JP2007185596A - Organic wastewater treatment apparatus - Google Patents

Organic wastewater treatment apparatus Download PDF

Info

Publication number
JP2007185596A
JP2007185596A JP2006005365A JP2006005365A JP2007185596A JP 2007185596 A JP2007185596 A JP 2007185596A JP 2006005365 A JP2006005365 A JP 2006005365A JP 2006005365 A JP2006005365 A JP 2006005365A JP 2007185596 A JP2007185596 A JP 2007185596A
Authority
JP
Japan
Prior art keywords
yeast
tank
reaction tank
aeration
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006005365A
Other languages
Japanese (ja)
Other versions
JP2007185596A5 (en
Inventor
Makoto Takatori
信 鷹取
Naoko Yamamoto
菜穂子 山本
Hisashi Obayashi
寿 尾林
Yoko Nagata
陽子 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP2006005365A priority Critical patent/JP2007185596A/en
Publication of JP2007185596A publication Critical patent/JP2007185596A/en
Publication of JP2007185596A5 publication Critical patent/JP2007185596A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an organic wastewater treatment apparatus which can reduce an installation area. <P>SOLUTION: The inside of a yeast reaction tank 1 is partitioned into two chambers by a screen 2 to form a yeast dominant chamber 3 and an activated sludge dominant chamber 4. Raw water is introduced into the yeast dominant chamber 3 through a raw water introduction pipe 5, and carriers 6 for making yeast dominant are made to flow into the yeast dominant chamber 3. Supernatant water generated in the activated sludge dominant chamber 4 is discharged through a supernatant water transfer pipe 7, and sludge generated in the activated sludge dominant chamber 4 is made to flow into a yeast activation tank 10 by a pipe body 8 and a pump 9. The yeast activation tank 10 increases the treatment capacity of a specific microorganism, such as yeast, and yeast activated in the yeast activation tank 10 is made to flow into the yeast dominant chamber 3 through a pipe body 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、有機性排水を公共水域に放流できるように酵母を用いて処理する装置に関する。   The present invention relates to an apparatus for treating yeast wastewater so that organic wastewater can be discharged into public water areas.

従来、高濃度の有機性物質やヘキサン抽出物質を含有する排水は、活性汚泥処理法、酵母処理法、加圧浮上処理法、またはこれらのいずれかを組み合わせた処理法によって処理される。特に、この種の排水を公共水域に放流できるように処理するためには、酵母処理法または加圧浮上処理法と活性汚泥処理法とを組み合わせた処理法を用いる必要がある。その例として、酵母処理法と活性汚泥処理法を組み合わせた処理法では、酵母反応槽、酵母沈殿槽、活性汚泥反応槽、および活性汚泥沈殿槽が必要とされる。活性汚泥処理法は、活性汚泥を有する活性汚泥反応槽に排水を導入し、その活性汚泥反応槽内を曝気しながら、排水中の有機性物質を活性汚泥によって酸化分解する。酵母処理法は、酵母に適した環境とするための硫酸や塩酸等を添加した酵母反応槽に排水を導入し、その酵母反応槽を曝気しながら、排水中の有機性物質を酸化分解する。加圧浮上処理法は、微生物を利用しない物理化学的な処理法であり、排水に加圧水を加え、浮上したヘキサン抽出物質を分離除去する。活性汚泥処理法と酵母処理法を組み合わせた処理法は、排水を酵母処理法によって処理した後に活性汚泥処理法によって処理する。この場合に、酵母処理法では、高濃度の有機性物質とヘキサン抽出物質を活性汚泥処理法によって処理できる濃度まで処理する。そして、活性汚泥処理法と加圧浮上処理法を組み合わせた処理法は、加圧浮上処理法によってヘキサン抽出物質を分離除去した後に、活性汚泥処理法によって処理する。   Conventionally, wastewater containing high-concentration organic substances and hexane extract substances is treated by an activated sludge treatment method, a yeast treatment method, a pressurized flotation treatment method, or a treatment method combining any of these. In particular, in order to treat this type of waste water so that it can be discharged into public waters, it is necessary to use a yeast treatment method or a treatment method that combines a pressurized flotation treatment method and an activated sludge treatment method. For example, in a treatment method combining a yeast treatment method and an activated sludge treatment method, a yeast reaction tank, a yeast precipitation tank, an activated sludge reaction tank, and an activated sludge precipitation tank are required. In the activated sludge treatment method, waste water is introduced into an activated sludge reaction tank having activated sludge, and an organic substance in the waste water is oxidized and decomposed by activated sludge while aerated inside the activated sludge reaction tank. In the yeast treatment method, wastewater is introduced into a yeast reaction tank to which sulfuric acid, hydrochloric acid, or the like for making the environment suitable for yeast is added, and the organic substances in the wastewater are oxidatively decomposed while the yeast reaction tank is aerated. The pressurized flotation treatment method is a physicochemical treatment method that does not use microorganisms, and adds pressurized water to wastewater to separate and remove the floating hexane extract. In the treatment method combining the activated sludge treatment method and the yeast treatment method, the wastewater is treated by the yeast treatment method and then treated by the activated sludge treatment method. In this case, in the yeast treatment method, a high concentration organic substance and hexane extract substance are treated to a concentration that can be treated by the activated sludge treatment method. And the processing method which combined the activated sludge processing method and the pressurization flotation treatment method processes by the activated sludge treatment method, after separating and removing the hexane extraction substance by the pressurization flotation treatment method.

このような従来の排水処理装置において、生物処理を行なうためには、活性汚泥反応槽内や酵母反応槽内を曝気するための曝気手段が備えられている。この種の曝気手段は、通常、各反応槽内の底部に配置してある散気管、各反応槽の外部に設けたブロワ、および散気管とブロワを接続する管体によって構成されている。このような曝気手段の散気管は、各反応槽の底壁上面の全体に配置されたり、各反応槽の左右の側壁の近傍のみに配置されたり、各反応槽の底壁上面の左右の中央に1つまたは列状に配置されたりする。そして、散気管が各反応槽の底壁上面の全体に配置されている場合には、散気管の上方のみに上昇流が発生し、その結果として散気管と散気管の間の領域には下降流が発生し、活性汚泥や酵母汚泥は多数の小さな循環流によって撹拌される。散気管が各反応槽の左右の側壁の近傍のみに配置されている場合、および散気管が各反応槽の底壁上面の左右の中央に1つまたは列状に配置されている場合には、散気管の上方に上昇流が発生し、その結果として散気管が存在しない領域に下降流が発生し、活性汚泥や酵母汚泥は1つの大きな循環流によって撹拌される。   In such a conventional wastewater treatment apparatus, in order to perform biological treatment, aeration means for aeration of the activated sludge reaction tank or the yeast reaction tank is provided. This type of aeration means is generally constituted by an air diffuser arranged at the bottom of each reaction tank, a blower provided outside each reaction tank, and a tube body connecting the air diffuser and the blower. The air diffuser of such aeration means is disposed on the entire top surface of the bottom wall of each reaction tank, disposed only in the vicinity of the left and right side walls of each reaction tank, Or arranged in a row. When the air diffuser is disposed on the entire top surface of the bottom wall of each reaction tank, an upward flow is generated only above the air diffuser, and as a result, the region between the air diffuser and the air diffuser is lowered. A stream is generated and activated sludge and yeast sludge are agitated by a number of small circulating streams. When the diffuser pipe is arranged only in the vicinity of the left and right side walls of each reaction tank, and when the diffuser pipe is arranged in the center of the left and right of the upper surface of the bottom wall of each reaction tank, Ascending flow is generated above the diffuser, and as a result, downward flow is generated in the region where the diffuser is not present, and the activated sludge and yeast sludge are agitated by one large circulating flow.

なお、前記背景技術は当業者一般に知られた技術であって、文献公知発明に係るものではない。   The background art is a technique generally known to those skilled in the art, and does not relate to a known literature invention.

上記従来の排水処理装置には、酵母反応槽、酵母沈殿槽、活性汚泥反応槽、および活性汚泥沈殿槽が必要とされるので、設置面積が広く、設備コストが高い。特に、活性汚泥処理法のみを利用した排水処理装置では、BOD(酸素要求量)容積負荷が0.3〜0.8kg/m3・日となっている場合が多いので、排水が高濃度の有機性物質を含んでいる場合には大きな活性汚泥反応槽が必要となる。また、排水が高濃度のヘキサン抽出物質を含んでいる場合には、活性汚泥処理法のみを利用した排水処理装置のみでは処理することができず、活性汚泥処理法と加圧浮上処理法の組合せを利用した排水処理装置が必要となり、設備コストが高くなる。そして、加圧浮上処理法を利用した排水処理装置では、作業環境を悪くするフロスが発生するので、このフロスの処分をするため、場合によっては薬品を添加する処理が必要となり、運転管理が煩雑になって運転コストが高くなる。 Since the conventional waste water treatment apparatus requires a yeast reaction tank, a yeast precipitation tank, an activated sludge reaction tank, and an activated sludge precipitation tank, the installation area is large and the equipment cost is high. In particular, wastewater treatment equipment that uses only the activated sludge treatment method often has a BOD (oxygen demand) volumetric load of 0.3 to 0.8 kg / m 3 · day. When organic substances are contained, a large activated sludge reaction tank is required. In addition, if the wastewater contains a high concentration of hexane extract, it cannot be treated only with a wastewater treatment device that uses only the activated sludge treatment method, and a combination of the activated sludge treatment method and the pressurized flotation treatment method. The waste water treatment equipment using the is necessary, and the equipment cost becomes high. In the wastewater treatment equipment using the pressurized flotation method, floss that deteriorates the working environment is generated. Therefore, in order to dispose of this floss, it is necessary to add a chemical in some cases, and operation management is complicated. This increases the operating cost.

また、酵母処理法のみを利用した排水処理装置では、BOD容積負荷が5〜10kg/m3・日となっているので、活性汚泥処理法のみを利用した排水処理装置と比べて酵母反応槽が小さく、設置面積は小さくなる反面、この排水処理装置によって得られる処理水にはBODが100〜200mg/Lの有機性物質が残存しているので、この処理水を公共水域に放流することが許されない。そのうえに、酵母沈殿槽が嫌気的になり易いので、嫌気条件に置かれた酵母が酵母反応槽に返送された際に、酵母が処理能力を回復するまでに多くの時間が必要となる。 Moreover, in the wastewater treatment apparatus using only the yeast treatment method, the BOD volumetric load is 5 to 10 kg / m 3 · day, so that the yeast reaction tank has a larger capacity than the wastewater treatment apparatus using only the activated sludge treatment method. Although it is small and the installation area is small, organic substances with a BOD of 100 to 200 mg / L remain in the treated water obtained by this wastewater treatment device, so it is allowed to discharge this treated water to public water bodies. Not. In addition, since the yeast sedimentation tank tends to become anaerobic, it takes a lot of time for the yeast to recover its processing capacity when the yeast placed under anaerobic conditions is returned to the yeast reaction tank.

さらに、活性汚泥処理法と酵母処理法の組合せを利用した排水処理装置では、公共水域に放流し得る処理水を得ることができる反面、酵母反応槽と活性汚泥反応槽の2つの反応槽が必要となるうえに、それらの後段にそれぞれ位置する酵母沈殿槽と活性汚泥沈殿槽の2つの沈殿槽が必要となり、設置面積が広く設備コストが高くなる。また、酵母反応槽は、流入する負荷が設定値よりもある程度大きくなっても対応できるが、流入する負荷が一定以上大きくなると酵母汚泥に付着した有機物(油分)が分解されず、比重が軽くなり、酵母沈殿槽からキャリーオーバーする可能性がある。また、その負荷が設定値よりも大きく減少した場合には、酵母反応槽におけるBOD除去率が上昇するので、後段の活性汚泥反応槽で適当な負荷が得られなくなる。このため、活性汚泥反応槽において活性汚泥が解体し、処理水の質が低下する。このことは、前段の酵母反応槽が連続方式または回分式のいずれにも発生する。   Furthermore, in the wastewater treatment equipment using the combination of the activated sludge treatment method and the yeast treatment method, treated water that can be discharged into public water areas can be obtained, but two reaction tanks, a yeast reaction tank and an activated sludge reaction tank, are required. In addition, two sedimentation tanks, a yeast sedimentation tank and an activated sludge sedimentation tank, which are respectively located in the subsequent stages are required, and the installation area is large and the equipment cost is high. In addition, the yeast reaction tank can respond even if the inflow load becomes larger than the set value to some extent, but if the inflow load becomes larger than a certain level, the organic matter (oil) attached to the yeast sludge will not be decomposed and the specific gravity will be reduced. There is a possibility of carry over from the yeast sedimentation tank. In addition, when the load is greatly reduced below the set value, the BOD removal rate in the yeast reaction tank is increased, so that an appropriate load cannot be obtained in the subsequent activated sludge reaction tank. For this reason, the activated sludge is dismantled in the activated sludge reaction tank, and the quality of the treated water is lowered. This occurs whether the previous yeast reaction tank is continuous or batch-wise.

そして、曝気手段の散気管が酵母反応槽の底壁上面の全体に配置されている排水処理装置では、酵母反応槽内に上昇流と下降流が混在するだけで全体に亘る大きな流れが生じないので、酵母汚泥を撹拌する力が弱く、特に酵母汚泥の濃度が高い場合には、酵母汚泥が酵母反応槽の底壁上に堆積することがある。また、散気管が酵母反応槽の左右の側壁の近傍のみに配置されている排水処理装置や、散気管が酵母反応槽の底壁上面の左右の中央に1つまたは列状に配置されている排水処理装置では、全体に亘る大きな循環流が生じるので酵母汚泥が底壁上に堆積することはない反面、散気管は部分的に配置されているので、多くの空気を噴出することができず、曝気手段の酸素供給能力が低い。   And in the waste water treatment equipment in which the diffuser tube of the aeration means is arranged on the entire top surface of the bottom wall of the yeast reaction tank, there is no large flow over the whole just by mixing up flow and down flow in the yeast reaction tank. Therefore, the ability to stir the yeast sludge is weak, and particularly when the concentration of yeast sludge is high, the yeast sludge may accumulate on the bottom wall of the yeast reaction tank. In addition, a waste water treatment apparatus in which the air diffuser is disposed only in the vicinity of the left and right side walls of the yeast reaction tank, and the air diffuser are disposed in one or a row in the center of the left and right of the upper surface of the bottom wall of the yeast reaction tank. In the wastewater treatment equipment, a large circulation flow occurs throughout, so that the yeast sludge does not accumulate on the bottom wall, but the air diffuser is partially arranged, so that a lot of air cannot be ejected. The oxygen supply capacity of the aeration means is low.

この発明は、上述のような課題を解決するためになされたもので、その目的は、設置面積を削減できるとともに処理性能を安定して良好に維持できる、酵母を利用した排水処理装置を得るものである。   This invention was made in order to solve the above-described problems, and its purpose is to obtain a wastewater treatment apparatus using yeast that can reduce the installation area and stably maintain the treatment performance. It is.

この発明に係る酵母を利用した排水処理装置は、酵母反応槽に担体を備え、且つ前記酵母反応槽に酵母活性化槽を備えることを特徴とするものである。   The wastewater treatment apparatus using yeast according to the present invention is characterized in that a yeast reaction tank is provided with a carrier, and the yeast reaction tank is provided with a yeast activation tank.

この発明に係る酵母を利用した排水処理装置は、酵母反応槽に担体を備え、且つ前記酵母反応槽に可溶化槽を備えることを特徴とするものである。   The wastewater treatment apparatus using yeast according to the present invention is characterized in that a yeast reaction tank is provided with a carrier, and the yeast reaction tank is provided with a solubilization tank.

この発明は、酵母反応槽内の担体に酵母を担持させることができるので、酵母による反応を向上させることができる。また、酵母活性化槽によって酵母の菌数を良好に保つことができるので、酵母の寄与率を向上させることができる。したがって、酵母処理性能を安定して良好に維持できる。また、酵母反応槽に従来の酵母沈殿槽と活性汚泥反応槽の役割を持たせることができるので、設置面積を削減できる。   Since this invention can carry | support yeast on the support | carrier in a yeast reaction tank, the reaction by yeast can be improved. Moreover, since the number of yeasts can be kept favorable by the yeast activation tank, the contribution ratio of yeast can be improved. Therefore, the yeast treatment performance can be maintained stably and satisfactorily. Moreover, since the yeast reaction tank can have the roles of a conventional yeast precipitation tank and activated sludge reaction tank, the installation area can be reduced.

この発明は、酵母反応槽内の担体に酵母を担持させることができるので、酵母による反応を向上させることができる。また、可溶化槽によって油分を粉砕して均一化することができるので、油分の除去率を向上させることができる。したがって、酵母処理性能を安定して良好に維持できる。また、酵母反応槽に従来の酵母沈殿槽と活性汚泥反応槽の役割を持たせることができるので、設置面積を削減できる。   Since this invention can carry | support yeast on the support | carrier in a yeast reaction tank, the reaction by yeast can be improved. In addition, since the oil component can be pulverized and homogenized by the solubilization tank, the oil removal rate can be improved. Therefore, the yeast treatment performance can be maintained stably and satisfactorily. Moreover, since the yeast reaction tank can have the roles of a conventional yeast precipitation tank and activated sludge reaction tank, the installation area can be reduced.

実施の形態1.
図1はこの発明を実施するための実施の形態1における酵母を利用した排水処理装置(以下、単に排水処理装置という)を示すものである。この排水処理装置の酵母反応槽1の内部はスクリーン2によって2つの室に仕切り、酵母優占室3と活性汚泥優占室4を設けてある。有機性排水(以下、原水という)は原水導入管5を介して酵母優占室3に導入し、酵母優占室3には酵母を優占するための担体6を投入してある。汚泥混合処理水は活性汚泥優占室4から移送管7を介して系外に排出するので必要に応じ固液分離する。活性汚泥優占室4で生じた汚泥は管体8とポンプ9によって酵母活性化槽10に流入させるようにしてある。この酵母活性化槽10は酵母などの特定の微生物の処理能力(活性)を高めるものとし、酵母活性化槽10で活性化した酵母は管体11を介して酵母優占室3に流入させるようにしてある。
Embodiment 1 FIG.
FIG. 1 shows a wastewater treatment apparatus (hereinafter simply referred to as a wastewater treatment apparatus) using yeast in Embodiment 1 for carrying out the present invention. The inside of the yeast reaction tank 1 of this waste water treatment apparatus is divided into two chambers by a screen 2, and a yeast dominant chamber 3 and an activated sludge dominant chamber 4 are provided. Organic wastewater (hereinafter referred to as raw water) is introduced into the yeast dominant room 3 through the raw water introduction pipe 5, and a carrier 6 for predominating the yeast is introduced into the yeast dominant room 3. The sludge mixed treated water is discharged out of the system from the activated sludge dominant chamber 4 through the transfer pipe 7, and is thus separated into solid and liquid as necessary. The sludge generated in the activated sludge dominant chamber 4 is made to flow into the yeast activation tank 10 by the pipe body 8 and the pump 9. The yeast activation tank 10 is intended to enhance the processing ability (activity) of a specific microorganism such as yeast, and the yeast activated in the yeast activation tank 10 is allowed to flow into the yeast dominant chamber 3 via the tube 11. It is.

ここで、担体6は、酵母を容易に絡みつかせるものであればその材質や形状を限定するものではなく、紐状、繊維状、筒状、モール状、マット状、スポンジ状、膜状などとすることができる。また、担体6は、活性炭、リンポー、リングレース、バイオフリンジなどと代替することができる。さらに、酵母活性化槽10は、酵母培養槽、空曝気槽、第2酵母反応槽、可溶化槽とすることができ、可溶化槽は酸発酵槽、嫌気槽、アルコール発酵槽、一次沈殿池、易分解槽、汚泥減容化槽、細菌減容化槽とすることができる。なお、脱臭工程が存在する場合には、その工程の再生処理時に発生する微粉炭を活性炭として用いることができる。また、酵母活性化槽10を空曝気槽とする場合には、酵母の活性度を高めることが可能となる。   Here, the carrier 6 is not limited in its material and shape as long as it can easily entangle yeast, such as string, fiber, cylinder, molding, mat, sponge, membrane, etc. It can be. Further, the carrier 6 can be replaced with activated carbon, Limpo, ring lace, bio fringe or the like. Furthermore, the yeast activation tank 10 can be a yeast culture tank, an empty aeration tank, a second yeast reaction tank, and a solubilization tank. The solubilization tank is an acid fermentation tank, an anaerobic tank, an alcohol fermentation tank, and a primary sedimentation tank. , Easy decomposition tank, sludge volume reduction tank, bacteria volume reduction tank. In addition, when there exists a deodorizing process, the pulverized coal which generate | occur | produces at the time of the regeneration process of the process can be used as activated carbon. In addition, when the yeast activation tank 10 is an empty aeration tank, it is possible to increase the activity of the yeast.

この実施の形態1における排水処理装置では、酵母反応槽1内をスクリーン2によって酵母優占室3と活性汚泥優占室4に仕切ってあるので、担体6が酵母優占室3から活性汚泥優占室4に移動することがない。したがって、酵母優占室3では担体6に絡みついた酵母が優占し、酵母による反応が向上する。また、活性汚泥優占室4で生じた汚泥中の酵母を酵母活性化槽10によって活性化させて酵母優占室3に流入させるので、酵母による反応が更に向上する。   In the waste water treatment apparatus in this Embodiment 1, since the inside of the yeast reaction tank 1 is divided into the yeast dominant chamber 3 and the activated sludge dominant chamber 4 by the screen 2, the carrier 6 is separated from the yeast dominant chamber 3 to the activated sludge superior. There is no movement to the occupied room 4. Therefore, in the yeast dominant room 3, the yeast entangled with the carrier 6 predominates, and the reaction by the yeast is improved. Moreover, since the yeast in the sludge produced in the activated sludge dominant room 4 is activated by the yeast activation tank 10 and flows into the yeast dominant room 3, the reaction by yeast is further improved.

さらに、酵母反応槽1が従来の酵母反応槽、酵母沈殿槽、および活性汚泥反応槽を一体化したような構成となっているので、設置面積が減少する。また、担体6を利用しているので、従来の酵母沈殿槽が備わっていなくても、良好な水質が得られる。さらに、酵母と活性汚泥を共存させての高負荷処理が可能となり、油分も分解でき、必要に応じて後段に固液分離槽を設置することで、公共水域への放流も可能となる。そして、酵母活性化槽10によって酵母の活性すなわち酵母の菌数を良好に保つので、処理の際の酵母の寄与率が向上する。   Furthermore, since the yeast reaction tank 1 is configured such that a conventional yeast reaction tank, a yeast precipitation tank, and an activated sludge reaction tank are integrated, the installation area is reduced. Moreover, since the support | carrier 6 is utilized, even if it is not equipped with the conventional yeast precipitation tank, a favorable water quality is obtained. Furthermore, it is possible to perform high-load treatment with the coexistence of yeast and activated sludge, the oil can be decomposed, and if necessary, a solid-liquid separation tank can be installed at the subsequent stage to discharge into public water areas. And since the yeast activity, ie, the number of yeasts, is kept good by the yeast activation tank 10, the contribution ratio of the yeasts during the treatment is improved.

なお、この実施の形態1における排水処理装置では、酵母反応槽1の酵母優占室3に担体6を投入したが、担体6は必ずしも流入させる必要はない。また、酵母反応槽1は回分処理または膜処理とすることも可能であり、回分処理とする場合には酵母反応槽1にデカンタなどの上澄水移送手段を設けるのが好ましい。また、活性汚泥優占室4には担体6が入っていても良い。   In the waste water treatment apparatus according to the first embodiment, the carrier 6 is introduced into the yeast-dominated chamber 3 of the yeast reaction tank 1, but the carrier 6 does not necessarily need to flow. Moreover, the yeast reaction tank 1 can also be made into a batch process or a membrane process, and when making it a batch process, it is preferable to provide supernatant water transfer means, such as a decanter, in the yeast reaction tank 1. The activated sludge dominant chamber 4 may contain a carrier 6.

実施の形態2.
図2はこの発明を実施するための実施の形態2における排水処理装置を示すものである。この排水処理装置の酵母反応槽21の内部は、通水部を有する仕切壁22によって2つの室に仕切り、酵母優占室23と活性汚泥優占室24を設けてある。原水は原水導入管25を介して酵母優占室23に導入し、酵母優占室23には酵母を優占するための担体26を投入してある。汚泥混合処理水は活性汚泥優占室24から移送管27を介して固液分離槽28に排出するようにしてある。固液分離槽28で生じた処理水は処理水排出管29を介して系外に排出し、固液分離槽28で生じた汚泥は、管体30とポンプ31によって酵母活性化槽32に流入させるようにしてある。そして、酵母活性化槽32で活性化した酵母は、管体33を介して酵母優占室23に流入させるようにしてある。
Embodiment 2. FIG.
FIG. 2 shows a waste water treatment apparatus according to Embodiment 2 for carrying out the present invention. The inside of the yeast reaction tank 21 of this waste water treatment apparatus is divided into two chambers by a partition wall 22 having a water passage, and a yeast dominant chamber 23 and an activated sludge dominant chamber 24 are provided. Raw water is introduced into a yeast dominant chamber 23 through a raw water introduction pipe 25, and a carrier 26 for predominating yeast is introduced into the yeast dominant chamber 23. The sludge mixed treated water is discharged from the activated sludge dominant chamber 24 to the solid-liquid separation tank 28 through the transfer pipe 27. The treated water generated in the solid-liquid separation tank 28 is discharged out of the system through the treated water discharge pipe 29, and the sludge generated in the solid-liquid separation tank 28 flows into the yeast activation tank 32 by the pipe body 30 and the pump 31. I am trying to make it. The yeast activated in the yeast activation tank 32 is allowed to flow into the yeast dominant chamber 23 via the tube 33.

担体26は実施の形態1における担体6と同様なものとしてある。固液分離槽28は、酵母反応槽21から流入した汚泥混合処理水を上層の清澄な処理水と下層の酵母含有活性汚泥とに重力によって分離するようにしてある。しかし、固液分離方法は限定するものではなく、膜分離方法を採用したもの、デカンタ、濃縮機などの機械分離方法を採用したものとすることができる。酵母活性化槽32も実施の形態1における酵母活性化槽10と同様なものとしてある。したがって、この実施の形態2における排水処理装置では、固液分離槽28が従来の酵母沈殿槽と活性汚泥沈殿槽の役割をするので、設置面積が減少する。また、酵母反応槽21を酵母優占室23と活性汚泥優占室24に仕切ってあるとともに、酵母活性化槽32を備えているので、実施の形態1と同様な効果が得られる。なお、酵母優占室23と活性汚泥優占室は複数槽に仕切ること可能である。   The carrier 26 is the same as the carrier 6 in the first embodiment. The solid-liquid separation tank 28 is configured to separate the sludge mixed treated water flowing in from the yeast reaction tank 21 into upper clear treated water and lower yeast-containing activated sludge by gravity. However, the solid-liquid separation method is not limited, and may be a method employing a membrane separation method or a mechanical separation method such as a decanter or a concentrator. The yeast activation tank 32 is also similar to the yeast activation tank 10 in the first embodiment. Therefore, in the waste water treatment apparatus according to the second embodiment, the solid-liquid separation tank 28 functions as a conventional yeast precipitation tank and activated sludge precipitation tank, so that the installation area is reduced. Moreover, since the yeast reaction tank 21 is partitioned into the yeast dominant chamber 23 and the activated sludge dominant chamber 24 and the yeast activation tank 32 is provided, the same effect as in the first embodiment can be obtained. In addition, the yeast dominant room 23 and the activated sludge dominant room can be partitioned into a plurality of tanks.

実施の形態3.
図3はこの発明を実施するための実施の形態3における排水処理装置を示すものであり、図2と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置は、酵母反応槽21Aの内部を2つの仕切壁22によって3つの室に仕切ってある点で実施の形態2における酵母反応槽21と異なっている。すなわち、酵母反応槽21A内には、酵母と活性汚泥が共存する中間室34を酵母優占室23と活性汚泥優占室24の間に設けてある。管体33は酵母優占室23につながる管体33aと中間室34につながる管体33bとに分岐されている。そのため、活性化槽32で活性化されて酵母優占室23と中間室34に流入する酵母の流入量をコントロールすることができる。したがって、この実施の形態3における排水処理装置は、実施の形態2と同様な効果が得られるうえに、酵母と活性汚泥が共存する中間室34を酵母反応槽21Aに設けたことにより、処理効率が更に向上する。
Embodiment 3 FIG.
FIG. 3 shows a waste water treatment apparatus according to Embodiment 3 for carrying out the present invention, and the same parts as those in FIG. This waste water treatment apparatus differs from the yeast reaction tank 21 in the second embodiment in that the inside of the yeast reaction tank 21A is divided into three chambers by two partition walls 22. That is, an intermediate chamber 34 in which yeast and activated sludge coexist is provided between the yeast dominant chamber 23 and the activated sludge dominant chamber 24 in the yeast reaction tank 21A. The tube body 33 is branched into a tube body 33 a connected to the yeast dominant chamber 23 and a tube body 33 b connected to the intermediate chamber 34. Therefore, the inflow amount of yeast activated in the activation tank 32 and flowing into the yeast dominant chamber 23 and the intermediate chamber 34 can be controlled. Therefore, the wastewater treatment apparatus in the third embodiment has the same effect as that of the second embodiment, and has a processing efficiency by providing the yeast reaction tank 21A with an intermediate chamber 34 in which yeast and activated sludge coexist. Is further improved.

実施の形態4.
図4はこの発明を実施するための実施の形態4における排水処理装置を示すものであり、図3と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置は、酵母反応槽21Bの酵母優占室23内の汚泥混合水と浮遊担体とを循環させる管体35を設けてあるとともに、この管体35に濃縮機36を設けてある点で実施の形態3における排水処理装置と異なっている。この実施の形態4における排水処理装置では、酵母反応槽21Bの酵母優占室23内の酵母を濃縮して酵母優占室23に戻すので、酵母による処理効率が更に向上する。
Embodiment 4 FIG.
FIG. 4 shows a waste water treatment apparatus according to Embodiment 4 for carrying out the present invention. The same parts as those in FIG. This waste water treatment apparatus is provided with a pipe body 35 for circulating the sludge mixed water and the floating carrier in the yeast dominant chamber 23 of the yeast reaction tank 21B, and a concentrator 36 is provided on the pipe body 35. Thus, the waste water treatment apparatus in the third embodiment is different. In the waste water treatment apparatus in the fourth embodiment, the yeast in the yeast dominant chamber 23 of the yeast reaction tank 21B is concentrated and returned to the yeast dominant chamber 23, so that the treatment efficiency with yeast is further improved.

実施の形態5.
図5はこの発明を実施するための実施の形態5における排水処理装置を示すものであり、図4と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置の酵母反応槽21Cは、実施の形態4におけると同様な大きさの3つずつの酵母優占室23、中間室34、および活性汚泥優占室24をそれぞれ並列させて配置してある。このため、原水は原水導入管25から第1の分流管38によって分流させて酵母優占室23に個々に流入させ、各酵母優占室23で生じた汚泥混合処理水は第1の合流管39によって合流させるようにしてある。
Embodiment 5 FIG.
FIG. 5 shows a waste water treatment apparatus according to Embodiment 5 for carrying out the present invention, and the same parts as those in FIG. The yeast reaction tank 21C of this waste water treatment apparatus is arranged by arranging three yeast dominant chambers 23, intermediate chambers 34, and activated sludge dominant chambers 24 each having the same size as in the fourth embodiment. It is. For this reason, the raw water is diverted from the raw water introduction pipe 25 by the first diversion pipe 38 and individually flows into the yeast dominant chambers 23, and the sludge mixed treated water generated in each yeast dominant chamber 23 is the first confluence pipe. 39 to join together.

同様に、酵母優占室23からの合流水は、第2の分流管40によって分流させて中間室34に個々に流入させ、各中間室34で生じた汚泥混合処理水は第2の合流管41によって合流させるようにしてある。さらに、中間室34からの合流水は第3の分流管42によって分流させて活性汚泥優占室24に個々に流入させ、各活性汚泥優占室24で生じた汚泥混合処理水は第3の合流管43と移送管27によって固液分離槽28に排出するようにしてある。そして、酵母活性化槽32で活性化した酵母は、原水導入管25に流入させるとともに、第1の合流管39と第2の分流管40の間に流入させるようにしてある。   Similarly, the merged water from the yeast dominant chamber 23 is diverted by the second diversion pipe 40 and individually flows into the intermediate chamber 34, and the sludge mixed treated water generated in each intermediate chamber 34 is the second merge pipe. 41 is made to merge. Further, the combined water from the intermediate chamber 34 is divided by the third branch pipe 42 and individually flows into the activated sludge dominant chamber 24, and the sludge mixed treated water generated in each activated sludge dominant chamber 24 is the third sludge mixed treatment water. It is made to discharge | emit to the solid-liquid separation tank 28 by the confluence | merging pipe | tube 43 and the transfer pipe | tube 27. FIG. The yeast activated in the yeast activation tank 32 is caused to flow into the raw water introduction pipe 25 and between the first junction pipe 39 and the second branch pipe 40.

実施の形態6.
図6はこの発明を実施するための実施の形態6における排水処理装置を示すものである。この排水処理装置は、酵母反応槽51、固液分離槽52、および酵母活性化槽53を備えているが、原水は原水導入管54を介して酵母活性化槽53に導入するようにしてある。そして、酵母活性化槽53で活性化した酵母は混合液導入管55を介して酵母反応槽51に流入させるようにしてある。この際に、原水の一部は原水分流管56によって酵母反応槽51に直接導入するようにしてある。酵母反応槽51には担体57を投入してあり、酵母反応槽51で生じた汚泥混合処理水は移送管58を介して固液分離槽52に流入させるようにしてある。そして、固液分離槽52で生じた清澄な処理水は処理水排出管59を介して系外に排出し、固液分離槽52で生じた汚泥は管体60を介して酵母活性化槽53に流入させるようにしてある。
Embodiment 6 FIG.
FIG. 6 shows a waste water treatment apparatus according to Embodiment 6 for carrying out the present invention. The waste water treatment apparatus includes a yeast reaction tank 51, a solid-liquid separation tank 52, and a yeast activation tank 53, and raw water is introduced into the yeast activation tank 53 via a raw water introduction pipe 54. . The yeast activated in the yeast activation tank 53 is allowed to flow into the yeast reaction tank 51 through the mixed solution introduction pipe 55. At this time, a part of the raw water is directly introduced into the yeast reaction tank 51 through the raw water flow pipe 56. A carrier 57 is put into the yeast reaction tank 51, and the sludge mixed treated water generated in the yeast reaction tank 51 is made to flow into the solid-liquid separation tank 52 through the transfer pipe 58. Then, the clear treated water generated in the solid-liquid separation tank 52 is discharged out of the system through the treated water discharge pipe 59, and the sludge generated in the solid-liquid separation tank 52 is passed through the pipe body 60 to the yeast activation tank 53. It is made to flow in.

この実施の形態6における排水処理装置では、酵母活性化槽53において酵母などの微生物を増殖させるので、処理効率が向上するとともに、処理対象となる原水の範囲が広がる。なお、酵母反応槽51から汚泥を酵母活性化槽53に流入させること、または酵母活性化槽53に流入させる原水の量と酵母反応槽51に流入させる原水の量との比率を変えることによっても、同様な効果が得られる。   In the waste water treatment apparatus according to the sixth embodiment, microorganisms such as yeast are propagated in the yeast activation tank 53, so that the treatment efficiency is improved and the range of raw water to be treated is expanded. It is also possible to cause sludge to flow into the yeast activation tank 53 from the yeast reaction tank 51 or to change the ratio of the amount of raw water that flows into the yeast activation tank 53 and the amount of raw water that flows into the yeast reaction tank 51. A similar effect can be obtained.

実施の形態7.
図7はこの発明を実施するための実施の形態7における排水処理装置を示すものであり、図6と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置は、全ての原水が原水導入管54から酵母反応槽51に直接流入するようにしてある点、および酵母活性化槽53で活性化した酵母を管体61によって酵母反応槽51に流入させるようにしてある点で実施の形態6における排水処理装置と異なっている。したがって、この実施の形態7における排水処理装置では、酵母反応槽51に原水と酵母が流入することにより処理効率が向上し、その他には実施の形態6と同様な効果が得られる。
Embodiment 7 FIG.
FIG. 7 shows a waste water treatment apparatus according to Embodiment 7 for carrying out the present invention. The same parts as those in FIG. In this waste water treatment apparatus, all raw water flows directly from the raw water introduction pipe 54 into the yeast reaction tank 51, and the yeast activated in the yeast activation tank 53 is transferred to the yeast reaction tank 51 by the pipe body 61. It differs from the waste water treatment apparatus in the sixth embodiment in that it is made to flow. Therefore, in the waste water treatment apparatus according to the seventh embodiment, the raw water and the yeast flow into the yeast reaction tank 51 to improve the treatment efficiency, and otherwise the same effects as in the sixth embodiment are obtained.

実施の形態8.
図8はこの発明を実施するための実施の形態8における排水処理装置を示すものであり、図6と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置は、実施の形態6における酵母活性化槽53の代りに酸発酵槽62を設けてある点で実施の形態6の排水処理装置と異なっている。この場合に、固液分離槽52で生じた汚泥は管体60の分岐部60aと分岐部60bを介して酵母反応槽51と酸発酵槽62にそれぞれ流入させるようにしてある。ここに、酸発酵槽62は、原水中の有機性物質を低分子化するとともに、酸を発酵させるものとしてある。したがって、この実施の形態8における排水処理装置では、実施の形態6と同様な効果が得られる。なお、酸発酵槽62に高濃度の原水を流入させて酸発酵槽62を嫌気状態にすれば、発生汚泥量が減少するとともに、硫酸の使用量が減少する。また、酸発酵槽62は酵母培養槽と代替することができる。
Embodiment 8 FIG.
FIG. 8 shows a waste water treatment apparatus according to Embodiment 8 for carrying out the present invention. The same parts as those in FIG. This waste water treatment apparatus differs from the waste water treatment apparatus of the sixth embodiment in that an acid fermentation tank 62 is provided instead of the yeast activation tank 53 in the sixth embodiment. In this case, the sludge generated in the solid-liquid separation tank 52 is caused to flow into the yeast reaction tank 51 and the acid fermentation tank 62 via the branch part 60a and the branch part 60b of the tubular body 60, respectively. Here, the acid fermenter 62 reduces the molecular weight of the organic substance in the raw water and ferments the acid. Therefore, in the waste water treatment apparatus in the eighth embodiment, the same effect as in the sixth embodiment can be obtained. In addition, if high concentration raw | natural water is poured into the acid fermenter 62 and the acid fermenter 62 is made anaerobic, the amount of generated sludge will decrease and the amount of sulfuric acid used will also decrease. The acid fermentation tank 62 can be replaced with a yeast culture tank.

実施の形態9.
図9はこの発明を実施するための実施の形態9における排水処理装置を示すものであり、図8と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置は、酵母反応槽51の上段に第2酵母反応槽(油分除去槽)63を設けてあるとともに、この第2酵母反応槽63の上段に油分分離槽64を設けてある点で実施の形態8における排水処理装置と異なっている。この場合に、原水の全ては原水導入管54を介して油分分離槽64に導入し、油分分離槽64で分離した上層の油分は管体65を介して第2酵母反応槽63に導入するようにしてある。また、第2酵母反応槽63で油分が除去された原水は管体66を介して酵母反応槽51に流入させるとともに、油分分離槽64で油分が分離した原水は管体67を介して酵母反応槽51に直接流入させるようにしてある。
Embodiment 9 FIG.
FIG. 9 shows a waste water treatment apparatus according to Embodiment 9 for carrying out the present invention. The same parts as those in FIG. This waste water treatment apparatus is provided with a second yeast reaction tank (oil removal tank) 63 at the upper stage of the yeast reaction tank 51 and an oil separation tank 64 at the upper stage of the second yeast reaction tank 63. This is different from the waste water treatment apparatus in the eighth embodiment. In this case, all of the raw water is introduced into the oil separation tank 64 through the raw water introduction pipe 54, and the upper layer oil separated in the oil separation tank 64 is introduced into the second yeast reaction tank 63 through the pipe body 65. It is. The raw water from which oil has been removed in the second yeast reaction tank 63 is allowed to flow into the yeast reaction tank 51 through the pipe body 66, and the raw water from which oil has been separated in the oil separation tank 64 is subjected to the yeast reaction through the pipe body 67. It is made to flow directly into the tank 51.

この実施の形態9における排水処理装置では、油分分離槽64において原水から油分を分離し、この分離した油分を第2酵母反応槽63において除去するので、負荷条件から第2酵母反応槽63の酵母の濃度が高まり、処理効率が向上する。この結果として、酵母反応槽51や従来の活性汚泥槽、嫌気槽などの後段の選択肢が広くなる。なお、固液分離槽52からの汚泥は、管体61を介して酵母反応槽51に流入させるばかりでなく、管体61aを介して第2酵母反応槽63にも流入させるように構成することも好ましい。   In the waste water treatment apparatus in the ninth embodiment, the oil component is separated from the raw water in the oil separation tank 64, and the separated oil component is removed in the second yeast reaction tank 63. Therefore, the yeast in the second yeast reaction tank 63 is removed from the load condition. As a result, the processing efficiency is improved. As a result, the subsequent options such as the yeast reaction tank 51, the conventional activated sludge tank, and the anaerobic tank are widened. The sludge from the solid-liquid separation tank 52 is configured not only to flow into the yeast reaction tank 51 through the pipe body 61 but also into the second yeast reaction tank 63 through the pipe body 61a. Is also preferable.

実施の形態10.
図10はこの発明を実施するための実施の形態10における排水処理装置を示すものであり、図7と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置は、酵母反応槽51に担体57を投入していない点、および固液分離槽52に対して撹拌機68とサイクロン69を設けてある点で実施の形態7における排水処理装置と異なっている。撹拌機68は固液分離槽52の底部に沈降した汚泥を撹拌するものとし、サイクロン69は固液分離槽52から管体70を介して導いた汚泥から砂を回収して固液分離槽52に流入させるものとしてある。したがって、この実施の形態10における排水処理装置では、汚泥から回収した砂を再利用するので、凝集剤を添加しなくても沈殿効率が向上する。
Embodiment 10 FIG.
FIG. 10 shows a waste water treatment apparatus according to Embodiment 10 for carrying out the present invention. The same parts as those in FIG. This waste water treatment apparatus differs from the waste water treatment apparatus in the seventh embodiment in that the support 57 is not put into the yeast reaction tank 51 and the stirrer 68 and the cyclone 69 are provided for the solid-liquid separation tank 52. Is different. The stirrer 68 stirs the sludge settled at the bottom of the solid-liquid separation tank 52, and the cyclone 69 collects sand from the sludge guided from the solid-liquid separation tank 52 through the pipe body 70 to collect the solid-liquid separation tank 52. It is supposed to flow into Therefore, in the waste water treatment apparatus according to the tenth embodiment, the sand recovered from the sludge is reused, so that the precipitation efficiency is improved without adding a flocculant.

実施の形態11.
図11はこの発明を実施するための実施の形態11における排水処理装置を示すものであり、図7と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置では、酵母反応槽51に曝気手段71を設置してある。この曝気手段71は、酵母反応槽51内に配置した散気管72、酵母反応槽51の外部に配置したブロワ73、および散気管72とブロワ73を接続した管体74によって構成してある。そして、管体74の途中に第1イオン発生器75を配設し、移送管58に第2イオン発生器76を配設してある。第1イオン発生器75は、曝気手段71で発生する気泡が微細でありつづけるために設置してある。また、第2イオン発生器76は、微細気泡を粗大化させるために設置してある。
Embodiment 11 FIG.
FIG. 11 shows a waste water treatment apparatus according to an eleventh embodiment for carrying out the present invention. The same parts as those in FIG. In this waste water treatment apparatus, aeration means 71 is installed in the yeast reaction tank 51. The aeration means 71 is constituted by an air diffuser 72 disposed in the yeast reaction tank 51, a blower 73 disposed outside the yeast reaction tank 51, and a tube body 74 connecting the air diffuser 72 and the blower 73. A first ion generator 75 is arranged in the middle of the tube body 74, and a second ion generator 76 is arranged in the transfer pipe 58. The first ion generator 75 is installed so that bubbles generated by the aeration means 71 continue to be fine. The second ion generator 76 is installed to coarsen the fine bubbles.

したがって、この実施の形態11における排水処理装置では、第1イオン発生器75で発生したマイナスイオンが酵母反応槽51内の原水中の微細な気泡に混入し、マイナスイオンの電荷によって微細気泡同士が互いに反発することで合泡せず、微細気泡の状態が長時間保たれる。このことは、曝気手段71が微細な空気を噴出する場合や、曝気手段71が純酸素を用いた場合にも同様となる。また、第2イオン発生器76で発生したプラスイオンが酵母反応槽51からの上澄水に混入し、電荷を中和して合泡するので、微細気泡による汚泥の沈降阻害を防止する。   Therefore, in the waste water treatment apparatus according to the eleventh embodiment, the negative ions generated in the first ion generator 75 are mixed into the fine bubbles in the raw water in the yeast reaction tank 51, and the fine bubbles are formed by the negative ions. By repelling each other, bubbles do not form and the state of fine bubbles is maintained for a long time. This is the same when the aeration means 71 ejects fine air or when the aeration means 71 uses pure oxygen. Moreover, since the positive ions generated in the second ion generator 76 are mixed into the supernatant water from the yeast reaction tank 51 and the charges are neutralized to form bubbles, the sedimentation of sludge due to fine bubbles is prevented.

実施の形態12.
図12は、この発明を実施するための実施の形態12における排水処理装置の要部を説明するものである。この排水処理装置は、回分式の酵母反応槽81を備えているとともに、この酵母反応槽81を回分式活性汚泥法によって制御する制御設備82を備えている。酵母反応槽81には担体83を投入してあるうえに、曝気手段84とデカンタ85を設置してある。原水は酵母反応槽81に原水導入管86、ポンプ87、および開閉弁88によって導入するようにしてある。デカンタ85からの上澄水は管体89、開閉弁90、およびポンプ91によって系外に排出するようにしてある。そして、上澄水の一部は、管体89に配設した方向制御弁92と管体93を介して酵母活性化槽94に導入し、酵母活性化槽94で活性化した酵母は管体95を介して酵母反応槽81に流入させるようにしてある。
Embodiment 12 FIG.
FIG. 12 illustrates a main part of a waste water treatment apparatus according to Embodiment 12 for carrying out the present invention. The waste water treatment apparatus includes a batch type yeast reaction tank 81 and a control facility 82 for controlling the yeast reaction tank 81 by a batch type activated sludge method. The yeast reaction tank 81 is loaded with a carrier 83 and is provided with an aeration means 84 and a decanter 85. The raw water is introduced into the yeast reaction tank 81 by a raw water introduction pipe 86, a pump 87, and an on-off valve 88. The supernatant water from the decanter 85 is discharged out of the system by the pipe body 89, the on-off valve 90, and the pump 91. A part of the supernatant water is introduced into the yeast activation tank 94 via the direction control valve 92 and the pipe body 93 disposed in the pipe body 89, and the yeast activated in the yeast activation tank 94 is the pipe body 95. It is made to flow into the yeast reaction tank 81 via.

曝気手段84は、酵母反応槽81の底部に配置した散気管96、酵母反応槽81の外部に配置したブロワ97、および散気管97とブロワ97を接続した管体98によって構成することができる。そして、制御設備82は、デカンタ85、ポンプ87、開閉弁88、開閉弁90、ポンプ91、方向制御弁92、ブロワ97などを制御するようにしてある。この場合に、制御設備82は、図13に示すように、流入工程、曝気工程、沈殿工程、および排出工程を時系列に行わせるとともに、曝気工程と沈殿工程の間に微細気泡を流入させる工程を行わせるようにし、沈降しにくい汚泥を浮上分離させ、処理水を中間から取るようにしてある。   The aeration means 84 can be constituted by an air diffuser 96 disposed at the bottom of the yeast reaction tank 81, a blower 97 disposed outside the yeast reaction tank 81, and a tubular body 98 connecting the air diffuser 97 and the blower 97. The control facility 82 controls the decanter 85, the pump 87, the on-off valve 88, the on-off valve 90, the pump 91, the direction control valve 92, the blower 97, and the like. In this case, as shown in FIG. 13, the control facility 82 causes the inflow process, the aeration process, the precipitation process, and the discharge process to be performed in time series, and allows fine bubbles to flow between the aeration process and the precipitation process. The sludge that is difficult to settle is floated and separated, and the treated water is taken from the middle.

実施の形態13.
図14はこの発明を実施するための実施の形態13における排水処理装置を示すものである。この排水処理装置は、酵母反応槽111に原水導入管112と上澄水移送管113を備えている。酵母反応槽111内には、上下に通水部114、115をそれぞれ有する2つの仕切壁116によって3つの室、すなわち中央に位置する比較的大容量の1つの曝気室117と、左右に位置する比較的少容量の2つの無曝気室118を設けてある。そして、中央の曝気室117の下部に大きな容量の曝気手段119を配置し、同じ曝気室117の上部に小さな容量の曝気手段120を配置してある。下部の曝気手段119は散気管121、ブロワ122、および管体123によって構成し、上部の曝気手段120は散気管124、ブロワ125、および管体126によって構成してある。そして、下部の曝気手段119の管体123には、純酸素発生機127を配設してある。
Embodiment 13 FIG.
FIG. 14 shows a waste water treatment apparatus according to Embodiment 13 for carrying out the present invention. This waste water treatment apparatus includes a raw water introduction pipe 112 and a supernatant water transfer pipe 113 in a yeast reaction tank 111. In the yeast reaction tank 111, three chambers, that is, a relatively large-capacity one aeration chamber 117 located in the center and two left and right sides are provided by two partition walls 116 having upper and lower water flow portions 114 and 115, respectively. Two aeration chambers 118 having a relatively small capacity are provided. A large-capacity aeration means 119 is arranged below the central aeration chamber 117, and a small-capacity aeration means 120 is arranged above the same aeration chamber 117. The lower aeration means 119 is constituted by a diffuser tube 121, a blower 122 and a tube body 123, and the upper aeration means 120 is constituted by an aeration tube 124, a blower 125 and a tube body 126. A pure oxygen generator 127 is disposed in the pipe body 123 of the lower aeration means 119.

通常、下部の曝気手段119が散気管121から空気を噴出する場合には、その気泡は大きいので、酵母反応槽111の内部に循環流が容易に発生する。しかし、純酸素発生機127が作動して下部の曝気手段119が純酸素を噴出する場合には、気泡の大きさが微細であるので、酵母反応槽111の内部に循環流が発生し難い。このため、この実施の形態13では上部の曝気手段120の散気管124からも散気するので、この散気管124から噴出した大きな気泡が下部の曝気手段119の散気管121からの微細気泡を合泡する。これにより、酵母反応槽111内の原水に粗大気泡の大きな上昇力が加わり、酵母反応槽111内に循環流が発生する。   Normally, when the lower aeration means 119 ejects air from the diffuser 121, the bubbles are large, so that a circulating flow is easily generated inside the yeast reaction tank 111. However, when the pure oxygen generator 127 is operated and the lower aeration means 119 ejects pure oxygen, since the size of the bubbles is fine, it is difficult for a circulating flow to be generated inside the yeast reaction tank 111. For this reason, in the thirteenth embodiment, air is diffused also from the diffuser tube 124 of the upper aeration means 120, so that the large bubbles ejected from the diffuser pipe 124 combine the fine bubbles from the diffuser pipe 121 of the lower aeration means 119. Foam. As a result, a large ascending force of coarse bubbles is added to the raw water in the yeast reaction tank 111, and a circulation flow is generated in the yeast reaction tank 111.

以上、実施の形態1〜12において用いた酵母活性化槽10、32、53、94は、酵母を活性化できるのであれば、その構成を限定するものではないが、例えば図15に示すような構成や、図16に示すような構成とすることが可能である。すなわち、図15に示す酵母活性化槽131は一端132および他端133を有する円筒体とし、酵母を含んだ担体と酵母を含んだ活性汚泥との混合液を収容するようにしてある。酵母活性化槽131は、その軸線を水平に対して傾斜させて、その軸線の周りに回転可能に設置してある。そして、酵母活性化槽131の内周面には複数のガイド板134を一定の間隔で設けてある。   As described above, the yeast activation tanks 10, 32, 53, and 94 used in Embodiments 1 to 12 are not limited in configuration as long as they can activate yeast. For example, as shown in FIG. A configuration as shown in FIG. 16 can be adopted. That is, the yeast activation tank 131 shown in FIG. 15 is a cylindrical body having one end 132 and the other end 133, and contains a mixed liquid of a carrier containing yeast and activated sludge containing yeast. The yeast activation tank 131 is installed so that its axis is inclined with respect to the horizontal and can be rotated around the axis. A plurality of guide plates 134 are provided at regular intervals on the inner peripheral surface of the yeast activation tank 131.

このような酵母活性化槽131では、固液分離槽から汚泥を酵母活性化槽131の一端132に流入させ、活性化した酵母は酵母活性化槽131の他端133から酵母反応槽に向けて流出させるのが好ましい。この際に、酵母活性化槽131が回転すると、ガイド板134は酵母担体(酵母を含んだ担体)と酵母汚泥(酵母を含んだ活性汚泥)との混合液を撹拌し、その混合液を一端132側から他端133側へ移動させる。なお、酵母活性化槽131の内部は、曝気手段や表面曝気によって好気性状態に維持するのが好ましい。また、酵母活性化槽131の容量はSRTなどを考慮して決定するのが好ましく、SRTは12〜24時間、混合液のpHは4.5程度に維持することが望ましいが、SRTは6〜48時間とし、混合液のpHは4〜6程度に維持できればよい。   In such a yeast activation tank 131, sludge is allowed to flow from the solid-liquid separation tank into one end 132 of the yeast activation tank 131, and the activated yeast is directed from the other end 133 of the yeast activation tank 131 toward the yeast reaction tank. It is preferable to let it flow out. At this time, when the yeast activation tank 131 rotates, the guide plate 134 stirs the mixed solution of the yeast carrier (carrier containing yeast) and the yeast sludge (activated sludge containing yeast), Move from the 132 side to the other end 133 side. Note that the inside of the yeast activation tank 131 is preferably maintained in an aerobic state by aeration means or surface aeration. The capacity of the yeast activation tank 131 is preferably determined in consideration of SRT and the like. It is desirable to maintain SRT for 12 to 24 hours and the pH of the mixed solution at about 4.5, while SRT is 6 to The pH of the mixed solution may be maintained at about 4 to 6 for 48 hours.

他方、図16に示す酵母活性化槽141内は、1つの仕切壁142によって仕切ってあり、比較的小容量の第1室143と比較的大容量の第2室144を設けてある。原水からの管体145は第1室143に接続し、酵母反応槽への管体146は第2室144に接続してある。仕切壁142は、上部の鉛直部147と下部の傾斜部148を有している。鉛直部147には多数の孔149を設け、傾斜部148の下端には開口を設けて移送管の役目をもたせてある。そして、第1室143の下部を簡易沈殿部150とし、この簡易沈殿部150に沈殿した汚泥は管体151を介して系外に排出するようにしてある。このように、酵母活性化槽141に流入した原水から簡易沈殿部150においてSS分を取り除くことにより、余分な負荷が減り、酵母の活性をあげることができる。   On the other hand, the inside of the yeast activation tank 141 shown in FIG. 16 is partitioned by one partition wall 142, and a relatively small-capacity first chamber 143 and a relatively large-capacity second chamber 144 are provided. A tube 145 from the raw water is connected to the first chamber 143, and a tube 146 to the yeast reaction tank is connected to the second chamber 144. The partition wall 142 has an upper vertical portion 147 and a lower inclined portion 148. A large number of holes 149 are provided in the vertical portion 147, and an opening is provided in the lower end of the inclined portion 148 to serve as a transfer pipe. And the lower part of the 1st chamber 143 is made into the simple sedimentation part 150, and the sludge settled in this simple sedimentation part 150 is discharged | emitted out of the system through the pipe body 151. FIG. In this way, by removing the SS component from the raw water flowing into the yeast activation tank 141 in the simple sedimentation section 150, the extra load is reduced and the yeast activity can be increased.

実施の形態14.
図17および図18は、この発明を実施するための実施の形態14における排水処理装置を示すものである。この排水処理装置の好気性処理槽161は例えば酵母反応槽または活性汚泥反応槽として利用できるものであり、上側通水部162と下側通水部163をそれぞれ有する2つの仕切壁164によって3つの室に仕切り、中央の比較的大容量の曝気室165と左右2つの比較的小容量の無曝気室166とを設けてある。そして、曝気室165は曝気手段167によって曝気するようにしてある。この曝気手段167は、曝気室165の底部に密に配設した複数の散気管168と、好気性処理槽161の外部に配置した図示しない空気源と、これらの散気管168と空気源を接続した管体169によって構成できる。
Embodiment 14 FIG.
17 and 18 show a wastewater treatment apparatus in Embodiment 14 for carrying out the present invention. The aerobic treatment tank 161 of this waste water treatment apparatus can be used as, for example, a yeast reaction tank or an activated sludge reaction tank, and includes three partition walls 164 each having an upper water passage 162 and a lower water passage 163. A relatively large-capacity aeration chamber 165 at the center and two relatively small-capacity non-aeration chambers 166 on the left and right sides are provided. The aeration chamber 165 is aerated by the aeration means 167. The aeration means 167 includes a plurality of air diffusers 168 arranged closely at the bottom of the aeration chamber 165, an air source (not shown) arranged outside the aerobic treatment tank 161, and the air diffuser 168 and the air source connected to each other. The tube body 169 can be configured.

ここで、曝気室165の容積と無曝気室166の容積との比は、10対1〜10対10(1対1)とするのが好ましい。また、上側通水部162の面積と下側通水部163の面積とは、無曝気室166の横断面積の50〜200%とするのが好ましい。そして、曝気手段167の散気管168から噴出する空気量は、空気源の圧力または散気管168の孔径を変化させることによって制御し得るように構成するのが好ましい。   Here, the ratio of the volume of the aeration chamber 165 to the volume of the non-aeration chamber 166 is preferably 10: 1 to 10:10 (1: 1). Further, the area of the upper water passage 162 and the area of the lower water passage 163 are preferably 50 to 200% of the cross-sectional area of the aeration chamber 166. The amount of air ejected from the air diffuser 168 of the aeration means 167 is preferably configured to be controlled by changing the pressure of the air source or the hole diameter of the air diffuser 168.

この好気性処理槽161において、曝気手段167の散気管168から曝気室165に空気が噴出すると、曝気室165に上昇流が発生し、原水が左右の無曝気室166から下側通水部163を通って曝気室165に流入するとともに、曝気室165から上側通水部162を通って無曝気室166に流出し、原水が好気性処理槽161内で循環する。この循環流は、仕切壁164の下側通水部163を集中して流れる。   In this aerobic treatment tank 161, when air is ejected from the diffuser pipe 168 of the aeration means 167 to the aeration chamber 165, an upward flow is generated in the aeration chamber 165, and the raw water flows from the left and right non-aeration chambers 166 to the lower water passage 163. Then, the air flows into the aeration chamber 165 and flows out from the aeration chamber 165 through the upper water passage 162 to the non-aeration chamber 166, and the raw water circulates in the aerobic treatment tank 161. This circulating flow concentrates on the lower water passage 163 of the partition wall 164.

このように、この実施の形態14における排水処理装置では、原水が仕切壁164の下側通水部163を集中して流れるので、原水中の汚泥濃度が高い場合でも、汚泥が好気性処理槽161の底部に堆積することがなく、処理効率が向上する。また、曝気室165に曝気手段167の散気管168を密に配置してあるので、散気管168から曝気室165全体に大量の空気を噴出することができ、酸素供給能力が向上する。   As described above, in the waste water treatment apparatus according to the fourteenth embodiment, the raw water concentrates and flows through the lower water flow portion 163 of the partition wall 164, so that even if the sludge concentration in the raw water is high, the sludge is an aerobic treatment tank. The processing efficiency is improved without depositing on the bottom of 161. Further, since the aeration tube 168 of the aeration means 167 is densely arranged in the aeration chamber 165, a large amount of air can be ejected from the aeration tube 168 to the entire aeration chamber 165, and the oxygen supply capability is improved.

なお、曝気手段167の空気源の圧力、すなわち散気管168から噴出する空気量を時間的に制御すれば、循環流の強さを制御できる。また、散気管168の孔径を小さくすれば、そこから噴出する気泡径が小さくなるので、気泡の上昇速度が小さくなり、原水の単位容積あたりの空気含有量が多くなる。このため、エアリフト効果が向上し、空気供給量が増加した場合と同様な効果が得られる。   In addition, if the pressure of the air source of the aeration means 167, that is, the amount of air ejected from the diffuser pipe 168 is temporally controlled, the strength of the circulating flow can be controlled. Further, if the hole diameter of the air diffusing tube 168 is reduced, the bubble diameter ejected therefrom is reduced, so that the rising speed of the bubbles is reduced and the air content per unit volume of the raw water is increased. For this reason, the air lift effect is improved, and the same effect as when the air supply amount is increased can be obtained.

実施の形態15.
図19および図20はこの発明を実施するための実施の形態15における排水処理装置を示すものであり、図17および図18と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置の好気性処理槽161Aは、内部を2つの仕切壁164によって中央の強曝気室170と左右2つの弱曝気室171に仕切ってある点で実施の形態14における好気性処理槽161と異なっている。すなわち、強曝気室170は強い曝気力の曝気手段172によって曝気し、弱曝気室171は弱い曝気力の曝気手段173によって曝気するようにしてある。このため、強曝気室170には曝気手段172の散気管174を配置し、弱曝気室171には曝気手段173の散気管175を配置してある。なお、曝気手段172、173の散気管174、175は、それぞれ管体176、177を介して別々の空気源に接続してある。
Embodiment 15 FIG.
19 and 20 show a wastewater treatment apparatus according to Embodiment 15 for carrying out the present invention. The same parts as those in FIGS. The aerobic treatment tank 161A of this waste water treatment apparatus is divided into a central strong aeration chamber 170 and two left and right weak aeration chambers 171 by two partition walls 164, and the aerobic treatment tank 161 in the fourteenth embodiment. Is different. That is, the strong aeration chamber 170 is aerated by the aeration means 172 having a strong aeration force, and the weak aeration chamber 171 is aerated by the aeration means 173 having a weak aeration force. For this reason, the diffuser tube 174 of the aeration unit 172 is disposed in the strong aeration chamber 170, and the diffuser tube 175 of the aeration unit 173 is disposed in the weak aeration chamber 171. Note that the air diffusers 174 and 175 of the aeration means 172 and 173 are connected to separate air sources via the pipe bodies 176 and 177, respectively.

この実施の形態15における好気性処理槽161Aでは、弱曝気室171に配設した散気管175の単位面積あたりの空気供給量が強曝気室170に配設した散気管174の単位面積あたりの空気供給量よりも小さいので、強曝気室170には上昇流が発生し、弱曝気室171には下降流が発生する。この際に、弱曝気室171も曝気するので、酸素供給量が増加し、処理効率が更に向上する。なお、この実施の形態15における好気性処理槽161Aでも、散気管174、175の孔径や空気源の圧力を変化させ得ることは言うまでもない。また、散気管175から純酸素を発生させて微細気泡にすることで、効率はより向上する。   In the aerobic treatment tank 161A in the fifteenth embodiment, the air supply amount per unit area of the diffuser tube 175 disposed in the weak aeration chamber 171 is the air per unit area of the diffuser tube 174 disposed in the strong aeration chamber 170. Since it is smaller than the supply amount, an upward flow is generated in the strong aeration chamber 170 and a downward flow is generated in the weak aeration chamber 171. At this time, since the weak aeration chamber 171 is also aerated, the oxygen supply amount is increased and the processing efficiency is further improved. Needless to say, even in the aerobic treatment tank 161A in the fifteenth embodiment, the hole diameters of the air diffusion tubes 174 and 175 and the pressure of the air source can be changed. Further, the efficiency is further improved by generating pure oxygen from the air diffuser 175 to form fine bubbles.

実施の形態16.
図21および図22はこの発明を実施するための実施の形態16における排水処理装置を示すものであり、図17および図18と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置の好気性処理槽161Bは、曝気手段167の散気管168を水深の3分の1の位置よりも上方に配置してある点で実施の形態14における排水処理装置と異なっている。すなわち、図示する距離A(水面と散気管168との垂直距離)と距離B(散気管168と底壁と垂直距離)との関係を3B≧A+Bとしてある。
Embodiment 16 FIG.
FIGS. 21 and 22 show a wastewater treatment apparatus according to Embodiment 16 for carrying out the present invention. The same parts as those in FIGS. The aerobic treatment tank 161B of this waste water treatment apparatus is different from the waste water treatment apparatus in the fourteenth embodiment in that the aeration pipe 168 of the aeration means 167 is disposed above the position of one third of the water depth. . That is, the relationship between the distance A (vertical distance between the water surface and the diffuser 168) and the distance B (vertical distance between the diffuser 168 and the bottom wall) is 3B ≧ A + B.

この実施の形態16における好気性処理槽161Bでは、中央の曝気室165に上昇流が発生し、左右の無曝気室166に下降流が発生するので、実施の形態14と同様な効果が得られる。そのうえに、散気管168を水深の3分の1の位置よりも上方に配置してあるので、水深が深い場合でも比較的浅い位置で曝気できることになる。したがって、比較的低圧で全体を曝気できるようになるので、曝気効率が向上し、コストが低下する。   In the aerobic treatment tank 161B in the sixteenth embodiment, an upward flow is generated in the central aeration chamber 165 and a downward flow is generated in the left and right non-aeration chambers 166, so that the same effect as in the fourteenth embodiment can be obtained. . In addition, since the air diffuser 168 is disposed above the position of one third of the water depth, even when the water depth is deep, aeration can be performed at a relatively shallow position. Therefore, since the whole can be aerated at a relatively low pressure, the aeration efficiency is improved and the cost is reduced.

実施の形態17.
図23および図24はこの発明を実施するための実施の形態17における排水処理装置を示すものであり、図21および図22と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置の好気性処理槽161Cでは、2つの仕切壁164を左右の中間に間隔をおいて設け、2つの仕切壁164の外側を比較的大きな容量の曝気室165とし、2つの仕切壁164の内側を比較的小さな容量の無曝気室166としてある点で実施の形態16における好気性処理槽161Bと異なっている。この場合に、曝気室165の曝気手段167の散気管168は、実施の形態16における場合と同様に水深の3分の1の位置よりも上方に配置してある。
Embodiment 17. FIG.
FIG. 23 and FIG. 24 show the waste water treatment apparatus in the seventeenth embodiment for carrying out the present invention. The same parts as those in FIG. 21 and FIG. In the aerobic treatment tank 161C of this waste water treatment apparatus, two partition walls 164 are provided at intervals in the middle of the left and right, and the outside of the two partition walls 164 is used as an aeration chamber 165 having a relatively large capacity. It differs from the aerobic treatment tank 161B in Embodiment 16 in that the inside of 164 is an aeration chamber 166 having a relatively small capacity. In this case, the air diffuser 168 of the aeration means 167 of the aeration chamber 165 is arranged above the position of one third of the water depth as in the case of the sixteenth embodiment.

したがって、この実施の形態17における排水処理装置では、左右の曝気室165に上昇流が発生し、中央の無曝気室166に下降流が発生する。このため、循環流に泡が生じても、その泡が中央の無曝気室166内に引き込まれ、泡が好気性処理槽161Cの外部に流出することはない。また、泡が水面下に引き込まれるので、泡が物理的に消滅する。   Therefore, in the waste water treatment apparatus according to the seventeenth embodiment, an upward flow is generated in the left and right aeration chambers 165 and a downward flow is generated in the central non-aeration chamber 166. For this reason, even if bubbles are generated in the circulating flow, the bubbles are not drawn into the central aeration chamber 166 and the bubbles do not flow out of the aerobic treatment tank 161C. Further, since the bubbles are drawn below the water surface, the bubbles physically disappear.

実施の形態18.
図25および図26はこの発明を実施するための実施の形態18における排水処理装置を示すものであり、図17および図18と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置の好気性処理槽161Dでは、仕切壁164を好気性処理槽161Dの左右の中間に設けて左右2つの曝気室165を設けてある点で実施の形態14における好気性処理槽161と異なっている。この場合に、双方の曝気室165にそれぞれ曝気手段167の散気管168を配置し、散気管168から噴出する空気を量的および時間的に変化させるようにしてある。
Embodiment 18 FIG.
25 and 26 show a waste water treatment apparatus in an eighteenth embodiment for carrying out the present invention. The same parts as those in FIGS. In the aerobic treatment tank 161D of this waste water treatment apparatus, the aerobic treatment tank 161 in the fourteenth embodiment is provided in that the partition wall 164 is provided in the middle of the left and right of the aerobic treatment tank 161D, and two left and right aeration chambers 165 are provided. Is different. In this case, the aeration pipes 168 of the aeration means 167 are arranged in both the aeration chambers 165, respectively, and the air ejected from the aeration pipes 168 is changed quantitatively and temporally.

この実施の形態18では、散気手段167の散気管168から噴出する空気を量的および時間的に変化させるようにしてあるので、図26に示すように、一方(図に向かって左側)の曝気室165の散気管168から噴出する空気量を他方(図に向かって右側)の散気管168から噴出する空気量よりも多くした場合には、一方の曝気室165に上昇流が発生し、他方の曝気室165に下降流が発生する。したがって、この実施の形態18における排水処理装置では、循環流の強さつまり汚泥の撹拌強さを自由に設定できるので、実施の形態14と同様な効果が得られる。なお、好気性処理槽161Dの内部を複数の仕切壁164によって3以上の曝気室165に仕切り、各曝気室165に曝気手段167の散気管168をそれぞれ配置し、各散気管168から噴出する空気を量的または時間的に変化させるようにも構成できる。   In the eighteenth embodiment, since the air ejected from the air diffuser 168 of the air diffuser 167 is changed quantitatively and temporally, as shown in FIG. 26, one (left side in the figure) is shown. When the amount of air ejected from the aeration tube 168 of the aeration chamber 165 is larger than the amount of air ejected from the other (right side as viewed in the drawing) of the aeration tube 168, an upward flow is generated in one aeration chamber 165, A downward flow is generated in the other aeration chamber 165. Therefore, in the waste water treatment apparatus according to the eighteenth embodiment, the strength of the circulating flow, that is, the stirring strength of the sludge can be set freely, and the same effect as in the fourteenth embodiment can be obtained. The inside of the aerobic treatment tank 161D is divided into three or more aeration chambers 165 by a plurality of partition walls 164, and the aeration pipes 168 of the aeration means 167 are arranged in the aeration chambers 165, respectively, and the air ejected from the aeration pipes 168 Can also be configured to vary quantitatively or temporally.

実施の形態19.
図27および図28はこの発明を実施するための実施の形態19における排水処理装置を示すものであり、図23および図24と同じ部分に同じ符号を付して重複説明を省略する。この排水処理装置は、好気性処理槽161Eの内部を2対の仕切壁164によって3つの曝気室165と2つの無曝気室166に仕切ってある点で実施の形態17における排水処理装置と異なっている。すなわち、好気性処理槽161Eは平面形状が原水の流れる方向に細長くして、その内部に上流側から曝気室165、無曝気室166、曝気室165、無曝気室166、および曝気室165を順次に設けてある。そして、各曝気室165に曝気手段167の散気管168を密に配置してある。この場合にも、曝気室165と無曝気室166との比は10対1〜1対1とするのが好ましい。
Embodiment 19. FIG.
27 and 28 show a wastewater treatment apparatus according to Embodiment 19 for carrying out the present invention. The same parts as those in FIGS. This wastewater treatment apparatus is different from the wastewater treatment apparatus in Embodiment 17 in that the inside of the aerobic treatment tank 161E is divided into three aeration chambers 165 and two aeration chambers 166 by two pairs of partition walls 164. Yes. In other words, the aerobic treatment tank 161E is elongated in the direction in which the raw water flows, and an aeration chamber 165, an aeration chamber 166, an aeration chamber 165, an aeration chamber 166, and an aeration chamber 165 are sequentially provided from the upstream side. Is provided. The aeration tubes 168 of the aeration means 167 are densely arranged in the aeration chambers 165. Also in this case, the ratio of the aeration chamber 165 and the non-aeration chamber 166 is preferably 10: 1 to 1: 1.

図28に示すように、好気性処理槽161Eに流入した原水は、最上段の曝気室165において上昇流となり、その後段の無曝気室166において下降流となり、中央の曝気室165において再び上昇流となり、その後段の無曝気室166において再び下降流となり、最下段の曝気室165において上昇流となる。したがって、この実施の形態19における排水処理装置では、好気性処理槽161Eの全体形状が極端な長方形である場合や、水深に対する水面の面積が大きい場合に、曝気室165と無曝気室166を比較的自由に配置できるので、好気性処理槽161Eの底部を良好に撹拌でき、実施の形態17と同様な効果が得られる。   As shown in FIG. 28, the raw water that has flowed into the aerobic treatment tank 161E becomes an upward flow in the uppermost aeration chamber 165, a downward flow in the non-aeration chamber 166 at the subsequent stage, and an upward flow again in the central aeration chamber 165. Then, the flow again decreases in the non-aeration chamber 166 at the subsequent stage and rises in the aeration chamber 165 at the lowermost stage. Therefore, in the waste water treatment apparatus in the nineteenth embodiment, the aeration chamber 165 and the non-aeration chamber 166 are compared when the overall shape of the aerobic treatment tank 161E is an extreme rectangle or when the area of the water surface with respect to the water depth is large. Therefore, the bottom of the aerobic treatment tank 161E can be satisfactorily stirred, and the same effect as in the seventeenth embodiment can be obtained.

なお、上記実施の形態14〜19において、曝気室165の容積と無曝気室166の容積との比は10対1〜1対1とし、上側通水部162の面積と下側通水部163の面積とは無曝気室166の横断面積の50〜200%としたが、それらは限定するものではなく、好気性処理槽161、161A〜161Eの形状と容積、曝気手段167、172、173の散気管168、174、175から吐出する空気量などに応じて変化させることができる。また、散気管168、174、175の種類も限定するものではなく、高速散気板、多孔管、スタティックミキサー、袋状管など、ほぼ全ての散気管を適用できる。   In Embodiments 14 to 19, the ratio of the volume of the aeration chamber 165 to the volume of the non-aeration chamber 166 is 10: 1 to 1: 1, and the area of the upper water passage 162 and the lower water passage 163 are the same. The area of 50 to 200% of the cross-sectional area of the aeration chamber 166 is not limited, but the shape and volume of the aerobic treatment tanks 161 and 161A to 161E, the aeration means 167, 172, and 173 It can be changed according to the amount of air discharged from the air diffusers 168, 174, 175, and the like. Further, the types of the diffuser tubes 168, 174, and 175 are not limited, and almost all diffuser tubes such as high-speed diffuser plates, perforated tubes, static mixers, and bag-like tubes can be applied.

実施の形態20.
図29は、この発明を実施するための実施の形態20における排水処理装置を示すものである。この排水処理装置は、前段側の第1酵母反応槽181と後段側の第2酵母反応槽182を備え、更に第1酵母反応槽181の前段側に流量調整槽(負荷調整槽)183を備えている。第1酵母反応槽181と第2酵母反応槽182は回分式、すなわち、流入工程、処理工程、沈殿工程、排出工程などを時系列で行うものとしてある。流量調整槽183は、例えば水産加工排水などの原水を貯留して、第1酵母反応槽181に流出する原水の量、つまり負荷を調整するものとしてある。
Embodiment 20. FIG.
FIG. 29 shows a waste water treatment apparatus in the twentieth embodiment for carrying out the present invention. This waste water treatment apparatus includes a first yeast reaction tank 181 on the front stage side and a second yeast reaction tank 182 on the rear stage side, and further includes a flow rate adjustment tank (load adjustment tank) 183 on the front stage side of the first yeast reaction tank 181. ing. The first yeast reaction tank 181 and the second yeast reaction tank 182 are batch-type, that is, perform an inflow process, a treatment process, a precipitation process, a discharge process, etc. in time series. The flow rate adjustment tank 183 stores raw water such as fishery processing wastewater and adjusts the amount of raw water flowing out to the first yeast reaction tank 181, that is, the load.

第1酵母反応槽181は、流量調整槽183から流入した原水を滞留させ、酵母含有活性汚泥を増殖させるとともに、油分を除去して第2酵母反応槽182の負荷を軽減するものとしてある。第2酵母反応槽182は、第1酵母反応槽181から流入した低濃度の上澄水を滞留させ、酵母含有活性汚泥を増殖させるとともに、固液分離するものとしてある。したがって、第1酵母反応槽181と第2酵母反応槽182は、従来の酵母反応槽、酵母沈殿槽、活性汚泥反応槽、および活性汚泥沈殿槽の作用を呈するものとしてある。   The first yeast reaction tank 181 retains the raw water flowing in from the flow rate adjustment tank 183 and grows the yeast-containing activated sludge, and removes oil to reduce the load on the second yeast reaction tank 182. The second yeast reaction tank 182 retains the low-concentration supernatant water that has flowed in from the first yeast reaction tank 181 so as to proliferate the yeast-containing activated sludge and to perform solid-liquid separation. Therefore, the 1st yeast reaction tank 181 and the 2nd yeast reaction tank 182 shall show the effect | action of the conventional yeast reaction tank, a yeast precipitation tank, an activated sludge reaction tank, and an activated sludge precipitation tank.

流量調整槽183には原水を原水導入管184によって導入するようにしてある。流量調整槽183と第1酵母反応槽181との間には、流量調整槽183内の原水を第1酵母反応槽181内に移送する原水移送手段185を設けてある。双方の酵母反応槽181、182には、酵母反応槽181、182内の原水に含まれる酵母の活性度、活性汚泥の活性度、および生物相を時間的または空間的に調整するために酵母菌を酵母反応槽181、182内にそれぞれ注入する酵母注入手段186、187をそれぞれ配置してある。また、酵母反応槽181、182には、それらの内部を曝気して好気性に保持する曝気手段188、189をそれぞれ設置してある。   Raw water is introduced into the flow rate adjusting tank 183 through a raw water introduction pipe 184. Between the flow rate adjustment tank 183 and the first yeast reaction tank 181, raw water transfer means 185 for transferring the raw water in the flow rate adjustment tank 183 into the first yeast reaction tank 181 is provided. Both yeast reaction tanks 181 and 182 include yeast to adjust the activity of yeast contained in the raw water in the yeast reaction tanks 181 and 182, the activity of activated sludge, and the biota temporally or spatially. Yeast injection means 186 and 187 for injecting the yeast into the yeast reaction tanks 181 and 182, respectively. The yeast reaction tanks 181 and 182 are provided with aeration means 188 and 189, respectively, for aerobically maintaining the inside thereof.

さらに、第1酵母反応槽181と第2酵母反応槽182との間には、第1酵母反応槽181で生じた低濃度の上澄水を第2酵母反応槽182に排出する上澄水移送手段190を設けてあり、第1酵母反応槽181には沈降した汚泥を系外に引き抜くための汚泥引抜手段191を設けてある。第2酵母反応槽182には、そこで生じた清澄な処理水を系外に排出する処理水排出手段192を設けてあるとともに、沈降した汚泥を系外に引き抜くための汚泥引抜手段193を設けてある。   Furthermore, between the first yeast reaction tank 181 and the second yeast reaction tank 182, the supernatant water transfer means 190 for discharging the low concentration supernatant water generated in the first yeast reaction tank 181 to the second yeast reaction tank 182. The first yeast reaction tank 181 is provided with sludge extraction means 191 for extracting the settled sludge out of the system. The second yeast reaction tank 182 is provided with treated water discharging means 192 for discharging the clear treated water generated there from the system, and provided with sludge extraction means 193 for extracting the settled sludge out of the system. is there.

原水移送手段185は、流量調整槽183内の底部に配設したポンプ194と、このポンプ194に一端を接続し他端を第1酵母反応槽181内に開口させた管体195によって構成できる。また、曝気手段188、189はそれぞれ、酵母反応槽181、182の底部にそれぞれ配置してある散気管196と、酵母反応槽181、182の外部にそれぞれ配置してあるブロワ197と、散気管196とブロワ197をそれぞれ連結する管体198によって構成できる。   The raw water transfer means 185 can be constituted by a pump 194 disposed at the bottom of the flow rate adjusting tank 183 and a tube body 195 having one end connected to the pump 194 and the other end opened into the first yeast reaction tank 181. Further, the aeration means 188 and 189 are respectively a diffuser pipe 196 disposed at the bottom of the yeast reaction tanks 181 and 182, a blower 197 disposed respectively outside the yeast reaction tanks 181 and 182, and a diffuser pipe 196. And the blower 197 are connected to each other by a tube body 198.

なお、流量調整槽183は、第1酵母反応槽181への原水の投入量を調整できるのであれば、その構成を限定するものではない。また、原水移送手段185、上澄水移送手段190、汚泥引抜手段191、処理水排出手段192、汚泥引抜手段193などは、ポンプによる強制移送、重力による自然流下などの構成を用いることができる。さらに、酵母注入手段186、187は、酵母の活性度、活性汚泥の活性度、および生物相を除去対象物質またはその濃度に合せて時間的または空間的に調整できるのであれば、その構成を限定するものではない。酵母反応槽181、182の各沈殿工程時の汚泥をそれぞれ酵母注入手段186、187へ戻し、酵母活性化槽として利用することもできる。そして、曝気手段188、189は、酵母反応槽181、182内を空気または純酸素によって曝気できるのであれば、多段式散気装置、ディスク型散気装置、筒状散気装置、ドラフトチューブ型散気装置などを用いることができる。   The configuration of the flow rate adjusting tank 183 is not limited as long as the amount of raw water input to the first yeast reaction tank 181 can be adjusted. The raw water transfer means 185, the supernatant water transfer means 190, the sludge extraction means 191, the treated water discharge means 192, the sludge extraction means 193, and the like can be configured by forced transfer by a pump, natural flow by gravity, and the like. Further, the yeast injection means 186, 187 is limited in its configuration as long as the yeast activity, activated sludge activity, and biological phase can be adjusted temporally or spatially according to the substance to be removed or its concentration. Not what you want. Sludge from the precipitation steps in the yeast reaction tanks 181 and 182 can be returned to the yeast injection means 186 and 187, respectively, and used as a yeast activation tank. As long as the aeration means 188 and 189 can aerate the inside of the yeast reaction tanks 181 and 182 with air or pure oxygen, a multistage aeration device, a disk type aeration device, a cylindrical aeration device, a draft tube type diffusion An air device or the like can be used.

また、活性汚泥の増殖速度は酵母の増殖速度よりも大きいので、活性汚泥が酵母反応槽181、182内を優占することなく酵母と活性汚泥の双方が共存するためには、酵母反応槽181、182内のpHを酵母の生息に有利な5.0〜7.0とするのが好ましく、5.5〜6.0とするのがより好ましい。そして、酵母注入手段186、187から注入する酵母菌としては、トリコスポロン(trichosporon)属、キャンディダ(candida)属、ハンゼヌラ(hansenula)属、サッカロマイセス(saccharomyces)属、クルイベロマイセス(kluyveromyces)属などを利用できる。しかし、酵母菌の種類は、有機性物質を資化できるのであれば、上記以外のものも利用できる。   In addition, since the growth rate of activated sludge is greater than the growth rate of yeast, in order for both the yeast and activated sludge to coexist without the activated sludge predominating in the yeast reaction vessels 181 and 182, the yeast reaction vessel 181 is used. The pH in 182 is preferably 5.0 to 7.0, which is advantageous for the inhabiting of yeast, and more preferably 5.5 to 6.0. Examples of yeasts injected from the yeast injection means 186 and 187 include the genus trichosporon, genus candida, genus hansenula, genus saccharomyces, genus kluyveromyces, etc. Can be used. However, other types of yeast can be used as long as they can assimilate organic substances.

ここで、第1酵母反応槽181は回分式としてあるので、そこでは4つの工程、すなわち、流入工程、処理工程、沈殿工程、および排出工程が進行する。流入工程では、原水が流量調整槽183から第1酵母反応槽181に流入する。処理工程では、酵母注入手段186が酵母菌を第1酵母反応槽181に注入するとともに、曝気手段188が第1酵母反応槽181内を曝気し、流入した原水を活性汚泥の生物学的な吸着作用によって処理する。この間に、沈殿工程において、第1酵母反応槽181内で活性汚泥が沈殿し、その結果として低濃度の上澄水が生じる。排出工程では、上澄水移送手段190が上澄水を第2酵母反応槽182に移送する。   Here, since the first yeast reaction tank 181 is a batch type, four steps, that is, an inflow step, a treatment step, a precipitation step, and a discharge step proceed. In the inflow process, the raw water flows from the flow rate adjustment tank 183 into the first yeast reaction tank 181. In the treatment step, the yeast injection means 186 injects the yeast into the first yeast reaction tank 181, and the aeration means 188 aerates the inside of the first yeast reaction tank 181, and the inflow raw water is biologically adsorbed by activated sludge. Process by action. During this time, in the precipitation step, activated sludge is precipitated in the first yeast reaction tank 181, and as a result, low-concentration supernatant water is generated. In the discharging step, the supernatant water transfer means 190 transfers the supernatant water to the second yeast reaction tank 182.

このような第1酵母反応槽181では、第2の処理工程が再び進行する。この第2の処理工程では、上記沈殿工程の前の処理工程で吸着した有機性物質を生物学的酸化作用によって処理する。そして、この第2の処理工程の後に第2の流入工程が再び進行する。そして、第2の処理工程と第2の流入工程が終了した後に、汚泥引抜手段191が第1酵母反応槽181内の余剰汚泥を系外に引き抜く。   In such a first yeast reaction tank 181, the second processing step proceeds again. In this second treatment step, the organic substance adsorbed in the treatment step before the precipitation step is treated by biological oxidation. Then, after the second processing step, the second inflow step proceeds again. And after a 2nd process process and a 2nd inflow process are complete | finished, the sludge extraction means 191 extracts the excess sludge in the 1st yeast reaction tank 181 out of the system.

同様に、第2酵母反応槽182も回分式としてあるので、そこでも流入工程、処理工程、沈殿工程、および排出工程が進行する。流入工程では、低濃度の上澄水が第1酵母反応槽181から流入する。処理工程では、酵母注入手段187が酵母菌を第2酵母反応槽182内に注入するとともに、曝気手段189が第2酵母反応槽182内を曝気し、流入した低濃度の上澄水を活性汚泥の生物学的な吸着作用と酸化作用によって処理する。この間に、沈殿工程において、第2酵母反応槽182では活性汚泥が沈殿し、その結果として清澄な処理水が生じる。排出工程では、処理水排出手段192が清澄な処理水を系外に排出する。また、必要に応じて、汚泥引抜手段193が第2酵母反応槽182内に生じた余剰汚泥を系外に引き抜く。   Similarly, since the second yeast reaction tank 182 is also a batch type, the inflow process, the treatment process, the precipitation process, and the discharge process proceed there. In the inflow process, low-concentration supernatant water flows from the first yeast reaction tank 181. In the treatment step, the yeast injection means 187 injects the yeast into the second yeast reaction tank 182 and the aeration means 189 aerates the second yeast reaction tank 182 and the infused low-concentration supernatant water is used as activated sludge. Treat by biological adsorption and oxidation. During this time, in the precipitation step, activated sludge is precipitated in the second yeast reaction tank 182, and as a result, clear treated water is produced. In the discharging step, the treated water discharging means 192 discharges clear treated water out of the system. Further, if necessary, the sludge extraction means 193 extracts excess sludge generated in the second yeast reaction tank 182 out of the system.

水産加工排水を原水とし、上記実施の形態20における排水処理装置を用いて処理した。その他の実施条件は次のようであった。すなわち、第1酵母反応槽181と第2酵母反応槽182のそれぞれの容積は12L(リットル)、処理水の量は20L/日であった。原水の水質は、BOD(生物化学的酸素要求量)が4,400mg/L、SS(浮遊物質)濃度が920mg/L、ヘキサン抽出物質濃度が580mg/Lであった。   Fishery processing wastewater was used as raw water and treated using the wastewater treatment apparatus in the above-described Embodiment 20. Other implementation conditions were as follows. That is, each volume of the 1st yeast reaction tank 181 and the 2nd yeast reaction tank 182 was 12L (liter), and the quantity of treated water was 20L / day. The raw water quality was BOD (biochemical oxygen demand) of 4,400 mg / L, SS (floating matter) concentration of 920 mg / L, and hexane extractant concentration of 580 mg / L.

第1酵母反応槽181における工程は次のようであった。0〜2.5時間目の流入工程において原水が第1酵母反応槽181に流入し、0〜2.5時間目の処理工程において活性汚泥の吸着作用を主とする処理が進行し、3〜5時間目の排出工程において低濃度の上澄水が第1酵母反応槽181から第2酵母反応槽182に流出した。この排出工程の後に、5〜8時間目に再び処理工程になり、0〜2.5時間目の処理工程において吸着した有機性物質を酸化分解した。   The process in the first yeast reaction tank 181 was as follows. Raw water flows into the first yeast reaction tank 181 in the inflow process of 0 to 2.5 hours, and the main treatment of the activated sludge adsorption action proceeds in the treatment process of 0 to 2.5 hours. In the 5 hour discharge step, the low-concentration supernatant water flowed out from the first yeast reaction tank 181 to the second yeast reaction tank 182. After this discharge step, the treatment step was started again at 5 to 8 hours, and the organic substances adsorbed in the treatment step at 0 to 2.5 hours were oxidatively decomposed.

この間に、5〜7時間目には酵母の活性度を高めるために第1酵母反応槽181内のpHを5.6〜5.8に調整し、7〜8時間目には活性汚泥の活性度を阻害しないようにpHを中性に調整した。このpHの調整は、活性汚泥の活性度を高めることによって、酵母が処理しきれなかった低濃度の有機性物質を活性汚泥に処理させるために行った。その後に、0〜2時間目に再び流入工程となったが、この流入工程では、活性汚泥の活性度を高めてその吸着作用を促進させるために、pHを中性に調整した。   During this time, the pH in the first yeast reaction tank 181 is adjusted to 5.6 to 5.8 in order to increase the activity of the yeast at 5 to 7 hours, and the activated sludge is activated at 7 to 8 hours. The pH was adjusted to neutral so as not to inhibit the degree. This pH adjustment was performed in order to treat the activated sludge with a low-concentration organic substance that could not be treated by yeast by increasing the activity of the activated sludge. Thereafter, the inflow process was started again at 0 to 2 hours. In this inflow process, the pH was adjusted to neutral in order to increase the activity of the activated sludge and promote its adsorption action.

このようにして、第1酵母反応槽181のBOD−SS負荷を1.3kg/kg・日として運転した結果、第1酵母反応槽181で生じた低濃度の上澄水の平均水質は、BODが300mg/L、SS濃度が100mg/L、ヘキサン抽出物質濃度が37mg/Lとなった。これらの結果を含むその他の結果を表1の「第1酵母反応槽」の欄に示す。   Thus, as a result of operating the BOD-SS load of the first yeast reaction tank 181 as 1.3 kg / kg · day, the average water quality of the low-concentration supernatant water generated in the first yeast reaction tank 181 is BOD. 300 mg / L, SS concentration was 100 mg / L, and hexane extractant concentration was 37 mg / L. Other results including these results are shown in the column of “First yeast reactor” in Table 1.

他方、第2酵母反応槽182における工程は次のようであった。3〜5時間目の流入工程において低濃度の上澄水が第1酵母反応槽181から第2酵母反応槽182に流入し、3〜8時間目の処理工程において流入水を活性汚泥の吸着酸化作用によって処理し、1〜3時間目の沈殿工程および排出工程において清澄な処理水を得た。この際に、第2酵母反応槽182に流入した低濃度の上澄水は、従来の活性汚泥による処理が可能な状態であったため、酵母注入手段187は用いなかった。   On the other hand, the process in the 2nd yeast reaction tank 182 was as follows. In the inflow process of 3 to 5 hours, low-concentration supernatant water flows from the first yeast reaction tank 181 into the second yeast reaction tank 182 and in the treatment process of 3 to 8 hours, the influent water is adsorbed and oxidized by activated sludge. In the precipitation process and discharge process of 1 to 3 hours, clear treated water was obtained. At this time, the low-concentration supernatant water that flowed into the second yeast reaction tank 182 was in a state where it could be treated with conventional activated sludge, and thus the yeast injection means 187 was not used.

このようにして、第2酵母反応槽182のBOD−SS負荷を0.22kg/kg・日として運転した結果、第2酵母反応槽182で生じた清澄な処理水の平均水質は、BODが12mg/L、SS濃度が10mg/L、ヘキサン抽出物質濃度が8mg/Lとなった。これらの結果を含むその他の結果を表1の「第2酵母反応槽」の欄に示す。   In this way, as a result of operating the second yeast reaction tank 182 with a BOD-SS load of 0.22 kg / kg · day, the average water quality of the clear treated water produced in the second yeast reaction tank 182 was 12 mg BOD. / L, SS concentration was 10 mg / L, and hexane extractant concentration was 8 mg / L. Other results including these results are shown in the column of “second yeast reaction tank” in Table 1.

Figure 2007185596
Figure 2007185596

実施例1と同様な原水、排水処理装置、および運転工程を用いた。酵母反応槽181、182のそれぞれの容積は、実施例1と同様に12L(リットル)、処理水の量は20L/日であった。原水の水質は、BODが1,260mg/L、SS濃度が310mg/L、ヘキサン抽出物質濃度が200mg/Lであった。   The same raw water, waste water treatment equipment, and operation process as in Example 1 were used. The respective volumes of the yeast reaction tanks 181 and 182 were 12 L (liters) as in Example 1, and the amount of treated water was 20 L / day. The water quality of the raw water was 1,260 mg / L BOD, 310 mg / L SS concentration, and 200 mg / L hexane extractable substance concentration.

第1酵母反応槽181のBOD−SS負荷を0.61kg/kg・日として運転した結果、第1酵母反応槽181で生じた低濃度の上澄水の平均水質は、BODが110mg/L、SS濃度が68mg/L、ヘキサン抽出物質濃度が5mg/L未満となった。そして、第2酵母反応槽182のBOD−SS負荷を0.24kg/kg・日として運転した結果、清澄な処理水の平均水質は、BODが15mg/L、SS濃度が10mg/L、ヘキサン抽出物質濃度が5mg/L未満となった。これらの結果を含むその他の結果を表2に併せて示す。   As a result of operating the first yeast reaction tank 181 with a BOD-SS load of 0.61 kg / kg · day, the average water quality of the low-concentration supernatant water generated in the first yeast reaction tank 181 is BOD of 110 mg / L, SS The concentration was 68 mg / L, and the hexane extractant concentration was less than 5 mg / L. And as a result of having operated the BOD-SS load of the 2nd yeast reaction tank 182 as 0.24 kg / kg * day, the average water quality of the clear treated water is BOD 15 mg / L, SS concentration 10 mg / L, hexane extraction The substance concentration was less than 5 mg / L. Other results including these results are also shown in Table 2.

Figure 2007185596
Figure 2007185596

比較例1.
従来の酵母反応槽、酵母沈殿槽、活性汚泥反応槽、および活性汚泥沈殿槽からなる排水処理装置を用い、酵母処理と活性汚泥処理を組み合わせて水産加工排水を処理した。その結果は表3に示すようであった。表3に示すように、BOD−SS負荷を1.1kg/kg・日とし、pHを5.6〜5.8として運転した結果、処理水の平均水質は、BODが110mg/L、SSが80mg/L、ヘキサン抽出物質が29mg/Lとなった。さらに、酵母処理水を活性汚泥反応槽に対してBOD−SS負荷を0.18kg/kg・日として運転した結果、処理水の平均水質は、BODが12mg/L、SSが13mg/L、ヘキサン抽出物質が12mg/Lとなった。
Comparative Example 1
A wastewater treatment apparatus comprising a conventional yeast reaction tank, yeast precipitation tank, activated sludge reaction tank, and activated sludge precipitation tank was used to treat aquatic processing wastewater by combining yeast treatment and activated sludge treatment. The results were as shown in Table 3. As shown in Table 3, when the BOD-SS load was 1.1 kg / kg · day and the pH was 5.6 to 5.8, the average water quality of the treated water was BOD 110 mg / L and SS 80 mg / L, and hexane extractant was 29 mg / L. Furthermore, as a result of operating the yeast treated water with respect to the activated sludge reaction tank at a BOD-SS load of 0.18 kg / kg · day, the average water quality of the treated water was 12 mg / L for BOD, 13 mg / L for SS, and hexane. Extracted material was 12 mg / L.

Figure 2007185596
Figure 2007185596

比較例2.
従来の酵母処理と連続方式の活性汚泥処理とを組み合わせた排水処理装置よって水産加工排水を処理した。その結果は表4に示すようであった。表4に示すように、BOD−SS負荷を0.42kg/kg・日とし、pHを5.6〜5.8として運転した結果、処理水の平均水質は、BODが56mg/L、SSが47mg/L、ヘキサン抽出物質が5mg/L未満であった。さらに、酵母処理水を活性汚泥反応槽に対してBOD−SS負荷を0.09kg/kg・日として運転した結果、処理水の平均水質は、BODが22mg/L、ヘキサン抽出物質が5mg/L未満であった。この場合に、解体した汚泥が処理水中に混入し、SSは23mg/Lであった。
Comparative Example 2
Fishery processing wastewater was treated by a wastewater treatment device that combines conventional yeast treatment and continuous activated sludge treatment. The results were as shown in Table 4. As shown in Table 4, the BOD-SS load was 0.42 kg / kg · day, and the pH was 5.6 to 5.8. As a result, the average water quality of the treated water was BOD 56 mg / L and SS 47 mg / L, hexane extractant was less than 5 mg / L. Furthermore, as a result of operating the yeast treated water with respect to the activated sludge reaction tank at a BOD-SS load of 0.09 kg / kg / day, the average water quality of the treated water is 22 mg / L for BOD and 5 mg / L for the hexane extract. Was less than. In this case, the disassembled sludge was mixed in the treated water, and the SS was 23 mg / L.

Figure 2007185596
Figure 2007185596

比較例3.
従来の回分式の酵母処理と連続方式の活性汚泥処理とを組み合わせた排水処理装置によって水産加工排水を処理した。その結果は表5に示すようであった。表5に示すように、BOD−SS負荷を1.6kg/kg・日とし、pHを5.6〜5.8として運転した結果、処理水の平均水質は、BODが120mg/L、ヘキサン抽出物質が26mg/Lであった。さらに、酵母処理水を活性汚泥反応槽に対してBOD−SS負荷を0.20kg/kg・日として運転した結果、処理水の平均水質は、BODが12mg/L、ヘキサン抽出物質が15mg/Lであった。
Comparative Example 3
Fishery processing wastewater was treated by a wastewater treatment device that combined conventional batch-type yeast treatment and continuous activated sludge treatment. The results were as shown in Table 5. As shown in Table 5, the BOD-SS load was 1.6 kg / kg · day, and the pH was 5.6 to 5.8. As a result, the average water quality of the treated water was 120 mg / L BOD, hexane extraction The material was 26 mg / L. Furthermore, as a result of operating the yeast treated water with respect to the activated sludge reaction tank with a BOD-SS load of 0.20 kg / kg · day, the average water quality of the treated water is 12 mg / L for BOD and 15 mg / L for the hexane extract. Met.

Figure 2007185596
Figure 2007185596

以上のように、実施の形態20における排水処理装置では、第1酵母反応槽181、第2酵母反応槽182、および流量調整槽183の3槽で従来と同様な水質またはそれ以上の水質の処理水を得ることができる。この場合に、第1酵母反応槽181または第2酵母反応槽182は従来の酵母処理槽よりも若干大きくなるが、従来の酵母沈殿槽や活性汚泥沈殿槽が不要となるので、設置面積つまり設備コストが減少する。   As described above, in the wastewater treatment apparatus in the twentieth embodiment, the water quality similar to the conventional one or more is treated in three tanks of the first yeast reaction tank 181, the second yeast reaction tank 182 and the flow rate adjustment tank 183. You can get water. In this case, although the 1st yeast reaction tank 181 or the 2nd yeast reaction tank 182 becomes a little larger than the conventional yeast processing tank, since the conventional yeast precipitation tank and activated sludge precipitation tank become unnecessary, installation area, ie, equipment Cost is reduced.

また、第1酵母反応槽181と第2酵母反応槽182に回分式を導入したので、酵母含有活性汚泥が長時間に亘って嫌気的になることを防止でき、処理性能を安定して良好に維持できる。また、酵母の活性度、活性汚泥の活性度、および生物相を第1酵母反応槽181と第2酵母反応槽182のそれぞれにおいて空間的または時間的に調整できるので、原水を従来よりも安定して処理できる。さらに、流入する負荷に変動が生じた場合でも、流量調整槽183によって第1酵母反応槽181に流入する原水の量を調整できるので、処理性能を良好に維持できる。そして、ヘキサン抽出物質が減少するので、油分の少ない処理水を得ることができ、油分を除去するための装置が不要となり、設置面積が更に減少する。   Moreover, since the batch system was introduced into the first yeast reaction tank 181 and the second yeast reaction tank 182, the yeast-containing activated sludge can be prevented from becoming anaerobic over a long period of time, and the treatment performance can be stably improved. Can be maintained. Moreover, since the activity of yeast, the activity of activated sludge, and the biota can be adjusted spatially or temporally in each of the first yeast reaction tank 181 and the second yeast reaction tank 182, the raw water is more stable than before. Can be processed. Furthermore, even when the inflowing load fluctuates, the amount of raw water flowing into the first yeast reaction tank 181 can be adjusted by the flow rate adjustment tank 183, so that the treatment performance can be maintained well. And since a hexane extract substance reduces, the processing water with little oil content can be obtained, the apparatus for removing an oil content becomes unnecessary, and an installation area further reduces.

なお、実施の形態20における排水処理装置では、第2酵母反応槽182に流入する低濃度の上澄水の有機性物質濃度やヘキサン抽出物質濃度が活性汚泥処理に弊害を及ぼす程に高い場合には、第2酵母反応槽182の酵母の活性度を上げることによって良質の処理水を得ることができる。また、2つの酵母反応槽181、182を設置したが、3つ以上の酵母反応槽を原水の有機性物質濃度、ヘキサン抽出物質濃度、および流入パターンに応じて直列、並列、または直列と並列の組合せにおいて設置することができる。さらに、流量調整槽183を第1酵母反応槽181の前段に設置したが、第1酵母反応槽181の後段に設置すれば、第2酵母反応槽182を従来の活性汚泥反応槽および活性汚泥沈殿槽と代替することも可能となる。   In the wastewater treatment apparatus of the twentieth embodiment, when the organic substance concentration or the hexane extractant concentration of the low-concentration supernatant water flowing into the second yeast reaction tank 182 is high enough to adversely affect the activated sludge treatment. By increasing the activity of the yeast in the second yeast reaction tank 182, good quality treated water can be obtained. In addition, although two yeast reaction tanks 181 and 182 are installed, three or more yeast reaction tanks are connected in series, in parallel, or in series and parallel depending on the organic substance concentration of raw water, hexane extract substance concentration, and inflow pattern. Can be installed in combination. Furthermore, although the flow rate adjusting tank 183 is installed at the front stage of the first yeast reaction tank 181, if it is installed at the rear stage of the first yeast reaction tank 181, the second yeast reaction tank 182 is converted into the conventional activated sludge reaction tank and activated sludge sedimentation. It can be replaced with a tank.

また、複数の第1酵母反応槽181を並列に配置し、流入工程を連続させるように構成すれば、流量調整槽183を省くことが可能となる。例えば2つの第1酵母反応槽181を並列に配置した場合の運転工程は次のようにすることができる。すなわち、一方の第1酵母反応槽181では、0〜2時間目を流入工程および処理工程、2〜2.5時間目を沈殿工程、2.5〜3時間目を排出工程、3〜4時間目を第2の処理工程とすることができる。また、他方の第1酵母反応槽181では、0〜0.5時間目を沈殿工程、0.5〜1時間目を排出工程、1〜4時間目を処理工程、2〜4時間目を流入工程とすることができる。   Further, if the plurality of first yeast reaction tanks 181 are arranged in parallel and the inflow process is continued, the flow rate adjustment tank 183 can be omitted. For example, the operation process when two first yeast reaction tanks 181 are arranged in parallel can be performed as follows. That is, in one first yeast reaction tank 181, the inflow process and the treatment process at 0 to 2 hours, the precipitation process at 2 to 2.5 hours, the discharge process at 2.5 to 3 hours, and 3 to 4 hours. The eye can be the second processing step. In the other first yeast reaction tank 181, the precipitation process is performed at 0 to 0.5 hours, the discharge process is performed at 0.5 to 1 hours, the treatment process is performed at 1 to 4 hours, and the second and 4th hours are introduced. It can be a process.

さらに、2つの第1酵母反応槽181を直列に配置するとともに、第2酵母反応槽182に撹拌手段を設け、処理工程中に曝気工程と撹拌工程を繰り返すように構成すれば、窒素を除去することが可能となる。この場合に、第1酵母反応槽181の運転工程を変更することによって第2酵母反応槽182に流入する有機性物質の負荷を調整すれば、その有機性物質は窒素を除去するための有機性物質源として利用することが可能となる。このような構成の第1酵母反応槽181では、0〜1.5時間目を第1の流入工程、0〜0.5時間目を第1の処理工程、0.5〜1時間目を第1の沈殿工程、1〜2時間目を第1の排出工程、2〜3.5時間目を第2の処理工程、3〜4.5時間目を第2の流入工程、3.5〜4時間目を第2の沈殿工程、4〜5時間目を第2の排出工程、5〜6時間目を第3の処理工程とすることができる。また、第2酵母反応槽182では、0〜1時間目を排出工程、1〜2時間目を第1の流入工程、1〜5時間目を処理工程、4〜5時間目を第2の流入工程、5〜6時間目を沈殿工程とすることができる。そして、1〜5時間目の処理工程のうち、撹拌工程は1〜1.75時間目、2〜2.75時間目、3〜3.75時間目、4〜4.75時間目の4回とすることができる。   Furthermore, while arranging the two first yeast reaction tanks 181 in series and providing the second yeast reaction tank 182 with stirring means and repeating the aeration process and the stirring process during the treatment process, nitrogen is removed. It becomes possible. In this case, if the load of the organic substance flowing into the second yeast reaction tank 182 is adjusted by changing the operation process of the first yeast reaction tank 181, the organic substance is organic for removing nitrogen. It can be used as a material source. In the 1st yeast reaction tank 181 of such a structure, 0-1.5 hours are the 1st inflow process, 0-0.5 hours are the 1st processing process, and 0.5-1 hours are the 1st process steps. 1 precipitation process, 1-2 hours first discharge process, 2-3.5 hours second treatment process, 3-4.5 hours second inflow process, 3.5-4 Time can be the second precipitation step, 4-5 hours can be the second discharge step, and 5-6 hours can be the third treatment step. Moreover, in the 2nd yeast reaction tank 182, the discharge | emission process is carried out for 0 to 1 hour, the 1st inflow process for 1 to 2 hours, the treatment process for 1 to 5 hours, and the second inflow for 4 to 5 hours. The 5th to 6th hour of the process can be a precipitation process. And among the processing steps of 1 to 5 hours, the stirring step is 4 times of 1 to 1.75 hours, 2 to 2.75 hours, 3 to 3.75 hours, and 4 to 4.75 hours. It can be.

この発明の実施の形態1を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 1 of this invention. この発明の実施の形態2を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 2 of this invention. この発明の実施の形態3を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 3 of this invention. この発明の実施の形態4を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 4 of this invention. この発明の実施の形態5を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 5 of this invention. この発明の実施の形態6を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 6 of this invention. この発明の実施の形態7を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 7 of this invention. この発明の実施の形態8を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 8 of this invention. この発明の実施の形態9を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 9 of this invention. この発明の実施の形態10を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 10 of this invention. この発明の実施の形態11を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 11 of this invention. この発明の実施の形態12を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 12 of this invention. この発明の実施の形態12における回文式処理工程の説明図である。It is explanatory drawing of the palindromic processing process in Embodiment 12 of this invention. この発明の実施の形態13を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 13 of this invention. この発明の排水処理装置に使用し得る酵母活性化槽の斜視図である。It is a perspective view of the yeast activation tank which can be used for the waste water treatment equipment of this invention. この発明の排水処理装置に使用し得る酵母活性化槽の構成図である。It is a block diagram of the yeast activation tank which can be used for the waste water treatment equipment of this invention. この発明の実施の形態14を示す排水処理装置の平面図である。It is a top view of the waste water treatment equipment which shows Embodiment 14 of this invention. この発明の実施の形態14を示す排水処理装置の側面図である。It is a side view of the waste water treatment equipment which shows Embodiment 14 of this invention. この発明の実施の形態15を示す排水処理装置の平面図である。It is a top view of the waste water treatment equipment which shows Embodiment 15 of this invention. この発明の実施の形態15を示す排水処理装置の側面図である。It is a side view of the waste water treatment equipment which shows Embodiment 15 of this invention. この発明の実施の形態16を示す排水処理装置の平面図である。It is a top view of the waste water treatment equipment which shows Embodiment 16 of this invention. この発明の実施の形態16を示す排水処理装置の側面図である。It is a side view of the waste water treatment equipment which shows Embodiment 16 of this invention. この発明の実施の形態17を示す排水処理装置の平面図である。It is a top view of the waste water treatment equipment which shows Embodiment 17 of this invention. この発明の実施の形態17を示す排水処理装置の側面図である。It is a side view of the waste water treatment equipment which shows Embodiment 17 of this invention. この発明の実施の形態18を示す排水処理装置の平面図である。It is a top view of the waste water treatment equipment which shows Embodiment 18 of this invention. この発明の実施の形態18を示す排水処理装置の側面図である。It is a side view of the waste water treatment apparatus which shows Embodiment 18 of this invention. この発明の実施の形態19を示す排水処理装置の平面図である。It is a top view of the waste water treatment apparatus which shows Embodiment 19 of this invention. この発明の実施の形態19を示す排水処理装置の側面図である。It is a side view of the waste water treatment apparatus which shows Embodiment 19 of this invention. この発明の実施の形態20を示す排水処理装置の構成図である。It is a block diagram of the waste water treatment equipment which shows Embodiment 20 of this invention.

符号の説明Explanation of symbols

1、21、51、81、181 酵母反応槽
2 スクリーン
3、23 酵母優占室
4、24 活性汚泥優占室
6、26 担体
10、32、53、94、131 酵母活性化槽
22、116、142、164 仕切壁
28、52 固液分離槽
34 中間室
36 濃縮機
62 酸発酵槽
63、182 第2酵母反応槽
64 油分分離槽
68 攪拌機
69 サイクロン
71、84、119、124、167、172、173、188、189 曝気手段
75、76 イオン発生器
82 制御設備
85 デカンタ
129 純酸素発生機
134 ガイド板
150 簡易沈殿部
161、161A〜161E 好気性処理槽
162 上側通水部
163 下側通水部
165 曝気室
166 無曝気室
170 強曝気室
171 弱曝気室
183 流量調整槽(負荷調整槽)
186、187 酵母注入手段
1, 21, 51, 81, 181 Yeast reaction tank 2 Screen 3, 23 Yeast dominant room 4, 24 Activated sludge dominant room 6, 26 Carrier 10, 32, 53, 94, 131 Yeast activation tank 22, 116, 142, 164 Partition wall 28, 52 Solid-liquid separation tank 34 Intermediate chamber 36 Concentrator 62 Acid fermentation tank 63, 182 Second yeast reaction tank 64 Oil separation tank 68 Stirrer 69 Cyclone 71, 84, 119, 124, 167, 172, 173, 188, 189 Aeration means 75, 76 Ion generator 82 Control equipment 85 Decanter 129 Pure oxygen generator 134 Guide plate 150 Simple sedimentation part 161, 161A-161E Aerobic treatment tank 162 Upper water flow part 163 Lower water flow part 165 Aeration chamber 166 Non-aeration chamber 170 Strong aeration chamber 171 Weak aeration chamber 183 Flow rate adjustment tank (load adjustment tank)
186, 187 Yeast injection means

Claims (4)

酵母反応槽に担体を備え、且つ前記酵母反応槽に酵母活性化槽を備えることを特徴とする酵母を利用した排水処理装置。   A wastewater treatment apparatus using yeast, comprising a support in a yeast reaction tank and a yeast activation tank in the yeast reaction tank. 酵母反応槽に担体を備え、且つ前記酵母反応槽に可溶化槽を備えることを特徴とする酵母を利用した排水処理装置。   A wastewater treatment apparatus using yeast, wherein the yeast reaction tank is provided with a carrier, and the yeast reaction tank is provided with a solubilization tank. 前記酵母反応槽に制御設備を備え回分式活性汚泥法で運転可能とし、且つ微細気泡供給管を備えることを特徴とする請求項1に記載の酵母を利用した排水処理装置。   2. The wastewater treatment apparatus using yeast according to claim 1, wherein the yeast reaction tank is equipped with a control facility and can be operated by a batch activated sludge process, and further includes a fine bubble supply pipe. 前記酵母反応槽を複数の室に仕切り、前記室の少なくとも一つに曝気手段を備えることを特徴とする請求項1または2に記載の酵母を利用した排水処理装置。   The wastewater treatment apparatus using yeast according to claim 1 or 2, wherein the yeast reaction tank is partitioned into a plurality of chambers, and aeration means is provided in at least one of the chambers.
JP2006005365A 2006-01-12 2006-01-12 Organic wastewater treatment apparatus Pending JP2007185596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005365A JP2007185596A (en) 2006-01-12 2006-01-12 Organic wastewater treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005365A JP2007185596A (en) 2006-01-12 2006-01-12 Organic wastewater treatment apparatus

Publications (2)

Publication Number Publication Date
JP2007185596A true JP2007185596A (en) 2007-07-26
JP2007185596A5 JP2007185596A5 (en) 2009-03-05

Family

ID=38341130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005365A Pending JP2007185596A (en) 2006-01-12 2006-01-12 Organic wastewater treatment apparatus

Country Status (1)

Country Link
JP (1) JP2007185596A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014036732A1 (en) * 2012-09-10 2014-03-13 General Electric Company Method of reducing residual recalcitrant organic pollutants
JP2015186799A (en) * 2014-03-13 2015-10-29 栗田工業株式会社 Apparatus and method for treating organic waste water biologically
US9994470B2 (en) 2011-03-07 2018-06-12 General Electric Company Method of removing recalcitrant organic pollutants
CN109851049A (en) * 2019-04-11 2019-06-07 信开水环境投资有限公司 Sewage treatment unit and its application method and purposes
CN110156174A (en) * 2019-05-30 2019-08-23 杭州秀川科技有限公司 A kind of fermented by mixed bacterium biologic pretreatment method for highly concentrated pharmacy waste water with high salt

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442847A (en) * 1977-09-12 1979-04-05 Kokuzeicho Japan Method of treating food manufacture waste water* etc*
JPS62239982A (en) * 1986-04-10 1987-10-20 Nishihara Environ Sanit Res Corp Cultivation of yeast with waste water
JP2002273473A (en) * 2001-03-23 2002-09-24 Toto Ltd Waste water treating system
JP2003071479A (en) * 2001-08-31 2003-03-11 Yoji Nagahama Microbiological reactor and method for treating liquid containing nutrition source of microorganism using the same
JP2003200191A (en) * 2001-12-28 2003-07-15 Nishihara Environment Technology Inc Organic wastewater treatment apparatus
JP2003200187A (en) * 2001-12-28 2003-07-15 Nishihara Environment Technology Inc Batch type waste water treatment device
JP2005074404A (en) * 2003-09-03 2005-03-24 Nishihara Environment Technology Inc Organic wastewater treatment equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442847A (en) * 1977-09-12 1979-04-05 Kokuzeicho Japan Method of treating food manufacture waste water* etc*
JPS62239982A (en) * 1986-04-10 1987-10-20 Nishihara Environ Sanit Res Corp Cultivation of yeast with waste water
JP2002273473A (en) * 2001-03-23 2002-09-24 Toto Ltd Waste water treating system
JP2003071479A (en) * 2001-08-31 2003-03-11 Yoji Nagahama Microbiological reactor and method for treating liquid containing nutrition source of microorganism using the same
JP2003200191A (en) * 2001-12-28 2003-07-15 Nishihara Environment Technology Inc Organic wastewater treatment apparatus
JP2003200187A (en) * 2001-12-28 2003-07-15 Nishihara Environment Technology Inc Batch type waste water treatment device
JP2005074404A (en) * 2003-09-03 2005-03-24 Nishihara Environment Technology Inc Organic wastewater treatment equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9994470B2 (en) 2011-03-07 2018-06-12 General Electric Company Method of removing recalcitrant organic pollutants
WO2014036732A1 (en) * 2012-09-10 2014-03-13 General Electric Company Method of reducing residual recalcitrant organic pollutants
CN104755435A (en) * 2012-09-10 2015-07-01 通用电气公司 Method of reducing residual recalcitrant organic pollutants
EA026158B1 (en) * 2012-09-10 2017-03-31 Дженерал Электрик Компани Method of reducing residual recalcitrant organic pollutants
US9902636B2 (en) 2012-09-10 2018-02-27 General Electric Company Method of reducing residual recalcitrant organic pollutants
JP2015186799A (en) * 2014-03-13 2015-10-29 栗田工業株式会社 Apparatus and method for treating organic waste water biologically
JP2016185546A (en) * 2014-03-13 2016-10-27 栗田工業株式会社 Organic wastewater biological treatment equipment
CN109851049A (en) * 2019-04-11 2019-06-07 信开水环境投资有限公司 Sewage treatment unit and its application method and purposes
CN110156174A (en) * 2019-05-30 2019-08-23 杭州秀川科技有限公司 A kind of fermented by mixed bacterium biologic pretreatment method for highly concentrated pharmacy waste water with high salt

Similar Documents

Publication Publication Date Title
CN109052827A (en) Food waste percolate enhanced processing method and system
CN103842047B (en) Water and the apparatus and method of sewage disposal
CN103723896A (en) Integrated sewage disposal system and disposal method
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
CN108101313A (en) A kind of reverse osmosis concentrated water treatment facilities
CN108751402A (en) A kind of method of novel aerobic particle mud method processing brewery industry waste water
CN104787989B (en) A kind of deep well aeration pond and the method for waste water enhanced nitrogen removal dephosphorization device and waste water enhanced nitrogen removal dephosphorization
CN107585974A (en) A kind of sewage water treatment method based on MBBR techniques
JP2007185596A (en) Organic wastewater treatment apparatus
KR101097144B1 (en) High Efficiency Batch Sewage Treatment Facility and Method Using Anaerobic / Anoxic Microbial Reactor
KR100762885B1 (en) Slim high speed aeration device with multi-stage mixing structure
CN210528581U (en) Integrated MBBR (moving bed biofilm reactor) microreactor
US20210198132A1 (en) Methods and apparatuses for water, wastewater, and waste treatment
CN109987699A (en) A method of strengthening air lift pulling flow type oxidation ditch effect with suspending carrier
CN203768177U (en) Integrated sewage treatment system
CN207091225U (en) A kind of biochemical treatment facility suitable for small sewage treatment plant
CN217350914U (en) Self-circulation comprehensive aeration sewage treatment tank
KR101634292B1 (en) Wastewater treatment system using carrier based on modified a2o
CN113149217A (en) Vortex type sewage treatment integrated equipment
CN115010258B (en) Integrated aeration sewage treatment tank for enriching microorganisms in intensive self-circulation manner and construction method thereof
US7442307B2 (en) Method and apparatus for the biological activated sludge treatment of wastewater
IL155193A (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
CN216639049U (en) Inverted AAO combined biochemical pool
CN206486350U (en) Full biological denitrificaion and mud decrement system
CN108358314A (en) Sludge closes on reflux bioreactor facility in combination and application

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071010

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080909

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208