JP2007196095A - Organic waste treatment method and apparatus - Google Patents

Organic waste treatment method and apparatus Download PDF

Info

Publication number
JP2007196095A
JP2007196095A JP2006015234A JP2006015234A JP2007196095A JP 2007196095 A JP2007196095 A JP 2007196095A JP 2006015234 A JP2006015234 A JP 2006015234A JP 2006015234 A JP2006015234 A JP 2006015234A JP 2007196095 A JP2007196095 A JP 2007196095A
Authority
JP
Japan
Prior art keywords
tank
sludge
anaerobic digestion
separation
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006015234A
Other languages
Japanese (ja)
Other versions
JP5143358B2 (en
Inventor
Akira Ichihara
昭 市原
Yuichi Fuchu
裕一 府中
Hiroshi Sakuma
博司 佐久間
Takao Hagino
隆生 萩野
Tomoko Ikeda
倫子 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006015234A priority Critical patent/JP5143358B2/en
Publication of JP2007196095A publication Critical patent/JP2007196095A/en
Application granted granted Critical
Publication of JP5143358B2 publication Critical patent/JP5143358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost and efficient organic waste treatment method which improves a durability of equipment such as a dehydrator and a conveyor, and cuts down the cost of chemicals such as a flocculant, and its apparatus. <P>SOLUTION: In the organic waste treatment method, organic waste is subjected to anaerobic digestion treatment, and digested sludge yielded by the anaerobic digestion treatment is subjected to aerobic biological treatment, and then introduced into a process for separating and/or recovering magnesium ammonium phosphate particles. The organic waste treatment apparatus comprises an anaerobic digestion tank for carrying out the anaerobic digestion of the organic waste, an aerobic biological treatment tank for treating the digested sludge from the anaerobic digestion tank, and a magnesium ammonium phosphate separation and recovery device for separating/recovering the magnesium ammonium phosphate particles from sludge from the aerobic biological treatment tank. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、下水処理場を含む各種廃水処理場や有機性廃棄物処理施設などにおいて有機性廃棄物を処理するシステムに係り、更に詳しくは簡単な単位プロセスから構成され、曝気のコストや水素供与体、pH調整剤、凝集剤、ポリマーなどの薬品コストを大幅に削減することができる上に、高濃度の有機物、リン及び窒素を含有する有機性廃棄物から、リン及びアンモニアを粒子の形で回収することができる効率の良い処理手段を提供する方法、及び装置に関するものである。   The present invention relates to a system for treating organic waste in various wastewater treatment plants including sewage treatment plants and organic waste treatment facilities, and more specifically, it is composed of simple unit processes, and provides aeration cost and hydrogen donation. The chemical cost of the body, pH adjuster, flocculant, polymer, etc. can be greatly reduced, and phosphorous and ammonia in the form of particles from organic waste containing high concentrations of organic matter, phosphorus and nitrogen. The present invention relates to a method and an apparatus for providing an efficient processing means that can be collected.

家庭での残飯・野菜くずなどの厨芥生ごみ、刈芝、草木くず、古紙、これらは全て有機性廃棄物である。家庭外に目を向ければ、食品加工場や魚介類加工場での加工残渣、酒かす、廃乳、おからなどの食品廃棄物、パルプ工場の黒液、あるいはし尿汚泥、家畜糞尿、有機汚泥など、有機性廃棄物は枚挙に暇がない。
有機性廃棄物は、嫌気性微生物の存在下でメタン発酵させることによって処理されることが多い。このような嫌気性処理は嫌気性消化とも呼ばれ、古くから行われている方法である。好気性生物処理と違って希釈、曝気が不要なため省エネルギー・省コストである点に加え、嫌気性消化で発生するガスにはメタンガスが高濃度に含まれる。このメタンガスを回収してエネルギー利用できる点も嫌気性消化のメリットであり、エネルギーを回収できる方法として各種有機性廃棄物について実用化が進んでいる。
Garbage waste such as leftovers and vegetable scraps at home, cut grass, grass scraps and waste paper, all of which are organic waste. Looking outside the home, processing residues at food processing plants and seafood processing plants, food waste such as sake lees, waste milk, okara, black liquor from pulp mills, manure sludge, livestock manure, organic sludge For example, there is no time for organic waste.
Organic waste is often treated by methane fermentation in the presence of anaerobic microorganisms. Such anaerobic treatment is also called anaerobic digestion, and is a method that has been performed for a long time. Unlike aerobic biological treatment, it does not require dilution and aeration, so it saves energy and costs, and the gas generated by anaerobic digestion contains high concentrations of methane gas. The advantage of anaerobic digestion is that this methane gas can be recovered and used as energy, and various organic wastes are being put to practical use as a method for recovering energy.

ところで、上記有機性廃棄物の嫌気性消化液・嫌気性消化汚泥には高濃度のSS成分が含有され、半減されるとはいえ依然比較的高濃度のBOD成分、COD成分といった有機物も残されている。さらに、嫌気性処理の過程で生成・溶出するアンモニアやリンが高濃度に含まれる。そのため、有機性廃棄物の嫌気性消化液・嫌気性消化汚泥を河川や下水道への放流や、液肥使用などその後の行き先に適した水質にするためには、まず脱水を行い、脱水後の消化脱離液に対して有機物や窒素、リンの除去を行うことが多い。近年はCOD総量規制や窒素、リンなどの富栄養化物質の規制が強化されつつあり、嫌気性消化と従来通りの二次処理(BOD除去)だけでは対応が難しくなっている。   By the way, the anaerobic digestion liquid / anaerobic digestion sludge of the organic waste contains a high concentration of SS component, and although it is halved, organic substances such as a relatively high concentration of BOD component and COD component still remain. ing. Furthermore, ammonia and phosphorus produced and eluted during the anaerobic treatment are contained in high concentrations. Therefore, in order to release the anaerobic digestion liquid and anaerobic digestion sludge of organic waste into rivers and sewers, and to make the water quality suitable for the subsequent destination such as using liquid fertilizer, dehydration is first performed and digestion after dehydration is performed. In many cases, organic substances, nitrogen, and phosphorus are removed from the desorbed liquid. In recent years, restrictions on the total amount of COD and regulations on eutrophication substances such as nitrogen and phosphorus are being strengthened, and it is difficult to cope with only anaerobic digestion and conventional secondary treatment (BOD removal).

下水処理における汚泥処理システムなど、水処理工程に付随した処理施設においては、脱水工程で消化汚泥のSS成分を低減又は除去し、消化脱離液を水処理工程に戻すことが多いが、この方法には水処理工程で除去したリンを水処理工程へ戻すという堂堂巡りの側面がある。このため水処理系へのリン負荷が高く、効率的な方法とはいえない。もともと水処理工程がなく消化脱離液を個別に処理する場合も同様で、まず脱水工程で消化汚泥のSS成分を除去し、消化脱離液に対しBOD除去、リン除去、窒素除去などを行うことが多い。   In a treatment facility associated with a water treatment process such as a sludge treatment system in sewage treatment, the SS component of the digested sludge is often reduced or removed in the dehydration process, and the digestion desorption liquid is often returned to the water treatment process. There is a side of the tour of the temple where phosphorus removed in the water treatment process is returned to the water treatment process. For this reason, the phosphorus load to a water treatment system is high, and it cannot be said that it is an efficient method. The same applies to the case where the digestion and desorption liquid is treated individually without any water treatment process. First, the SS component of the digestion sludge is removed in the dehydration process, and BOD removal, phosphorus removal, nitrogen removal, etc. are performed on the digestion desorption liquid. There are many cases.

ところで、脱水にかかるコストが嫌気性消化汚泥の処理における問題の一つである。脱水のために添加する凝集剤、ポリマーの薬剤コストが非常に大きな負担になっているのである。
汚泥にポリマーを添加して凝集させるには、汚泥の荷電のプラス/マイナス(アニオン/カチオン)と逆に荷電しているポリマーを添加して汚泥を荷電ゼロに近づければ良い。一般的な有機性汚泥はアニオン(マイナス側)に荷電しているので、カチオンポリマーを添加すれば良い。
By the way, the cost for dehydration is one of the problems in the treatment of anaerobic digested sludge. The cost of the flocculant and polymer added for dehydration is a very large burden.
In order to add the polymer to the sludge and aggregate it, it is only necessary to add a polymer charged opposite to the plus / minus charge (anion / cation) of the sludge to bring the sludge close to zero charge. Since general organic sludge is charged to the anion (minus side), a cationic polymer may be added.

一般的な好気性余剰汚泥のコロイド荷電量が概ね−0.1〜−0.3meq/Lの範囲にあるのに対し、嫌気性消化汚泥は−0.2〜−1.5meq/Lと荷電量が大きいことが多く、その分脱水に必要なポリマー添加率が高くなる。その上、嫌気性消化汚泥には塩分濃度やM−アルカリ度が高く、コロイダルな粒子が多く含まれることがさらに難脱水性を高めており、より多量のポリマー添加が必要となる。このため消化汚泥の脱水には鉄塩と両性ポリマーを用いて脱水機にかけることもある。脱水機には真空式脱水機、加圧式脱水機(フィルタープレス)、遠心式脱水機、ベルト式脱水機(ベルトプレス)、スクリュー式脱水機など各種があるが、最も一般的に使用されているのはベルトプレスである。鉄塩を添加すると脱水性が向上する一方でpHが低下する。鉄塩の添加率は脱水機を傷めない範囲、pH4ないし5以上に止まるよう制限される。鉄塩はリン酸に対する凝集効果を有しているので、汚泥中の溶解性リン除去の観点からは一石二鳥である反面、除去したリンを回収するという目的には不向きである。   The amount of colloidal charge of general aerobic excess sludge is approximately in the range of −0.1 to −0.3 meq / L, whereas anaerobic digested sludge is charged to −0.2 to −1.5 meq / L. The amount is often large, and the polymer addition rate required for dehydration increases accordingly. In addition, anaerobic digested sludge has a high salinity and M-alkalinity, and a large amount of colloidal particles further increases the difficulty of dehydration, and a larger amount of polymer is required. For this reason, the digested sludge may be dehydrated using iron salts and amphoteric polymers. There are various types of dehydrators such as vacuum dehydrators, pressure dehydrators (filter presses), centrifugal dehydrators, belt dehydrators (belt presses), screw dehydrators, etc., but most commonly used. Is a belt press. When iron salt is added, the dehydrating property is improved while the pH is lowered. The addition rate of the iron salt is limited so that it does not damage the dehydrator and remains at pH 4 to 5 or higher. Since iron salt has a coagulation effect on phosphoric acid, it is not suitable for the purpose of recovering the removed phosphorus, although it is two birds with one stone from the viewpoint of removing soluble phosphorus in sludge.

リンの除去法は、先述の鉄塩やPACなどによる薬品凝集沈殿法が開発・実用化され実績も得てきたが、薬品コストや大量の汚泥発生のために、実設備での導入は敬遠される傾向にある。1970年代に入って、生物学的なリン除去法として、活性汚泥におけるリン過剰摂取に着目した嫌気−好気法や、窒素との同時除去を目指した方法が開発され、実用化されている。その中で嫌気無酸素好気法は、微生物の代謝作用を巧みに利用し、増殖する微生物の細胞内にリンを多量に蓄積させることができるので、日本国内においても広く普及している。しかし、嫌気無酸素好気法は、水質の変化や季節変動に伴う外部環境の変化により、処理性能が安定しないなどの問題があり、このような場合には凝集沈殿法等を組み合わせた処理方法が必要になることもある。その結果、処理工程が煩雑なことと薬品代などのランニングコストが高いことが問題になっている。   As for the removal method of phosphorus, the chemical coagulation precipitation method using iron salt and PAC as described above has been developed and put into practical use. However, due to the chemical cost and the generation of a large amount of sludge, introduction in actual facilities is avoided. Tend to. In the 1970s, anaerobic-aerobic methods focusing on excess phosphorus intake in activated sludge and methods aimed at simultaneous removal with nitrogen have been developed and put into practical use as biological phosphorus removal methods. Among these, the anaerobic and anaerobic aerobic method is widely used in Japan because it can skillfully utilize the metabolic action of microorganisms and accumulate a large amount of phosphorus in the cells of the growing microorganisms. However, the anaerobic anaerobic aerobic method has problems such as unstable processing performance due to changes in the water environment and changes in the external environment due to seasonal fluctuations. May be necessary. As a result, there are problems that the processing steps are complicated and the running costs such as chemical costs are high.

一方、廃水からリンを回収する試みとして、1970年代にリンをリン酸アパタイトとして析出させる接触脱リン法や晶析法が開発された。近年になって、MAP晶析法という化学的リン除去方法が注目されている。MAP晶析法とは、水中でリン酸イオン、アンモニウムイオン、マグネシウムイオンが等モルずつ反応してリン酸マグネシウムアンモニウムの6水塩結晶(Magnesium Ammonium Phosphate:頭文字をとって「MAP」とも呼ばれる:化学式はMgNHPO・6HO)(MAP結晶)を生成する現象を利用したリンの除去/回収方法である。MAP結晶の生成反応を下式1に示す。
PO−P3−+NH +Mg2++6HO → MgNHPO・6HO …(1)
On the other hand, as an attempt to recover phosphorus from wastewater, a catalytic dephosphorization method and a crystallization method in which phosphorus is precipitated as phosphate apatite were developed in the 1970s. In recent years, a chemical phosphorus removal method called a MAP crystallization method has attracted attention. In the MAP crystallization method, phosphate ions, ammonium ions, and magnesium ions react in equimolar amounts in water to form magnesium ammonium phosphate hexahydrate crystals (Magnesium Ammonium Phosphate, also referred to as “MAP” as an acronym): The chemical formula is a phosphorus removal / recovery method using the phenomenon of generating MgNH 4 PO 4 .6H 2 O) (MAP crystal). The formation reaction of MAP crystals is shown in the following formula 1.
PO 4 −P 3 + + NH 4 + + Mg 2+ + 6H 2 O → MgNH 4 PO 4 .6H 2 O (1)

この反応に従って生成したMAP結晶粒子を反応系から引き抜くことで、廃水中からリンを除去するとともに、アンモニウムイオンの一部も除去することができる。MAP晶析法は、運転操作の煩雑さが少なく、特にリンの回収を安定的に行える。回収されるMAPは重量にして13%のリンを含み、優れた肥料であるという付加価値がある。MAP晶析法は資源の有効利用の点から、優れたリン及び窒素の除去・回収技術と言える。   By pulling out the MAP crystal particles generated according to this reaction from the reaction system, it is possible to remove phosphorus from the wastewater and also remove some ammonium ions. The MAP crystallization method is less complicated in operation and can recover phosphorus particularly stably. The recovered MAP contains 13% phosphorus by weight and has the added value of being an excellent fertilizer. The MAP crystallization method can be said to be an excellent technique for removing and recovering phosphorus and nitrogen from the viewpoint of effective use of resources.

嫌気性消化処理が進むにつれ汚泥中ではリン酸イオンとアンモニウムイオンの濃度が上昇しており、通常マグネシウムイオンを律速因子として、自然にMAP晶析法と同じ現象が起こっている。このため往々にして消化汚泥中には相当量のMAP粒子が含まれている。多くの場合、MAP粒子を含んだ粒子が分離回収されないまま脱水工程に導かれ、脱水ケーキに混入する。その過程で脱水機やコンベアにダメージを与え機械寿命を縮める、焼却時にリン飛灰トラブルを引き起こすといった事例が問題となっている。
本発明者らは、先に、微生物の代謝を利用した有機性廃水処理工程で発生する余剰汚泥に対して嫌気性消化処理を行い、かつその処理工程でマグネシウム源を添加して前記汚泥中に含まれるリン又はリンと窒素からリン酸マグネシウムアンモニウムを生成せしめ、生成したリン酸マグネシウムアンモニウムを消化汚泥から分離し回収する工程と、リン酸マグネシウムアンモニウム除去後の消化汚泥の濃縮分離水または消化汚泥の脱水ろ液の内少なくとも1つにマグネシウム源及びpH調整剤を添加、混合することにより、対象液中よりリン酸マグネシウムアンモニウムを生成し回収することを提案した(特許文献1)。
アンモニアとリンを含有する汚水に対して、亜硝酸菌の存在する好気槽内2Aでアンモニアの一部を亜硝酸に酸化しながら、同時にMgイオン源添加によりリン酸マグネシウムアンモニウム粒子を析出させることは可能である(特許文献2)。
As the anaerobic digestion process proceeds, the concentration of phosphate ions and ammonium ions in the sludge increases, and the same phenomenon as that of the MAP crystallization method naturally occurs, usually using magnesium ions as the rate-limiting factor. For this reason, the digested sludge often contains a considerable amount of MAP particles. In many cases, particles containing MAP particles are led to a dehydration step without being separated and collected, and are mixed into a dehydrated cake. In the process, there are problems such as damage to the dehydrator and conveyor, shortening the machine life, and causing phosphorus fly ash troubles during incineration.
The present inventors previously performed anaerobic digestion on excess sludge generated in the organic wastewater treatment process utilizing the metabolism of microorganisms, and added a magnesium source in the treatment process to the sludge. The process of producing magnesium ammonium phosphate from the contained phosphorus or phosphorus and nitrogen, separating and recovering the produced magnesium ammonium phosphate from the digested sludge, and concentrated water or digested sludge of the digested sludge after removal of magnesium ammonium phosphate It has been proposed to produce and recover magnesium ammonium phosphate from the target liquid by adding and mixing a magnesium source and a pH adjuster to at least one of the dehydrated filtrates (Patent Document 1).
To sewage containing ammonia and phosphorus, magnesium ammonium phosphate particles are precipitated by adding a Mg ion source while oxidizing a part of ammonia into nitrous acid in an aerobic tank 2A in which nitrite bacteria exist. Is possible (Patent Document 2).

一方、アンモニアの処理法としては、生物学的硝化脱窒法の他に、アンモニアストリッピング法、不連続点塩素注入法、イオン交換法などの物理化学的処理法も考案されているが、物理化学的処理法はどれも一長一短である。そこで生物学的硝化脱窒法によって除去するのが一般的に取られる方法である。この方法は処理対象となる各種廃水のアンモニア濃度、及び廃水自身のpH緩衝能力によっては、自栄養性硝化菌によるアンモニアの硝化により混合培養液のpHが低下し、プロセス内での硝化、脱窒素能力がともに阻害されるため、pH調整が必要となり当然コストアップにつながる。また、消化脱離液中のBODは、含まれる窒素を全量脱窒させるには不足することが普通で、脱窒工程では水素供与体を補うために多量の有機物を投入する必要がある。たいていは、この脱窒用有機物は薬剤として購入しなければならないので、処理コストを増加させる原因となっている。このため有機物が不足する排水中の窒素を、有機物の添加なしに除去する技術の開発が必要とされている。   On the other hand, in addition to biological nitrification and denitrification methods, ammonia treatment methods such as ammonia stripping method, discontinuous point chlorine injection method and ion exchange method have been devised. Every method of processing is pros and cons. Therefore, removal by a biological nitrification denitrification method is a general method. In this method, depending on the ammonia concentration of various wastewaters to be treated and the pH buffering capacity of the wastewater itself, the pH of the mixed culture solution decreases due to nitrification of ammonia by autotrophic nitrifying bacteria. Since both of the capacities are hindered, pH adjustment is necessary, which naturally increases the cost. In addition, the BOD in the digestion and desorption liquid is usually insufficient to denitrify all of the contained nitrogen. In the denitrification step, it is necessary to add a large amount of organic matter to supplement the hydrogen donor. In most cases, the denitrification organic matter must be purchased as a chemical, which increases the processing cost. For this reason, development of the technique which removes nitrogen in the waste_water | drain which lacks organic substance without the addition of organic substance is required.

以上に述べた従来技術の問題点を列挙すると、脱水工程においてMAP粒子が混入した汚泥をそのまま脱水することにより脱水機やコンベアなどの後段設備が磨耗する問題、脱水性の悪い消化汚泥を脱水するための凝集剤などの薬品コストの問題、高濃度にリンを含んだ汚泥を焼却する際のリン飛灰トラブル、硝化脱窒工程における曝気コストの問題およびpH調整剤や水素供与体などの薬品コストの問題、などがある。
特開2003−45889号公報 特開2003−126887号公報
The above-mentioned problems of the prior art are enumerated. In the dehydration process, the sludge mixed with MAP particles is dehydrated as it is, and the subsequent equipment such as dehydrators and conveyors wears. Problems of chemical costs such as flocculants, phosphorus fly ash problems when incinerating sludge containing high concentrations of phosphorus, problems of aeration costs in nitrification and denitrification processes, and chemical costs of pH adjusters and hydrogen donors There are problems, etc.
JP 2003-45889 A JP 2003-126877 A

本発明は、上記従来技術の問題点を解決し、簡単なプロセスの組み合わせで構成され、曝気のコストや水素供与体・pH調整用の薬品コストを大幅に削減することができる上に、リンおよびアンモニアを粒子の形で回収することができる低コストで効率の良い有機性廃棄物の処理方法及びその装置を提供することを課題とする。   The present invention solves the above-mentioned problems of the prior art and is constituted by a combination of simple processes, and can greatly reduce the cost of aeration and the cost of chemicals for hydrogen donor / pH adjustment. It is an object of the present invention to provide a low-cost and efficient organic waste processing method and apparatus capable of recovering ammonia in the form of particles.

本発明は、下記の手段により上記の課題を解決した。
(1)有機性廃棄物を嫌気性消化処理し、該嫌気性消化処理で得られた消化汚泥に好気的生物処理を行った後、生物学的亜硝酸化処理を行い、リン酸マグネシウムアンモニウム粒子分離及び/又は回収工程を経た汚泥を固液分離工程へ導き、分離された液をアンモニア脱窒処理することを特徴とする有機性廃棄物の処理方法。
(2)有機性廃棄物を嫌気性消化処理し、該嫌気性消化処理で得られた消化汚泥について脱炭酸処理を行い、脱炭酸後の汚泥をリン酸マグネシウムアンモニウム分離・回収工程へ導き、リン酸マグネシウムアンモニウム分離後の汚泥に対しては生物学的亜硝酸化処理を行い、固液分離工程に導き、分離した液をアンモニア脱窒工程へ導くとともに、脱炭酸後の汚泥から分離・回収したリン酸マグネシウムアンモニウム粒子の一部又は全部を脱炭酸処理工程へ返送することを特徴とする有機性廃棄物の処理方法。
(3)上記嫌気性消化処理の直後に、リン酸マグネシウムアンモニウム粒子分離工程を設け、消化汚泥より分離されたリン酸マグネシウムアンモニウム粒子の一部又は全部が嫌気性消化処理工程へ返送されることを特徴とする前記(2)又は(3)に記載の有機性廃棄物の処理方法。
(4)有機性廃棄物を嫌気性消化する嫌気性消化槽、該嫌気性消化槽からの消化汚泥を処理する亜硝酸化槽、及び該亜硝酸化槽からの汚泥からリン酸マグネシウムアンモニウム粒子を分離/回収するリン酸マグネシウムアンモニウム分離回収装置を備えたことを特徴とする有機性廃棄物の処理装置。
(5)有機性廃棄物を嫌気性消化する嫌気性消化槽と、該嫌気性消化槽からの消化汚泥を脱炭酸する脱炭酸槽と、該脱炭酸槽からの汚泥からリン酸マグネシウムアンモニウム粒子を分離/回収するリン酸マグネシウムアンモニウム分離回収装置と、該リン酸マグネシウムアンモニウム分離回収装置を経た汚泥を処理する亜硝酸化槽と、該亜硝酸化槽からの汚泥を固液分離する固体分離槽とを設け、さらにリン酸マグネシウムアンモニウム分離回収装置により分離・回収したリン酸マグネシウムアンモニウム粒子の一部又は全部を該脱炭酸槽へ返送する返送管を備えたことを特徴とする有機性廃棄物の処理装置。
The present invention has solved the above problems by the following means.
(1) Anaerobic digestion treatment of organic waste, aerobic biological treatment on the digested sludge obtained by the anaerobic digestion treatment, biological nitritation treatment, magnesium ammonium phosphate A method for treating organic waste, characterized in that sludge having undergone a particle separation and / or recovery step is guided to a solid-liquid separation step, and the separated liquid is subjected to ammonia denitrification treatment.
(2) Organic waste is subjected to anaerobic digestion, the digested sludge obtained by the anaerobic digestion is decarboxylated, and the sludge after decarboxylation is guided to the magnesium ammonium phosphate separation and recovery process. Biological nitritation treatment is applied to sludge after separation of magnesium ammonium oxide, leading to a solid-liquid separation process, and the separated liquid is guided to an ammonia denitrification process, and separated and recovered from the sludge after decarboxylation. A method for treating organic waste, wherein part or all of the magnesium ammonium phosphate particles are returned to the decarboxylation treatment step.
(3) Immediately after the anaerobic digestion treatment, a magnesium ammonium phosphate particle separation step is provided, and part or all of the magnesium ammonium phosphate particles separated from the digested sludge is returned to the anaerobic digestion treatment step. The method for treating organic waste according to (2) or (3), which is characterized in that
(4) Anaerobic digestion tank for anaerobically digesting organic waste, nitritation tank for treating digested sludge from the anaerobic digestion tank, and magnesium ammonium phosphate particles from sludge from the nitritation tank An organic waste treatment apparatus comprising a magnesium ammonium phosphate separation / recovery device for separation / recovery.
(5) Anaerobic digestion tank for anaerobically digesting organic waste, decarboxylation tank for decarboxylating digested sludge from the anaerobic digestion tank, and magnesium ammonium phosphate particles from the sludge from the decarbonation tank Magnesium ammonium phosphate separation / recovery device for separation / recovery, nitritation tank for treating sludge passed through the magnesium ammonium phosphate separation / recovery device, solid separation tank for solid-liquid separation of sludge from the nitritation tank, And a return pipe for returning a part or all of the magnesium ammonium phosphate particles separated and recovered by the magnesium ammonium phosphate separation and recovery device to the decarbonation tank. apparatus.

本発明によれば、次のような効果が得られる。
(a)MAP粒子を固液分離の前に分離/回収することにより、脱水機やコンベアなどの後段設備が磨耗する問題がなくなる。
(b)脱水性の悪い消化汚泥に好気的生物処理を行った上で脱水することにより凝集剤やポリマーなどの薬品コストを削減できる。
(c)さらに好気的生物処理における曝気による脱炭酸の影響で汚泥中のpHをMAP粒子生成に適した範囲に維持することにより、汚泥中のリン酸イオンを効果的に除去/回収することを可能とし、高濃度にリンを含んだ汚泥を焼却する際のリン飛灰トラブルがなくなる。
(d)好気的生物処理を亜硝酸型硝化としてアンモニア脱窒と組み合わせることにより、硝化脱窒工程における曝気コストの問題およびpH調整剤や水素供与体などの薬品コストを削減できる。
本発明は、簡単なプロセスの組み合わせから成る低コストで効率の良い有機性廃棄物の処理方法及び装置を提供することができる。
According to the present invention, the following effects can be obtained.
(A) By separating / collecting the MAP particles before the solid-liquid separation, there is no problem of wear of subsequent equipment such as a dehydrator or a conveyor.
(B) Chemical costs such as flocculants and polymers can be reduced by performing aerobic biological treatment on digested sludge having poor dewaterability and then dewatering.
(C) Further, phosphate ions in the sludge are effectively removed / recovered by maintaining the pH in the sludge within a range suitable for MAP particle generation due to the influence of decarboxylation by aeration in aerobic biological treatment. This eliminates the problem of phosphorus fly ash when incinerating sludge containing high concentrations of phosphorus.
(D) By combining aerobic biological treatment with nitrite-type nitrification and ammonia denitrification, it is possible to reduce the problem of aeration costs in the nitrification denitrification step and chemical costs such as pH adjusters and hydrogen donors.
The present invention can provide a low-cost and efficient organic waste processing method and apparatus comprising a combination of simple processes.

本発明を実施するための最良の形態を図面を参照して詳細に説明する。
なお、実施の形態および実施例を説明する全図において、同一機能を有する構成要素は同一の符号を付けて説明する。
本発明では、まず、図1のフローに示すように、処理対象となる有機性廃棄物10を嫌気性消化槽1に導入する。消化汚泥中ではMAPの成分であるMg、PO−P、NH−N、およびpHの間で平衡が成り立っている。Mg、PO−P、NH−Nのうちどれかの濃度を上げたり、pHを上げて中性付近からアルカリ性付近とすることにより、MAPの結晶を生成させることができることはよく知られている。MAP生成においてpHは重要な条件であり、アルカリ性の方がMAP生成には好ましいのであるが、pHが高すぎると過飽和度が上昇し、結晶化を促進する力があまりにも強く作用するあまり、微細MAPの生成につながる恐れがある。微細MAPは分離/回収することができない。回収を目的としたMAP生成の際には、生成時のpHが6.8〜8.0の範囲にあることが好ましく、更には7.1〜7.6の間であればより好ましい。
The best mode for carrying out the present invention will be described in detail with reference to the drawings.
Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments and examples.
In the present invention, first, as shown in the flow of FIG. 1, the organic waste 10 to be treated is introduced into the anaerobic digester 1. In digested sludge, an equilibrium is established among Mg, PO 4 -P, NH 4 -N, and pH, which are components of MAP. It is well known that MAP crystals can be generated by increasing the concentration of any of Mg, PO 4 -P, and NH 4 -N, or by increasing the pH from neutral to alkaline. Yes. The pH is an important condition for MAP generation, and alkaline is preferable for MAP generation. However, if the pH is too high, the degree of supersaturation increases, and the force for promoting crystallization acts too strongly. There is a risk of MAP generation. Fine MAP cannot be separated / recovered. When producing MAP for the purpose of recovery, the pH during production is preferably in the range of 6.8 to 8.0, and more preferably 7.1 to 7.6.

次に、この槽に連通されている好気的生物処理槽2にて好気条件下で生物処理を行う。好気的生物処理には標準活性汚泥法、回分式活性汚泥法、固定床/移動床式生物膜法等の各種がある。そのいずれでも適用できるし、BOD除去に限らず回分式/循環式硝化脱窒の硝化部分、嫌気好気無酸素法の好気部分としてもよい。あらゆる好気性生物処理法が適用可能である。
ところで嫌気性消化の過程で生成するガスの内訳は二酸化炭素とメタンが3:7〜4:6程度である。嫌気性消化槽1は密閉式であるので消化汚泥中には炭酸ガスCOが溶け込んでほぼ飽和状態となっており、解離平衡が成り立っている。
CO↑+HO ←→ HCO←→ H+HCO ←→2H+CO 2−…(2)
Next, biological treatment is performed under aerobic conditions in the aerobic biological treatment tank 2 communicated with the tank. There are various types of aerobic biological treatment such as standard activated sludge method, batch activated sludge method, fixed bed / moving bed type biofilm method and the like. Any of them can be applied, and not only BOD removal but also a nitrification part of batch / circulation nitrification denitrification and an aerobic part of anaerobic aerobic anaerobic method. Any aerobic biological treatment method is applicable.
By the way, the breakdown of the gas generated in the process of anaerobic digestion is about 3: 7 to 4: 6 for carbon dioxide and methane. Since the anaerobic digestion tank 1 is a closed type, carbon dioxide CO 2 dissolves in the digested sludge and is almost saturated, and a dissociation equilibrium is established.
CO 2 ↑ + H 2 O ← → H 2 CO 3 ← → H + + HCO 3 ← → 2H + + CO 3 2− (2)

通常、好気的生物処理は曝気を伴う。曝気により消化汚泥を強制的に大気と接触させることにより、消化汚泥中の酸成分である遊離炭酸(HCO)が放出され、pHが8近くにまで上昇する。その結果MAPを構成する各イオンの平衡が移動し、汚泥中にMAPの結晶が生成するのである。脱炭酸だけでpHが8から大幅に上がることは容易には起こらない。このことは微細MAP生成防止に有効である。 Usually, aerobic biological treatment involves aeration. By forcibly bringing the digested sludge into contact with the air by aeration, free carbonic acid (H 2 CO 3 ), which is an acid component in the digested sludge, is released, and the pH rises to nearly 8. As a result, the equilibrium of each ion constituting the MAP moves, and MAP crystals are generated in the sludge. It is not easy to raise the pH significantly from 8 by decarboxylation alone. This is effective in preventing the formation of fine MAP.

MAPの結晶を含有する汚泥を後段の公知(萩野:特開2002−045889)のMAP回収/分離装置3へ導入することによって、有機性廃棄物10中のリン及びアンモニアをMAP粒子4の形で分離・回収することができる。この方法により、消化汚泥のBODを除去すると同時にPO−PとNH−NをMAP粒子4の形にいわば固定することができ、容易に分離・回収が可能となる。生物処理槽2の滞留時間は、嫌気性消化汚泥を対象とした場合、生物処理によるBOD除去のためには1〜2日間程度が必要であるのに対し、化学反応であるMAP生成には1時間程度で足りるので、生物処理のための曝気で脱炭酸/pH上昇/MAP生成を行うことができて低コストであるし、特別にMAP生成のための滞留時間を確保したり、槽を増築したりなどの設計上の考慮をする必要がない。 By introducing the sludge containing MAP crystals into the MAP recovery / separation apparatus 3 in the latter stage (Ogino: JP 2002-045889), phosphorus and ammonia in the organic waste 10 are in the form of MAP particles 4. It can be separated and recovered. By this method, the BOD of the digested sludge can be removed, and at the same time, PO 4 -P and NH 4 -N can be fixed in the form of MAP particles 4, and can be easily separated and recovered. When anaerobic digested sludge is targeted, the residence time of the biological treatment tank 2 is about 1 to 2 days for removing BOD by biological treatment, whereas it is 1 for the production of MAP as a chemical reaction. As time is sufficient, decarboxylation / pH increase / MAP generation can be performed by aeration for biological treatment, and the cost is low. Specially, a residence time for MAP generation is secured, and a tank is added. There is no need for design considerations.

生成するMAP粒子4の量をより増やすためには曝気後のアルカリ薬剤添加も選択肢の一つであるが、この方法は消化汚泥のような緩衝能の高いものに対して必ずしも効率的ではないし、微調整が上手くいかずpHが上がりすぎた時、高すぎるpH値がMAP生成には適していても、回収目的には適しないということはすでに述べた通りである。pHが微生物に影響を与えるまでに上昇すると肝心の生物処理が立ち行かず、本末転倒でもあるので慎重を要する。本発明においては、NH−N、PO−Pに対して含有濃度の低いMgを補う方法が適当である。あたりまえのことだが、有機性廃棄物10の中には、例えば、おから等豆腐製造にかかわる廃液・廃棄物のように、Mgを高濃度で含むものもあるので、消化汚泥中のMgイオン、PO−P、NH−Nの濃度バランスが整っているのならば、あえてMg源を添加しないでも曝気による脱炭酸でpHを調節するだけで十分なMAP生成、リン除去を果たすことができる。Mg源としてMgC1は水への溶解度が高く便利である。Mg(OH)はMgC1よりも安価である。特に工業用のスラリ状のMg(OH)は格段に安価である。Mg(OH)ならアルカリとしてのpH維持効果も期待できる。海水を利用しても良い。Mgを高濃度に含む廃液をMg源として利用できれば、コストの面では優れている。 In order to further increase the amount of MAP particles 4 to be generated, addition of an alkaline agent after aeration is one option, but this method is not necessarily efficient for those having a high buffering capacity such as digested sludge, As already mentioned, when the fine adjustment is not successful and the pH rises too much, a pH value that is too high is suitable for MAP production but not for recovery purposes. If the pH rises before the microorganisms are affected, the vital biological treatment will not be possible, and it will be a tip-over, so be careful. In the present invention, a method of supplementing Mg having a low content concentration with respect to NH 4 —N and PO 4 —P is suitable. Of course, some organic wastes 10 contain high concentrations of Mg, such as waste liquids and wastes related to tofu production, such as okara, so Mg ions in digested sludge, If the concentration balance of PO 4 -P and NH 4 -N is in place, sufficient MAP generation and phosphorus removal can be achieved by simply adjusting the pH by decarboxylation by aeration without adding an Mg source. . MgCl 2 as Mg source is high convenient water solubility. Mg (OH) 2 is less expensive than MgC1 2. In particular, industrial slurry-like Mg (OH) 2 is much cheaper. Mg (OH) 2 can also be expected to maintain pH as an alkali. Seawater may be used. If a waste liquid containing Mg at a high concentration can be used as the Mg source, the cost is excellent.

投入する先は好気的生物処理槽2であるから、廃液にBOD成分が含まれていても問題なく利用できる。嫌気性消化槽1に投入するか生物処理槽2に投入するかの適性はSS濃度やBOD濃度など廃液の性状に依存する。生物処理槽2にMg源を加える時には、直接槽へ投入する方法もあるし、槽に入る消化汚泥のラインから投入する方法もある。MAP生成即ちリン濃度の低減という観点から考えると、MAP生成量すなわちリン濃度低減量はリン、アンモニア、マグネシウム濃度とpHで決定されるので、どちらの注入方法をとっても同じ効果が得られる。   Since the destination is the aerobic biological treatment tank 2, even if the waste liquid contains a BOD component, it can be used without any problem. The suitability of being put into the anaerobic digestion tank 1 or the biological treatment tank 2 depends on the properties of the waste liquid such as SS concentration and BOD concentration. When adding the Mg source to the biological treatment tank 2, there is a method of directly feeding it into the tank, and a method of adding it from the digested sludge line entering the tank. Considering from the viewpoint of MAP generation, that is, reduction of phosphorus concentration, the MAP generation amount, that is, phosphorus concentration reduction amount is determined by phosphorus, ammonia, magnesium concentration and pH, and the same effect can be obtained by either injection method.

上記はMAPの生成量を上げる工夫であるが、一方、MAPの回収率を上げるためには微細MAPの生成を防ぐ必要がある。リン、アンモニア濃度が最も高いのは生物処理槽2に入る前の消化汚泥の注入ラインである。この部分では通常pHがMAP生成の目安となる6.8よりは高くなっているので、ここにMgを注入すると微細MAPが大量に発生し、回収できなくなる恐れがある。また、配管部分のスケーリングを助長することも懸念される。一方、生物処理槽2内ではpHが8程度にまで上がっているが、すでに、リン、アンモニア濃度がある程度下がっているので、ここに直接Mgを注入しても微細MAPが生成する可能性は小さい。Mgを添加する場合は消化汚泥に混ぜず、別途生物処理槽2へ投入する方が好ましい。また、Mg添加の有無にかかわらず、一旦回収したMAPを種晶として再度生物処理槽2に戻し、MAPが析出する種晶の表面積を増やすと微細MAPの生成防止に大きな効果がある。種晶としてMAP生成槽に戻すMAP粒子は、径がφ150μm以上のものが好ましく、更にはφ250〜800μmの範囲のものが最適である。   The above is a device for increasing the amount of MAP generated. On the other hand, in order to increase the recovery rate of MAP, it is necessary to prevent the generation of fine MAP. The highest concentration of phosphorus and ammonia is in the digested sludge injection line before entering the biological treatment tank 2. In this part, the pH is usually higher than 6.8, which is a standard for MAP production. If Mg is injected here, a large amount of fine MAP may be generated and cannot be recovered. In addition, there is a concern that the scaling of the piping part is promoted. On the other hand, although the pH in the biological treatment tank 2 has increased to about 8, the phosphorus and ammonia concentrations have already decreased to some extent, so there is little possibility that fine MAP will be generated even if Mg is directly injected into this. . When adding Mg, it is preferable not to mix with digested sludge but to add to the biological treatment tank 2 separately. Regardless of whether or not Mg is added, returning the collected MAP as a seed crystal to the biological treatment tank 2 again and increasing the surface area of the seed crystal on which MAP precipitates has a great effect on preventing the formation of fine MAP. The MAP particles returned to the MAP production tank as seed crystals preferably have a diameter of φ150 μm or more, and more preferably have a diameter in the range of φ250 to 800 μm.

嫌気性汚泥の固液分離を行う際には多量の凝集剤や高分子ポリマーを用いる必要があった。好気的生物処理を行い、MAPを分離した後の汚泥は、元の嫌気性消化汚泥に比べて沈降分離性が向上する。必要な薬剤の量を大幅に削減することができ、コスト削減につながる。
好気的生物処理、固液分離を経た処理液は必要に応じて窒素除去を行うこともできる。
When performing solid-liquid separation of anaerobic sludge, it was necessary to use a large amount of a flocculant and a polymer. The sludge after aerobic biological treatment and separation of MAP has improved sedimentation separation performance compared to the original anaerobic digested sludge. The amount of drug required can be greatly reduced, leading to cost savings.
The treatment liquid that has undergone aerobic biological treatment and solid-liquid separation can be subjected to nitrogen removal as necessary.

本発明では、図1に示す好気的生物処理槽2に浮遊の、または担体に固定化された亜硝酸化菌を存在させ、好気的処理を部分的又は全体的に亜硝酸型硝化とすることにより硝化脱窒にかかるコストをほぼ半減させることもできる。これを図2に示す。
アンモニアとリンを含有する汚水に対して、亜硝酸菌の存在する好気槽内2Aでアンモニアの一部を亜硝酸に酸化しながら、同時にMgイオン源添加によりリン酸マグネシウムアンモニウム粒子を析出させることは可能である(特開2003−126887)。公知の文献(生物学的脱窒素法に関する研究(I)−硝化作用の支配因子に関する検討−下水道協会誌,Vol.7,No.4)によれば亜硝酸化菌の最適pHは7.0〜8.5で、硝酸化菌の最適pHは6.0〜7.5であり、pH8前後の条件では硝酸菌が活性を落とすのに対し、亜硝酸菌は活性を保つ。消化汚泥を曝気により脱炭酸することでpHが8付近に保たれることは、亜硝酸型硝化に好ましい状態である。このpH条件で硝酸型硝化を行おうとすると、NOはNOに比べて1.5倍の酸素を必要とすることに加え、硝酸化菌の活性が落ちるので、曝気コストが増大し合理的ではない。消化汚泥を硝化する際には亜硝酸型硝化を目指すのが効率的で合理的な処理法と言える。
In the present invention, nitrite bacteria floating or immobilized on a carrier are present in the aerobic biological treatment tank 2 shown in FIG. 1, and the aerobic treatment is partially or entirely performed as nitrite type nitrification. By doing so, the cost for nitrification and denitrification can be almost halved. This is shown in FIG.
To sewage containing ammonia and phosphorus, magnesium ammonium phosphate particles are precipitated by adding a Mg ion source while oxidizing a part of ammonia into nitrous acid in an aerobic tank 2A in which nitrite bacteria exist. Is possible (Japanese Patent Laid-Open No. 2003-126887). According to known literature (study on biological denitrification method (I) -examination on factors controlling nitrification-Sewage Association Journal, Vol. 7, No. 4), the optimum pH of nitrite bacteria is 7.0. At ˜8.5, the optimum pH of the nitrifying bacteria is 6.0 to 7.5, and the nitrite bacteria maintain the activity while the nitrite bacteria lose their activity under the condition of pH around 8. It is a preferable state for nitrite type nitrification that pH is maintained at around 8 by decarboxylating digested sludge by aeration. When nitric acid nitrification is performed under this pH condition, NO 3 requires 1.5 times more oxygen than NO 2 and the activity of nitrifying bacteria decreases, so the aeration cost increases and is rational. is not. When nitrifying digested sludge, aiming for nitrite-type nitrification is an efficient and rational treatment method.

硝化反応の第1段階は亜硝酸化菌(アンモニア酸化菌とも呼ばれる)によるNH−NをNO−Nに酸化する反応(式3)で、第2設階は硝酸化菌(亜硝酸酸化菌とも呼ばれる)によるNO−NをNO−Nに酸化する反応(式4)である。
NH +1.5O→2H+HO+NO +58〜84kca1 …(3)
NO +0.5O→NO +15.4〜20.9kca1 …(4)
水処理において硝化を行う時には後段に脱窒工程を設けて窒素を除去することが多い。亜硝酸が蓄積した状態での脱窒ではしばしば窒素ガスとともに相当量の亜酸化窒素NOという気体が発生する。亜酸化窒素は温暖化ガスの一つで、その温暖化効果は同一重量の二酸化炭素の310倍とされており、温暖化が問題となり国を挙げての排出削減努力が展開される今日、軽視することの許されないガスである。
The first stage of the nitrification reaction is a reaction (Formula 3) that oxidizes NH 4 -N to NO 2 -N by nitrite bacteria (also called ammonia-oxidizing bacteria), and the second stage is nitrifying bacteria (nitrite oxidation) oxidizing the NO 2 -N by also called bacteria) to NO 3 -N a reaction (equation 4).
NH 4 + + 1.5O 2 → 2H + + H 2 O + NO 2 +58 to 84 kca1 (3)
NO 2 + 0.5O 2 → NO 3 +15.4 to 20.9 kca1 (4)
When nitrification is performed in water treatment, a nitrogen removal process is often provided in the subsequent stage to remove nitrogen. Denitrification in the state where nitrous acid is accumulated often generates a considerable amount of nitrous oxide N 2 O gas together with nitrogen gas. Nitrous oxide is one of the warming gases, and its warming effect is 310 times that of carbon dioxide of the same weight. Gas that is not allowed to do.

硝化を亜硝酸化にとどめることの硝化脱窒プロセスでのエネルギー消費と温暖化ガスという環境負荷のジレンマに対する有効な技術としてアンモニア脱窒法(嫌気性アンモニア酸化法)が最近注目を集めている(遠矢:特許第3460745号、デルフト大:H03−501099号)。この方法は、アンモニアと亜硝酸を独立栄養細菌の働きにより脱窒させるものであり、反応はアンモニアを水素供与体、亜硝酸を水素受容体とした独立栄養反応である(式5)。
1.0NH +1.32NO +0.066HCO +0.13H
1.02N+0.26NO +0.066CH0.50.15+2.03H
…(5)
The ammonia denitrification method (anaerobic ammonia oxidation method) has recently attracted attention as an effective technology for the dilemma of energy consumption and the environmental burden of greenhouse gases in the nitrification denitrification process, which is limited to nitrification. : Patent 3460745, Delft University: H03-501099). In this method, ammonia and nitrous acid are denitrified by the action of autotrophic bacteria, and the reaction is an autotrophic reaction using ammonia as a hydrogen donor and nitrite as a hydrogen acceptor (Formula 5).
1.0 NH 4 + +1.32 NO 2 +0.066 HCO 3 + 0.13H +
1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
... (5)

本発明者らは、アンモニウム塩、亜硝酸塩を主成分とする人工廃水に対するアンモニア脱窒の過程で亜酸化窒素が発生するかを検討した。その結果、亜酸化窒素の発生は確認されなかった。
亜硝酸化処理を受けた汚泥は、MAP回収/分離装置3を経た後、固液分離工程にてSS成分を100〜300mg/L程度にまで除去した後、上記のアンモニア脱窒工程にて窒素を除去する。このとき、アンモニア脱窒においては式5に示すように亜硝酸性窒素とほぼ同量のアンモニア性窒素を要するので、亜硝酸化を半分程度で止める処理条件を取ると効率が良い。また、アンモニア脱窒では窒素の除去率が80%程度であるので、処理水の用途に不足な場合には後段に別途硝化脱窒工程を組み合わせることで対応できる。
The present inventors examined whether nitrous oxide was generated in the process of ammonia denitrification for artificial wastewater containing ammonium salt and nitrite as main components. As a result, generation of nitrous oxide was not confirmed.
The sludge that has been subjected to the nitrification treatment passes through the MAP recovery / separation device 3, and after removing the SS component to about 100 to 300 mg / L in the solid-liquid separation step, nitrogen is then removed in the ammonia denitrification step. Remove. At this time, ammonia denitrification requires ammonia nitrogen of almost the same amount as nitrite nitrogen as shown in Equation 5, so that it is efficient to adopt processing conditions that stop nitritation in about half. In addition, in the case of ammonia denitrification, the removal rate of nitrogen is about 80%. Therefore, when it is insufficient for the use of treated water, it can be dealt with by separately combining a nitrification denitrification step in the subsequent stage.

ところで、処理対象となる有機性廃棄物10のBODが非常に高い場合、好気性生物処理槽2の滞留時間が数日間に及ぶ。生物処理槽2が完全混合に近い状態であると、流入する消化汚泥中の高濃度のNH−NやPO−Pの存在、脱炭酸によるpH上昇は、全体の中で効果が薄れる。このような場合には好気性生物処理槽2を仕切り、前の部分でMAPを生成し分離回収、場合によっては種晶の循環を行うようにすれば、一槽でMAP生成と、生物処理を行うことが可能である。 By the way, when the BOD of the organic waste 10 to be treated is very high, the residence time of the aerobic biological treatment tank 2 is several days. When the biological treatment tank 2 is in a state close to complete mixing, the presence of high concentrations of NH 4 -N and PO 4 -P in the inflowing digested sludge and the increase in pH due to decarboxylation are less effective. In such a case, if the aerobic biological treatment tank 2 is partitioned, MAP is generated and separated and recovered in the previous part, and seed crystals are circulated in some cases, MAP generation and biological treatment can be performed in one tank. Is possible.

さらに本発明において、図3に示すように消化汚泥を脱炭酸槽7に導き、脱炭酸によるpH上昇に伴いMAPを生成させ、生成したMAPを続く工程のMAP分離回収工程にて回収することとしても良い。MAP分離回収後の汚泥に対し、続く好気的生物処理槽2で亜硝酸型硝化を行い、固液を分離する。このフローは、消化槽を出たばかりの、NH−NとPO−Pを高濃度に含む汚泥に対し脱炭酸処理をしてMAPを生成させるので、MAPの生成量が増える。短い滞留時間しか要しない化学反応であるMAP生成と、比較的長時間を要する好気的生物処理を別々に行うことで、スケーリングなどのトラブルの原因となりうるMAPの系内滞留時間、滞留空間を小さくする。好気的生物処理槽2の前に予めMAPが除去されているので、スケーリングなどのトラブルの可能性が減る。
後段に、処理水性状の必要に応じてアンモニア脱窒や硝化脱窒工程を組み合わせることで目的に応じた処理水質を満足することができる。
Furthermore, in the present invention, as shown in FIG. 3, the digested sludge is guided to the decarbonation tank 7, MAP is generated as the pH increases due to decarboxylation, and the generated MAP is recovered in the subsequent MAP separation and recovery step. Also good. The sludge after MAP separation and recovery is subjected to nitrite type nitrification in the subsequent aerobic biological treatment tank 2 to separate the solid and liquid. In this flow, MAP is generated by decarboxylation of sludge that has just exited the digester and contains NH 4 -N and PO 4 -P at high concentrations, so the amount of MAP generated increases. By separately performing MAP generation, which is a chemical reaction that requires only a short residence time, and aerobic biological treatment, which requires a relatively long time, the residence time and residence space of MAP that can cause troubles such as scaling can be reduced. Make it smaller. Since MAP is removed in advance before the aerobic biological treatment tank 2, the possibility of troubles such as scaling is reduced.
By combining ammonia denitrification and nitrification denitrification processes as necessary in the subsequent stage in the treatment water state, the quality of treated water according to the purpose can be satisfied.

あるいは図2、図3において嫌気性消化槽1の直後にMAP分離回収装置3を設けても良い。図4においては有機性廃棄物に対し嫌気性消化を行った後、続く好気的生物処理槽2との間にMAP分離回収工程を設け、MAP回収後の汚泥に対して亜硝酸型硝化を行い、更にMAP分離回収工程を設ける。同様に図5において、有機性廃棄物10に対し嫌気性消化を行った後、MAP分離回収工程を設け、改めて脱炭酸槽7でMAPを生成させMAP分離回収装置3を経て、好気的生物処理、続いて固液分離と処理を進める。この場合生物処理槽2で生成するMAPの量は少ないので、回収MAPを返送し種晶として循環利用することが望ましい。   Alternatively, the MAP separation and recovery device 3 may be provided immediately after the anaerobic digester 1 in FIGS. In FIG. 4, after anaerobic digestion of organic waste, a MAP separation and recovery step is provided between the aerobic biological treatment tank 2 and nitrite type nitrification is applied to the sludge after MAP recovery. And a MAP separation and recovery step is provided. Similarly, in FIG. 5, after anaerobic digestion is performed on the organic waste 10, a MAP separation / recovery step is provided, and MAP is generated again in the decarboxylation tank 7, and then passed through the MAP separation / recovery device 3, and then an aerobic organism. Processing, followed by solid-liquid separation and processing. In this case, since the amount of MAP produced in the biological treatment tank 2 is small, it is desirable to return the recovered MAP and circulate it as seed crystals.

以下において、本発明を実施例によりさらに詳細に説明するが、本発明の範囲はこれらの実施例により制限されるものではない。   EXAMPLES In the following, the present invention will be described in more detail with reference to examples, but the scope of the present invention is not limited by these examples.

実施例1
図6に示す本発明のベンチスケールの一実施形態の方式で試験を行った。家庭から出される生ごみ11を処理するにあたって、メタン醗酵槽(嫌気性消化槽1)にて嫌気性消化処理を行った後、汚泥を循環式硝化脱窒処理工程へ導くこととした。
(処理条件)
本実施例における嫌気性消化槽は、容量が20リットル、温度35℃、滞留時間HRT20日、脱窒槽は、容量が6リットル、温度20℃、滞留時間HRT6日、硝化槽は、容量が18リットル、温度25℃、滞留時間HRT18日の各条件として処理を行った。
(処理結果)
メタン醗酵槽(嫌気性消化槽1)、脱窒槽8、硝化槽9の汚泥性状は、それぞれ第1表、第2表に示す通りであった。
Example 1
The test was conducted in the manner of one embodiment of the bench scale of the present invention shown in FIG. In treating the garbage 11 taken out from the household, after anaerobic digestion treatment was performed in a methane fermentation tank (anaerobic digestion tank 1), the sludge was guided to a circulating nitrification denitrification treatment step.
(Processing conditions)
The anaerobic digestion tank in this example has a capacity of 20 liters, a temperature of 35 ° C., a residence time of HRT of 20 days, a denitrification tank has a capacity of 6 liters, a temperature of 20 ° C., a residence time of HRT of 6 days, and the nitrification tank has a capacity of 18 liters. The treatment was performed under the conditions of a temperature of 25 ° C. and a residence time of HRT of 18 days.
(Processing result)
The sludge properties of the methane fermentation tank (anaerobic digestion tank 1), denitrification tank 8, and nitrification tank 9 were as shown in Tables 1 and 2, respectively.

Figure 2007196095
Figure 2007196095

Figure 2007196095
Figure 2007196095

このとき、硝化槽9にて汚泥中に生成したMAP粒子4をサイクロン(図示せず)で分離し、硝化槽9へ1〜1.5g−MAP/L−槽程度返送し、種晶として循環させたところ、粒径120〜600μm程度のMAP粒子が回収できるようになった。MAPの生成/回収量は2.5g/L−汚泥に達した。   At this time, the MAP particles 4 generated in the sludge in the nitrification tank 9 are separated by a cyclone (not shown), returned to the nitrification tank 9 by about 1 to 1.5 g-MAP / L-tank, and circulated as seed crystals. As a result, MAP particles having a particle size of about 120 to 600 μm can be recovered. The production / recovery amount of MAP reached 2.5 g / L-sludge.

実施例2
図7に示す本発明のラボスケールの実施形態の一方式によって試験を行った。農業廃棄物12のメタン醗酵汚泥に対して流動担体投入法により原汚泥中のNH−Nのおよそ半量が亜硝酸となり、処理汚泥中のNH−NとNO−Nがほぼ同量となるよう条件を調整して亜硝酸型硝化処理を行う。その後汚泥をMAP分離/回収装置3へ導き、その後の汚泥に対して固液分離を行い、脱離液に対してアンモニア脱窒処理を行うというフローである。
Example 2
The test was performed according to one system of the lab scale embodiment of the present invention shown in FIG. About half of NH 4 -N in the raw sludge is converted to nitrous acid, and NH 4 -N and NO 2 -N in the treated sludge are almost equal to the methane fermentation sludge of agricultural waste 12 by the flow carrier injection method. The nitrite type nitrification treatment is performed by adjusting the conditions. Thereafter, the sludge is guided to the MAP separation / recovery device 3, solid-liquid separation is performed on the subsequent sludge, and ammonia denitrification treatment is performed on the desorbed liquid.

図8は、比較対照のために実験したフローである。実施例2と同じ農業廃棄物12のメタン醗酵汚泥を処理するにあたり、まずMAP粒子の分離/回収を行い、次に分離後の汚泥に対して固液分離を行う。続いて脱離液を循環式硝化脱窒工程に導くというフローである。   FIG. 8 is a flow experimented for comparison. In processing the methane fermentation sludge of the same agricultural waste 12 as in Example 2, MAP particles are first separated / recovered, and then solid-liquid separation is performed on the separated sludge. Then, it is a flow which guide | induces desorption liquid to a circulation type nitrification denitrification process.

(処理結果)
使用した農業廃棄物12には豆腐製造廃棄物であるおからが含まれるためMg濃度が高く、このためメタン醗酵液は非常にMAPが生成しやすい性状であった。
比較対照実験におけるMAP粒子の回収率は汚泥あたり0.9g/Lであった。消化汚泥は非常に脱水性が悪く、固液分離のためには強カチオンポリマーを使用する必要があった。ポリマーの注入率は3.5%−DSであった。
本実施例におけるメタン醗酵槽(嫌気性消化槽1)、亜硝酸化槽2Aの汚泥とアンモニア脱窒処理液の性状を第3表に示す。表中、pH値以外の数値の単位は「mg/L」である。
(Processing result)
Since the agricultural waste 12 used contained okara which is a tofu production waste, the Mg concentration was high, and thus the methane fermentation solution was very easy to produce MAP.
The recovery rate of MAP particles in the comparative control experiment was 0.9 g / L per sludge. Digested sludge is very poor in dehydration, and it was necessary to use a strong cationic polymer for solid-liquid separation. The injection rate of the polymer was 3.5% -DS.
Table 3 shows the properties of the sludge and ammonia denitrification solution in the methane fermentation tank (anaerobic digestion tank 1) and nitritation tank 2A in this example. In the table, the unit of numerical values other than the pH value is “mg / L”.

Figure 2007196095
Figure 2007196095

本実施例において、MAP分離回収槽3にて回収されたMAP粒子を0.8〜1.2g−MAP/L−槽程度の割合となるように返送し、種晶として循環させた。その結果、粒径100〜550μmのMAP粒子を回収することができた。MAP粒子の回収率は、汚泥あたり約2.8g/Lとなった。またこのとき、嫌気性消化汚泥ではなく好気的処理を行って脱水性を改善した汚泥に対して固液分離を行うフローとしたことにより、ポリマーの注入率は1.8%−DSとなり、ポリマーの使用量を約50%削減することができた。また、ポリマーの種類を強カチオンポリマーから比較的安価な中カチオンポリマーに切り替えることができ、薬品にかかるコストとしては約60%の削減となった。   In this example, the MAP particles recovered in the MAP separation / recovery tank 3 were returned to a ratio of about 0.8 to 1.2 g-MAP / L-tank and circulated as seed crystals. As a result, MAP particles having a particle size of 100 to 550 μm could be recovered. The recovery rate of MAP particles was about 2.8 g / L per sludge. Also, at this time, the flow rate of solid-liquid separation for the sludge that has been improved aerobic by performing aerobic treatment instead of anaerobic digested sludge, the polymer injection rate becomes 1.8% -DS, The amount of polymer used could be reduced by about 50%. Further, the type of polymer can be switched from a strong cationic polymer to a relatively inexpensive medium cationic polymer, and the cost for chemicals was reduced by about 60%.

本発明により、有機性廃棄物を処理する工程で使用される脱水機やコンベアなどの設備の耐久性が向上し、凝集剤やポリマーなどの薬品コストが削減され、更にリンを含んだ汚泥を焼却する際のリン飛灰が著しく減少するので、本発明の有機性廃棄物の処理方法及びその装置は下水処理場等の有機性廃棄物処理施設等への導入が期待される。   The present invention improves the durability of equipment such as dehydrators and conveyors used in the process of treating organic waste, reduces chemical costs such as flocculants and polymers, and incinerates sludge containing phosphorus. Since the phosphorus fly ash at the time is reduced significantly, the organic waste treatment method and apparatus of the present invention are expected to be introduced into an organic waste treatment facility such as a sewage treatment plant.

有機性廃棄物を嫌気性消化槽に導入し、好気的生物処理槽で処理を行い、MAP分離回収装置でMAPを回収する本発明の一実施態様の処理フローを示す図である。It is a figure which shows the processing flow of one embodiment of this invention which introduce | transduces organic waste into an anaerobic digestion tank, processes in an aerobic biological treatment tank, and collect | recovers MAP with a MAP separation-and-recovery apparatus. 好気的生物処理槽として亜硝酸化槽を用い、固液分離槽の後にアンモニア脱窒槽を使用する本発明の一実施態様の処理フローを示す図である。It is a figure which shows the processing flow of one embodiment of this invention which uses a nitritation tank as an aerobic biological treatment tank, and uses an ammonia denitrification tank after a solid-liquid separation tank. 消化汚泥を脱炭酸槽に導き、生成したMAPをMAP分離回収工程にて回収する本発明の一実施態様の処理フローを示す図である。It is a figure which shows the processing flow of one embodiment of this invention which introduce | transduces digested sludge to a decarboxylation tank and collect | recovers the produced | generated MAP in a MAP separation and recovery process. 嫌気性消化槽と好気的生物処理槽との間、及び好気的生物処理槽と固液分離槽との間にMAP分離回収工程を設け、固液分離槽の後にアンモニア脱窒槽を使用する本発明の一実施態様の処理フローを示す図である。A MAP separation and recovery process is provided between the anaerobic digestion tank and the aerobic biological treatment tank, and between the aerobic biological treatment tank and the solid-liquid separation tank, and an ammonia denitrification tank is used after the solid-liquid separation tank. It is a figure which shows the processing flow of one embodiment of this invention. 嫌気性消化槽の後にMAP分離回収工程を設け、更に脱炭酸槽でMAPを生成させMAP分離回収装置を経て、亜硝酸槽、固液分離処理を含む本発明の一実施態様の処理フローを示す図である。The MAP separation / recovery step is provided after the anaerobic digestion tank, MAP is further generated in the decarboxylation tank, and after passing through the MAP separation / recovery apparatus, the processing flow of one embodiment of the present invention including the nitrous acid tank and the solid-liquid separation treatment is shown. FIG. 実施例1の処理フローを示す図である。FIG. 3 is a diagram illustrating a processing flow of Example 1. 実施例2の処理フローを示す図である。FIG. 6 is a diagram illustrating a processing flow of Example 2. 比較例の処理方法のフローを示す図である。It is a figure which shows the flow of the processing method of a comparative example.

符号の説明Explanation of symbols

1 嫌気性消化槽
2 好気的生物処理槽
2A 亜硝酸化槽
3 MAP分離回収装置
4 MAP
5 固液分離槽
6 アンモニア脱窒槽
7 脱炭酸処理槽
8 脱窒槽
9 硝化槽
10 有機性廃棄物
11 生ごみ
12 農業廃棄物
13 処理水
14 循環液
1 Anaerobic digestion tank 2 Aerobic biological treatment tank 2A Nitrite tank 3 MAP separation and recovery device 4 MAP
5 Solid-liquid separation tank 6 Ammonia denitrification tank 7 Decarbonation tank 8 Denitrification tank 9 Nitrification tank 10 Organic waste 11 Garbage 12 Agricultural waste 13 Treated water 14 Circulating fluid

Claims (5)

有機性廃棄物を嫌気性消化処理し、該嫌気性消化処理で得られた消化汚泥に好気的生物処理を行った後、生物学的亜硝酸化処理を行い、リン酸マグネシウムアンモニウム粒子分離及び/又は回収工程を経た汚泥を固液分離工程へ導き、分離された液をアンモニア脱窒処理することを特徴とする有機性廃棄物の処理方法。   Anaerobic digestion treatment of organic waste, aerobic biological treatment on digested sludge obtained by the anaerobic digestion treatment, biological nitritation treatment, magnesium ammonium phosphate particle separation and A method for treating organic waste, characterized in that sludge having undergone a recovery step is guided to a solid-liquid separation step, and the separated liquid is subjected to ammonia denitrification treatment. 有機性廃棄物を嫌気性消化処理し、該嫌気性消化処理で得られた消化汚泥について脱炭酸処理を行い、脱炭酸後の汚泥をリン酸マグネシウムアンモニウム分離・回収工程へ導き、リン酸マグネシウムアンモニウム分離後の汚泥に対しては生物学的亜硝酸化処理を行い、固液分離工程に導き、分離した液をアンモニア脱窒工程へ導くとともに、脱炭酸後の汚泥から分離・回収したリン酸マグネシウムアンモニウム粒子の一部又は全部を脱炭酸処理工程へ返送することを特徴とする有機性廃棄物の処理方法。   Organic waste is subjected to anaerobic digestion, the digested sludge obtained by the anaerobic digestion is decarboxylated, and the sludge after decarboxylation is guided to the magnesium ammonium phosphate separation and recovery process. The sludge after separation is subjected to biological nitritation treatment, leading to the solid-liquid separation process, leading the separated liquid to the ammonia denitrification process, and magnesium phosphate separated and recovered from the sludge after decarboxylation A method for treating organic waste, wherein a part or all of ammonium particles are returned to a decarboxylation treatment step. 上記嫌気性消化処理の直後に、リン酸マグネシウムアンモニウム粒子分離工程を設け、消化汚泥より分離されたリン酸マグネシウムアンモニウム粒子の一部又は全部が嫌気性消化処理工程へ返送されることを特徴とする請求項1又は請求項2に記載の有機性廃棄物の処理方法。   Immediately after the anaerobic digestion treatment, a magnesium ammonium phosphate particle separation step is provided, and some or all of the magnesium ammonium phosphate particles separated from the digested sludge are returned to the anaerobic digestion treatment step. The processing method of the organic waste of Claim 1 or Claim 2. 有機性廃棄物を嫌気性消化する嫌気性消化槽、該嫌気性消化槽からの消化汚泥を処理する亜硝酸化槽、及び該亜硝酸化槽からの汚泥からリン酸マグネシウムアンモニウム粒子を分離/回収するリン酸マグネシウムアンモニウム分離回収装置を備えたことを特徴とする有機性廃棄物の処理装置。   Anaerobic digestion tank for anaerobic digestion of organic waste, nitritation tank for treating digested sludge from the anaerobic digestion tank, and separation / recovery of magnesium ammonium phosphate particles from sludge from the nitritation tank An organic waste processing apparatus comprising a magnesium ammonium phosphate separation and recovery apparatus. 有機性廃棄物を嫌気性消化する嫌気性消化槽と、該嫌気性消化槽からの消化汚泥を脱炭酸する脱炭酸槽と、該脱炭酸槽からの汚泥からリン酸マグネシウムアンモニウム粒子を分離/回収するリン酸マグネシウムアンモニウム分離回収装置と、該リン酸マグネシウムアンモニウム分離回収装置を経た汚泥を処理する亜硝酸化槽と、該亜硝酸化槽からの汚泥を固液分離する固体分離槽とを設け、さらにリン酸マグネシウムアンモニウム分離回収装置により分離・回収したリン酸マグネシウムアンモニウム粒子の一部又は全部を該脱炭酸槽へ返送する返送管を備えたことを特徴とする有機性廃棄物の処理装置。   Anaerobic digestion tank for anaerobic digestion of organic waste, decarbonation tank for decarboxylation of digested sludge from the anaerobic digestion tank, and separation / recovery of magnesium ammonium phosphate particles from the sludge from the decarbonation tank A magnesium ammonium phosphate separation and recovery device, a nitritation tank for treating the sludge passed through the magnesium ammonium phosphate separation and recovery device, and a solid separation tank for solid-liquid separation of the sludge from the nitritation tank, Furthermore, the organic waste processing apparatus provided with the return pipe which returns some or all of the magnesium ammonium phosphate particle isolate | separated and collect | recovered with the magnesium ammonium phosphate separation-and-recovery apparatus to this decarboxylation tank.
JP2006015234A 2006-01-24 2006-01-24 Organic waste treatment method and apparatus Active JP5143358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015234A JP5143358B2 (en) 2006-01-24 2006-01-24 Organic waste treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015234A JP5143358B2 (en) 2006-01-24 2006-01-24 Organic waste treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2007196095A true JP2007196095A (en) 2007-08-09
JP5143358B2 JP5143358B2 (en) 2013-02-13

Family

ID=38451222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015234A Active JP5143358B2 (en) 2006-01-24 2006-01-24 Organic waste treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP5143358B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2451519B (en) * 2007-08-02 2012-05-09 John William Carson Improved digestion of wastes
JPWO2012176753A1 (en) * 2011-06-21 2015-02-23 水ing株式会社 Method and apparatus for treating organic wastewater and organic sludge
JP2017018876A (en) * 2015-07-09 2017-01-26 鹿島建設株式会社 Organic waste treatment system and organic waste treatment method
CN110713307A (en) * 2018-07-13 2020-01-21 北京安力斯环境科技股份有限公司 Advanced treatment method for combined village and town sewage on same side of water inlet and outlet
CN111704321A (en) * 2020-07-01 2020-09-25 中国计量大学 Pesticide wastewater treatment process
CN112093981A (en) * 2020-09-10 2020-12-18 上海电力大学 Sewage treatment device and process for synchronously and efficiently removing pollutants and comprehensively recycling pollutants

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139088A (en) * 1986-12-01 1988-06-10 株式会社荏原製作所 Manufacture of sludge fertilizer
JPH0671297A (en) * 1992-08-14 1994-03-15 Ngk Insulators Ltd Organic sludge treating method
JPH09201599A (en) * 1996-01-26 1997-08-05 Kubota Corp Method for recovering useful substance from organic waste and utilizing the same as resources
JPH10286592A (en) * 1997-04-16 1998-10-27 Ataka Kogyo Kk Waste treatment method
JP2001037467A (en) * 1999-07-27 2001-02-13 Meidensha Corp Method and arrangement for treating wastewater containing both ammonia and phosphorus
JP2001047003A (en) * 1999-08-11 2001-02-20 Ebara Corp Treatment of organic waste
JP2002273453A (en) * 2001-03-16 2002-09-24 Ebara Corp Method and device for removing phosphor in water
JP2003033788A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for treating raw water containing phosphorus and ammoniacal nitrogen
JP2003117594A (en) * 2001-10-12 2003-04-22 Ebara Corp Treating method and treating equipment for organic sewage
JP2003126887A (en) * 2001-10-26 2003-05-07 Ebara Corp Method and device for treating water containing phosphorus and ammonia

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139088A (en) * 1986-12-01 1988-06-10 株式会社荏原製作所 Manufacture of sludge fertilizer
JPH0671297A (en) * 1992-08-14 1994-03-15 Ngk Insulators Ltd Organic sludge treating method
JPH09201599A (en) * 1996-01-26 1997-08-05 Kubota Corp Method for recovering useful substance from organic waste and utilizing the same as resources
JPH10286592A (en) * 1997-04-16 1998-10-27 Ataka Kogyo Kk Waste treatment method
JP2001037467A (en) * 1999-07-27 2001-02-13 Meidensha Corp Method and arrangement for treating wastewater containing both ammonia and phosphorus
JP2001047003A (en) * 1999-08-11 2001-02-20 Ebara Corp Treatment of organic waste
JP2002273453A (en) * 2001-03-16 2002-09-24 Ebara Corp Method and device for removing phosphor in water
JP2003033788A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for treating raw water containing phosphorus and ammoniacal nitrogen
JP2003117594A (en) * 2001-10-12 2003-04-22 Ebara Corp Treating method and treating equipment for organic sewage
JP2003126887A (en) * 2001-10-26 2003-05-07 Ebara Corp Method and device for treating water containing phosphorus and ammonia

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2451519B (en) * 2007-08-02 2012-05-09 John William Carson Improved digestion of wastes
JPWO2012176753A1 (en) * 2011-06-21 2015-02-23 水ing株式会社 Method and apparatus for treating organic wastewater and organic sludge
JP2017018876A (en) * 2015-07-09 2017-01-26 鹿島建設株式会社 Organic waste treatment system and organic waste treatment method
CN110713307A (en) * 2018-07-13 2020-01-21 北京安力斯环境科技股份有限公司 Advanced treatment method for combined village and town sewage on same side of water inlet and outlet
CN111704321A (en) * 2020-07-01 2020-09-25 中国计量大学 Pesticide wastewater treatment process
CN112093981A (en) * 2020-09-10 2020-12-18 上海电力大学 Sewage treatment device and process for synchronously and efficiently removing pollutants and comprehensively recycling pollutants
CN112093981B (en) * 2020-09-10 2024-01-26 上海电力大学 Sewage treatment device and process for synchronous efficient pollutant removal and comprehensive recycling

Also Published As

Publication number Publication date
JP5143358B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
Perera et al. Technologies for recovering nutrients from wastewater: a critical review
JP5826851B2 (en) Hypoxic and biological phosphorus and nitrogen removal simultaneously with energy recovery
CN104961306B (en) A kind of processing method of vaccary breeding wastewater
CN109923075B (en) Method and apparatus for recovering phosphorus in wastewater treatment plants using advanced sludge treatment
JP2001037467A (en) Method and arrangement for treating wastewater containing both ammonia and phosphorus
JP4729718B2 (en) Organic waste treatment methods
Guadie et al. Simultaneous removal of phosphorus and nitrogen from sewage using a novel combo system of fluidized bed reactor–membrane bioreactor (FBR–MBR)
CN101081398A (en) Apparatus and method for treatment of food waste
JP5143358B2 (en) Organic waste treatment method and apparatus
CN110395851B (en) High-altitude town sewage treatment method based on nitrogen and phosphorus capture and completely autotrophic nitrogen removal
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
JP6445855B2 (en) Nitrogen treatment method and nitrogen treatment apparatus
JP5261977B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
Ma et al. Efficient phosphorus recovery by enhanced hydroxyapatite formation in a high loading anammox expanded bed reactor at 15° C
US20210238074A1 (en) Method for operating a wastewater treatment plant for phosphorus treatment of effluent
Vanotti et al. Removing and recovering nitrogen and phosphorus from animal manure
WO2018237151A1 (en) System and method for continuous processing of organic waste with undigested solids recirculation
Deng et al. Energy-neutral municipal wastewater treatment based on partial denitrification-anammox driven by side-stream sulphide
Chi et al. Mesophilic and thermophilic digestion of thickened waste activated sludge: A comparative study
JP4642635B2 (en) High concentration organic waste liquid treatment method and apparatus
JP3856218B2 (en) Startup method of activated sludge treatment equipment
JP5969400B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
KR101269379B1 (en) Treatment method for wastewater
CN112919728A (en) Blue algae mud pressure filtrate treatment method
Karmann et al. Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5143358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250