed, and wastewater containing high-concentration fats and oils can be treated effectively. Further, it is possible to prevent an increase in cost due to the amount of the carrier and the capacity of each aeration tank 7a, 7b, 7c, 7d.

四番目の曝気槽7dで処理された排水は、オーバーフロー部15からオーバーフローし、流入管18を通って沈殿槽21へ流入する。なお、オーバーフローの際は、一番目の曝気槽7a、二番目の曝気槽7bおよび三番目の曝気槽7cと同様にスクリーン16のスリットにて担体の移流を防止できる。   The wastewater treated in the fourth aeration tank 7d overflows from the overflow section 15 and flows into the sedimentation tank 21 through the inflow pipe 18. In the case of overflow, the carrier can be prevented from advancing through the slits of the screen 16 like the first aeration tank 7a, the second aeration tank 7b, and the third aeration tank 7c.

沈殿槽21では、沈降分離により処理水と汚泥とが固液分離される。分離後の上澄み液である処理水は、オーバーフロー部22にてオーバーフローして放流管23から排出される。また、分離後に沈殿槽21内に沈殿した汚泥は、返送ポンプ26の駆動により汲み上げられ、返送管25を通って一番目の曝気槽7aへ返送される。   In the sedimentation tank 21, the treated water and sludge are separated into solid and liquid by sedimentation separation. The treated water, which is the supernatant liquid after separation, overflows at the overflow part 22 and is discharged from the discharge pipe 23. Further, the sludge that has settled in the sedimentation tank 21 after the separation is pumped up by the drive of the return pump 26 and is returned to the first aeration tank 7a through the return pipe 25.

このように、沈殿槽21にて排水から分離された汚泥が一番目の曝気槽7aに返送され、繰り返し汚泥に含まれる微生物による分解にて高濃度油脂含有排水を処理することにより、フロス量を少なく抑えることができ、かつ、処理能力を維持し易い。   In this way, the sludge separated from the wastewater in the sedimentation tank 21 is returned to the first aeration tank 7a, and the wastewater containing high-concentration fats and oils is repeatedly treated by decomposition by microorganisms contained in the sludge, thereby reducing the amount of floss. It can be suppressed to a small amount and it is easy to maintain the processing capacity.

なお、上記一実施の形態では、4槽の曝気槽7a,7b,7c,7dを直列に接続した構成としたが、曝気槽の数は3槽でもよい。また、既設の排水処理設備であっても、その設備が3槽または4槽の曝気槽を有するか、または、3槽または4槽の曝気槽を確保できれば、本発明である高濃度油脂含有排水の生物処理方法および生物処理装置1を適用可能である。   In the above embodiment, the four aeration tanks 7a, 7b, 7c, and 7d are connected in series. However, the number of aeration tanks may be three. Moreover, even if it is an existing wastewater treatment facility, if the facility has 3 tanks or 4 tanks or can secure 3 tanks or 4 tanks, the wastewater containing high-concentration fat according to the present invention The biological treatment method and biological treatment apparatus 1 can be applied.

また、この上記一実施の形態では、各曝気槽7a,7b,7c,7dにて生物処理能力が低下しにくく安定して処理でき、曝気処理後の排水を沈殿槽にて処理水と汚泥とに分離し易くするために、一番目の曝気槽7aのBOD容積負荷が3〜6kg/m・日とするとともに、DOを1〜6mg/Lの範囲に調整し、二番目の曝気槽7bのDOを1〜6mg/Lの範囲に調整し、三番目の曝気槽7cのDOを2〜5mg/Lの範囲に調整し、四番目の曝気槽7dのDOを2〜4mg/Lの範囲に調整する構成としている。しかしながら、n−hex.除去率が1〜1.8kg/m・日となるように各曝気槽7a,7b,7c,7d全体の担体充填量が設定されていれば、このような構成には限定されない。 In this embodiment, the aeration tanks 7a, 7b, 7c, and 7d can be stably treated with little difficulty in reducing the biological treatment capacity, and the waste water after the aeration treatment is treated with treated water and sludge in a settling tank. In order to facilitate separation, the BOD volume load of the first aeration tank 7a is set to 3 to 6 kg / m 3 · day, the DO is adjusted to a range of 1 to 6 mg / L, and the second aeration tank 7b The DO of the third aeration tank 7c is adjusted to the range of 2-5 mg / L, and the DO of the fourth aeration tank 7d is adjusted to the range of 2-4 mg / L. It is set as the structure adjusted to. However, n-hex. If the carrier filling amount of each aeration tank 7a, 7b, 7c, 7d is set so that the removal rate is 1 to 1.8 kg / m 3 · day, it is not limited to such a configuration.

次に、本発明の実施例について説明する。   Next, examples of the present invention will be described.

実際に生物処理装置1の設置される予定の食品工場にて想定される排水原水の条件は、n−hex.濃度が500mg/Lであり、SS濃度が800mg/Lであり、BOD濃度が1500mg/Lであり、pHが5.0〜8.0であり、流入量が1000m/日である。 The condition of the raw waste water assumed in the food factory where the biological treatment apparatus 1 is actually installed is n-hex. The concentration is 500 mg / L, the SS concentration is 800 mg / L, the BOD concentration is 1500 mg / L, the pH is 5.0 to 8.0, and the inflow is 1000 m 3 / day.

本実施例では、実際に食品工場で設置される生物処理装置1の1/500スケールの実験機にて処理能力の確認を行った。   In this example, the treatment capacity was confirmed with a 1/500 scale experimental machine of the biological treatment apparatus 1 actually installed in a food factory.

以下、本実施例における実験機の各条件の設定について説明する。   Hereinafter, setting of each condition of the experimental machine in this example will be described.

実験機における排水原水の流入量は、2m/日(=1000m/日×1/500)であるので、この実験機のn−hex.の負荷は、1.0kg/日(=500mg/L×2m/日)となる。 Since the inflow amount of the raw wastewater in the experimental machine is 2 m 3 / day (= 1000 m 3 / day × 1/500), the n-hex. The load is 1.0 kg / day (= 500 mg / L × 2 m 3 / day).

この実験機にてn−hex.除去率を1.0〜1.8kg/m・日に設定するためには、各曝気槽7a,7b,7c,7d全体の、容量をV、担体充填量をαとすると、Vおよびαは、0.56(=1.0kg/日÷1.8kg/m・日)≦α・V≦1.0(=1.0kg/日÷1.0kg/m・日)の範囲に収まる必要がある。 In this experimental machine, n-hex. In order to set the removal rate to 1.0 to 1.8 kg / m 3 · day, if the capacity of each aeration tank 7a, 7b, 7c, 7d is V and the carrier filling amount is α, V and α Is in the range of 0.56 (= 1.0 kg / day ÷ 1.8 kg / m 3 · day) ≦ α · V ≦ 1.0 (= 1.0 kg / day ÷ 1.0 kg / m 3 · day) It needs to fit.

ここで、この実験機では、各曝気槽7a,7b,7c,7dの4槽を接続するので、一番目の曝気槽7aのBOD容積負荷を3〜6kg/m・日とするためには、3kg/m・日≦(1500mg/L×2m/日)÷(V/4)≦1.0kg/m・日となり、2m≦V≦4mとなる。 Here, in this experimental machine, since four tanks of each aeration tank 7a, 7b, 7c, 7d are connected, in order to set the BOD volume load of the first aeration tank 7a to 3 to 6 kg / m 3 · day. , becomes 3 kg / m 3 · day ≦ (1500mg / L × 2m 3 / day) ÷ (V / 4) ≦ 1.0kg / m 3 · day, and 2m 3 ≦ V ≦ 4m 3.

そして、本実施例の実験機の各曝気槽7a,7b,7c,7d全体の容積を2.64mとし、各曝気槽7a,7b,7c,7dそれぞれ容積を0.66mと設定した。 And the capacity | capacitance of each aeration tank 7a, 7b, 7c, 7d of the experimental machine of a present Example was set to 2.64 m < 3 >, and each aeration tank 7a, 7b, 7c, 7d was set to 0.66 m < 3 >.

また、この際にαの取りうる値は、0.21≦α≦0.38となり、本実施例の担体充填率を0.23と設定した。   In this case, the possible value of α was 0.21 ≦ α ≦ 0.38, and the carrier filling rate of this example was set to 0.23.

また、本実施例の実験機における一番目の曝気槽7aのBOD容積負荷は4.5kg/m・日となり、n−hex.除去率は1.67kg/m・日となった。 Further, the BOD volumetric load of the first aeration tank 7a in the experimental machine of this example is 4.5 kg / m 3 · day, and n-hex. The removal rate was 1.67 kg / m 3 · day.

このように設定した実験機における、本稼動からの各運転日数毎の処理前後の実測値を表1に示す。なお、実験機の運転に際しては、徐々に負荷を加えて馴致していくので、100%の負荷で運転を開始した状態を本稼動としている。   Table 1 shows the measured values before and after the process for each operation day from the actual operation in the experimental machine set as described above. In addition, since the load is gradually applied during the operation of the experimental machine, the state where the operation is started at a load of 100% is set as the actual operation.

Figure 2010137149
Figure 2010137149

表1に示すように、本稼動からの運転日数が0日、8日、17日、22日の処理水のいずれも、処理前の排水原水と比較してn−hex.濃度、SS濃度、BOD濃度がそれぞれ大幅に低減されている。すなわち、n−hex.濃度が300mg/Lを超える高濃度油脂含有排水であっても問題なく処理でき、良好な水質を得ることができる。   As shown in Table 1, all of the treated water whose operating days from the actual operation are 0 days, 8 days, 17 days, and 22 days are compared with the raw water before the treatment. The concentration, SS concentration, and BOD concentration are greatly reduced. That is, n-hex. Even high-concentration fat and oil-containing wastewater having a concentration exceeding 300 mg / L can be treated without problems, and good water quality can be obtained.

なお、この結果に基づいて、本実施例における汚泥変換率を求める。
汚泥変換率=期間中の汚泥増量分/全BOD量=(ΔMLSS×V)/(排水原水の流入量×稼動日数×平均BOD)=0.062
In addition, based on this result, the sludge conversion rate in a present Example is calculated | required.
Sludge conversion rate = amount of sludge increase during the period / total BOD amount = (ΔMLSS × V) / (inflow of raw wastewater × number of working days × average BOD) = 0.062

したがって、本実施例では、汚泥変換率を6%程度の低い水準に抑えることができ、産廃処理費の縮減にも大きな効果が得られる。   Therefore, in this embodiment, the sludge conversion rate can be suppressed to a low level of about 6%, and a great effect can be obtained in reducing industrial waste treatment costs.

本発明の一実施の形態に係る生物処理装置の構成を示す配管図である。It is a piping diagram which shows the structure of the biological treatment apparatus which concerns on one embodiment of this invention.

符号の説明Explanation of symbols

1 生物処理装置
7a 一番目の曝気槽
7b 二番目の曝気槽
7c 三番目の曝気槽
7d 四番目の曝気槽
17 担体
21 沈殿槽
24 返送手段
1 Biological treatment equipment
7a First aeration tank
7b Second aeration tank
7c Third aeration tank
7d Fourth aeration tank
17 Carrier
21 Settling tank
24 Return means

Claims (4)

ノルマルヘキサン抽出物質を含む高濃度油脂含有排水を、担体が充填され直列に接続した3または4槽の曝気槽に順次流入させ、これら各曝気槽にて順次曝気処理された排水を沈殿槽で処理水と汚泥とに分離し、この沈殿槽にて排水から分離された汚泥を前記曝気槽のうち最初に排水が流入する曝気槽に返送する高濃度油脂含有排水の生物処理方法であって、
前記各曝気槽全体の担体充填量を、担体1mあたりのノルマルヘキサン抽出物質除去量を示すノルマルヘキサン抽出物質除去率が1〜1.8kg/m・日となるように設定した
ことを特徴とする高濃度油脂含有排水の生物処理方法。
Wastewater containing high-concentration fats and oils containing normal hexane extract is sequentially introduced into 3 or 4 aeration tanks filled with a carrier and connected in series, and wastewater that has been aerated in each aeration tank is treated in a sedimentation tank. A biological treatment method for wastewater containing high-concentration fat that separates into water and sludge and returns the sludge separated from wastewater in this sedimentation tank to the aeration tank into which the wastewater flows first in the aeration tank,
Wherein the carrier filling amount of each entire aeration tank, n-hexane extractives removal rate showing a n-hexane extractives removal amount per carrier 1 m 3 was set to be 1~1.8kg / m 3 · day A biological treatment method for wastewater containing high-concentration fats.
4槽の曝気槽を備え、
最初に排水が流入する一番目の曝気槽のBOD容積負荷を3〜6kg/m・日とするとともにこの一番目の曝気槽のDOを1〜6mg/Lの範囲で処理し、
前記一番目の曝気槽から排水が流入する二番目の曝気槽のDOを1〜6mg/Lの範囲で処理し、
前記二番目の曝気槽から排水が流入する三番目の曝気槽のDOを2〜5mg/Lの範囲で処理し、
前記三番目の曝気槽から排水が流入する四番目の曝気槽のDOを2〜4mg/Lの範囲で処理する
ことを特徴とする請求項1記載の高濃度油脂含有排水の生物処理方法。
With 4 tanks,
First, the BOD volume load of the first aeration tank into which the wastewater flows is set to 3 to 6 kg / m 3 · day, and DO of this first aeration tank is processed in the range of 1 to 6 mg / L,
Treating DO of the second aeration tank into which waste water flows from the first aeration tank in a range of 1 to 6 mg / L;
Treating DO of the third aeration tank into which drainage flows from the second aeration tank in a range of 2 to 5 mg / L;
The biological treatment method for wastewater containing high-concentration fats and oils according to claim 1, wherein DO in the fourth aeration tank into which wastewater flows from the third aeration tank is treated in a range of 2 to 4 mg / L.
ノルマルヘキサン抽出物質を含む高濃度油脂含有排水の生物処理装置であって、
担体が充填され排水が順次流入される直列に接続した3または4槽の曝気槽と、
これら各曝気槽にて順次曝気処理された排水を処理水と汚泥とに分離する沈殿槽と、
この沈殿槽にて排水から分離された汚泥を前記曝気槽のうち最初に排水が流入する一番目の曝気槽に返送する返送手段とを備え、
前記各曝気槽全体の担体充填量は、担体1mあたりのノルマルヘキサン抽出物質除去量を示すノルマルヘキサン抽出物質除去率が1〜1.8kg/m・日となるように設定されている
ことを特徴とする高濃度油脂含有排水の生物処理装置。
A biological treatment apparatus for wastewater containing high-concentration fat containing normal hexane extract,
3 or 4 aeration tanks connected in series, filled with carrier and drained sequentially,
A settling tank that separates the wastewater that has been aerated in each aeration tank into treated water and sludge;
Returning means for returning the sludge separated from the wastewater in this settling tank to the first aeration tank into which the wastewater flows first among the aeration tanks,
Carrier loading of the entire each aeration tank, the n-hexane extractives removal rate showing a n-hexane extractives removal amount per carrier 1 m 3 is set to be 1~1.8kg / m 3 · day A biological treatment device for wastewater containing high-concentration fats and oils.
4槽の曝気槽を備え、
最初に排水が流入する一番目の曝気槽のBOD容積負荷を3〜6kg/m・日とするとともにこの一番目の曝気槽のDOを1〜6mg/Lの範囲で調整し、
前記一番目の曝気槽から排水が流入する二番目の曝気槽のDOを1〜6mg/Lの範囲で調整し、
前記二番目の曝気槽から排水が流入する三番目の曝気槽のDOを2〜5mg/Lの範囲で調整し、
前記三番目の曝気槽から排水が流入する四番目の曝気槽のDOを2〜4mg/Lの範囲で調整する
ことを特徴とする請求項3記載の高濃度油脂含有排水の生物処理装置。
With 4 tanks,
First, the BOD volume load of the first aeration tank into which the wastewater flows is set to 3 to 6 kg / m 3 · day, and the DO of the first aeration tank is adjusted within the range of 1 to 6 mg / L,
Adjust DO of the second aeration tank into which waste water flows from the first aeration tank in the range of 1 to 6 mg / L,
Adjust the DO of the third aeration tank into which waste water flows from the second aeration tank in the range of 2 to 5 mg / L,
The biological treatment apparatus for wastewater containing high-concentration oil and fat according to claim 3, wherein DO of the fourth aeration tank into which wastewater flows from the third aeration tank is adjusted in a range of 2 to 4 mg / L.
JP2008314767A 2008-12-10 2008-12-10 Biological treatment method and biological treatment equipment for wastewater containing high concentration fats and oils Active JP4875690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314767A JP4875690B2 (en) 2008-12-10 2008-12-10 Biological treatment method and biological treatment equipment for wastewater containing high concentration fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314767A JP4875690B2 (en) 2008-12-10 2008-12-10 Biological treatment method and biological treatment equipment for wastewater containing high concentration fats and oils

Publications (2)

Publication Number Publication Date
JP2010137149A true JP2010137149A (en) 2010-06-24
JP4875690B2 JP4875690B2 (en) 2012-02-15

Family

ID=42347753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314767A Active JP4875690B2 (en) 2008-12-10 2008-12-10 Biological treatment method and biological treatment equipment for wastewater containing high concentration fats and oils

Country Status (1)

Country Link
JP (1) JP4875690B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035234A (en) * 2010-08-11 2012-02-23 Inc Engineering Co Ltd Wastewater treatment apparatus and waste water treatment method
JP2014140795A (en) * 2013-01-22 2014-08-07 Nippon Steel & Sumikin Eco-Tech Corp Biological treatment method of high concentration oil-containing waste water
JP2014151227A (en) * 2013-02-05 2014-08-25 Nippon Steel & Sumikin Eco-Tech Corp Treatment method of organic effluent
JP2015071157A (en) * 2013-09-03 2015-04-16 三菱レイヨン株式会社 Animal and vegetable oils-containing wastewater treatment system
CN114195269A (en) * 2021-11-25 2022-03-18 柳州市净元生物科技有限公司 Method for ecologically treating high-concentration sewage by combining compound protease with bacillus subtilis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038959A (en) * 1973-08-13 1975-04-10
JPH09294996A (en) * 1996-05-07 1997-11-18 Ebara Corp Method and apparatus for treating organic waste water
JP2002177979A (en) * 2000-12-11 2002-06-25 Mitsubishi Kakoki Kaisha Ltd Waste water treatment equipment
JP2007061743A (en) * 2005-08-31 2007-03-15 Kurita Water Ind Ltd Method and apparatus for biologically treating organic waste water
JP2008142632A (en) * 2006-12-11 2008-06-26 Unitika Ltd Method for treating waste water biologically

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038959A (en) * 1973-08-13 1975-04-10
JPH09294996A (en) * 1996-05-07 1997-11-18 Ebara Corp Method and apparatus for treating organic waste water
JP2002177979A (en) * 2000-12-11 2002-06-25 Mitsubishi Kakoki Kaisha Ltd Waste water treatment equipment
JP2007061743A (en) * 2005-08-31 2007-03-15 Kurita Water Ind Ltd Method and apparatus for biologically treating organic waste water
JP2008142632A (en) * 2006-12-11 2008-06-26 Unitika Ltd Method for treating waste water biologically

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035234A (en) * 2010-08-11 2012-02-23 Inc Engineering Co Ltd Wastewater treatment apparatus and waste water treatment method
JP2014140795A (en) * 2013-01-22 2014-08-07 Nippon Steel & Sumikin Eco-Tech Corp Biological treatment method of high concentration oil-containing waste water
JP2014151227A (en) * 2013-02-05 2014-08-25 Nippon Steel & Sumikin Eco-Tech Corp Treatment method of organic effluent
JP2015071157A (en) * 2013-09-03 2015-04-16 三菱レイヨン株式会社 Animal and vegetable oils-containing wastewater treatment system
CN114195269A (en) * 2021-11-25 2022-03-18 柳州市净元生物科技有限公司 Method for ecologically treating high-concentration sewage by combining compound protease with bacillus subtilis
CN114195269B (en) * 2021-11-25 2023-12-12 柳州市净元生物科技有限公司 Method for ecologically treating high-concentration sewage by combining compound protease with bacillus subtilis

Also Published As

Publication number Publication date
JP4875690B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
EP3403996B1 (en) Granule-forming method and waste water treatment method
JP4875690B2 (en) Biological treatment method and biological treatment equipment for wastewater containing high concentration fats and oils
JP6497871B2 (en) Method and apparatus for treating oil-containing wastewater
JP5614872B2 (en) Organic wastewater treatment method and wastewater treatment equipment
JP2010046602A (en) Method of treating oil-containing waste water
JP6442856B2 (en) Biological treatment method and apparatus for organic wastewater
JP2007275847A (en) Wastewater treating apparatus and wastewater treating method
JP6216253B2 (en) Method and apparatus for treating oil-containing wastewater
JP5811563B2 (en) Method and apparatus for anaerobic treatment of kraft pulp drainage
JP2006218344A (en) Method and apparatus for treating water containing fats and fatty oils, and method and apparatus for treating organic waste material
JP6136699B2 (en) Biological treatment method for organic wastewater
JP2007196207A (en) Wastewater treatment apparatus and wastewater treatment method
CN109661376B (en) Biological treatment method for organic wastewater
JP5925023B2 (en) Sludge wastewater treatment facility and treatment method
JP2005000845A (en) Apparatus and method for treating oil and fat in oil-containing waste water
JP5270247B2 (en) Wastewater treatment facility at food processing plant
JP2015123437A (en) Treatment method and treatment device for grease-containing waste water
JP4796852B2 (en) Wastewater treatment equipment
JP2003103287A (en) Treatment apparatus for oils and fats-containing wastewater and treatment method using the same
JP2013081945A (en) Waste water processor and waste water processing method
JP2007222830A (en) Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
WO2020021752A1 (en) Food waste treatment device
JP4864258B2 (en) Organic wastewater treatment equipment
JP6403504B2 (en) Method and apparatus for treating organic wastewater containing fats and oils
JP6366638B2 (en) Wastewater treatment equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4875690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150