JP2017051912A - Anaerobic treatment method and anaerobic treatment apparatus - Google Patents

Anaerobic treatment method and anaerobic treatment apparatus Download PDF

Info

Publication number
JP2017051912A
JP2017051912A JP2015178398A JP2015178398A JP2017051912A JP 2017051912 A JP2017051912 A JP 2017051912A JP 2015178398 A JP2015178398 A JP 2015178398A JP 2015178398 A JP2015178398 A JP 2015178398A JP 2017051912 A JP2017051912 A JP 2017051912A
Authority
JP
Japan
Prior art keywords
anaerobic treatment
tank
treatment tank
stage
stage anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015178398A
Other languages
Japanese (ja)
Inventor
つばさ 鏡
Tsubasa Kagami
つばさ 鏡
孝明 徳富
Takaaki Tokutomi
孝明 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015178398A priority Critical patent/JP2017051912A/en
Publication of JP2017051912A publication Critical patent/JP2017051912A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biological treatment system which uses two-stage anaerobic treatment, thereby can materialize a high treatment efficiency and reduction in an installation space.SOLUTION: An anaerobic treatment method is provided in which organic waste water is caused to sequentially pass through for treatment a first-stage anaerobic treatment tank 2 and a second-stage anaerobic treatment tank 3 that are arranged in series. The first-stage anaerobic treatment tank 2 is a strongly mixing type fluidized bed anaerobic treatment tank filled with a carrier, while the second-stage anaerobic treatment tank 3 is a plug-flow-type fluidized bed or fixed bed anaerobic treatment tank filled with a carrier. The first-stage anaerobic treatment tank 2 subjects the organic waste water of a CODof 2,500 mg/L or more to anaerobic treatment to obtain treated water of a CODof 500 mg/L or less.SELECTED DRAWING: Figure 1

Description

本発明は、積極的混合型流動床式嫌気処理槽とプラグフロー型の流動床又は固定床式嫌気処理槽との2段嫌気処理により、高い槽負荷かつ高い有機物除去率を達成する嫌気処理方法および嫌気処理装置に関する。   The present invention provides an anaerobic treatment method that achieves a high tank load and a high organic matter removal rate by a two-stage anaerobic treatment of a positive mixing type fluidized bed type anaerobic treatment tank and a plug flow type fluidized bed or a fixed bed type anaerobic treatment tank. And an anaerobic treatment apparatus.

UASB(上向流スラッジブランケット)法に代表される高槽負荷型リアクターによる嫌気性処理方法は、嫌気性細菌を自己造粒化させ、槽内に高い濃度で保持することで、高い槽負荷を達成することができる。   An anaerobic treatment method using a high tank load type reactor represented by the UASB (upward flow sludge blanket) method is to self-granulate anaerobic bacteria and maintain a high concentration in the tank. Can be achieved.

一般的に、嫌気性微生物は好気性微生物と比較して有機物に対する基質親和性が低いために、槽内の基質濃度が低くなればなるほど、その除去速度が低下する。特にプロピオン酸を水素や酢酸に分解するプロピオン酸分解菌や、水素および酢酸を基質として、メタンを生成するメタン菌は、タンパク質および炭水化物をそれぞれ加水分解および酸発酵する微生物と比較して、その分解速度がとりわけ低いことが知られている。   In general, anaerobic microorganisms have lower substrate affinity for organic matter than aerobic microorganisms, so that the lower the substrate concentration in the tank, the lower the removal rate. In particular, propionic acid-degrading bacteria that decompose propionic acid into hydrogen and acetic acid, and methane bacteria that produce methane using hydrogen and acetic acid as substrates are compared with microorganisms that hydrolyze and acid-ferment proteins and carbohydrates, respectively. It is known that the speed is particularly low.

現在実用的に運用されている嫌気処理装置のメタン発酵槽は、一般的に1槽で構成されている。このような装置で、処理水中に含まれる有機物、すなわち基質をより低い濃度まで除去しようとした場合、除去率の向上に伴ってその分解速度が小さくなる。   The methane fermentation tank of an anaerobic treatment apparatus that is currently practically used is generally composed of one tank. In such an apparatus, when an organic substance contained in the treated water, that is, a substrate is to be removed to a lower concentration, the decomposition rate is reduced as the removal rate is improved.

一方、高負荷処理では、生成ガスによる嫌気処理槽からの汚泥溢出に対応するため、2段以上に直列に設けた嫌気処理槽で処理することが知られている(特開2000−237786号公報)。また、難分解性有機物の分解のために、2段嫌気処理を採用することが知られている(特開2012−239929号公報)。さらに、油脂含有水を油水分離して油脂分離汚泥をメタン発酵した後に流動性非生物担体を用いて嫌気処理する技術も知られている(特開2012−210585号公報)。   On the other hand, in high load treatment, it is known to perform treatment in an anaerobic treatment tank provided in series in two or more stages in order to cope with sludge overflow from the anaerobic treatment tank by the generated gas (Japanese Patent Laid-Open No. 2000-237786). ). In addition, it is known to employ a two-stage anaerobic treatment for the decomposition of a hardly decomposable organic substance (Japanese Patent Laid-Open No. 2012-239929). Furthermore, a technique of performing anaerobic treatment using a fluid non-biological carrier after oil / water separation of oil / fat-containing water and oil / fat separation sludge after methane fermentation is also known (Japanese Patent Laid-Open No. 2012-210585).

また、嫌気処理槽に流動床担体を添加することで、基質が低濃度であっても槽内にメタン菌を安定に保持して嫌気処理することが提案されている(特開2012−110820号公報、国際公開WO2012/070493号公報)   Further, it has been proposed that an anaerobic treatment tank is added to a fluidized bed carrier so that anaerobic treatment is performed while stably retaining methane bacteria in the tank even when the substrate concentration is low (Japanese Patent Laid-Open No. 2012-110820). Gazette, international publication WO2012 / 070493)

特開2000−237786号公報JP 2000-237786 A 特開2012−239929号公報JP 2012-239929 A 特開2012−210585号公報JP 2012-210585A 特開2012−110820号公報JP 2012-110820 A 国際公開WO2012/070493号公報International Publication WO2012 / 070493

従来の嫌気処理では、嫌気処理槽内の菌体濃度を高めたとしても、菌体あたりの有機物の除去速度を大きくすることはできなかった。また、槽内の菌体濃度の向上にも限界があった。   In the conventional anaerobic treatment, even if the bacterial cell concentration in the anaerobic treatment tank is increased, the organic matter removal rate per bacterial cell cannot be increased. Moreover, there was a limit to the improvement of the bacterial cell concentration in the tank.

そのため、処理水水質を高めるためには、嫌気処理槽の後段に好気処理槽を設けるのが一般的であり、嫌気処理槽と好気処理槽を含めた生物処理システム全体のスペースの増大、汚泥発生量の増加、およびそれらに対するランニングコストの増加を招いていた。
そして、従来法では、2段嫌気処理を行ってもこのような課題を解決することはできなかった。
Therefore, in order to improve the quality of treated water, it is common to provide an aerobic treatment tank after the anaerobic treatment tank, increasing the space of the entire biological treatment system including the anaerobic treatment tank and the aerobic treatment tank, The amount of sludge generated and the running cost for them increased.
And in the conventional method, even if the two-stage anaerobic treatment was performed, such a problem could not be solved.

本発明は上記課題に鑑み、2段嫌気処理により高い処理効率を得ることができ、設置スペースを低減することができる生物処理システムを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a biological treatment system that can obtain high treatment efficiency by two-stage anaerobic treatment and can reduce installation space.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、担体を充填した積極的混合型流動床式嫌気処理槽と、担体を充填したプラグフロー型の流動床又は固定床式嫌気処理槽とを直列に設け、所定の運転条件で処理することにより、生物処理システム全体で高い槽負荷かつ高い有機物除去率を達成することができることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have conducted a positive mixing type fluidized bed type anaerobic treatment tank filled with a carrier, a plug flow type fluidized bed or a fixed bed type anaerobic tank filled with a carrier. It has been found that a high tank load and a high organic matter removal rate can be achieved in the entire biological treatment system by providing a treatment tank in series and processing under predetermined operating conditions.

本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。   The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 直列に配置された1段目の嫌気処理槽と2段目の嫌気処理槽に、有機性排水を順次通水して処理する嫌気処理方法において、該1段目の嫌気処理槽が、担体を充填した積極的混合型流動床式嫌気処理槽であり、該2段目の嫌気処理槽が、担体を充填したプラグフロー型の流動床又は固定床式嫌気処理槽であり、該1段目の嫌気処理槽において、CODCr2500mg/L以上の前記有機性排水を嫌気処理して、CODCr500mg/L以下の処理水(以下、「第1嫌気処理水」という。)を得ることを特徴とする嫌気処理方法。 [1] An anaerobic treatment method in which organic waste water is sequentially passed through a first-stage anaerobic treatment tank and a second-stage anaerobic treatment tank arranged in series, and the first-stage anaerobic treatment tank includes: A positively mixed fluidized bed type anaerobic treatment tank filled with a carrier, and the second stage anaerobic treatment tank is a plug flow type fluidized bed or a fixed bed type anaerobic treatment tank filled with a carrier; In the anaerobic tank of the stage, the organic wastewater of COD Cr 2500 mg / L or more is anaerobically treated to obtain treated water of COD Cr 500 mg / L or less (hereinafter referred to as “first anaerobic treated water”). An anaerobic treatment method characterized by.

[2] [1]において、前記1段目の嫌気処理槽における積極的混合を、該槽内に設けられた回転翼をG値2.9sec−1以上で回転させることによる撹拌混合、循環路で連通したエアリフト管を槽内または槽外に設け、循環流速5m/hr以上で槽内液を循環することによるエアリフト混合、或いは、処理水循環ポンプにより前記第1嫌気処理水の一部を循環比0.5Q以上となるように該1段目の嫌気処理槽の前段に循環することによる返送混合のいずれかにより行うことを特徴とする嫌気処理方法。 [2] In [1], the active mixing in the first-stage anaerobic treatment tank is performed by stirring and mixing by rotating a rotating blade provided in the tank at a G value of 2.9 sec −1 or more. The air lift pipe communicated in the tank is provided inside or outside the tank, and air lift mixing by circulating the liquid in the tank at a circulation flow rate of 5 m / hr or more, or a part of the first anaerobic treated water is circulated by the treated water circulation pump. An anaerobic treatment method, which is performed by any one of return mixing by circulating to the front stage of the first stage anaerobic treatment tank so as to be 0.5Q or more.

[3] [1]又は[2]において、前記2段目の嫌気処理槽が、上向流通水であることを特徴とする嫌気処理方法。 [3] The anaerobic treatment method according to [1] or [2], wherein the second-stage anaerobic treatment tank is upward circulation water.

[4] [1]ないし[3]のいずれかにおいて、前記2段目の嫌気処理槽の槽負荷が、前記1段目の嫌気処理槽の槽負荷と該2段目の嫌気処理槽の槽負荷の合計の25%以下であることを特徴とする嫌気処理方法。 [4] In any one of [1] to [3], the tank load of the second stage anaerobic treatment tank is the tank load of the first stage anaerobic treatment tank and the tank of the second stage anaerobic treatment tank. An anaerobic treatment method characterized by being 25% or less of the total load.

[5] [1]ないし[4]のいずれかにおいて、前記1段目の嫌気処理槽の前段に酸生成槽を設け、該酸生成槽の処理水を該1段目の嫌気処理槽に通水すると共に、前記2段目の嫌気処理槽の処理水を該酸生成槽或いはその上流側に返送することを特徴とする嫌気処理方法。 [5] In any one of [1] to [4], an acid generation tank is provided in front of the first stage anaerobic treatment tank, and treated water in the acid generation tank is passed through the first stage anaerobic treatment tank. An anaerobic treatment method characterized by returning the treated water of the second stage anaerobic treatment tank to the acid generation tank or its upstream side.

[6] 直列に設置された1段目の嫌気処理槽及び2段目の嫌気処理槽と、該1段目の嫌気処理槽と該2段目の嫌気処理槽に有機性排水を順次通水する手段とを有する嫌気処理装置において、該1段目の嫌気処理槽が、担体を充填した積極的混合型流動床式嫌気処理槽であり、該2段目の嫌気処理槽が、担体を充填したプラグフロー型の流動床又は固定床式嫌気処理槽であり、該1段目の嫌気処理槽において、CODCr2500mg/L以上の前記有機性排水を嫌気処理して、CODCr500mg/L以下の処理水(以下、「第1嫌気処理水」という。)を得るものであることを特徴とする嫌気処理装置。 [6] The first-stage anaerobic treatment tank and the second-stage anaerobic treatment tank installed in series, and the organic waste water sequentially passed through the first-stage anaerobic treatment tank and the second-stage anaerobic treatment tank. The first stage anaerobic treatment tank is a positively mixed fluidized bed type anaerobic treatment tank filled with a carrier, and the second stage anaerobic treatment tank is filled with a carrier. Plug flow type fluidized bed or fixed bed type anaerobic treatment tank, wherein the organic waste water of 2500 mg / L or more of COD Cr is anaerobically treated in the first stage anaerobic treatment tank to obtain COD Cr of 500 mg / L or less An anaerobic treatment apparatus characterized in that the treated water (hereinafter referred to as “first anaerobic treated water”) is obtained.

[7] [6]において、前記1段目の嫌気処理槽における積極的混合が、該槽内に設けられた回転翼をG値2.9sec−1以上で回転させることによる撹拌混合、該槽内または槽外に設けられた循環路で連通したエアリフト管で、槽内液を循環流速5m/hr以上で循環させることによるエアリフト混合、或いは、処理水循環ポンプにより前記第1嫌気処理水の一部を循環比0.5Q以上となるように該1段目の嫌気処理槽の前段に循環させることによる返送混合のいずれかにより行われることを特徴とする嫌気処理装置。 [7] In [6], the active mixing in the first-stage anaerobic treatment tank is performed by stirring and mixing by rotating a rotating blade provided in the tank at a G value of 2.9 sec −1 or more, Part of the first anaerobic treated water by air lift mixing by circulating the liquid in the tank at a circulation flow rate of 5 m / hr or more by an air lift pipe communicating with a circulation path provided inside or outside the tank, or by a treated water circulation pump An anaerobic treatment apparatus characterized in that it is performed by any one of the return mixing by circulating the product to the front stage of the first stage anaerobic treatment tank so that the circulation ratio is 0.5Q or more.

[8] [6]又は[7]において、前記2段目の嫌気処理槽が、上向流通水であることを特徴とする嫌気処理装置。 [8] The anaerobic treatment device according to [6] or [7], wherein the second-stage anaerobic treatment tank is upward circulation water.

[9] [6]ないし[8]のいずれかにおいて、前記2段目の嫌気処理槽の槽負荷が、前記嫌気処理槽の槽負荷と該2段目の嫌気処理槽の槽負荷の合計の25%以下であることを特徴とする嫌気処理装置。 [9] In any one of [6] to [8], the tank load of the second stage anaerobic treatment tank is the sum of the tank load of the anaerobic treatment tank and the tank load of the second stage anaerobic treatment tank. An anaerobic treatment apparatus characterized by being 25% or less.

[10] [6]ないし[9]のいずれかにおいて、前記1段目の嫌気処理槽の前段に設けられた酸生成槽と、該酸生成槽の処理水を該1段目の嫌気処理槽に通水する手段と、前記2段目の嫌気処理槽の処理水を該酸生成槽或いはその上流側に返送する手段とを有することを特徴とする嫌気処理装置。 [10] In any one of [6] to [9], an acid generation tank provided in a preceding stage of the first stage anaerobic treatment tank, and treated water in the acid generation tank are used in the first stage anaerobic treatment tank. An anaerobic treatment apparatus comprising: means for passing water; and means for returning the treated water of the second stage anaerobic treatment tank to the acid generation tank or the upstream side thereof.

本発明によれば、生物処理システム全体で高い槽負荷かつ高い有機物除去率を達成することができる。
即ち、高負荷処理を行う必要がある1段目の嫌気処理槽を、担体を充填した積極的混合型流動床式嫌気処理槽とすることで、積極的に混合しても担体や汚泥の流出を防止して高負荷処理を行える。
2段目の嫌気処理槽は、1段目の嫌気処理槽よりも低負荷処理となるため、安定処理が難しいが、この2段目の嫌気処理槽を、担体を充填したプラグフロー型の流動床又は固定床式嫌気処理槽とすることにより、低負荷でも安定した処理が可能となる。特に、2段目の嫌気処理槽を上向流通水とすることにより、差圧の上昇を防ぐことができるので、高度な処理が可能となる。
According to the present invention, a high tank load and a high organic matter removal rate can be achieved in the entire biological treatment system.
In other words, the first-stage anaerobic treatment tank that needs to perform high-load treatment is a positively mixed fluidized bed type anaerobic treatment tank filled with a carrier, so that the carrier and sludge flow out even if actively mixed. Can prevent high load processing.
The second-stage anaerobic treatment tank has a lower load treatment than the first-stage anaerobic treatment tank, so that stable treatment is difficult. However, this second-stage anaerobic treatment tank is a plug flow type flow filled with a carrier. By using a floor or fixed-bed anaerobic treatment tank, stable treatment is possible even at low loads. In particular, by using the second stage anaerobic treatment tank as upward circulation water, an increase in the differential pressure can be prevented, so that advanced treatment is possible.

このようなことから、本発明では、嫌気処理を行う生物処理システム全体の負荷を大きく取れるため、槽面積を小さくすることができ、また嫌気処理水の水質が向上することから、後段に好気処理槽を設ける場合であっても、その槽面積を小さくすることができる。   For this reason, in the present invention, since the load on the entire biological treatment system that performs anaerobic treatment can be increased, the tank area can be reduced, and the quality of the anaerobic treated water is improved. Even when a treatment tank is provided, the tank area can be reduced.

本発明の嫌気処理装置の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the anaerobic processing apparatus of this invention. 本発明の嫌気処理装置の実施の形態の別の例を示す系統図である。It is a systematic diagram which shows another example of embodiment of the anaerobic processing apparatus of this invention.

以下に、図面を参考して本発明の実施の形態を詳細に説明する。
なお、本発明において、循環比を示す「Q」は、嫌気処理水の循環を行う嫌気処理槽に流入する被処理水量(循環された嫌気処理水をのぞく)を示し、従って、例えば、「循環比0.5Q」とは、当該嫌気処理槽に流入する循環嫌気処理水以外の被処理水量に対して0.5倍の水量の嫌気処理水を循環すること、従って、当該嫌気処理槽には、合計で1.5Qの水量の水が流入することを意味する。同様に、「循環比2Q」とは、当該嫌気処理槽に流入する循環嫌気処理水以外の被処理水量に対して2倍の水量の嫌気処理水を循環すること、従って、当該嫌気処理槽には、合計で3Qの水量の水が流入することを意味する。
Embodiments of the present invention will be described below in detail with reference to the drawings.
In the present invention, “Q” indicating the circulation ratio indicates the amount of water to be treated (excluding the circulated anaerobic treated water) flowing into the anaerobic treatment tank that circulates the anaerobic treated water. “0.5Q” means that anaerobic treated water having a water amount 0.5 times the amount of treated water other than the circulating anaerobic treated water flowing into the anaerobic treated tank is circulated. This means that a total of 1.5Q of water flows in. Similarly, “circulation ratio 2Q” means to circulate anaerobic treated water whose amount is twice the amount of treated water other than the circulating anaerobic treated water flowing into the anaerobic treated tank. Means that a total of 3Q of water flows in.

図1,2は、本発明の嫌気処理装置の実施の形態の一例を示す系統図であり、図1の嫌気処理装置では、原水(有機性排水)は、pH調整槽1でpH調整された後、槽内に担体の流動床2Aが形成された1段目の嫌気処理槽(以下「第1嫌気処理槽」と称す。)2で嫌気処理され、第1嫌気処理槽2からの嫌気処理水(以下、「第1嫌気処理水」と称す。)の一部はpH調整槽1に循環され、残部は槽内に担体の流動床又は固定床3Aが形成された2段目の嫌気処理槽(以下、「第2嫌気処理槽」と称す。)3に通水されて嫌気処理される。第2嫌気処理槽3からの嫌気処理水(以下、「第2嫌気処理水」と称す。)の一部はpH調整槽1に循環され、残部は好気処理槽4で好気処理され、処理水が系外へ排出される。図1では、第1,第2生物処理水の循環配管は途中で合流している。なお、図示されていないが、各嫌気処理槽2,3の上部にはメタンガスを排出するガス排出配管が設けられている。図2の嫌気処理装置は、pH調整槽1の前段に酸生成槽5を有し、第1嫌気処理水及び第2嫌気処理水が酸生成槽5に循環される点が図1の嫌気処理装置と異なり、その他は同様の構成とされている。   1 and 2 are system diagrams showing an example of an embodiment of the anaerobic treatment apparatus of the present invention. In the anaerobic treatment apparatus of FIG. 1, the raw water (organic waste water) is pH-adjusted in the pH adjustment tank 1. Thereafter, anaerobic treatment is performed in the first stage anaerobic treatment tank (hereinafter referred to as “first anaerobic treatment tank”) 2 in which the fluidized bed 2A of the carrier is formed in the tank, and the anaerobic treatment from the first anaerobic treatment tank 2 is performed. Part of the water (hereinafter referred to as “first anaerobic treated water”) is circulated to the pH adjustment tank 1 and the remainder is the second stage anaerobic treatment in which the fluidized bed or fixed bed 3A of the carrier is formed in the tank. Water is passed through a tank (hereinafter referred to as “second anaerobic treatment tank”) 3 for anaerobic treatment. Part of the anaerobic treated water (hereinafter referred to as “second anaerobic treated water”) from the second anaerobic treatment tank 3 is circulated to the pH adjustment tank 1, and the remainder is aerobically treated in the aerobic treatment tank 4. Treated water is discharged outside the system. In FIG. 1, the circulation pipes of the first and second biologically treated water are joined on the way. In addition, although not shown in figure, the gas discharge piping which discharges | releases methane gas is provided in the upper part of each anaerobic processing tank 2,3. The anaerobic treatment apparatus of FIG. 2 has an acid generation tank 5 in the previous stage of the pH adjustment tank 1, and the anaerobic treatment of FIG. 1 is that the first anaerobic treated water and the second anaerobic treated water are circulated to the acid production tank 5. Unlike the device, the rest of the configuration is the same.

<作用機構>
本発明によれば、1段目の嫌気処理槽を、担体を充填した積極的混合型流動床式嫌気処理槽とすることで、積極的に混合しても担体や汚泥の流出を防止して高負荷処理を行える。
2段目の嫌気処理槽は、1段目の嫌気処理槽よりも低負荷処理となるため、安定処理が難しいが、この2段目の嫌気処理槽を、担体を充填したプラグフロー型の流動床又は固定床式嫌気処理槽とすることにより、低負荷でも安定した処理が可能となる。特に、2段目の嫌気処理槽を上向流通水とすることにより、差圧の上昇を防ぐことができるので、高度な処理が可能となる。
<Action mechanism>
According to the present invention, the first stage anaerobic treatment tank is a positively mixed fluidized bed type anaerobic treatment tank filled with a carrier to prevent the carrier and sludge from flowing out even if actively mixed. High load processing can be performed.
The second-stage anaerobic treatment tank has a lower load treatment than the first-stage anaerobic treatment tank, so that stable treatment is difficult. However, this second-stage anaerobic treatment tank is a plug flow type flow filled with a carrier. By using a floor or fixed-bed anaerobic treatment tank, stable treatment is possible even at low loads. In particular, by using the second stage anaerobic treatment tank as upward circulation water, an increase in the differential pressure can be prevented, so that advanced treatment is possible.

例えば、メタン菌の主な基質である酢酸のメタンへの転換速度がその最大値の半分となる半飽和定数Ksは、水温35℃のとき、164mg/Lである(Lawrence and McCarty,1969)。ここで、処理水酢酸濃度を、その基質に対する最大代謝速度となる500mg/L程度とした場合、その利用速度は、処理水酢酸濃度が160mg/L程度の場合の約2倍となる。
従って、嫌気処理槽を2槽直列に接続し、1段目の嫌気処理槽の嫌気処理水の酢酸濃度を約500mg/Lとする場合、1段目の嫌気処理槽の嫌気処理水の酢酸濃度を約160mg/Lとする場合の2倍の速度で酢酸を処理することが可能となり、1段目の嫌気処理槽の槽負荷を4倍とすることができる。
For example, the half-saturation constant Ks at which the conversion rate of acetic acid, which is the main substrate of methane bacteria, to half of its maximum value is 164 mg / L at a water temperature of 35 ° C. (Lawrence and McCarty, 1969). Here, when the treated water acetic acid concentration is about 500 mg / L, which is the maximum metabolic rate for the substrate, the utilization rate is about twice that when the treated water acetic acid concentration is about 160 mg / L.
Therefore, when two anaerobic treatment tanks are connected in series, and the acetic acid concentration of the anaerobic treatment water in the first stage anaerobic treatment tank is about 500 mg / L, the acetic acid concentration of the anaerobic treatment water in the first stage anaerobic treatment tank The acetic acid can be processed at a rate twice as high as about 160 mg / L, and the tank load of the first stage anaerobic tank can be increased four times.

また、2段目の嫌気処理槽の槽容積を1段目の嫌気処理槽の槽容積よりも大きくした場合、あるいは投入する担体量を増加させた場合、処理水中の酢酸濃度をより低濃度まで(例えば100mg/L以下まで)低減することが可能である。前述の通り、嫌気処理設備の後段には好気処理設備を付属することが一般的であるが、この場合、後段の好気処理槽の容積および汚泥発生量を削減させることができる。
また、処理水中の酢酸濃度を減少させることで、処理水pHが上昇するため、処理水を返送することにより、嫌気処理槽において使用するpH調整のためのアルカリ量を大幅に削減することができる。
In addition, when the tank volume of the second stage anaerobic treatment tank is made larger than the tank volume of the first stage anaerobic treatment tank, or when the amount of carrier to be added is increased, the acetic acid concentration in the treated water is reduced to a lower concentration. (For example, up to 100 mg / L or less). As described above, an aerobic treatment facility is generally attached to the subsequent stage of the anaerobic treatment facility. In this case, the volume of the aerobic treatment tank and the amount of sludge generated can be reduced.
Moreover, since the treated water pH is increased by reducing the concentration of acetic acid in the treated water, the amount of alkali for pH adjustment used in the anaerobic treatment tank can be greatly reduced by returning the treated water. .

<有機性排水>
本発明で処理する有機性排水としては、食品工場等の製造廃水、化学工場等の有機性廃水、一般下水等が挙げられるが、何らこれらに限定されるものではない。本発明では、これらの有機性排水のうち、特に第1嫌気処理槽2に流入する水のCODCrが2500mg/L以上、例えば2500〜10000mg/Lであるような高濃度有機性排水の処理に有効である。
<Organic drainage>
Examples of the organic wastewater to be treated in the present invention include manufacturing wastewater such as food factories, organic wastewater such as chemical factories, and general sewage, but are not limited thereto. In the present invention, among these organic wastewaters, particularly for the treatment of high-concentration organic wastewater whose COD Cr flowing into the first anaerobic treatment tank 2 is 2500 mg / L or more, for example, 2500 to 10,000 mg / L. It is valid.

なお、第1嫌気処理槽2に流入する基質は、単鎖揮発性脂肪酸等、低分子有機化合物であり、タンパク質や炭水化物を含まないことが望ましい。このため、有機性排水にこれらの物質が含まれる場合は、第1嫌気処理槽2の前段に、図2に示すように酸生成槽を設けたり、HRTを4時間以上とした原水槽を設けたりして、これらを分解しておくことが好ましい。   The substrate that flows into the first anaerobic treatment tank 2 is a low-molecular organic compound such as a single-chain volatile fatty acid and desirably does not contain protein or carbohydrate. For this reason, when these substances are contained in the organic waste water, an acid generation tank is provided in front of the first anaerobic treatment tank 2 as shown in FIG. 2, or a raw water tank with an HRT of 4 hours or more is provided. It is preferable to decompose them.

<第1嫌気処理槽>
本発明では、第1嫌気処理槽2として、担体を充填した積極的混合型流動床式嫌気処理槽を用いる。ここで、「積極的混合」とは、槽内に流入した液が、その流入直後に槽内全域に一様に分散、拡散し得るように能動的に混合することをさす。これに対して、後述の第2嫌気処理槽3の「プラグフロー」とは、槽内に流入した液が実質的に一方向の平行流となって流れる状態をさす。
<First anaerobic treatment tank>
In the present invention, as the first anaerobic treatment tank 2, a positive mixed fluidized bed anaerobic treatment tank filled with a carrier is used. Here, “aggressive mixing” means that the liquid that has flowed into the tank is actively mixed so that immediately after the liquid flows in, the liquid can be uniformly dispersed and diffused throughout the tank. On the other hand, the “plug flow” of the second anaerobic treatment tank 3 to be described later refers to a state in which the liquid flowing into the tank flows in a substantially parallel flow in one direction.

この第1嫌気処理槽2を積極的に混合する方式には特に制限はないが、以下の(1)〜(3)のいずれかを採用することができる。これらは2以上を組み合わせて採用してもよい。
(1) 第1嫌気処理槽2内に設けた回転翼をG値2.9sec−1以上、例えば2.9〜5sec−1で回転させることによる撹拌混合
(2) 循環路で連通したエアリフト管を第1嫌気処理槽2内または槽外に設け、槽内の上昇流の平均の線速度が5m/hr以上、例えば5〜25m/hrとなるように槽内液を循環することによるエアリフト混合
(3) 処理水循環ポンプにより第1嫌気処理水の一部を循環比0.5Q以上、例えば0.5Q〜5Qとなるように第1嫌気処理槽2の前段(例えば、酸生成槽や原水槽、原水槽から酸生成槽への配管)に循環することによる返送混合
Although there is no restriction | limiting in particular in the system which mixes this 1st anaerobic processing tank 2 positively, Any of the following (1)-(3) is employable. These may be used in combination of two or more.
(1) Stir mixing by rotating a rotating blade provided in the first anaerobic treatment tank 2 at a G value of 2.9 sec −1 or more, for example, 2.9 to 5 sec −1 (2) An air lift pipe communicated with a circulation path Is provided in the first anaerobic treatment tank 2 or outside the tank, and air lift mixing is performed by circulating the liquid in the tank so that the average linear velocity of the upward flow in the tank is 5 m / hr or more, for example, 5 to 25 m / hr. (3) The first stage of the first anaerobic treatment tank 2 (for example, an acid generation tank or a raw water tank) so that a part of the first anaerobic treated water is 0.5Q or more, for example, 0.5Q to 5Q, by the treated water circulation pump. , Recirculation mixing by circulating from the raw water tank to the acid generation tank)

第1嫌気処理槽2では、pH調整剤(アルカリ)の使用量削減のために、第1嫌気処理水の一部をpH調整槽1(図2のように酸生成槽5を設けた場合には、酸生成槽5でもよい)に循環することが好ましく、従って、上記(3)の方法により積極的混合を行うことも好ましい。この場合、図1の通り、第1嫌気処理槽2への被処理水導入口を槽底部に設け、被処理水の上向水流と発生ガスにより槽内を混合することが好ましい。即ち、第1嫌気処理槽2は、高い槽負荷で運転されるため、発生ガス量も多く、このように、高い循環比で上向流通水とすることで、槽内を積極的混合状態とすることができる。   In the 1st anaerobic processing tank 2, in order to reduce the usage-amount of a pH adjuster (alkali), when a part of the 1st anaerobic treated water is provided in the pH adjusting tank 1 (the acid generation tank 5 as shown in FIG. 2). Is preferably circulated to the acid generation tank 5), and therefore, it is also preferable to perform active mixing by the method (3). In this case, as shown in FIG. 1, it is preferable to provide a treated water inlet to the first anaerobic treatment tank 2 at the bottom of the tank and mix the inside of the tank with the upward flow of the treated water and the generated gas. That is, since the first anaerobic treatment tank 2 is operated at a high tank load, a large amount of gas is generated. Thus, by using upward circulation water at a high circulation ratio, the inside of the tank is actively mixed. can do.

第1嫌気処理槽2に充填する担体としては、大きさが1.0〜5.0mmで、沈降速度が200〜500m/hの流動性非生物担体が好ましい。   The carrier filled in the first anaerobic treatment tank 2 is preferably a fluid non-biological carrier having a size of 1.0 to 5.0 mm and a sedimentation speed of 200 to 500 m / h.

担体の大きさが大き過ぎると嫌気処理槽体積当りの表面積が小さくなり、小さ過ぎると沈降速度が遅くなり嫌気処理水との分離が困難になる。本発明で用いる担体の好ましい大きさは2.5〜4.0mmである。   If the size of the carrier is too large, the surface area per anaerobic treatment tank volume will be small, and if it is too small, the sedimentation rate will be slow and separation from anaerobic treated water will be difficult. The preferred size of the carrier used in the present invention is 2.5 to 4.0 mm.

担体の大きさとは、通常「粒径」と称されるものであり、例えば直方体形状の担体であればその長辺の長さをさし、立方体形状の担体であればその一辺の長さをさし、円柱形状の担体であれば直径又は円柱の高さのうちいずれか大きい方を表わす。これらの形状以外の異形形状の担体の粒径は、担体を2枚の平行な板で挟んだときに、この板の間隔が最も大きくなる部位の板の間隔である。
本発明において、担体の大きさは、その平均値が1.0〜5.0mm、好ましくは2.5〜4.0mmの範囲であればよく、すべての担体の大きさがこの範囲でなくてもよい。
The size of the carrier is usually referred to as “particle size”. For example, in the case of a rectangular parallelepiped carrier, the length of its long side is referred to, and in the case of a cubic carrier, the length of one side thereof is defined. In the case of a cylindrical carrier, it represents the larger one of the diameter and the height of the cylinder. The particle diameter of the irregularly shaped carrier other than these shapes is the interval between the plates where the interval between the plates becomes the largest when the carrier is sandwiched between two parallel plates.
In the present invention, the average size of the carrier may be in the range of 1.0 to 5.0 mm, preferably 2.5 to 4.0 mm. Also good.

また、担体の沈降速度が小さすぎると、水流や発生ガスにより浮上し易く、水面近くにスカム状に蓄積してしまう。即ち、非生物担体を用いる方法の場合、表面に生物膜が形成され、生物膜内部でガスが発生する反応が進行するため、担体の見かけ比重は生物膜の形成に伴って軽くなっていく。この生物膜の影響を考慮して、担体自体の比重、沈降速度を決定する必要がある。逆に、担体の沈降速度が大きすぎると被処理水との接触効率が悪くなり、十分な処理効率が得られない、或いは担体の堆積層に固形物が蓄積して流路が閉塞するといった弊害が出る。本発明で用いる担体のより好ましい沈降速度は200〜500m/hrである。   On the other hand, if the sedimentation rate of the carrier is too small, the carrier tends to float due to water flow or generated gas, and accumulates in a scum shape near the water surface. That is, in the case of a method using a non-biological carrier, a biofilm is formed on the surface and a reaction in which gas is generated proceeds inside the biofilm, so that the apparent specific gravity of the carrier becomes lighter as the biofilm is formed. In consideration of the influence of this biofilm, it is necessary to determine the specific gravity and sedimentation rate of the carrier itself. Conversely, if the sedimentation rate of the carrier is too high, the contact efficiency with the water to be treated will be poor, and sufficient treatment efficiency will not be obtained, or solid matter will accumulate in the deposited layer of the carrier and the channel will be blocked. coming out. A more preferable sedimentation rate of the carrier used in the present invention is 200 to 500 m / hr.

担体の沈降速度とは、担体を水(水道水等の清水)に浸して沈んだものを取り出し、これを水(水道水等の清水)に入れたメスシリンダーに投入し、単位時間当たりの沈降距離を測定して求められた値である。本発明においては、10個以上、好ましくは10〜20個の担体について測定を行い、その平均値を沈降速度とする。   The sedimentation speed of the carrier is the amount of sedimentation by submerging the carrier in water (fresh water such as tap water), taking it into a graduated cylinder in water (fresh water such as tap water) This is a value obtained by measuring the distance. In the present invention, measurement is carried out on 10 or more, preferably 10-20, carriers, and the average value is taken as the sedimentation rate.

担体の構成材料には特に制限はないが、以下の(I)及び/又は(II)の発泡体よりなるものが好ましく、このような樹脂発泡体よりなるものであれば、比重や粒径の調整が容易である点においても好ましい。
(I) ポリオレフィン系樹脂を主体とする樹脂成分30〜95重量%と、セルロース系粉末の親水化剤5〜70重量%とを含む発泡体であって、表面がメルトフラクチャー状態を有する発泡体
(II) ポリオレフィン系樹脂を主体とする樹脂成分30〜95重量%と、セルロース系粉末の親水化剤4〜69重量%と、無機粉末1〜30重量%とを含む発泡体であって、表面がメルトフラクチャー状態を有する発泡体
There are no particular restrictions on the constituent material of the carrier, but those made of the following foams (I) and / or (II) are preferred. It is also preferable in terms of easy adjustment.
(I) A foam containing 30 to 95% by weight of a resin component mainly composed of a polyolefin-based resin and 5 to 70% by weight of a hydrophilizing agent for cellulose powder, the surface of which has a melt fracture state ( II) A foam comprising 30 to 95% by weight of a resin component mainly composed of a polyolefin resin, 4 to 69% by weight of a hydrophilizing agent for cellulose powder, and 1 to 30% by weight of an inorganic powder, the surface of which is Foam having melt fracture state

メルトフラクチャーは、プラスチック成形時に、成形品の表面に凹凸が生じる現象(平滑な表面を有さない状態)として、一般的に知られている。例えば、プラスチック材料の押出成形において、押出機の内圧が著しく高くなったり、押出速度が著しく大きくなったり、或いは、プラスチック材料の温度が低くなりすぎたりしたとき、成形品の表面に不規則な凹凸が生じたり、表面の光沢を失ったりする現象をいう。   Melt fracture is generally known as a phenomenon in which irregularities are formed on the surface of a molded product during plastic molding (a state in which there is no smooth surface). For example, in the extrusion molding of plastic material, when the internal pressure of the extruder becomes extremely high, the extrusion speed becomes extremely large, or the temperature of the plastic material becomes too low, irregular irregularities on the surface of the molded product This refers to a phenomenon in which surface gloss or surface gloss is lost.

第1嫌気処理槽2における処理条件としては、所望の処理効率を得ることができる範囲において、特に制限はないが、例えば以下のような条件を設定することができる。   The treatment conditions in the first anaerobic treatment tank 2 are not particularly limited as long as desired treatment efficiency can be obtained. For example, the following conditions can be set.

担体充填率:20〜60%
HRT:2〜12hr
上昇流速(LV):5〜25m/hr
槽負荷:10〜40kg−CODCr/m/day
汚泥負荷:1.3〜5kg−CODCr/kg−VSS/day
pH:6.3〜7.5
温度:25〜35℃
Carrier filling rate: 20-60%
HRT: 2-12 hr
Ascending flow velocity (LV): 5 to 25 m / hr
Tank load: 10-40 kg-COD Cr / m 3 / day
Sludge load: 1.3 to 5 kg-COD Cr / kg-VSS / day
pH: 6.3-7.5
Temperature: 25-35 ° C

なお、第1嫌気処理槽2の槽負荷は、後述の通り、第2嫌気処理槽3の槽負荷と第1嫌気処理槽2の槽負荷との合計に対して、第2嫌気処理槽3の槽負荷が25%以下、即ち、第1嫌気処理槽2の槽負荷は、第2嫌気処理槽3の槽負荷の3倍以上であることが、装置全体の負荷を高くした上で、高い有機物除去率を達成する上で好ましい。
第1嫌気処理槽2では、CODCr2500mg/L以上の有機性排水を嫌気処理して、CODCr500mg/L以下、好ましくはCODCr300〜500mg/Lの第1嫌気処理水を得るように条件設定することで、高い槽負荷での処理が可能となる。
In addition, the tank load of the 1st anaerobic treatment tank 2 is the sum of the tank load of the 2nd anaerobic treatment tank 3 and the tank load of the 1st anaerobic treatment tank 2, as will be described later. The tank load is 25% or less, that is, the tank load of the first anaerobic treatment tank 2 is more than three times the tank load of the second anaerobic treatment tank 3, and the organic load is high. It is preferable for achieving the removal rate.
In the first anaerobic treatment tank 2, the organic waste water of COD Cr 2500 mg / L or more is anaerobically treated to obtain a first anaerobic treated water of COD Cr 500 mg / L or less, preferably COD Cr 300 to 500 mg / L. By setting the conditions, processing with a high tank load becomes possible.

<第2嫌気処理槽>
本発明では、第2嫌気処理槽3として、担体を充填したプラグフロー型の流動床又は固定床式嫌気処理槽を用いる。第2嫌気処理槽3は、特に上向流通水であることが、差圧上昇の防止の点で好ましい。
<Second anaerobic treatment tank>
In the present invention, a plug flow type fluidized bed or a fixed bed type anaerobic treatment tank filled with a carrier is used as the second anaerobic treatment tank 3. The second anaerobic treatment tank 3 is particularly preferably upward circulation water from the viewpoint of preventing an increase in differential pressure.

流動床式の第2嫌気処理槽3に充填する担体としては、前述の第1嫌気処理槽2に充填する担体と同様のものを用いることができる。固定床式の第2嫌気処理槽3に充填する担体としては、活性炭、樹脂、繊維等を用いることができる。   As the carrier filled in the fluidized bed type second anaerobic treatment tank 3, the same carrier as that filled in the first anaerobic treatment tank 2 described above can be used. As the carrier filled in the fixed bed type second anaerobic treatment tank 3, activated carbon, resin, fiber, or the like can be used.

また、第2嫌気処理槽3における処理条件としては、所望の処理効率を得ることができる範囲において、特に制限はないが、例えば以下のような条件を設定することができる。   In addition, the processing conditions in the second anaerobic processing tank 3 are not particularly limited as long as desired processing efficiency can be obtained. For example, the following conditions can be set.

担体充填率:20〜60%
HRT:4〜24hr
上昇流速(LV):0.5〜5m/hr
槽負荷:5〜20kg−CODCr/m/day
汚泥負荷:0.8〜2.2kg−CODCr/kg−VSS/day
pH:6.3〜7.5
温度:25〜35℃
Carrier filling rate: 20-60%
HRT: 4-24 hr
Ascending flow velocity (LV): 0.5-5 m / hr
Tank load: 5 to 20 kg-COD Cr / m 3 / day
Sludge load: 0.8 to 2.2 kg-COD Cr / kg-VSS / day
pH: 6.3-7.5
Temperature: 25-35 ° C

第2嫌気処理槽3の槽負荷は、第1嫌気処理槽2の槽負荷と第2嫌気処理槽3の槽負荷との合計に対して、25%以下となるように運転条件を設定することが好ましい。このように、第2嫌気処理槽3を全体の槽負荷に対して小さく設定することにより、担体を充填した積極的混合型流動床式嫌気処理槽よりなり、高負荷処理が可能な第1嫌気処理槽2において、高負荷処理を行った上で、担体を充填したプラグフロー型の流動床又は固定床式嫌気処理槽よりなり、低負荷であっても、有機物の分解除去能に優れた第2嫌気処理槽3の性能を有効に利用して、高負荷、高効率処理を行うことができる。ただし、第2嫌気処理槽3の槽負荷が全体の槽負荷に対して小さ過ぎると、第1嫌気処理槽2が過負荷となり、また、第2嫌気処理槽3における処理性能が低下する傾向があるため、第2嫌気処理槽3の槽負荷は、全体の槽負荷に対して10%以上、特に10〜20%とすることが好ましい。   Set the operating conditions so that the tank load of the second anaerobic treatment tank 3 is 25% or less with respect to the total of the tank load of the first anaerobic treatment tank 2 and the tank load of the second anaerobic treatment tank 3. Is preferred. Thus, by setting the second anaerobic treatment tank 3 to be small with respect to the entire tank load, the first anaerobic tank is composed of an active mixed fluidized bed type anaerobic treatment tank filled with a carrier and capable of high load treatment. The treatment tank 2 comprises a plug flow type fluidized bed or a fixed bed type anaerobic treatment tank filled with a carrier after being subjected to a high load treatment, and is excellent in the ability to decompose and remove organic matter even at a low load. 2 The load of the anaerobic treatment tank 3 can be effectively utilized to perform high load and high efficiency treatment. However, if the tank load of the second anaerobic treatment tank 3 is too small with respect to the entire tank load, the first anaerobic treatment tank 2 is overloaded, and the processing performance in the second anaerobic treatment tank 3 tends to decrease. Therefore, the tank load of the second anaerobic treatment tank 3 is preferably 10% or more, and particularly preferably 10 to 20% with respect to the entire tank load.

第2嫌気処理水は、pH調整剤(アルカリ)の使用量削減のために、その一部をpH調整槽1に循環し、残部を好気処理槽4に導入し、更に好気処理して、処理水を得るようにしてもよい。ここで、pH調整槽1に循環する第2嫌気処理水の循環比は、ポンプの動力削減の観点から0Q(循環しない)〜0.5Q程度であることが好ましい。   A part of the second anaerobic treated water is circulated to the pH adjusting tank 1 and the remaining part is introduced into the aerobic treating tank 4 to further reduce the amount of the pH adjuster (alkali) used. Alternatively, treated water may be obtained. Here, the circulation ratio of the second anaerobic treated water circulating in the pH adjusting tank 1 is preferably about 0Q (not circulated) to 0.5Q from the viewpoint of reducing the power of the pump.

図1では2段嫌気処理を例に説明したが、より高負荷で有機性排水を処理する場合や、有機性排水中にメタン発酵の阻害となる物質が含有されている場合、低温や低pH又は高pH等、メタン発酵が阻害を受けやすい条件で処理する場合、あるいは処理水の有機物濃度をより高度に低減させたい場合は、嫌気処理槽をさらに設け、3段以上の多段嫌気処理を行ってもよい。
また、前述の通り、第1嫌気処理槽2に流入する基質は、単鎖揮発性脂肪酸等、低分子有機化合物であり、タンパク質や炭水化物を含まないことが望ましいため、第1嫌気処理槽2の前段(pH調整槽1の前段)には、図2のように、必要に応じて酸生成槽5を設けてもよい。この場合、第1,第2嫌気処理水は、酸生成槽5又はその前段に循環してもよい。原水に有機酸が含まれる場合、酸生成槽5は必ずしも必要とされない。
Although the two-stage anaerobic treatment has been described as an example in FIG. 1, when organic wastewater is treated at a higher load, or when organic effluent contains substances that inhibit methane fermentation, low temperature and low pH Or, when processing under conditions where methane fermentation is susceptible to inhibition, such as high pH, or when you want to reduce the organic matter concentration of the treated water to a higher level, an anaerobic treatment tank is further provided to perform multi-stage anaerobic treatment of 3 or more stages. May be.
In addition, as described above, the substrate flowing into the first anaerobic treatment tank 2 is a low-molecular organic compound such as a single-chain volatile fatty acid and preferably contains no protein or carbohydrate. As shown in FIG. 2, an acid generation tank 5 may be provided in the previous stage (the previous stage of the pH adjustment tank 1) as necessary. In this case, you may circulate the 1st, 2nd anaerobic treated water to the acid production tank 5 or its front | former stage. When the raw water contains an organic acid, the acid generation tank 5 is not necessarily required.

以下に実施例を挙げて本発明をより具体的に説明する。
なお、以下の実施例および比較例ではいずれも、CODCr2500mg/Lの食品工場廃水の模擬廃水を原水として、流量48L/dayで処理を行った。また、嫌気処理は、いずれも温度35℃で行った。
Hereinafter, the present invention will be described more specifically with reference to examples.
In all of the following examples and comparative examples, treatment was performed at a flow rate of 48 L / day using simulated wastewater of food factory wastewater of 2500 mg / L of COD Cr as raw water. All the anaerobic treatments were performed at a temperature of 35 ° C.

[実施例1]
図1に示す装置により、原水をpH調整槽1でpH6.3に調整した後、積極的混合型流動床式嫌気処理槽2および上向流プラグフロー型流動床式嫌気処理槽3に順次通水して嫌気処理した。
第1嫌気処理槽2は、第1嫌気処理水の一部を循環比2QでpH調整槽1に循環する返送混合による積極的混合型嫌気処理槽とした。また、第2嫌気処理槽3からの第2嫌気処理水の一部を循環比0.5QでpH調整槽1に循環した。
[Example 1]
The raw water is adjusted to pH 6.3 in the pH adjustment tank 1 by the apparatus shown in FIG. 1 and then sequentially passed through the positive mixing type fluidized bed type anaerobic treatment tank 2 and the upward flow plug flow type fluidized bed type anaerobic treatment tank 3. Water and anaerobic treatment.
The first anaerobic treatment tank 2 was a positively mixed anaerobic treatment tank by return mixing in which a part of the first anaerobic treated water was circulated to the pH adjustment tank 1 at a circulation ratio of 2Q. A part of the second anaerobic treated water from the second anaerobic treatment tank 3 was circulated to the pH adjustment tank 1 at a circulation ratio of 0.5Q.

各嫌気処理槽の仕様及び運転条件は以下の通りである。   The specifications and operating conditions of each anaerobic treatment tank are as follows.

<第1嫌気処理槽>
容量:約4L(直径5cm、高さ100cm)
担体:直径2mm、高さ3mm、沈降速度=300m/hrの円柱形状のポリオレフィン樹脂製担体
担体充填率:60%
HRT:2hr
上昇流速(LV):5m/hr
槽負荷:40kg−CODCr/m/day
汚泥負荷:5kg−CODCr/kg−VSS/day
<First anaerobic treatment tank>
Capacity: Approximately 4L (diameter 5cm, height 100cm)
Carrier: cylindrical polyolefin resin carrier with a diameter of 2 mm, a height of 3 mm, and a sedimentation speed = 300 m / hr Carrier filling rate: 60%
HRT: 2 hr
Ascending flow velocity (LV): 5 m / hr
Tank load: 40 kg-COD Cr / m 3 / day
Sludge load: 5 kg-COD Cr / kg-VSS / day

<第2嫌気処理槽>
容量:約8L(直径5cm、高さ200cm)
担体:直径2mm、高さ3mm、沈降速度=300m/hrの円柱形状のポリオレフィン樹脂製担体
担体充填率:60%
上昇流速(LV):1m/hr
HRT:4hr
槽負荷:10kg−CODCr/m/day
汚泥負荷:1.2kg−CODCr/kg−VSS/day
<Second anaerobic treatment tank>
Capacity: Approximately 8L (diameter 5cm, height 200cm)
Carrier: cylindrical polyolefin resin carrier with a diameter of 2 mm, a height of 3 mm, and a sedimentation speed = 300 m / hr Carrier filling rate: 60%
Ascending flow velocity (LV): 1 m / hr
HRT: 4 hours
Tank load: 10 kg-COD Cr / m 3 / day
Sludge load: 1.2 kg-COD Cr / kg-VSS / day

各嫌気処理槽の運転条件(槽負荷及び循環比)と処理結果を表1に示す。
表1の通り、高い槽負荷で高い処理性能を実現できた。
Table 1 shows the operating conditions (tank load and circulation ratio) and treatment results of each anaerobic treatment tank.
As shown in Table 1, high treatment performance was achieved with a high tank load.

[比較例1]
実施例1において、第1の嫌気処理槽である積極的混合型流動床式嫌気処理槽を省略し、第2の嫌気処理槽である上向流プラグフロー型流動床式嫌気処理槽(槽容積8L、担体充填率60%)のみを用いて1段嫌気処理を行った。
運転条件(槽負荷及び循環比)と処理結果を表1に示す。
表1の通り、十分な処理性能を発揮するためには高い槽負荷を取ることができなかった。
[Comparative Example 1]
In Example 1, the positive mixing type fluidized bed type anaerobic treatment tank which is the first anaerobic treatment tank is omitted, and the upward flow plug flow type fluidized bed type anaerobic treatment tank (the tank volume) which is the second anaerobic treatment tank. 1-stage anaerobic treatment was performed using only 8 L, carrier filling rate 60%).
Table 1 shows operating conditions (tank load and circulation ratio) and processing results.
As shown in Table 1, a high tank load could not be taken in order to exhibit sufficient processing performance.

[比較例2]
UASB型嫌気処理槽(槽容積12L)を1槽のみ用い、pH6.3に調整した原水を1段嫌気処理した。
運転条件(槽負荷及び循環比)と処理結果を表1に示す。
表1の通り、十分な処理性能を発揮するためには高い槽負荷を取ることができなかった。
[Comparative Example 2]
Using only one UASB type anaerobic treatment tank (vessel volume 12 L), raw water adjusted to pH 6.3 was subjected to one-stage anaerobic treatment.
Table 1 shows operating conditions (tank load and circulation ratio) and processing results.
As shown in Table 1, a high tank load could not be taken in order to exhibit sufficient processing performance.

[比較例3]
UASB型嫌気処理槽(槽容積6L)を2段直列に設け、pH6.3に調整した原水を2段嫌気処理した。
運転条件(槽負荷及び循環比)と処理結果を表1に示す。
表1の通り、十分な処理性能を発揮するためには高い槽負荷を取ることができなかった。
[Comparative Example 3]
A two-stage UASB type anaerobic treatment tank (tank volume 6 L) was provided in series, and the raw water adjusted to pH 6.3 was subjected to two-stage anaerobic treatment.
Table 1 shows operating conditions (tank load and circulation ratio) and processing results.
As shown in Table 1, a high tank load could not be taken in order to exhibit sufficient processing performance.

Figure 2017051912
Figure 2017051912

1 pH調整槽
2 第1嫌気処理槽
3 第2嫌気処理槽
4 好気処理槽
5 酸生成槽
1 pH adjustment tank 2 First anaerobic treatment tank 3 Second anaerobic treatment tank 4 Aerobic treatment tank 5 Acid generation tank

Claims (10)

直列に配置された1段目の嫌気処理槽と2段目の嫌気処理槽に、有機性排水を順次通水して処理する嫌気処理方法において、
該1段目の嫌気処理槽が、担体を充填した積極的混合型流動床式嫌気処理槽であり、
該2段目の嫌気処理槽が、担体を充填したプラグフロー型の流動床又は固定床式嫌気処理槽であり、
該1段目の嫌気処理槽において、CODCr2500mg/L以上の前記有機性排水を嫌気処理して、CODCr500mg/L以下の処理水(以下、「第1嫌気処理水」という。)を得ることを特徴とする嫌気処理方法。
In the anaerobic treatment method in which organic waste water is sequentially passed through the first-stage anaerobic treatment tank and the second-stage anaerobic treatment tank arranged in series,
The first stage anaerobic treatment tank is a positively mixed fluidized bed type anaerobic treatment tank filled with a carrier,
The second-stage anaerobic treatment tank is a plug flow type fluidized bed or fixed bed type anaerobic treatment tank filled with a carrier,
In the first-stage anaerobic treatment tank, the organic waste water of COD Cr 2500 mg / L or more is anaerobically treated, and treated water of COD Cr 500 mg / L or less (hereinafter referred to as “first anaerobic treated water”). An anaerobic treatment method characterized by obtaining.
請求項1において、前記1段目の嫌気処理槽における積極的混合を、該槽内に設けられた回転翼をG値2.9sec−1以上で回転させることによる撹拌混合、循環路で連通したエアリフト管を槽内または槽外に設け、循環流速5m/hr以上で槽内液を循環することによるエアリフト混合、或いは、処理水循環ポンプにより前記第1嫌気処理水の一部を循環比0.5Q以上となるように該1段目の嫌気処理槽の前段に循環することによる返送混合のいずれかにより行うことを特徴とする嫌気処理方法。 The active mixing in the first stage anaerobic treatment tank according to claim 1 is communicated by agitation mixing and a circulation path by rotating a rotary blade provided in the tank at a G value of 2.9 sec -1 or more. An air lift pipe is provided inside or outside the tank, and a part of the first anaerobic treated water is circulated by 0.5Q by circulating the liquid in the tank at a circulation flow rate of 5 m / hr or more, or by a treated water circulation pump. An anaerobic treatment method, which is performed by any one of return mixing by circulating to the front stage of the first stage anaerobic treatment tank as described above. 請求項1又は2において、前記2段目の嫌気処理槽が、上向流通水であることを特徴とする嫌気処理方法。   The anaerobic treatment method according to claim 1, wherein the second-stage anaerobic treatment tank is upward circulation water. 請求項1ないし3のいずれか1項において、前記2段目の嫌気処理槽の槽負荷が、前記1段目の嫌気処理槽の槽負荷と該2段目の嫌気処理槽の槽負荷の合計の25%以下であることを特徴とする嫌気処理方法。   In any 1 item | term of Claim 1 thru | or 3, the tank load of the said 2nd stage anaerobic treatment tank is the sum total of the tank load of the said 1st stage anaerobic treatment tank, and the tank load of this 2nd stage anaerobic treatment tank An anaerobic treatment method characterized by being 25% or less. 請求項1ないし4のいずれか1項において、前記1段目の嫌気処理槽の前段に酸生成槽を設け、該酸生成槽の処理水を該1段目の嫌気処理槽に通水すると共に、前記2段目の嫌気処理槽の処理水を該酸生成槽或いはその上流側に返送することを特徴とする嫌気処理方法。   In any 1 item | term of Claim 1 thru | or 4, While providing an acid production tank in the front | former stage of the said 1st stage anaerobic treatment tank, and passing the process water of this acid production tank to this 1st stage anaerobic treatment tank, An anaerobic treatment method characterized by returning treated water from the second stage anaerobic treatment tank to the acid generation tank or the upstream side thereof. 直列に設置された1段目の嫌気処理槽及び2段目の嫌気処理槽と、該1段目の嫌気処理槽と該2段目の嫌気処理槽に有機性排水を順次通水する手段とを有する嫌気処理装置において、
該1段目の嫌気処理槽が、担体を充填した積極的混合型流動床式嫌気処理槽であり、
該2段目の嫌気処理槽が、担体を充填したプラグフロー型の流動床又は固定床式嫌気処理槽であり、
該1段目の嫌気処理槽において、CODCr2500mg/L以上の前記有機性排水を嫌気処理して、CODCr500mg/L以下の処理水(以下、「第1嫌気処理水」という。)を得るものであることを特徴とする嫌気処理装置。
A first-stage anaerobic treatment tank and a second-stage anaerobic treatment tank installed in series; and means for sequentially passing organic wastewater through the first-stage anaerobic treatment tank and the second-stage anaerobic treatment tank; In an anaerobic treatment apparatus having
The first stage anaerobic treatment tank is a positively mixed fluidized bed type anaerobic treatment tank filled with a carrier,
The second-stage anaerobic treatment tank is a plug flow type fluidized bed or fixed bed type anaerobic treatment tank filled with a carrier,
In the first-stage anaerobic treatment tank, the organic waste water of COD Cr 2500 mg / L or more is anaerobically treated, and treated water of COD Cr 500 mg / L or less (hereinafter referred to as “first anaerobic treated water”). An anaerobic treatment apparatus characterized by being obtained.
請求項6において、前記1段目の嫌気処理槽における積極的混合が、該槽内に設けられた回転翼をG値2.9sec−1以上で回転させることによる撹拌混合、該槽内または槽外に設けられた循環路で連通したエアリフト管で、槽内液を循環流速5m/hr以上で循環させることによるエアリフト混合、或いは、処理水循環ポンプにより前記第1嫌気処理水の一部を循環比0.5Q以上となるように該1段目の嫌気処理槽の前段に循環させることによる返送混合のいずれかにより行われることを特徴とする嫌気処理装置。 The active mixing in the first-stage anaerobic treatment tank according to claim 6, wherein the mixing is performed by rotating a rotating blade provided in the tank at a G value of 2.9 sec -1 or more, in the tank or in the tank. A part of the first anaerobic treated water is circulated by air lift mixing by circulating the liquid in the tank at a circulation flow rate of 5 m / hr or more by an air lift pipe communicating with a circulation path provided outside, or by a treated water circulation pump. An anaerobic treatment apparatus characterized in that the anaerobic treatment device is performed by any one of return mixing by circulating to the front stage of the first stage anaerobic treatment tank so as to be 0.5Q or more. 請求項6又は7において、前記2段目の嫌気処理槽が、上向流通水であることを特徴とする嫌気処理装置。   The anaerobic treatment apparatus according to claim 6, wherein the second-stage anaerobic treatment tank is upward circulation water. 請求項6ないし8のいずれか1項において、前記2段目の嫌気処理槽の槽負荷が、前記嫌気処理槽の槽負荷と該2段目の嫌気処理槽の槽負荷の合計の25%以下であることを特徴とする嫌気処理装置。   9. The tank load of the second stage anaerobic treatment tank according to claim 6, wherein the tank load of the second stage anaerobic treatment tank and the tank load of the second stage anaerobic treatment tank are 25% or less. An anaerobic treatment apparatus characterized by being. 請求項6ないし9のいずれか1項において、前記1段目の嫌気処理槽の前段に設けられた酸生成槽と、該酸生成槽の処理水を該1段目の嫌気処理槽に通水する手段と、前記2段目の嫌気処理槽の処理水を該酸生成槽或いはその上流側に返送する手段とを有することを特徴とする嫌気処理装置。   In any 1 item | term of the Claims 6 thru | or 9, the acid production tank provided in the front | former stage of the said 1st stage anaerobic treatment tank, and the treated water of this acid production tank are water-flowed to this 1st stage anaerobic treatment tank And an anaerobic treatment apparatus characterized by comprising means for returning the treated water of the second stage anaerobic treatment tank to the acid generation tank or its upstream side.
JP2015178398A 2015-09-10 2015-09-10 Anaerobic treatment method and anaerobic treatment apparatus Pending JP2017051912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178398A JP2017051912A (en) 2015-09-10 2015-09-10 Anaerobic treatment method and anaerobic treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178398A JP2017051912A (en) 2015-09-10 2015-09-10 Anaerobic treatment method and anaerobic treatment apparatus

Publications (1)

Publication Number Publication Date
JP2017051912A true JP2017051912A (en) 2017-03-16

Family

ID=58316486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178398A Pending JP2017051912A (en) 2015-09-10 2015-09-10 Anaerobic treatment method and anaerobic treatment apparatus

Country Status (1)

Country Link
JP (1) JP2017051912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217449A (en) * 2018-06-19 2019-12-26 株式会社クラレ Wastewater treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217449A (en) * 2018-06-19 2019-12-26 株式会社クラレ Wastewater treatment method

Similar Documents

Publication Publication Date Title
Leyva-Díaz et al. Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal
Li et al. Simultaneous nitrification–denitrification achieved by an innovative internal-loop airlift MBR: Comparative study
Leyva-Díaz et al. Comparative kinetics of hybrid and pure moving bed reactor-membrane bioreactors
Hu et al. Effect of carriers on sludge characteristics and mitigation of membrane fouling in attached-growth membrane bioreactor
El-Fadel et al. Impact of SRT on the performance of MBRs for the treatment of high strength landfill leachate
CN204211537U (en) The double oxygen MBR membrane bioreactor of integration
CN104016550B (en) Sewage water treatment method in Apparel Manufacturing
JP2017127854A (en) Composite water treatment system using granular active sludge and membrane type bioreactor, and method therefor
CN205328703U (en) High ammonia -nitrogen concentration waste water high -efficiency biological processing apparatus
US10280099B2 (en) Method for biological purification of waste water
CN101597130A (en) The treatment process of organic waste water and wastewater treatment equipment
CN104176893A (en) Canned fungus processing wastewater treatment system
CN111153551A (en) Municipal sewage treatment device and treatment process
JP2017051912A (en) Anaerobic treatment method and anaerobic treatment apparatus
Rodríguez-Hernández et al. Evaluation of a hybrid vertical membrane bioreactor (HVMBR) for wastewater treatment
Song et al. Treatment of polyvinyl alcohol containing wastewater in two stage spiral symmetrical stream anaerobic bioreactors coupled a sequencing batch reactor
CN106865888B (en) A method of removing refinery(waste) water total nitrogen
CN102491517B (en) Anaerobic and aerobic sewage treatment unit and sewage treatment method
CN113788583B (en) Wastewater treatment system
KR20040006926A (en) Wastewater treatment utilizing the equencing batch reactor supplemented with inner circulation systems
Chen et al. Low dissolved oxygen membrane bioreactor processes (LDO-MBRs): a review
FI126433B (en) Bioreactor for treatment of water fluid (s) with biomass
CN202881063U (en) Bio-pharmaceutical sewage purification system
JP5084866B2 (en) Organic wastewater treatment equipment
JP2012035146A (en) Water treatment method