JP2008029993A - Methane fermenter - Google Patents

Methane fermenter Download PDF

Info

Publication number
JP2008029993A
JP2008029993A JP2006208703A JP2006208703A JP2008029993A JP 2008029993 A JP2008029993 A JP 2008029993A JP 2006208703 A JP2006208703 A JP 2006208703A JP 2006208703 A JP2006208703 A JP 2006208703A JP 2008029993 A JP2008029993 A JP 2008029993A
Authority
JP
Japan
Prior art keywords
waste water
gas
solid
liquid separation
reactor tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006208703A
Other languages
Japanese (ja)
Other versions
JP4687600B2 (en
Inventor
Yoshikazu Watabe
芳和 渡部
Kenji Sato
健治 佐藤
Original Assignee
Ihi Corp
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihi Corp, 株式会社Ihi filed Critical Ihi Corp
Priority to JP2006208703A priority Critical patent/JP4687600B2/en
Publication of JP2008029993A publication Critical patent/JP2008029993A/en
Application granted granted Critical
Publication of JP4687600B2 publication Critical patent/JP4687600B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methane fermenter which enables a stable treatment from high load operation to low load operation. <P>SOLUTION: In the methane fermenter where an upper gas-solid-liquid separation zone 16 is formed in the upper part of a reactor tank 10 accommodating granules, and a raw water inflow line 11 and a treated water line 12 are connected to the bottom and top of the reactor tank 10 respectively, a lower gas-solid-liquid separation zone 14 is formed in the middle of the reactor tank 10, and a circulation line 30 for returning waste water in the reactor tank 10 together with the granules to the bottom of the reactor tank 10 is connected to the lower gas-solid-liquid separation zone 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃水中の有機物をメタン発酵させて嫌気性処理するメタン発酵装置に関するものである。   The present invention relates to a methane fermentation apparatus that anaerobically treats organic matter in wastewater by methane fermentation.
UASB(Upflow Anaerobic Sludg Blanket,上向流式嫌気性汚泥ろ床)法は、嫌気性微生物であるメタン生成細菌を高密度に集積したグラニュールが収容されたリアクターに、廃水を上向流で流し、廃水中の有機物を分解処理するもので、好気性処理に比べて曝気を必要としないので、運転費が少なくてすむ利点がある。また、発生バイオガスがメタンガス主体なのでエネルギーとして利用できる。   The UASB (Upflow Anaerobic Slug Blanket) method is a method in which wastewater is allowed to flow upward into a reactor containing granule in which anaerobic microorganisms, which are densely accumulated anaerobic microorganisms, are stored. Since it decomposes organic matter in wastewater and does not require aeration compared to aerobic treatment, it has the advantage of lower operating costs. Moreover, since the generated biogas is mainly methane gas, it can be used as energy.
このUASВ法は、グラニュール層が固定床で、上部気固液分離ゾーンを備え、グラニュール層に廃水を流してリアクター内を上向流で流し、気固液分離ゾーンで発生したバイオガスを分離するものであり、グラニュールの比重が、1.05程度であるが、負荷を上昇させると発生バイオガス量が増大し、気固液の分離・回収が不十分となり、特にバイオガスを巻き込み、見かけ比重の低くなったグラニュールが処理水側に流出するなど、処理能力に限界がある。   In this UASВ method, the granule layer has a fixed bed and is equipped with an upper gas-solid-liquid separation zone. Waste water is passed through the granule layer and the reactor is flowed upward, and the biogas generated in the gas-solid-liquid separation zone is discharged. The specific gravity of the granules is about 1.05, but when the load is increased, the amount of generated biogas increases, and the separation and recovery of gas-solid liquid becomes insufficient, especially involving biogas. The processing capacity is limited, for example, granules with a low apparent specific gravity flow out to the treated water side.
このUASB型の気固液分離ゾーンを改造し、気固液分離能力を高めたEGSB(Expanded Granular Sluge Bed)型リアクターや、発生したバイオガスによるエアリフトを用いてリアクタ内の廃水を内部循環させるICリアクタ(Internal Circulation Reactor)等があり、廃水とグラニュールの接触効率を高めて、高負荷運転ができるようにしたものが提案(特許文献1〜6)されている。   An EGSB (Expanded Granular Sludge Bed) type reactor with an improved gas-solid-liquid separation capability by modifying this UASB type gas-solid-liquid separation zone, and an IC that internally circulates wastewater in the reactor using the generated biogas air lift There have been proposed reactors (Internal Circulation Reactors) and the like, which have improved contact efficiency between waste water and granules to enable high-load operation (Patent Documents 1 to 6).
特開平08−252596号公報Japanese Patent Application Laid-Open No. 08-252596 特開2003−190986号公報JP 2003-190986 A 特開平07−328687号公報JP 07-328687 A 特許第3358322号公報Japanese Patent No. 3358322 特開2000−117285号公報JP 2000-117285 A 特表2001−507619号公報JP-T-2001-507619
しかしながら、上述した提案では、高負荷運転に対応できるものの、低負荷から高負荷まで変動する場合、特に低負荷運転の場合にはUASB法より性能が劣る問題がある。   However, although the above-mentioned proposal can cope with high load operation, there is a problem that the performance is inferior to that of the UASB method when the load varies from low load to high load, particularly in the case of low load operation.
すなわち、EGSBなどの高負荷型リアクターは、気固液分離能力を上げて、特にグラニュールの系外への流出を防止すると共にバイオガスの吸収能力を高めたために、そのバイオガス発生によってグラニュール層の流動性を高めて、且つ、排水とグラニュールとの接触効率を上げているが、発生するバイオガス量が少ない場合には、グラニュール層の流動状態が悪く、グラニュール層に短絡流が生じ、グラニュールを有効に機能させることができない、また流入するSS(Suspended Solid )がグラニュール層に堆積してしまうなどの問題がある。   In other words, high-load reactors such as EGSB have increased gas-solid-liquid separation capability, and in particular, prevented the outflow of granules out of the system and enhanced the ability to absorb biogas. Although the fluidity of the bed is increased and the contact efficiency between the drainage and the granule is increased, when the amount of generated biogas is small, the flow state of the granule bed is bad and the short circuit flow to the granule bed. As a result, the granules cannot function effectively, and the inflowing SS (Suspended Solid) accumulates in the granule layer.
一方、ICリアクタにおいては、発生するバイオガス量によって装置内の内部循環量が決まり、グラニュール層で高い流動性が保たれるが、特にCODCr容積負荷10kg/m3 /日以下というように低負荷でガス発生量が少ない場合には、流動性が悪く、他の高負荷形リアクターと同じような不具合が起こる。 On the other hand, in the IC reactor, the internal circulation amount in the apparatus is determined by the amount of biogas generated, and high fluidity is maintained in the granule layer. In particular, the COD Cr volumetric load is 10 kg / m 3 / day or less. When the gas generation amount is low at a low load, the fluidity is poor and the same problems as other high-load reactors occur.
そこで、本発明の目的は、上記課題を解決し、高負荷運転から低負荷運転まで安定した処理が可能なメタン発酵装置を提供することにある。   Then, the objective of this invention is providing the methane fermentation apparatus which can solve the said subject and can perform the stable process from high load operation to low load operation.
上記目的を達成するために請求項1の発明は、グラニュールが収容されたリアクター槽の上部に上部気固液分離ゾーンを形成し、リアクター槽の底部に原水流入ラインを接続すると共にリアクター槽の上部に処理水ラインを接続したメタン発酵装置において、中央部に下部気固液分離ゾーンを形成し、その下部気固液分離ゾーンに、リアクター槽内の廃水をグラニュールと共にリアクター槽底部に戻す循環ラインを接続したことを特徴とするメタン発酵装置である。   In order to achieve the above object, according to the first aspect of the present invention, an upper gas-solid-liquid separation zone is formed at the top of a reactor tank containing granules, a raw water inflow line is connected to the bottom of the reactor tank, and the reactor tank In a methane fermentation system with a treated water line connected to the top, a lower gas-solid-liquid separation zone is formed in the center, and the waste gas in the reactor tank is returned to the bottom of the reactor tank together with granules in the lower gas-solid-liquid separation zone. A methane fermentation apparatus characterized by connecting lines.
請求項2の発明は、循環ラインは、下部気固液分離ゾーンに設けられた廃水取り出し管と、廃水取り出し管からの廃水をリアクター槽の底部に戻す廃水戻し管と、廃水戻し管に接続された容量可変の循環ポンプとからなる請求項1記載のメタン発酵装置である。   In the invention of claim 2, the circulation line is connected to a waste water extraction pipe provided in the lower gas-solid separation zone, a waste water return pipe for returning the waste water from the waste water extraction pipe to the bottom of the reactor tank, and a waste water return pipe. The methane fermentation apparatus according to claim 1, further comprising a variable capacity circulation pump.
請求項3の発明は、廃水取り出し管は、下部気固液分離ゾーンの分離部材に詰まったグラニュールを吸引できるように設けられる請求項2記載のメタン発酵装置である。   A third aspect of the present invention is the methane fermentation apparatus according to the second aspect, wherein the waste water take-out pipe is provided so as to suck the granules clogged in the separation member of the lower gas-solid-liquid separation zone.
請求項4の発明は、廃水取り出し管は、下部気固液分離ゾーンの上部の廃水を取り込むように設けられる請求項2又は3記載のメタン発酵装置である。   Invention of Claim 4 is a methane fermentation apparatus of Claim 2 or 3 with which a waste-water extraction pipe | tube is provided so that the waste water of the upper part of a lower gas-solid-liquid separation zone may be taken in.
請求項5の発明は、廃水取り出し管には、バルブが接続される請求項4記載のメタン発酵装置である。   The invention according to claim 5 is the methane fermentation apparatus according to claim 4, wherein a valve is connected to the waste water take-out pipe.
請求項6の発明は、グラニュール層の上昇流速が設定値となるように循環ラインの循環ポンプの循環量が制御される請求項2記載のメタン発酵装置である。   The invention according to claim 6 is the methane fermentation apparatus according to claim 2, wherein the circulation amount of the circulation pump of the circulation line is controlled so that the ascending flow rate of the granule layer becomes a set value.
本発明によれば、高負荷運転から低負荷運転まで安定した運転ができるという優れた効果を発揮するものである。   According to the present invention, an excellent effect that stable operation can be performed from high load operation to low load operation is exhibited.
以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.
図1において、10はリアクター槽で、下部に原水流入ライン11が接続され、上部に処理水ライン12が接続される。   In FIG. 1, 10 is a reactor tank, and a raw water inflow line 11 is connected to the lower part, and a treated water line 12 is connected to the upper part.
このリアクター槽10には、メタン生成細菌等のグラニュールが収容されたグラニュール層13が形成され、その上部中央のリアクター槽10には下部気固液分離ゾーン14が形成され、上部には沈降層15が形成されると共にその上部に上部気固液分離ゾーン16が形成される。   In this reactor tank 10, a granule layer 13 containing granules such as methanogenic bacteria is formed. A lower gas-solid-liquid separation zone 14 is formed in the reactor tank 10 at the upper center, and a sedimentation is formed in the upper part. A layer 15 is formed, and an upper gas-solid-liquid separation zone 16 is formed thereon.
気固液分離ゾーン14、16は、断面L形の分離部材17が、その頂角部が上方を向くように多数並べて設けられ、その上部に、下方の分離部材17間を覆うように分離部材17を並べて構成される。   In the gas-liquid separation zones 14 and 16, a large number of separation members 17 having an L-shaped cross section are arranged side by side so that the apex portions face upward, and the separation members 17 are covered so as to cover the lower separation members 17. 17 are arranged side by side.
下部気固液分離ゾーン14上には、分離されたバイオガスを廃水と共に上昇させてリアクター槽10の上部に設けた気固液分離槽18まで導入するエアーリフト管19が設けられる。また上部気固液分離ゾーン16上にもエアーリフト管20が設けられる。   An air lift pipe 19 is provided on the lower gas-solid-liquid separation zone 14 to raise the separated biogas together with waste water and introduce it to the gas-solid-liquid separation tank 18 provided at the upper part of the reactor tank 10. An air lift pipe 20 is also provided on the upper gas-solid liquid separation zone 16.
気固液分離槽18には、エアーリフト管19、20で廃水をリフトしたバイオガスを排出するガス放出ライン21が接続され、またバイオガスが分離された廃水をリアクター槽10の底部に戻す下降管22が接続される。   The gas-solid-liquid separation tank 18 is connected to a gas discharge line 21 for discharging the biogas lifted from the wastewater by the air lift pipes 19, 20, and descends to return the wastewater from which the biogas has been separated to the bottom of the reactor tank 10. A tube 22 is connected.
下部気固液分離ゾーン14側のエアーリフト管19は、図では直管で示したが、下部気固液分離ゾーン14で分離されたバイオガスを極力取り込めるようにエアーリフト管19の下端をロート状に形成するとよい。   The air lift pipe 19 on the lower gas-solid-liquid separation zone 14 side is shown as a straight pipe in the figure, but the lower end of the air lift pipe 19 is funneled so that the biogas separated in the lower gas-solid-liquid separation zone 14 can be taken in as much as possible. It is good to form in a shape.
この下部気固液分離ゾーン14には、リアクター槽10内の廃水をグラニュールと共にリアクター槽10の底部に戻す循環ライン30が接続される。   A circulation line 30 is connected to the lower gas-solid-liquid separation zone 14 to return the waste water in the reactor tank 10 together with the granules to the bottom of the reactor tank 10.
循環ライン30は、下部気固液分離ゾーン14に位置して設けられた廃水取り出し管23と、下部気固液分離ゾーン14上に位置して設けられた廃水取り出し管24と、これら廃水取り出し管23,24に接続されたバルブ25,26と、廃水取り出し管23,24からの廃水をリアクター槽10の底部に戻す廃水戻し管27と、廃水戻し管27に接続された容量可変の循環ポンプ28とからなる。   The circulation line 30 includes a waste water extraction pipe 23 provided in the lower gas-solid-liquid separation zone 14, a waste water extraction pipe 24 provided in the lower gas-solid-liquid separation zone 14, and the waste water extraction pipes. Valves 25, 26 connected to 23, 24, a waste water return pipe 27 for returning waste water from the waste water take-out pipes 23, 24 to the bottom of the reactor tank 10, and a variable capacity circulation pump 28 connected to the waste water return pipe 27. It consists of.
下部気固液分離ゾーン14上に位置して設けられた廃水取り出し管24は、気固液分離された廃水を主に取り込むように設けられる。また、下部気固液分離ゾーン14に位置して設けられた廃水取り出し管23は、下部気固液分離ゾーン14の分離部材17に詰まったグラニュールを吸引除去するように設けられる。この廃水取り出し管23は、図では上下の分離部材17,17の中間に位置する例を示しているが、各分離部材17の直下に溜まったグラニュールを吸引できるように複数本とし、これを一本に集合するように構成してもよい。   A waste water take-out pipe 24 provided on the lower gas-solid-liquid separation zone 14 is provided so as to mainly take in the waste water subjected to gas-solid-liquid separation. A waste water take-out pipe 23 provided in the lower gas-solid-liquid separation zone 14 is provided so as to suck and remove granules clogged in the separation member 17 in the lower gas-solid-liquid separation zone 14. In the drawing, the waste water take-out pipe 23 is shown in the middle of the upper and lower separation members 17, 17. However, a plurality of the waste water take-out pipes 23 are provided so as to be able to suck the granule collected immediately below each separation member 17. You may comprise so that it may gather in one.
廃水取り出し管23、24のバルブ25,26は、その開度を調整することで、両廃水取り出し管23、24からの廃水量を調節でき、この結果、リアクター槽10の底部に循環する廃水量とグラニュール量を調節できる。   The valves 25 and 26 of the waste water take-out pipes 23 and 24 can adjust the amounts of waste water from both the waste water take-out pipes 23 and 24 by adjusting their opening degrees. As a result, the amount of waste water circulating to the bottom of the reactor tank 10 And the amount of granules can be adjusted.
循環ポンプ28は、グラニュール核を崩壊させにくいポンプ、例えばダイヤフラムポンプ、モーノポンプ、モノフレックポンプ等、特に固形物を移送するのに適しているポンプを選定する。また循環ポンプ28の動力は、電力や圧縮空気で駆動する他に、発生したバイオガスを使用して駆動することでポンプ動力費を低減できる。   As the circulation pump 28, a pump that is particularly suitable for transferring solid materials, such as a pump that does not easily cause the granule nucleus to collapse, such as a diaphragm pump, a Mono pump, and a mono-flex pump, is selected. In addition to driving the power of the circulation pump 28 with electric power or compressed air, the pump power cost can be reduced by driving using the generated biogas.
以上において、原水流入ライン11から原水(廃水)がリアクター槽10内のグラニュール層13内に導入され、上向流となってグラニュールと共に上昇し、その間に廃水中の有機物が分解処理され、下部気固液分離ゾーン14で気固液分離され、さらに沈降層15を上昇して、上部気固液分離ゾーン16で気固液分離されて、処理水が処理水ライン12より排水される。   In the above, raw water (waste water) is introduced into the granule layer 13 in the reactor tank 10 from the raw water inflow line 11 and rises with the granule in the upward flow, during which organic substances in the waste water are decomposed, Gas-solid-liquid separation is performed in the lower gas-solid-liquid separation zone 14, and the sedimentation layer 15 is further raised, gas-solid-liquid separation is performed in the upper gas-solid-liquid separation zone 16, and treated water is discharged from the treated water line 12.
また気固液分離ゾーン14、16で気固液分離されたバイオガスはエアーリフト管19、20にて廃水と共に気固液分離槽18に流入し、液分が下降管22にてリアクター槽10の底部に戻される。   In addition, the biogas separated in the gas-solid-liquid separation zones 14 and 16 flows into the gas-solid-liquid separation tank 18 together with the waste water through the air lift pipes 19 and 20, and the liquid component is fed into the reactor tank 10 through the downcomer 22. Return to the bottom of the.
本発明においては、原水流入ライン11から供給される原水は、最大8m3 /m2 /h以下となる流量とし、その最大流量を超えない範囲の負荷変動で安定して運転できるようにしたものである。 In the present invention, the raw water supplied from the raw water inflow line 11 has a maximum flow rate of 8 m 3 / m 2 / h or less, and can be stably operated with a load fluctuation within a range not exceeding the maximum flow rate. It is.
すなわち、原水流入ライン11から供給される原水の流量や有機物濃度が下がった場合、エアーリフト管19,20による廃水の内部循環量が少なくなり、グラニュール層13、沈降層15内のLVが下がりグラニュールと排水中の有機物の接触効率が悪くなるが、本発明においては、沈降層15内のLVが8m3 /m2 /h以上の流速となるように循環ポンプ28を駆動する。 That is, when the flow rate of the raw water supplied from the raw water inflow line 11 and the organic substance concentration are reduced, the internal circulation amount of the wastewater by the air lift pipes 19 and 20 is reduced, and the LV in the granule layer 13 and the sedimentation layer 15 is lowered. Although the contact efficiency between the granules and the organic matter in the wastewater is deteriorated, in the present invention, the circulation pump 28 is driven so that the LV in the sedimentation layer 15 has a flow velocity of 8 m 3 / m 2 / h or more.
これにより、下部気固液分離ゾーン14の廃水が、循環ライン30、すなわち、廃水取り出し管23,24からバルブ25,26、廃水戻し管27を介し、循環ポンプ28によりリアクター槽10の底部に循環され、グラニュールと排水中の有機物の接触効率が良好に維持されるため、且つ、SS(懸濁物)がグラニュール層13に堆積してしまうことがなくなる。   As a result, the waste water in the lower gas-solid-liquid separation zone 14 is circulated to the bottom of the reactor tank 10 by the circulation pump 28 via the circulation line 30, that is, the waste water take-out pipes 23 and 24 through the valves 25 and 26 and the waste water return pipe 27. In addition, the contact efficiency between the granule and the organic matter in the waste water is maintained well, and SS (suspension) is not deposited on the granule layer 13.
循環ライン30による循環量の設定は、バイオガス発生量が少なく、いわゆる負荷が低い場合には、グラニュール層13の流動性が悪い場合には、高めに、グラニュール層13の流動性が良い場合には、低めに設定する。   The circulation amount set by the circulation line 30 is set so that the flow rate of the granule layer 13 is high when the flow rate of the granule layer 13 is low when the biogas generation amount is small and the so-called load is low. If so, set it lower.
以上本発明は、高負荷運転は勿論低負荷運転でも安定した運転が可能となり、CODCr容積負荷10kg/m3 /日以下の低負荷運転においてもグラニュールと廃水の接触効率を下げずに運転ができると共に、グラニュール層13へのSS蓄積を低減できる。また原水の有機物濃度が低濃度の場合の装置内の滞留時間が短時間においても、循環ライン30にて廃水を循環できるため、グラニュールと廃水の接触効率を高くすることができる。 As described above, the present invention enables stable operation even in low load operation as well as high load operation, and operation without lowering the contact efficiency of granules and waste water even in low load operation of COD Cr volumetric load of 10 kg / m 3 / day or less. As a result, SS accumulation in the granule layer 13 can be reduced. Moreover, since the wastewater can be circulated in the circulation line 30 even if the residence time in the apparatus is low when the organic matter concentration of the raw water is low, the contact efficiency of the granule and the wastewater can be increased.
上述の実施の形態では、エアーリフト管19,20,22でバイオガスと共に廃水を内部循環するICリアクターに適用する例で説明したが、エアーリフトによる循環を用いずに、循環ライン30で全て廃水を循環するように構成してもよい。   In the above-described embodiment, an example is described in which the air lift pipes 19, 20, and 22 are applied to an IC reactor that internally circulates wastewater together with biogas. However, all wastewater is discharged from the circulation line 30 without using airlift circulation. May be configured to circulate.
また気固液分離ゾーン14,16は2段の例で説明したが、多段に構成するようにしてもよい。この場合、循環ライン30で廃水をリアクター槽10の底部に戻すのは、上段を除いた各気固液分離ゾーンの廃水を戻すようにしても、任意の段の気固液分離ゾーンの廃水を戻すようにしてもよい。   Moreover, although the gas-solid-liquid separation zones 14 and 16 were demonstrated in the example of 2 steps | paragraphs, you may make it comprise in multistage. In this case, the waste water in the circulation line 30 is returned to the bottom of the reactor tank 10 even if the waste water in each gas-solid-liquid separation zone except the upper stage is returned. You may make it return.
本発明の一実施の形態を示す図である。It is a figure which shows one embodiment of this invention.
符号の説明Explanation of symbols
10 リアクター槽
11 原水流入ライン
12 処理水ライン
14 下部気固液分離ゾーン
16 上部気固液分離ゾーン
30 循環ライン
DESCRIPTION OF SYMBOLS 10 Reactor tank 11 Raw water inflow line 12 Treated water line 14 Lower gas-solid-liquid separation zone 16 Upper gas-solid-liquid separation zone 30 Circulation line

Claims (6)

  1. グラニュールが収容されたリアクター槽の上部に上部気固液分離ゾーンを形成し、リアクター槽の底部に原水流入ラインを接続すると共にリアクター槽の上部に処理水ラインを接続したメタン発酵装置において、中央部に下部気固液分離ゾーンを形成し、その下部気固液分離ゾーンに、リアクター槽内の廃水をグラニュールと共にリアクター槽底部に戻す循環ラインを接続したことを特徴とするメタン発酵装置。   In the methane fermentation apparatus, an upper gas-solid-liquid separation zone is formed at the top of the reactor tank containing the granule, the raw water inflow line is connected to the bottom of the reactor tank, and the treated water line is connected to the top of the reactor tank. A methane fermentation apparatus characterized in that a lower gas-solid-liquid separation zone is formed in the section, and a circulation line for returning waste water in the reactor tank together with granules to the bottom of the reactor tank is connected to the lower gas-solid-liquid separation zone.
  2. 循環ラインは、下部気固液分離ゾーンに設けられた廃水取り出し管と、廃水取り出し管からの廃水をリアクター槽の底部に戻す廃水戻し管と、廃水戻し管に接続された容量可変の循環ポンプとからなる請求項1記載のメタン発酵装置。   The circulation line includes a waste water extraction pipe provided in the lower gas-solid separation zone, a waste water return pipe for returning waste water from the waste water extraction pipe to the bottom of the reactor tank, and a variable capacity circulation pump connected to the waste water return pipe. The methane fermentation apparatus according to claim 1, comprising:
  3. 廃水取り出し管は、下部気固液分離ゾーンの分離部材に詰まったグラニュールを吸引できるように設けられる請求項2記載のメタン発酵装置。   The methane fermentation apparatus according to claim 2, wherein the waste water take-out pipe is provided so as to be able to suck the granule clogged in the separation member of the lower gas-solid-liquid separation zone.
  4. 廃水取り出し管は、下部気固液分離ゾーンの上部の廃水を取り込むように設けられる請求項2又は3記載のメタン発酵装置。   The methane fermentation apparatus according to claim 2 or 3, wherein the waste water take-out pipe is provided so as to take in the waste water in the upper part of the lower gas-solid-liquid separation zone.
  5. 廃水取り出し管には、バルブが接続される請求項4記載のメタン発酵装置。   The methane fermentation apparatus according to claim 4, wherein a valve is connected to the waste water discharge pipe.
  6. グラニュール層の上昇流速が設定値となるように循環ラインの循環ポンプの循環量が制御される請求項2記載のメタン発酵装置。
    The methane fermentation apparatus according to claim 2, wherein the circulation amount of the circulation pump of the circulation line is controlled so that the ascending flow rate of the granule layer becomes a set value.
JP2006208703A 2006-07-31 2006-07-31 Methane fermentation equipment Expired - Fee Related JP4687600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006208703A JP4687600B2 (en) 2006-07-31 2006-07-31 Methane fermentation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208703A JP4687600B2 (en) 2006-07-31 2006-07-31 Methane fermentation equipment

Publications (2)

Publication Number Publication Date
JP2008029993A true JP2008029993A (en) 2008-02-14
JP4687600B2 JP4687600B2 (en) 2011-05-25

Family

ID=39119966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208703A Expired - Fee Related JP4687600B2 (en) 2006-07-31 2006-07-31 Methane fermentation equipment

Country Status (1)

Country Link
JP (1) JP4687600B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543534A (en) * 2005-06-10 2008-12-04 パックス ビー.ブイ. Anaerobic purification device
JP2010042352A (en) * 2008-08-12 2010-02-25 Ebara Corp Anaerobic treatment method and apparatus
KR101048673B1 (en) * 2009-02-12 2011-07-12 주식회사 앤써브 External circulating anaerobic digester
JP2011206630A (en) * 2010-03-29 2011-10-20 Asahi Group Holdings Ltd Structure of water discharge mechanism installed on upper lid of treatment tank, structure of upper lid of treatment tank, and treatment tank
WO2012042581A1 (en) * 2010-09-27 2012-04-05 株式会社エイブル Apparatus for methane fermentation treatment
CN102701530A (en) * 2012-06-20 2012-10-03 自贡市泉峰环保设备制造有限公司 Double-circulation anaerobic reaction device
JP2014100680A (en) * 2012-11-21 2014-06-05 Kuraray Co Ltd Anaerobic wastewater treatment method using carrier
JP2014100679A (en) * 2012-11-21 2014-06-05 Kuraray Co Ltd Anaerobic wastewater treatment method using carrier
JP2014188486A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus
CN104591383A (en) * 2015-01-29 2015-05-06 浦城正大生化有限公司 Novel EGSB (expanded granular sludge bed) anaerobic reactor
JP2018114427A (en) * 2017-01-16 2018-07-26 前澤工業株式会社 Methane fermentation tank

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227498A (en) * 1986-03-31 1987-10-06 Kurita Water Ind Ltd Fluidized bed type anaerobic treatment apparatus
JPS6422398A (en) * 1987-07-18 1989-01-25 Kajima Corp Multi-stage granulation type bioreactor
JPH01210098A (en) * 1988-02-18 1989-08-23 Toshiba Corp Anaerobic water treatment
JPH02203993A (en) * 1989-01-31 1990-08-13 Shinko Pantec Co Ltd Anaerobic waste water treating method
JPH05123691A (en) * 1991-11-06 1993-05-21 Japan Organo Co Ltd Method for upward flow sludge blanket and device therefor
JPH0647393A (en) * 1992-07-30 1994-02-22 Kurita Water Ind Ltd Anaerobic treatment apparatus
JPH0619900U (en) * 1992-08-06 1994-03-15 三菱化工機株式会社 Upflow anaerobic treatment device
JPH06106184A (en) * 1992-09-25 1994-04-19 Shinko Pantec Co Ltd Granulation of anaerobic microorganism
JP2000117284A (en) * 1998-10-12 2000-04-25 Mitsubishi Kakoki Kaisha Ltd Upflow type anaerobic treatment equipment and treatment using the same
JP2001507619A (en) * 1996-11-06 2001-06-12 パクエス ベースローテン フェンノートシャップ Equipment for biological purification of wastewater
JP2002510551A (en) * 1998-04-07 2002-04-09 ユーエスエフ ドイッチウランド ゲーエムベーハ ゴータリング Wastewater purification method and apparatus
JP2002219486A (en) * 2001-01-25 2002-08-06 Mitsubishi Kakoki Kaisha Ltd Anaerobic treatment equipment with upward flow
JP2003503200A (en) * 1999-07-06 2003-01-28 ユーエスエフ ドイッチウランド ゲーエムベーハ Wastewater purification method and apparatus
WO2005042418A1 (en) * 2003-10-29 2005-05-12 Herding Gmbh Filtertechnik Reactor and method for anaerobic wastewater treatment
JP2009522096A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227498A (en) * 1986-03-31 1987-10-06 Kurita Water Ind Ltd Fluidized bed type anaerobic treatment apparatus
JPS6422398A (en) * 1987-07-18 1989-01-25 Kajima Corp Multi-stage granulation type bioreactor
JPH01210098A (en) * 1988-02-18 1989-08-23 Toshiba Corp Anaerobic water treatment
JPH02203993A (en) * 1989-01-31 1990-08-13 Shinko Pantec Co Ltd Anaerobic waste water treating method
JPH05123691A (en) * 1991-11-06 1993-05-21 Japan Organo Co Ltd Method for upward flow sludge blanket and device therefor
JPH0647393A (en) * 1992-07-30 1994-02-22 Kurita Water Ind Ltd Anaerobic treatment apparatus
JPH0619900U (en) * 1992-08-06 1994-03-15 三菱化工機株式会社 Upflow anaerobic treatment device
JPH06106184A (en) * 1992-09-25 1994-04-19 Shinko Pantec Co Ltd Granulation of anaerobic microorganism
JP2001507619A (en) * 1996-11-06 2001-06-12 パクエス ベースローテン フェンノートシャップ Equipment for biological purification of wastewater
JP2002510551A (en) * 1998-04-07 2002-04-09 ユーエスエフ ドイッチウランド ゲーエムベーハ ゴータリング Wastewater purification method and apparatus
JP2000117284A (en) * 1998-10-12 2000-04-25 Mitsubishi Kakoki Kaisha Ltd Upflow type anaerobic treatment equipment and treatment using the same
JP2003503200A (en) * 1999-07-06 2003-01-28 ユーエスエフ ドイッチウランド ゲーエムベーハ Wastewater purification method and apparatus
JP2002219486A (en) * 2001-01-25 2002-08-06 Mitsubishi Kakoki Kaisha Ltd Anaerobic treatment equipment with upward flow
WO2005042418A1 (en) * 2003-10-29 2005-05-12 Herding Gmbh Filtertechnik Reactor and method for anaerobic wastewater treatment
JP2007506542A (en) * 2003-10-29 2007-03-22 ヘルディング ゲゼルシャフト ミット ベシュレンクテル ハフツング フィルターテヒニク Reactor and process for anaerobic wastewater treatment
JP2009522096A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543534A (en) * 2005-06-10 2008-12-04 パックス ビー.ブイ. Anaerobic purification device
JP2010042352A (en) * 2008-08-12 2010-02-25 Ebara Corp Anaerobic treatment method and apparatus
KR101048673B1 (en) * 2009-02-12 2011-07-12 주식회사 앤써브 External circulating anaerobic digester
JP2011206630A (en) * 2010-03-29 2011-10-20 Asahi Group Holdings Ltd Structure of water discharge mechanism installed on upper lid of treatment tank, structure of upper lid of treatment tank, and treatment tank
WO2012042581A1 (en) * 2010-09-27 2012-04-05 株式会社エイブル Apparatus for methane fermentation treatment
JP5560343B2 (en) * 2010-09-27 2014-07-23 株式会社エイブル Methane fermentation treatment equipment
CN103153882A (en) * 2010-09-27 2013-06-12 株式会社爱博 Apparatus for methane fermentation treatment
CN102701530A (en) * 2012-06-20 2012-10-03 自贡市泉峰环保设备制造有限公司 Double-circulation anaerobic reaction device
JP2014100680A (en) * 2012-11-21 2014-06-05 Kuraray Co Ltd Anaerobic wastewater treatment method using carrier
JP2014100679A (en) * 2012-11-21 2014-06-05 Kuraray Co Ltd Anaerobic wastewater treatment method using carrier
JP2014188486A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus
CN104591383A (en) * 2015-01-29 2015-05-06 浦城正大生化有限公司 Novel EGSB (expanded granular sludge bed) anaerobic reactor
JP2018114427A (en) * 2017-01-16 2018-07-26 前澤工業株式会社 Methane fermentation tank

Also Published As

Publication number Publication date
JP4687600B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4687600B2 (en) Methane fermentation equipment
US7731850B2 (en) Apparatus and method for treating wastewater
US7537693B2 (en) Up-flow multi-stage anaerobic reactor (UMAR)
US8043506B2 (en) Process and reactor for anaerobic waste water purification
US8021552B2 (en) Process and reactor for anaerobic waste water purification
CN105174601B (en) A kind of biological treatment of cassava alcohol waste water
CN100488895C (en) Multi-stage inner-circulation nitration-denitrification biological denitrogenation reactor
JP5114780B2 (en) Anaerobic treatment method and apparatus
CN101792242A (en) Treatment process of waste water of dairy products
JP4702748B2 (en) Water treatment equipment
CN103011402B (en) Double-circulation anaerobic reactor
CN104470859A (en) Anaerobic waste water treatment having sludge degassing and sludge feedback, and treatment plant
CN201530770U (en) Deepwater combination biological treatment facility
CN103332784A (en) Three-stage circulation aerobic reactor
JP4468771B2 (en) Organic wastewater treatment equipment
CN103011404B (en) Internal-mixing anaerobic reaction tank
US8663468B2 (en) Reactor for anaerobic purification of waste water including multi-phase separator devices
CN202358961U (en) Anaerobic reactor
CN105776528A (en) Dual-reflux efficient anaerobic reaction device and wastewater treatment method
CN207210064U (en) Internal-circulation type biofilter anaerobic reactor
CN1226201C (en) Anaerobic/aerobic dual purpose waste water treatment system
JP2006142302A (en) Anaerobic treatment method and apparatus
CN204151141U (en) Modularization intelligent aerobic reaction system
CN203007037U (en) Internal mixing anaerobic reactor
CN211813667U (en) Flow-reducing homogeneous anaerobic DHAR reaction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R151 Written notification of patent or utility model registration

Ref document number: 4687600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees