JP2008142632A - Method for treating waste water biologically - Google Patents

Method for treating waste water biologically Download PDF

Info

Publication number
JP2008142632A
JP2008142632A JP2006333266A JP2006333266A JP2008142632A JP 2008142632 A JP2008142632 A JP 2008142632A JP 2006333266 A JP2006333266 A JP 2006333266A JP 2006333266 A JP2006333266 A JP 2006333266A JP 2008142632 A JP2008142632 A JP 2008142632A
Authority
JP
Japan
Prior art keywords
tank
carrier
sludge
bod
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006333266A
Other languages
Japanese (ja)
Inventor
Yuji Kano
裕士 加納
Takemichi Chigusa
健理 千種
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2006333266A priority Critical patent/JP2008142632A/en
Publication of JP2008142632A publication Critical patent/JP2008142632A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating waste water biologically which can allow an aeration tank to be miniaturized and in which BOD and extractive substances in normal-hexane can be treated at a high speed and the amount of the waste sludge to be generated is made small. <P>SOLUTION: The method for treating waste water biologically comprises the steps of: making raw waste water flow in a plurality of carrier-used aeration tanks connected in series to treat the raw waste water; finally treating the water treated in the plurality of aeration tanks in an activated sludge tank; and separating the finally-treated water in a precipitation tank while returning the return sludge from the precipitation tank to the activated sludge tank without returning the return sludge to the plurality of aeration tanks. The volume load of BOD in the activated sludge tank is ≤0.8 kg/m<SP>3</SP>-day. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、小さなスペースで余剰汚泥の発生量を少なくする排水の処理方法に関するものであり、特に排水中にノルマルヘキサン抽出物質(以下、n-Hexと記す)を高濃度に含む排水に好適なものである。   The present invention relates to a wastewater treatment method for reducing the amount of excess sludge generated in a small space, and is particularly suitable for wastewater containing a normal hexane extract (hereinafter referred to as n-Hex) in a high concentration in the wastewater. Is.

従来、生物学的な排水処理として、活性汚泥法が多く用いられている。活性汚泥法は、曝気槽と沈殿槽で形成し、沈殿槽で分離した汚泥の一部を曝気槽に返送、および余剰汚泥として引き抜き、BOD容積負荷が0.8kg/m・日〜1.5kg/m・日程度の条件で定常的な運転を行うことができる。 Conventionally, the activated sludge method is often used as biological wastewater treatment. In the activated sludge method, an aeration tank and a sedimentation tank are formed, and a part of the sludge separated in the precipitation tank is returned to the aeration tank and extracted as surplus sludge, and the BOD volumetric load is 0.8 kg / m 3 · day to 1. Steady operation can be performed under conditions of about 5 kg / m 3 · day.

一方で、活性汚泥を高濃度に保持できる担体の開発が進んでおり、担体法では、3〜5kg/m・日という高いBOD容積負荷での運転が可能であり、曝気槽を小型化することができる。 On the other hand, the development of a carrier capable of holding activated sludge at a high concentration is progressing. With the carrier method, operation with a high BOD volume load of 3 to 5 kg / m 3 · day is possible, and the aeration tank is downsized. be able to.

また最近、担体法の最適化を考え、前段の高濃度部分を担体法で処理し、後段の希薄部分を活性汚泥で処理するといった組み合わせの処理方法が提案されている(例えば、特許文献1参照)。
特開2001−145894号公報
Recently, considering the optimization of the carrier method, a combined treatment method has been proposed in which the high-concentration part in the former stage is treated with the carrier method and the diluted part in the latter stage is treated with activated sludge (see, for example, Patent Document 1). ).
JP 2001-145894 A

しかしながら、活性汚泥法では、BOD容積負荷が0.8〜1.5kg/m・日程度が限度であり、高濃度の排水を対象とした場合、大きな曝気槽が必要となる。これに対し、担体法では、高負荷で運転することが可能であり、曝気槽を小型化することができる。その反面、担体法で処理することにより微細な汚泥が生じ、従来の沈殿槽では容易に沈降しないといった問題がる。また、n-Hexの処理において、高負荷処理では担体の流動に問題を起こす場合もあった。 However, in the activated sludge method, the BOD volume load is limited to about 0.8 to 1.5 kg / m 3 · day, and a large aeration tank is required when high concentration drainage is targeted. On the other hand, in the carrier method, it is possible to operate with a high load, and the aeration tank can be miniaturized. On the other hand, there is a problem in that fine sludge is produced by the treatment by the carrier method, and the conventional sedimentation tank does not settle easily. In addition, in the treatment of n-Hex, a high load treatment sometimes causes a problem in the carrier flow.

さらに担体法を詳細に説明すると、担体は活性汚泥のようなマイクロフロックではなく、3〜10mmの大きさがある媒体に微生物が付着しており、比表面積の大きさと基質の浸透が処理性能に大きく影響する。比表面積が大きくなる小型の担体は、処理性能を比較的高くすることができるが、処理液と担体を分離する際のスクリーンの目幅を小さくする必要があるため、分離等の点で取扱いが困難となる。そのため、それぞれの担体材料、加工法により最適な大きさとして3〜10mmのものが用いられている。   Further, the carrier method will be described in detail. The carrier is not a micro floc such as activated sludge, but microorganisms are attached to a medium having a size of 3 to 10 mm. A big influence. A small carrier with a large specific surface area can have a relatively high processing performance, but it is necessary to reduce the screen width when separating the treatment liquid and the carrier. It becomes difficult. For this reason, a material having an optimum size of 3 to 10 mm is used depending on each carrier material and processing method.

また、担体の大きさが活性汚泥のフロックよりも大きいため、担体に多くの汚泥が付着していても、処理されることにより基質が希薄化すると、基質の拡散が律速になり、処理速度が低下する。つまり、担体法では基質の拡散律速が生じることにより、濃度に依存しない活性汚泥の0次反応に対し、濃度に左右される一次反応となる。   In addition, since the size of the carrier is larger than the floc of activated sludge, even if a large amount of sludge is attached to the carrier, if the substrate is diluted by the treatment, the diffusion of the substrate becomes rate limiting, and the treatment speed is increased. descend. In other words, in the carrier method, the diffusion rate of the substrate is generated, so that it becomes a primary reaction that depends on the concentration with respect to the zero-order reaction of activated sludge that does not depend on the concentration.

上記の担体法と活性汚泥を組み合わせる方法は、担体法の欠点である希薄化した基質においても処理することができ、また、活性汚泥処理を後段に配置することにより、担体から剥離する微細汚泥を共沈させることもできる。しかしながら、担体法と活性汚泥を組み合わせた方法においても、余剰汚泥が除去BODに対し30〜50%発生し、発生した余剰汚泥を脱水して処分する必要があった。   The above-mentioned method of combining the carrier method and activated sludge can be processed even on a diluted substrate, which is a disadvantage of the carrier method, and by arranging the activated sludge treatment in the subsequent stage, fine sludge that is peeled off from the carrier can be removed. It can be co-precipitated. However, even in the method combining the carrier method and the activated sludge, surplus sludge is generated 30 to 50% of the removed BOD, and the generated surplus sludge has to be dehydrated and disposed of.

本発明は、排水処理方法において、生物反応槽を小型化することが可能で、余剰汚泥の生成量を少なくすることができる方法を提供することを目的とする。   An object of the present invention is to provide a method capable of reducing the size of a biological reaction tank and reducing the amount of excess sludge produced in a wastewater treatment method.

本発明者らは、上記の課題を解決するため鋭意検討した結果、前段の担体法で処理する曝気槽を複数直列に配することで汚泥発生量が少なく、処理精度も向上させることを見出し本発明に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that by arranging a plurality of aeration tanks to be treated in the preceding carrier method in series, the amount of sludge generation is reduced and the treatment accuracy is improved. The invention has been reached.

すなわち、本発明は、ノルマルヘキサン抽出物質を含む排水を、担体を含んだ曝気槽に流入して処理し、次いで活性汚泥槽に流入して処理した後、沈殿槽で汚泥と処理水を分離する処理方法において、直列に配置した複数の曝気槽に排水を順次流入して処理するとともに、沈殿槽で分離した汚泥を活性汚泥槽に返送することを特徴とする排水の生物処理方法を要旨とするものであり、好ましくは、担体が、ゲル状担体、プラスチック担体及び繊維担体からなる群から選ばれる1種類以上の担体であるものであり、また、好ましくは、活性汚泥槽に流入する際のBOD容積負荷量を0.8kg/m・日以下となるように調整しながら処理を行なう前記した排水の生物処理方法である。 That is, according to the present invention, wastewater containing normal hexane extract material is treated by flowing into an aeration tank containing a carrier, and then treated by flowing into an activated sludge tank, and then sludge and treated water are separated in a sedimentation tank. A gist of the biological treatment method of wastewater is characterized in that wastewater is sequentially introduced into a plurality of aeration tanks arranged in series and treated, and sludge separated in the settling tank is returned to the activated sludge tank. Preferably, the carrier is one or more types of carriers selected from the group consisting of a gel carrier, a plastic carrier and a fiber carrier, and preferably BOD when flowing into the activated sludge tank In the biological treatment method for waste water described above, the treatment is performed while adjusting the volumetric load amount to 0.8 kg / m 3 · day or less.

本発明によれば、余剰汚泥発生量は0〜20%になり、従来の活性汚泥法の余剰汚泥発生量30〜40%に対して少なくなる。また、排水処理設備の設置面積も3分の1程度にコンパクトにすることができ、イニシャルコストも活性汚泥法に比べ70〜80%と廉価にできる。   According to the present invention, the surplus sludge generation amount is 0 to 20%, which is smaller than the surplus sludge generation amount 30 to 40% of the conventional activated sludge method. Moreover, the installation area of the wastewater treatment facility can be reduced to about one third, and the initial cost can be reduced to 70 to 80% as compared with the activated sludge method.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の処理方法は、まず、担体を含んだ曝気槽に排水原水を流入させる。この際、複数の曝気槽を直列に配置し順次流入させることが必要である。   In the treatment method of the present invention, first, raw waste water is caused to flow into an aeration tank containing a carrier. At this time, it is necessary to arrange a plurality of aeration tanks in series and allow them to flow sequentially.

本発明では、担体法の除去特性である一次反応の考え方を利用し、担体を流動させる槽を細かく分割して、各水槽内のBOD濃度に濃度格差を設けることにより、担体への拡散速度を速め、除去速度を向上させるものである。つまり、高濃度BODの排水を、直列に配置した担体槽で処理することにより、単槽の担体法で処理するよりも速くBODを除去することが可能となる。この複数に分けた直列配置の槽構成を段数と称し、例えば、3槽の場合を3段処理という。   In the present invention, by utilizing the concept of the primary reaction that is the removal characteristic of the carrier method, the tank in which the carrier is made to flow is finely divided, and the difference in concentration in the BOD concentration in each water tank is provided, thereby increasing the diffusion rate to the carrier. It speeds up and improves the removal speed. That is, BOD can be removed faster by treating wastewater of high concentration BOD with a carrier tank arranged in series than when treating with a single tank carrier method. The tank configuration arranged in series divided into a plurality is referred to as the number of stages. For example, the case of three tanks is referred to as three-stage processing.

また、多段処理を行うことにより、BOD処理が高速化されるだけでなく、汚泥の発生量も少なくなる。担体処理の後段に配置した活性汚泥処理により、低いBOD負荷で運転を行えば、さらに汚泥の自己分解が促進される。原水の性状によれば、余剰汚泥がほとんど発生しない場合もあるが、実績として10〜20%の余剰汚泥転換率に抑えることができる。余剰汚泥発転換率は、原水、処理水のSSの差とBODの差の比率として表され、活性汚泥処理では30〜40%台である。   Further, by performing multistage processing, not only the BOD processing is speeded up, but also the amount of sludge generated is reduced. If the operation is performed with a low BOD load by the activated sludge treatment disposed at the subsequent stage of the carrier treatment, the self-decomposition of the sludge is further promoted. According to the properties of the raw water, there is a case where almost no excess sludge is generated, but as a result, it can be suppressed to a 10-20% excess sludge conversion rate. The excess sludge conversion rate is expressed as a ratio of the difference between the SS of raw water and treated water and the difference of BOD, and is about 30 to 40% in the activated sludge treatment.

本発明における曝気槽において、担体の一次反応によるBODの分解特性を利用し、曝気槽を最小化するためには、担体を固定して排水のみをプラグフローで流す、固定床的な処理方法が好ましいが、担体が流動している状態では困難である。そこで、水槽を分割し、各水槽にスクリーンを設けることで、担体が区画された水槽間を行き来することを防止することにより、流動床と固定床の特徴を合わせた処理特性を持たせ、一次反応に近づけた反応槽を作ることができる。   In the aeration tank according to the present invention, in order to minimize the aeration tank by utilizing the decomposition characteristics of BOD by the primary reaction of the carrier, there is a fixed bed-like treatment method in which the carrier is fixed and only the waste water flows through the plug flow. Although preferable, it is difficult when the carrier is flowing. Therefore, by dividing the aquarium and providing a screen for each aquarium, by preventing the carrier from going back and forth between the aquariums, the processing characteristics that combine the characteristics of the fluidized bed and the fixed bed are given, and the primary A reaction tank close to the reaction can be made.

n-Hex濃度が300mg/Lより多く含有する排水は、担体に油分が蓄積することにより流動を困難にする場合があるものの、n-Hex濃度が300mg/L以下においては、BOD負荷により水槽の容量、段数を決定する。汚泥の生成量は、排水の種類、SS・BOD負荷により異なるが、汚泥転換率は概ね10〜18%程度である。   Drainage containing more than 300 mg / L of n-Hex concentration may make flow difficult due to accumulation of oil in the carrier. However, when n-Hex concentration is 300 mg / L or less, Determine the capacity and number of stages. The amount of sludge produced varies depending on the type of drainage and the SS / BOD load, but the sludge conversion rate is approximately 10 to 18%.

曝気槽の容量としては、排水の種類、原水BOD濃度およびBOD負荷により異なるが、易分解性の食品排水の場合、溶解性BOD(以下、s−BODと記す)濃度3000mg/L以上の排水であれば、第1段目の曝気槽をBOD容積負荷10〜15kg/m・日として容量を決定できる。 The capacity of the aeration tank varies depending on the type of wastewater, the raw water BOD concentration and the BOD load, but in the case of easily degradable food wastewater, wastewater with a soluble BOD (hereinafter referred to as s-BOD) concentration of 3000 mg / L or more If there is, the capacity can be determined with the first stage aeration tank as a BOD volumetric load of 10-15 kg / m 3 · day.

BOD容積負荷を高くするほど曝気槽を小型化でき、イニシャルコストを低廉化することができる。このBOD容積負荷を高める工夫が、本発明の曝気槽を分割し直列に配置する方法であり、原水のBOD濃度が高く、かつ、s−BODの比率が高いほど拡散速度が速くなり、小型化ができる。   As the BOD volumetric load is increased, the aeration tank can be reduced in size and the initial cost can be reduced. The idea of increasing the BOD volumetric load is a method of dividing the aeration tank of the present invention and arranging them in series. The higher the BOD concentration of raw water and the higher the ratio of s-BOD, the faster the diffusion rate and the smaller the size. Can do.

曝気槽における曝気は、BODの分解に必要な酸素を供給するものである。供給する酸素量が不足した場合、担体内部では酸素が制限因子となり、BODの分解が抑制される。また、担体内部でBODの腐敗が進行すればpHが低下し、BOD分解速度が低下する可能性がある。酸素供給量(律速)とs−BOD濃度のバランスを考慮した場合、大きさ8mmφ程度で、かつ、多孔質で基質の出入りが比較容易な担体は、BOD濃度5000mg/L程度が限界となる。これ以上の濃厚な排水については、希薄な処理水で希釈し処理を行えば良く、また、酸素曝気においてはこの限りではなく、より高い排水にも適用することができる。   Aeration in the aeration tank supplies oxygen necessary for decomposition of BOD. When the amount of oxygen to be supplied is insufficient, oxygen becomes a limiting factor inside the carrier, and the decomposition of BOD is suppressed. In addition, if the decay of BOD progresses inside the carrier, the pH may decrease and the BOD decomposition rate may decrease. In consideration of the balance between the oxygen supply amount (rate-limiting) and the s-BOD concentration, the limit is about BOD concentration of about 5000 mg / L for a carrier having a size of about 8 mmφ and being easily porous. Thick drainage more than this may be diluted with dilute treated water and treated, and oxygen aeration is not limited to this and can be applied to higher drainage.

流動担体としては、公知の各種の担体を使用することができるが、ゲル状担体、プラスチック担体および繊維担体から選ばれた1種類の担体、あるいはこれらの担体2種類以上の組み合わせとしても良い。特に、空隙率85%を有し、汚泥との付着性が良好であり、汚泥保持量が多い繊維担体は、槽容積の5〜30%の範囲で利用することが処理性および流動性の観点から良く、さらには、10〜20%の範囲であることが好ましい。   Various known carriers can be used as the fluid carrier, but one kind of carrier selected from a gel carrier, a plastic carrier and a fiber carrier, or a combination of two or more of these carriers may be used. In particular, a fiber carrier having a porosity of 85%, good adhesion to sludge, and a large amount of sludge retained can be used in a range of 5 to 30% of the tank volume from the viewpoint of processability and fluidity. It is preferable that it is in the range of 10 to 20%.

本発明においては、上記担体法により処理された水を、活性汚泥法により処理を行う。   In the present invention, the water treated by the carrier method is treated by the activated sludge method.

担体を用いた曝気槽で生成した微細汚泥がフロックに取り込まれ、沈降性を高める効果を持つ。本発明は生成する余剰汚泥量を減らすことを目的としており、生成汚泥量を減らすためには、担体を用いた曝気槽の微生物を含んだ排水のBOD負荷として0.8kg/m・日以下で水槽を設計することである。活性汚泥槽があまりにも大きくなる場合は、複数に分け、並列に配置すればよい。つまり、沈殿槽に最も近い活性汚泥槽では過剰曝気により、フロックが極端に微細化しないように曝気量を調整する必要があるため、制御が煩雑となる直列構造より制御が単純な並列構造が優れる。 Fine sludge generated in the aeration tank using the carrier is taken into the floc and has the effect of improving sedimentation. The purpose of the present invention is to reduce the amount of excess sludge to be generated. To reduce the amount of generated sludge, the BOD load of the wastewater containing microorganisms in the aeration tank using the carrier is 0.8 kg / m 3 · day or less. Is to design the aquarium. If the activated sludge tank becomes too large, it may be divided into a plurality of pieces and arranged in parallel. In other words, in the activated sludge tank closest to the sedimentation tank, it is necessary to adjust the amount of aeration so that flocs do not become extremely fine due to excessive aeration, so the parallel structure with simple control is superior to the serial structure where control is complicated .

本発明においては、活性汚泥槽により処理された水を沈殿槽に導入し、汚泥を沈降させることで分離し処理水を得る。この際、沈殿槽で沈降した汚泥の全量ないしは80〜90%を活性汚泥槽に分配して返送する。   In this invention, the water processed by the activated sludge tank is introduce | transduced into a sedimentation tank, and it isolate | separates by settling sludge and obtains treated water. At this time, the entire amount of sludge settled in the settling tank or 80 to 90% is distributed and returned to the activated sludge tank.

本発明の処理方法が適用できる排水としては、n-Hex濃度を300mg/L以下のものであればよい。300mg/Lを超えると、担体の流動に障害を及ぼすことがある。300mg/L以下であれば、BOD容積負荷の設計において適宜、各段により処理が行われる。   The wastewater to which the treatment method of the present invention can be applied is only required to have an n-Hex concentration of 300 mg / L or less. If it exceeds 300 mg / L, the flow of the carrier may be impaired. If it is 300 mg / L or less, the process is appropriately performed in each stage in designing the BOD volumetric load.

以下、図面を用いて本発明をさらに説明する。   Hereinafter, the present invention will be further described with reference to the drawings.

図1は、曝気槽を直列3段とし、曝気槽の後段に活性汚泥槽を配設したフロー模式図である。第1曝気槽1、第2曝気槽2及び第3曝気槽3は、直列3段に区画したものであり、各曝気槽の上部にスクリーン7を設け、各曝気槽で処理された水は担体と分離され処理水が次の槽へ流入するようにする。   FIG. 1 is a schematic flow diagram in which aeration tanks are arranged in three stages in series, and an activated sludge tank is disposed at the subsequent stage of the aeration tank. The first aeration tank 1, the second aeration tank 2 and the third aeration tank 3 are divided in three stages in series, and a screen 7 is provided in the upper part of each aeration tank, and the water treated in each aeration tank is a carrier. So that the treated water flows into the next tank.

本発明における担体を用いた曝気槽は、排水の種類、原水BOD濃度により異なるが、易分解性の食品排水の分野では、s−BOD濃度3000mg/L以上の原水であれば、第1曝気槽1のBOD容積負荷10〜15kg/m・日として容量を決定できる。第1曝気槽1のBOD除去率は経験的に40〜50%程度が得られる。第2曝気槽2の流入原水はBOD濃度が1500〜1800mg/Lとなり、BOD負荷として5〜7kg/m・日の処理において、50〜60%の除去率で設計できる。このとき、第2曝気槽2の処理水BODは720〜750mg/Lになる。第3曝気槽3はBOD負荷3〜4kg/m・日の設計で、BOD除去率70〜75%が得られる。第3曝気槽3の処理水BOD濃度は180〜220mg/Lになり、担体を流動させた曝気槽の直列3段処理によって、BOD濃度は300mg/L以下まで処理することができる。 The aeration tank using the carrier in the present invention varies depending on the type of waste water and the raw water BOD concentration. In the field of easily degradable food waste water, if it is raw water having an s-BOD concentration of 3000 mg / L or more, the first aeration tank The capacity can be determined as 1 BOD volumetric load of 10-15 kg / m 3 · day. The BOD removal rate of the first aeration tank 1 is empirically obtained to be about 40 to 50%. The inflow raw water of the second aeration tank 2 has a BOD concentration of 1500 to 1800 mg / L, and can be designed with a removal rate of 50 to 60% in a treatment of 5 to 7 kg / m 3 · day as a BOD load. At this time, the treated water BOD of the second aeration tank 2 is 720 to 750 mg / L. The third aeration tank 3 has a BOD load of 3 to 4 kg / m 3 · day, and a BOD removal rate of 70 to 75% is obtained. The treatment water BOD concentration in the third aeration tank 3 is 180 to 220 mg / L, and the BOD concentration can be processed to 300 mg / L or less by serial three-stage treatment of the aeration tank in which the carrier is flowed.

沈殿槽5で沈降した汚泥9は、排水の種類により全量または、80〜90%を活性汚泥槽4へ分配、返送する。   The sludge 9 settled in the settling tank 5 distributes and returns the entire amount or 80 to 90% to the activated sludge tank 4 depending on the type of drainage.

以下実施例により、本発明を詳細に説明する。
実施例1
容量が200Lの原水調整槽、容量が100Lの担体を用いた曝気槽が3槽と、容量が200Lの活性汚泥槽、および200Lの沈殿槽からなる排水処理実験装置により、BOD 2000mg/L、SS 350mg/L、n-Hex 200mg/Lの食品排水を600L/日の流量で連続処理した。担体を用いた曝気槽には繊維担体を水槽容量に対してかさ密度で20%充填した。
Hereinafter, the present invention will be described in detail by way of examples.
Example 1
BOD 2000 mg / L, SS by a wastewater treatment experiment apparatus comprising a 200 L raw water adjustment tank, 3 aeration tanks using a 100 L carrier, 200 L activated sludge tank, and 200 L sedimentation tank Food wastewater of 350 mg / L and n-Hex 200 mg / L was continuously processed at a flow rate of 600 L / day. The aeration tank using the carrier was filled with a fiber carrier with a bulk density of 20% with respect to the water tank capacity.

この実施例1におけるフローを図1に模式的に示した。本発明に基づき、担体を用いた曝気槽における1槽目のBOD容積負荷が12kg/m・日、2槽目が7.2kg/m・日、3槽目が4.1kg/m・日となり、活性汚泥槽のBOD負荷が0.66kg/m・日で運転を行った。汚泥の返送は、原水量と同じ600L/日で行った。その結果、担体を用いた第3曝気槽3から流出する混合液のSSは180mg/Lに減少した。活性汚泥槽4はBOD負荷0.66kg/m・日、BOD-SS負荷0.17kg/kg・日の運転により、さらにSSは減少し、処理水として15mg/L漏れる程度(汚泥量0.009kg/日)となった。また、n-Hexは担体を用いた第1曝気槽1で40mg/Lとなり、第2曝気槽2で3mg/Lとなった。 The flow in Example 1 is schematically shown in FIG. Based on the present invention, the BOD volumetric load of the first tank in the aeration tank using the carrier is 12 kg / m 3 · day, the second tank is 7.2 kg / m 3 · day, and the third tank is 4.1 kg / m 3.・ It became day, and the operation was performed with the BOD load of the activated sludge tank being 0.66 kg / m 3 · day. The sludge was returned at 600 L / day, the same as the amount of raw water. As a result, the SS of the mixed solution flowing out from the third aeration tank 3 using the carrier was reduced to 180 mg / L. The activated sludge tank 4 has a BOD load of 0.66 kg / m 3 · day and a BOD-SS load of 0.17 kg / kg · day, so that the SS further decreases, and 15 mg / L of treated water leaks (sludge amount of 0. 009 kg / day). Further, n-Hex was 40 mg / L in the first aeration tank 1 using the carrier, and 3 mg / L in the second aeration tank 2.

比較例1
容量が200Lの原水調整槽、容量が600Lの担体を流動させた曝気槽1が1槽と容量が200Lの活性汚泥槽4および200Lの沈殿槽5からなる排水処理実験装置により、実施例1と同様の食品排水を600L/日の流量で連続処理した。担体を用いた曝気槽1には繊維担体を水槽容量に対してかさ体積で20%充填した。
Comparative Example 1
A wastewater treatment experiment apparatus comprising a raw water adjusting tank having a capacity of 200 L, an aeration tank 1 in which a carrier having a capacity of 600 L was flowed, an activated sludge tank 4 having a capacity of 200 L, and a sedimentation tank 5 having a capacity of 200 L, and Example 1 The same food wastewater was continuously treated at a flow rate of 600 L / day. The aeration tank 1 using the carrier was filled with a fiber carrier in a bulk volume of 20% with respect to the water tank capacity.

この比較例1におけるフローを図2に模式的に示した。担体を用いた曝気槽1におけるBOD負荷は2kg/m・日であった。活性汚泥槽4のBOD容積負荷は0.36kg/m・日で運転を行った。汚泥の返送は原水量と同じ600L/日で行った。 The flow in Comparative Example 1 is schematically shown in FIG. The BOD load in the aeration tank 1 using the carrier was 2 kg / m 3 · day. The activated sludge tank 4 was operated at a BOD volume load of 0.36 kg / m 3 · day. The sludge was returned at 600 L / day, the same as the amount of raw water.

その結果、担体流動槽から流出するSSは240mg/Lとなり、原水SS 350mg/Lから若干減少した。活性汚泥はBOD負荷が0.36kg/m・日、BOD-SS負荷が0.12kg/kg・日の運転となり、さらにSSが減少し、処理水として20mg/L漏れる程度(0.012kg/日)となり、余剰汚泥としての汚泥の引き抜きはなかった。n-Hexは担体を用いた曝気槽1で4mg/L、活性汚泥で0.7mg/Lとなった。 As a result, SS flowing out from the carrier fluidized tank was 240 mg / L, which was slightly reduced from 350 mg / L of raw water SS. Activated sludge is operated with a BOD load of 0.36 kg / m 3 · day, a BOD-SS load of 0.12 kg / kg · day, SS is further reduced, and 20 mg / L leaks as treated water (0.012 kg / day). The sludge was not extracted as surplus sludge. n-Hex was 4 mg / L in the aeration tank 1 using the carrier and 0.7 mg / L in the activated sludge.

比較例2
容量が200Lの原水調整槽、容量が1000Lの活性汚泥槽4、200Lの沈殿槽5からなる排水処理実験装置により、実施例1と同様の食品排水を600L/日の流量で連続処理した。汚泥の返送は原水量と同じ600L/日で行った。この比較例2におけるフローを図3に模式的に示した。活性汚泥槽のBOD負荷は1.2kg/m・日、BOD-SS負荷が0.3kg/kg・日であり、処理水中に12mg/LのSSが流出し、余剰汚泥として0.57kg/日の汚泥が発生した。n-Hexは5mg/Lまで処理された。
Comparative Example 2
Food wastewater similar to that of Example 1 was continuously processed at a flow rate of 600 L / day by a wastewater treatment experimental apparatus including a 200 L raw water adjusting tank, a 1000 L activated sludge tank 4, and a 200 L sedimentation tank 5. The sludge was returned at 600 L / day, the same as the amount of raw water. The flow in Comparative Example 2 is schematically shown in FIG. The activated sludge tank has a BOD load of 1.2 kg / m 3 · day, a BOD-SS load of 0.3 kg / kg · day, and 12 mg / L of SS flows into the treated water, resulting in an excess sludge of 0.57 kg / day. Sun sludge was generated. n-Hex was processed to 5 mg / L.

比較例3
容量が200Lの原水調整槽、容量が500Lの活性汚泥槽、200Lの沈殿槽からなる排水処理実験装置により、実施例1と同様の食品排水を600L/日の流量で連続処理した。槽容量としては実施例1の担体を流動させた曝気槽と活性汚泥槽の合計と同等とした。汚泥の返送は原水量と同じ600L/日で行った。この比較例3におけるフローは比較例2と同じである。活性汚泥槽のBOD負荷は2.4kg/m・日、BOD-SS負荷が0.6kg/kg・日であり、処理水中に20mg/LのSSが流出し、余剰汚泥として0.69kg/日の汚泥が発生した。n-Hexは15mg/Lまで処理された。
Comparative Example 3
Food wastewater similar to that of Example 1 was continuously processed at a flow rate of 600 L / day using a wastewater treatment experimental apparatus including a 200 L raw water adjusting tank, a 500 L activated sludge tank, and a 200 L sedimentation tank. The tank capacity was the same as the sum of the aeration tank and the activated sludge tank in which the carrier of Example 1 was flowed. The sludge was returned at 600 L / day, the same as the amount of raw water. The flow in Comparative Example 3 is the same as that in Comparative Example 2. The activated sludge tank has a BOD load of 2.4 kg / m 3 · day, a BOD-SS load of 0.6 kg / kg · day, 20 mg / L of SS flows into the treated water, and surplus sludge is 0.69 kg / Sun sludge was generated. n-Hex was processed to 15 mg / L.

実施例2
容量が200Lの原水調整槽、容量が100Lの担体を用いた曝気槽が3槽と容量が150Lの活性汚泥槽および200Lの沈殿槽からなる排水処理実験装置により、実施例1と同様の食品排水を600L/日の流量で連続処理した。担体を用いた曝気槽1には繊維担体を水槽容量に対してかさ体積で20%充填した。
Example 2
Food wastewater similar to that in Example 1 by using a wastewater treatment experiment apparatus comprising a raw water adjustment tank having a capacity of 200 L, three aeration tanks using a carrier having a capacity of 100 L, an activated sludge tank having a capacity of 150 L, and a 200 L sedimentation tank. Was continuously processed at a flow rate of 600 L / day. The aeration tank 1 using the carrier was filled with a fiber carrier in a bulk volume of 20% with respect to the water tank capacity.

担体を用いた第1曝気槽のBOD容積負荷が12kg/m・日、第2曝気槽2が7.2kg/m・日、第3曝気槽3が4.1kg/m・日となり、活性汚泥槽のBOD負荷が0.88kg/m・日で運転を行った。返送は原水量と同じ600L/日で行った。その結果、担体を用いた第3曝気槽3から流出する混合液のSSは180mg/Lと原水SSより減少している。活性汚泥槽4はBOD負荷0.88kg/m・日、BOD-SS負荷0.22kg/kg・日の運転となり、処理水として15mg/L漏れ(汚泥量0.009kg/日)、余剰汚泥として0.06kg/日の汚泥が発生した。また、n-Hexは担体を用いた第1曝気槽1で40mg/Lとなり、第2曝気槽で5mg/Lとなった。 The BOD volume load of the first aeration tank using the carrier is 12 kg / m 3 · day, the second aeration tank 2 is 7.2 kg / m 3 · day, and the third aeration tank 3 is 4.1 kg / m 3 · day. The activated sludge tank was operated at a BOD load of 0.88 kg / m 3 · day. The return was performed at 600 L / day, the same as the amount of raw water. As a result, the SS of the mixed solution flowing out from the third aeration tank 3 using the carrier is 180 mg / L, which is lower than the raw water SS. The activated sludge tank 4 is operated with a BOD load of 0.88 kg / m 3 · day, a BOD-SS load of 0.22 kg / kg · day, 15 mg / L leaked as treated water (sludge amount 0.009 kg / day), surplus sludge 0.06 kg / day of sludge was generated. Further, n-Hex was 40 mg / L in the first aeration tank 1 using the carrier, and 5 mg / L in the second aeration tank.

各実施例・比較例の水槽容量と汚泥発生量、およびn-Hexの処理結果のまとめを、表1に示す。   Table 1 shows a summary of the water tank capacity, sludge generation amount, and n-Hex treatment results of each Example / Comparative Example.

実施例1は担体を用いた第1曝気槽でBODが40〜50%以上の除去率が得られるように、また、原水BOD濃度2000mg/Lの原水に対して300mg/L以下になるように3段処理とし、その後、活性汚泥槽4にてBOD負荷で0.8kg/m・日以下、BOD-SS負荷で0.2kg/kg・日以下の設計で行ったものが、最も汚泥発生量が少なく、コンパクトな処理装置となり、n-Hexも3mg/Lと比較的少なくなった。 In Example 1, the removal rate of 40 to 50% or more of BOD is obtained in the first aeration tank using a carrier, and 300 mg / L or less for raw water with a raw water BOD concentration of 2000 mg / L. a three-stage process, then, following 0.8 kg / m 3 · day BOD load in the activated sludge tank 4, which was carried out at 0.2 kg / kg · day following design in BOD-SS load is the most sludge The amount was small and the processing apparatus was compact, and n-Hex was also relatively low at 3 mg / L.

同容量の活性汚泥処理である比較例3では、汚泥の発生量が最も多く、n-Hexの処理も悪かった。活性汚泥処理でn-Hex処理を同程度にするためには、比較例2のように2倍の水槽容量が必要であったが、汚泥発生量は同等にはならなかった。汚泥発生量を減らすためには、実施例1、2、比較例1、のように担体を用いた曝気槽との組み合わせが必要となる。1段処理の曝気槽と活性汚泥槽とを組み合わせた比較例1の場合は、直列3段の曝気槽での処理に比べ2倍の担体槽が必要であった。また、実施例2のように実施例1と同じ直列3段の曝気槽でも、後処理の活性汚泥槽のBOD負荷が0.8kg/m・日を超え、BOD-SS負荷が0.2kg/kg・日を越える場合は、汚泥の発生量が増加傾向にあった。 In Comparative Example 3, which is an activated sludge treatment with the same capacity, the amount of sludge generated was the largest, and the n-Hex treatment was also poor. In order to make the n-Hex treatment at the same level in the activated sludge treatment, twice the water tank capacity was required as in Comparative Example 2, but the amount of sludge generated was not equivalent. In order to reduce the amount of generated sludge, a combination with an aeration tank using a carrier as in Examples 1 and 2 and Comparative Example 1 is required. In the case of Comparative Example 1 in which a single-stage aeration tank and an activated sludge tank were combined, twice as many carrier tanks were required as compared with the treatment in the three-stage aeration tank in series. Further, even in the same three-stage aeration tank as in Example 1 as in Example 2, the BOD load of the activated sludge tank after the treatment exceeds 0.8 kg / m 3 · day, and the BOD-SS load is 0.2 kg. / Kg · day, the amount of sludge generated tended to increase.

本発明の排水の生物処理方法の一実施態様を示す概略説明図である。It is a schematic explanatory drawing which shows one embodiment of the biological treatment method of the waste_water | drain of this invention. 比較例1における排水の生物処理方法を示す概略説明図である。It is a schematic explanatory drawing which shows the biological treatment method of the waste_water | drain in the comparative example 1. 比較例2における排水の生物処理方法を示す概略説明図である。It is a schematic explanatory drawing which shows the biological treatment method of the waste_water | drain in the comparative example 2.

符号の説明Explanation of symbols

1 第1曝気槽
2 第2曝気槽
3 第3曝気槽
4 活性汚泥槽
5 沈殿槽
6 担体
7 スクリーン
8 ブロワ
9 汚泥
DESCRIPTION OF SYMBOLS 1 1st aeration tank 2 2nd aeration tank 3 3rd aeration tank 4 Activated sludge tank 5 Sedimentation tank 6 Carrier 7 Screen 8 Blower 9 Sludge

Claims (3)

ノルマルヘキサン抽出物質を含む排水を、担体を含んだ曝気槽に流入して処理し、次いで活性汚泥槽に流入して処理した後、沈殿槽で汚泥と処理水を分離する処理方法において、直列に配置した複数の曝気槽に排水を順次流入して処理するとともに、沈殿槽で分離した汚泥を活性汚泥槽に返送することを特徴とする排水の生物処理方法。 In a treatment method in which wastewater containing normal hexane extract material is treated by flowing into an aeration tank containing a carrier and then flowing into an activated sludge tank for treatment, and then separating sludge and treated water in a sedimentation tank. A biological treatment method for wastewater, characterized in that wastewater is sequentially introduced into a plurality of aerated tanks for treatment, and sludge separated in the settling tank is returned to the activated sludge tank. 担体が、ゲル状担体、プラスチック担体及び繊維担体からなる群から選ばれる1種類以上の担体である請求項1記載の排水の生物処理方法。 The biological treatment method of waste water according to claim 1, wherein the carrier is at least one carrier selected from the group consisting of a gel carrier, a plastic carrier and a fiber carrier. 活性汚泥槽に流入する際のBOD容積負荷量を0.8kg/m・日以下となるように調整しながら処理を行なう請求項1又は2記載の排水の生物処理方法。
The biological treatment method for wastewater according to claim 1 or 2, wherein the treatment is carried out while adjusting the BOD volumetric load when flowing into the activated sludge tank to be 0.8 kg / m 3 · day or less.
JP2006333266A 2006-12-11 2006-12-11 Method for treating waste water biologically Pending JP2008142632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333266A JP2008142632A (en) 2006-12-11 2006-12-11 Method for treating waste water biologically

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333266A JP2008142632A (en) 2006-12-11 2006-12-11 Method for treating waste water biologically

Publications (1)

Publication Number Publication Date
JP2008142632A true JP2008142632A (en) 2008-06-26

Family

ID=39603402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333266A Pending JP2008142632A (en) 2006-12-11 2006-12-11 Method for treating waste water biologically

Country Status (1)

Country Link
JP (1) JP2008142632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137149A (en) * 2008-12-10 2010-06-24 Maezawa Kasei Ind Co Ltd Method and apparatus for biologically treating wastewater containing oil-and-fat in high concentration

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558811A (en) * 1978-07-01 1980-01-22 Tokai Plant Eng Kk Method and apparatus for waste water treatment with microorganism
JPS6377595A (en) * 1986-09-17 1988-04-07 Kurita Water Ind Ltd Activated sludge treating device
JPS63115497A (en) * 1986-10-31 1988-05-20 Matsushita Electric Ind Co Ltd Remote controller outgoing equipment
JPH03270781A (en) * 1990-03-22 1991-12-02 Nippon Health Kogyo Kk Treatment of oil-containing waste water
JPH06114390A (en) * 1992-10-06 1994-04-26 Nippon Health Kogyo Kk Biological treatment of oil component in oil-containing waste water
JPH06170386A (en) * 1992-12-01 1994-06-21 Sumitomo Chem Eng Kk Treatment of waste water utilizing excessive sludge of treated water supply equipment line
JPH0985294A (en) * 1995-09-28 1997-03-31 Taisei Corp Waste water treatment equipment
JPH09323091A (en) * 1996-06-04 1997-12-16 Hymo Corp Aerobic treating device
JPH11188376A (en) * 1997-12-25 1999-07-13 Mitsubishi Kakoki Kaisha Ltd Apparatus for treating oil and fat-containing waste water
JP2000042584A (en) * 1998-07-31 2000-02-15 Kurita Water Ind Ltd High load biological treatment and device therefor
JP2001145894A (en) * 1999-11-19 2001-05-29 Kuraray Co Ltd Waste water treatment method
JP2001347284A (en) * 2000-06-08 2001-12-18 Kuraray Co Ltd Wastewater treatment method
JP2002263672A (en) * 2001-03-13 2002-09-17 Ebara Corp Method and facility for treating high concentration organic waste water
JP2004321899A (en) * 2003-04-23 2004-11-18 Kurita Water Ind Ltd Biological treatment method and apparatus therefor
JP2006043586A (en) * 2004-08-04 2006-02-16 Kurita Water Ind Ltd Biological treatment accelerator for wastewater and biological treatment method of wastewater using it
JP2006239612A (en) * 2005-03-04 2006-09-14 Aquas Corp Biological treatment method of oils- and fats-containing wastewater

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558811A (en) * 1978-07-01 1980-01-22 Tokai Plant Eng Kk Method and apparatus for waste water treatment with microorganism
JPS6377595A (en) * 1986-09-17 1988-04-07 Kurita Water Ind Ltd Activated sludge treating device
JPS63115497A (en) * 1986-10-31 1988-05-20 Matsushita Electric Ind Co Ltd Remote controller outgoing equipment
JPH03270781A (en) * 1990-03-22 1991-12-02 Nippon Health Kogyo Kk Treatment of oil-containing waste water
JPH06114390A (en) * 1992-10-06 1994-04-26 Nippon Health Kogyo Kk Biological treatment of oil component in oil-containing waste water
JPH06170386A (en) * 1992-12-01 1994-06-21 Sumitomo Chem Eng Kk Treatment of waste water utilizing excessive sludge of treated water supply equipment line
JPH0985294A (en) * 1995-09-28 1997-03-31 Taisei Corp Waste water treatment equipment
JPH09323091A (en) * 1996-06-04 1997-12-16 Hymo Corp Aerobic treating device
JPH11188376A (en) * 1997-12-25 1999-07-13 Mitsubishi Kakoki Kaisha Ltd Apparatus for treating oil and fat-containing waste water
JP2000042584A (en) * 1998-07-31 2000-02-15 Kurita Water Ind Ltd High load biological treatment and device therefor
JP2001145894A (en) * 1999-11-19 2001-05-29 Kuraray Co Ltd Waste water treatment method
JP2001347284A (en) * 2000-06-08 2001-12-18 Kuraray Co Ltd Wastewater treatment method
JP2002263672A (en) * 2001-03-13 2002-09-17 Ebara Corp Method and facility for treating high concentration organic waste water
JP2004321899A (en) * 2003-04-23 2004-11-18 Kurita Water Ind Ltd Biological treatment method and apparatus therefor
JP2006043586A (en) * 2004-08-04 2006-02-16 Kurita Water Ind Ltd Biological treatment accelerator for wastewater and biological treatment method of wastewater using it
JP2006239612A (en) * 2005-03-04 2006-09-14 Aquas Corp Biological treatment method of oils- and fats-containing wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137149A (en) * 2008-12-10 2010-06-24 Maezawa Kasei Ind Co Ltd Method and apparatus for biologically treating wastewater containing oil-and-fat in high concentration

Similar Documents

Publication Publication Date Title
CN103613247A (en) Treatment process for bearing production wastewater
US6787035B2 (en) Bioreactor for treating wastewater
JP2008029993A (en) Methane fermenter
JP2007136365A (en) Method for producing granular microbe sludge
US8163174B2 (en) Submerged biofiltration purifying apparatus
JP2017516658A (en) Clarification method of waste water
RU2672419C1 (en) Biofilm nitrification-contact denitrification system and method
JP4875690B2 (en) Biological treatment method and biological treatment equipment for wastewater containing high concentration fats and oils
JP4413077B2 (en) Water treatment equipment
JP2008142632A (en) Method for treating waste water biologically
JP2007185596A (en) Organic wastewater treatment apparatus
CN109661376B (en) Biological treatment method for organic wastewater
CN106082564A (en) A kind of membrane bioreactor sludge reduction sewage disposal technology
JP2005246308A (en) Method for bio-treating wastewater
JP2013081945A (en) Waste water processor and waste water processing method
JP2012035146A (en) Water treatment method
JP5315118B2 (en) Operation method of organic wastewater treatment facility
JP2006068632A (en) Apparatus for treating organic waste water
JP7181250B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
CN106587354A (en) Full biological denitrification and sludge reduction system
JP6366638B2 (en) Wastewater treatment equipment
KR20180068977A (en) Biological treatment of organic wastewater
JP3351936B2 (en) Biological treatment of organic wastewater
CN113511774A (en) Finished oil depot sewage treatment system and finished oil depot sewage treatment method
JP2017051912A (en) Anaerobic treatment method and anaerobic treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110