JP2001047003A - Treatment of organic waste - Google Patents
Treatment of organic wasteInfo
- Publication number
- JP2001047003A JP2001047003A JP11227594A JP22759499A JP2001047003A JP 2001047003 A JP2001047003 A JP 2001047003A JP 11227594 A JP11227594 A JP 11227594A JP 22759499 A JP22759499 A JP 22759499A JP 2001047003 A JP2001047003 A JP 2001047003A
- Authority
- JP
- Japan
- Prior art keywords
- anaerobic treatment
- sludge
- solid
- liquid separation
- organic waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機性廃棄物の処
理方法に係り、特に、各家庭から排出される生ごみ、各
種厨房から排出される生ごみ、食品加工工場や食品製造
工場から排出される残渣及び活性汚泥処理設備等から排
出される余剰汚泥等、有機物を含有する有機性廃棄物を
嫌気性処理する有機性廃棄物の処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating organic waste, and more particularly to garbage discharged from households, garbage discharged from various kitchens, and discharged from food processing plants and food manufacturing plants. The present invention relates to a method for treating organic waste containing organic matter, such as residual sludge and excess sludge discharged from activated sludge treatment equipment, in an anaerobic manner.
【0002】[0002]
【従来の技術】従来から窒素化合物を含有している有機
性廃棄物を嫌気性処理すると、もとの廃棄物にアンモニ
ア性窒素を含有していなくても、有機物の分解過程でア
ンモニア性窒素が生成され、遊離アンモニアの毒性によ
りメタン生成菌は阻害を受け、メタンガス発生量が低下
するという問題がある。即ち、有機性廃棄物を嫌気性処
理(メタン発酵処理とも言う)すると、酸生成菌により
酸発酵され、高分子の固形有機物が低分子化されて有機
酸が生成される。その後、メタン生成菌により有機酸は
メタンガスと炭酸ガスに分解される。有機性廃棄物に含
まれる有機性窒素化合物は、酸生成の段階で有機物が低
分子化し、有機酸が生成し、その際同時にアンモニア性
窒素が生成する。この時、アンモニア性窒素が高濃度に
存在するとアンモニア毒性のためにメタン生成菌は阻害
を受け、メタンガス発生量が低下する。嫌気性処理、特
にメタン発酵におけるアンモニア性窒素の毒性は、遊離
アンモニアに由来するために、pH、水温等に依存し、
高pH、高水温ほど毒性が強い。2. Description of the Related Art Conventionally, when an organic waste containing a nitrogen compound is subjected to anaerobic treatment, even if the original waste does not contain ammonia nitrogen, the ammonia nitrogen is decomposed in the organic matter decomposition process. There is a problem that the methane-producing bacteria are inhibited due to the toxicity of the produced and free ammonia, and the amount of methane gas generated decreases. That is, when an organic waste is subjected to anaerobic treatment (also referred to as methane fermentation treatment), acid fermentation is performed by an acid-producing bacterium, and a high molecular solid organic substance is reduced in molecular weight to produce an organic acid. Thereafter, the organic acids are decomposed into methane gas and carbon dioxide gas by the methane-producing bacteria. In the organic nitrogen compound contained in the organic waste, the organic substance is depolymerized in the stage of acid generation to generate an organic acid, and at the same time, ammonia nitrogen is generated. At this time, if ammonia nitrogen is present at a high concentration, methane-producing bacteria are inhibited due to ammonia toxicity, and the amount of methane gas generated decreases. The toxicity of ammonia nitrogen in anaerobic treatment, especially in methane fermentation, depends on pH, water temperature, etc., because it is derived from free ammonia,
Higher pH and higher water temperature are more toxic.
【0003】そのため、従来は、遊離アンモニアの阻害
をなくすため、有機性低窒素廃棄物の混合による希釈、
水による希釈、嫌気性処理でpHを下げる等の対策がと
られていた。しかし、この方法では大量の有機性低窒素
廃棄物や水が必要となり、処理量が増大し過大な設備と
なり、新たに加えた希釈水分も加温しなくてはならず、
外部から大量のエネルギーが必要となる。しかも、希釈
用の有機性低窒素廃棄物や水が入手できない場合には適
用できない。最近では、含有窒素成分の形態がアンモニ
ア性窒素である有機性排液及び余剰汚泥の液状化物につ
いては、メタン発酵を阻害するアンモニア性窒素をメタ
ン発酵の前段で不溶性のリン酸マグネシウムアンモニウ
ム(以下MAPと略す)を生成させ、除去する方法が検
討されている(特開平9−220593号公報)。[0003] Therefore, conventionally, in order to eliminate the inhibition of free ammonia, dilution by mixing organic low-nitrogen waste,
Measures such as dilution with water and lowering the pH by anaerobic treatment have been taken. However, this method requires a large amount of organic low-nitrogen waste and water, increases the amount of treatment, becomes an excessively large facility, and has to heat newly added diluted water.
A large amount of external energy is required. Moreover, this method is not applicable when organic low nitrogen waste and water for dilution are not available. Recently, with regard to organic effluent and liquefied waste sludge in which the form of the nitrogen component is ammonium nitrogen, ammonia nitrogen which inhibits methane fermentation is insoluble in magnesium ammonium phosphate (hereinafter referred to as MAP) prior to methane fermentation. (Abbreviated as “abbreviated”) is being studied (JP-A-9-220593).
【0004】しかしながら、嫌気性処理で生成するアン
モニアの除去に関しては未だ検討されておらず、嫌気性
処理で生成したアンモニアによりメタン発酵が阻害され
るという問題がある。また、メタン発酵の前段でリン酸
塩、マグネシウム化合物を添加し、メタン発酵内でpH
調整を行い、生成したアンモニア性窒素をMAPで除去
する方法が検討されている(特開平7−51693号公
報)。しかし、MAPを生成させるためにはメタン発酵
のpHを8〜9とする必要があるが、このpHはメタン
発酵の至適pH6〜8より高く、メタン菌に悪影響を与
え、メタン発酵に重大な問題となる。[0004] However, removal of ammonia produced by anaerobic treatment has not been studied yet, and there is a problem that methane fermentation is inhibited by ammonia produced by anaerobic treatment. In addition, phosphate and magnesium compounds are added before the methane fermentation,
A method of performing adjustment and removing the generated ammonia nitrogen with MAP is being studied (Japanese Patent Application Laid-Open No. 7-51693). However, in order to generate MAP, the pH of methane fermentation needs to be 8 to 9, which is higher than the optimal pH of 6 to 8 for methane fermentation, adversely affects methane bacteria, and is critical for methane fermentation. It becomes a problem.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、外部からの希釈水を用いることな
く、嫌気性処理で生成するアンモニアを除去でき、しか
もメタン発酵を好適に行うことができる有機性廃棄物の
処理方法を提供すること課題とする。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and can remove ammonia produced by anaerobic treatment without using external dilution water, and can suitably perform methane fermentation. It is an object to provide a method for treating organic waste that can be performed.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、有機性廃棄物を嫌気性処理する方法に
おいて、嫌気性処理後の汚泥を、その一部又は全量にリ
ン酸塩及び/又はマグネシウム化合物を添加して、リン
酸マグネシウムアンモニウムを生成させた後、その一部
又は全量を固液分離し、この分離液を嫌気性処理に返送
する有機性廃棄物の処理方法としたものである。また、
本発明では、有機性廃棄物を嫌気性処理する方法におい
て、嫌気性処理後の汚泥を固液分離して、その分離液の
一部又は全量にリン酸塩及び/又はマグネシウム化合物
を添加して、リン酸マグネシウムアンモニウムを生成さ
せた後、その一部又は全量を固液分離し、この分離液を
嫌気性処理に返送する有機性廃棄物の処理方法としたも
のである。該処理方法において、嫌気性処理後の汚泥を
固液分離した汚泥は、その一部又は全量を嫌気性処理に
返送することができる。According to the present invention, there is provided a method for anaerobically treating organic waste, the method comprising the steps of: converting sludge after anaerobic treatment into a part or the whole amount of phosphate; And / or a magnesium compound is added to generate magnesium ammonium phosphate, and a part or the whole thereof is subjected to solid-liquid separation, and the separated liquid is returned to the anaerobic treatment to provide a method for treating organic waste. Things. Also,
In the present invention, in a method for anaerobic treatment of organic waste, sludge after anaerobic treatment is subjected to solid-liquid separation, and a phosphate and / or a magnesium compound is added to part or all of the separated liquid. , A part or the whole thereof is subjected to solid-liquid separation, and the separated liquid is returned to the anaerobic treatment to treat the organic waste. In the treatment method, the sludge obtained by solid-liquid separation of the sludge after the anaerobic treatment can be partially or entirely returned to the anaerobic treatment.
【0007】[0007]
【発明の実施の形態】本発明においては、第1工程で有
機性廃棄物を嫌気性処理し、もしくは嫌気性処理後に固
液分離し、この嫌気性処理汚泥もしくは嫌気性処理汚泥
を固液分離した分離水の一部又は全量を対象に、第2工
程で第1工程で生成したアンモニア性窒素を、リン酸塩
及びマグネシウム化合物の存在下で、pH調整剤により
pH8〜10、好ましくは8.5〜9.5にし、不溶性
のMAPとした後、固液分離し、アンモニアが除去され
た分離液を第1工程へ送り、この分離液による希釈で嫌
気性処理のアンモニア性窒素濃度を下げ、遊離アンモニ
アによるメタン菌の阻害を抑制することにより、処理の
安定性を向上させたものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, an organic waste is subjected to anaerobic treatment in a first step or solid-liquid separation after anaerobic treatment, and the anaerobic treated sludge or anaerobic treated sludge is separated into solid and liquid. The ammoniacal nitrogen generated in the first step in the second step is subjected to pH 8 to 10, preferably 8, by using a pH adjuster in the presence of a phosphate and a magnesium compound for a part or the whole amount of the separated water. After making the insoluble MAP to 5 to 9.5, solid-liquid separation was performed, and the separated liquid from which ammonia was removed was sent to the first step, and the ammonia nitrogen concentration in the anaerobic treatment was reduced by dilution with the separated liquid, By suppressing the inhibition of methane bacteria by free ammonia, the stability of the treatment is improved.
【0008】第1工程では、有機性廃棄物は、可溶化さ
れた後有機酸を経由し、最終的にメタンガスと炭酸ガス
に分解される。この時、有機性廃棄物に含有される窒素
成分は、アンモニア性窒素に分解される。第2工程で
は、アンモニア性窒素を含む嫌気性処理汚泥、もしくは
嫌気性処理汚泥を固液分離した分離液の一部又は全量
に、リン酸塩とマグネシウム化合物、もしくはいずれか
を添加して、pH調整剤によりpHを8〜10、好まし
くは8.5〜9.5に調整し、不溶性のMAPを生成す
る。これを固液分離し、アンモニアが除去された分離液
を第1工程の嫌気性処理に返送し、この分離液による希
釈で嫌気性処理のアンモニア性窒素濃度を下げ、遊離ア
ンモニアによるメタン菌の阻害を抑制する。In the first step, the organic waste is solubilized, passes through an organic acid, and is finally decomposed into methane gas and carbon dioxide gas. At this time, the nitrogen component contained in the organic waste is decomposed into ammonia nitrogen. In the second step, a phosphate and a magnesium compound, or any of them, is added to a part or the whole amount of the anaerobic treated sludge containing ammoniacal nitrogen or the separated liquid obtained by solid-liquid separation of the anaerobic treated sludge, and the pH is increased. The pH is adjusted to between 8 and 10, preferably between 8.5 and 9.5 with a regulator to produce an insoluble MAP. This is subjected to solid-liquid separation, and the separated liquid from which ammonia has been removed is returned to the anaerobic treatment in the first step. The concentration of ammonia nitrogen in the anaerobic treatment is reduced by dilution with the separated liquid, and inhibition of methane bacteria by free ammonia Suppress.
【0009】次に本発明を詳細に説明する。本発明の一
つの方法は、嫌気性処理及びMAP生成と固液分離処理
をする各工程により構成される。嫌気性処理工程では、
投入された有機性廃棄物は、可溶化され、有機酸を経由
して最終的にメタンガスと炭酸ガスに分解される。有機
性廃棄物に含まれる有機性窒素化合物は、この段階で低
分子化してアンモニア性窒素となる。MAP生成工程で
は、嫌気性処理工程で処理されたアンモニア性窒素を含
む嫌気性処理汚泥の一部又は全量を導入し、リン酸塩及
び/又はマグネシウム化合物をアンモニアイオンとリン
酸イオン、マグネシウムイオンが等モルになるように添
加し、必要に応じて、pH調整剤を添加してpHを8〜
10、好ましくは8.5〜9.5とし、滞留時間15分
〜120分、好ましくは30分〜60分で攪拌して、嫌
気性処理汚泥中のアンモニア性窒素を不溶性のMAPに
する。Next, the present invention will be described in detail. One method of the present invention comprises anaerobic treatment, MAP generation, and solid-liquid separation treatment. In the anaerobic treatment process,
The input organic waste is solubilized and finally decomposed into methane gas and carbon dioxide gas via an organic acid. At this stage, the organic nitrogen compound contained in the organic waste is degraded to ammonia nitrogen. In the MAP generation step, a part or the whole amount of the anaerobic treated sludge containing ammoniacal nitrogen treated in the anaerobic treatment step is introduced, and the phosphate and / or magnesium compound is converted into ammonia ion, phosphate ion, and magnesium ion. Equimolar, and if necessary, a pH adjuster to adjust the pH to 8 to
It is set to 10, preferably 8.5 to 9.5, and stirred for a residence time of 15 minutes to 120 minutes, preferably 30 minutes to 60 minutes, to convert ammoniacal nitrogen in the anaerobic treated sludge into insoluble MAP.
【0010】本発明で使用できるリン酸塩としては、リ
ン酸、リン酸ナトリウム、リン酸水素ナトリウム、リン
酸カリウム、リン酸水素カリウム、リン酸マグネシウム
等であり、マグネシウム化合物としては、水酸化マグネ
シウム、塩化マグネシウム、硫酸マグネシウム等のであ
り、さらに、pH調整剤としては、水酸化ナトリウム、
水酸化カリウム、水酸化マグネシウム、水酸化カルシウ
ム等である。次いで固液分離では、MAP生成工程から
のMAPを含んだ汚泥が導入されて、重力分離、遠心分
離、膜分離等の固液分離によりMAP汚泥と分離液に分
離される。アンモニアが除去された分離液の一部又は全
量は、嫌気性処理工程に返送され、嫌気性処理でのアン
モニアの希釈に使用されるとともに、アルカリ剤の補給
に利用される。このため、嫌気性処理工程でのアンモニ
ア性窒素濃度が低下し、遊離アンモニアによる阻害が抑
制されると共に、メタン発酵の至適pHとするためのア
ルカリ剤を削減できる。The phosphates usable in the present invention include phosphoric acid, sodium phosphate, sodium hydrogen phosphate, potassium phosphate, potassium hydrogen phosphate, magnesium phosphate and the like. , Magnesium chloride, magnesium sulfate, and the like. Further, as a pH adjuster, sodium hydroxide,
Potassium hydroxide, magnesium hydroxide, calcium hydroxide and the like. Next, in solid-liquid separation, sludge containing MAP from the MAP generation step is introduced, and separated into MAP sludge and a separated liquid by solid-liquid separation such as gravity separation, centrifugation, and membrane separation. Part or all of the separated liquid from which ammonia has been removed is returned to the anaerobic treatment step, used for diluting ammonia in the anaerobic treatment, and used for replenishment of the alkali agent. For this reason, the concentration of ammoniacal nitrogen in the anaerobic treatment step is reduced, the inhibition by free ammonia is suppressed, and the amount of alkali agent for adjusting the pH to the optimum for methane fermentation can be reduced.
【0011】本処理において、有機性廃棄物の全窒素濃
度が単位重量当たり3〜5g/kgの場合、アンモニア
性窒素の生成量が、単位重量当たり2.4〜4.5g/
kgとなるため、嫌気性処理工程でのアンモニア性窒素
濃度が2.0g/kg以下となるように、分離液の返送
率は、有機性廃棄物投入量1部当たり0.5から1.5
部に調整する。MAPを含んだ嫌気性汚泥は、脱水性も
良好で、さらに肥効成分が豊富なため、コンポスト等に
利用可能である。In this treatment, when the total nitrogen concentration of the organic waste is 3 to 5 g / kg per unit weight, the production amount of ammonia nitrogen is 2.4 to 4.5 g / unit weight.
kg, so that the return rate of the separated liquid is 0.5 to 1.5 per part of the organic waste input so that the ammonia nitrogen concentration in the anaerobic treatment step is 2.0 g / kg or less.
Adjust to the part. Anaerobic sludge containing MAP has good dewatering properties and is rich in fertilizing components, so that it can be used for compost and the like.
【0012】次に、本発明のもう一つの方法は、嫌気性
処理と第1固液分離とMAP生成と第2固液分離の各工
程により構成される。嫌気性処理工程は、前記した処理
工程と同じであり、投入された有機性廃棄物は、最終的
にメタンガスと炭酸ガスに分解され、含まれる有機性窒
素化合物は、この段階で低分子化してアンモニア性窒素
となる。第1固液分離工程では、嫌気性処理工程から汚
泥が導入され、汚泥とアンモニア性窒素を含む分離液と
に分離される。アンモニア性窒素を含む分離液の一部又
は全量をMAP生成工程に導入する。MAP生成工程で
は、リン酸塩及び/又はマグネシウム化合物をアンモニ
アイオンとリン酸イオン、マグネシウムイオンが等モル
になるように添加し、必要に応じてpH調整剤を添加し
てpHを8〜10、好ましくは8.5〜9.5とし、滞
留時間を10分〜60分、好ましくは15分〜30分で
攪拌して、MAPを生成させる。MAP生成時におい
て、嫌気性処理汚泥の分離液を使用することにより、直
接嫌気性処理汚泥を使用する場合と比べ、MAP生成反
応が速やかに進行し、短時間で効率的にMAPの生成が
可能となり、省スペース化が可能となる。Next, another method of the present invention comprises the steps of anaerobic treatment, first solid-liquid separation, MAP generation, and second solid-liquid separation. The anaerobic treatment step is the same as the above-described treatment step, and the inputted organic waste is finally decomposed into methane gas and carbon dioxide gas, and the contained organic nitrogen compound is reduced in molecular weight at this stage. It becomes ammoniacal nitrogen. In the first solid-liquid separation step, sludge is introduced from the anaerobic treatment step and separated into sludge and a separated liquid containing ammoniacal nitrogen. Part or all of the separation liquid containing ammonia nitrogen is introduced into the MAP generation step. In the MAP generation step, a phosphate and / or a magnesium compound are added so that ammonia ions, phosphate ions, and magnesium ions are equimolar, and if necessary, a pH adjuster is added to adjust the pH to 8 to 10, It is preferably 8.5 to 9.5, and the residence time is 10 to 60 minutes, preferably 15 to 30 minutes, to produce MAP. By using the anaerobic sludge separation liquid during MAP generation, the MAP generation reaction proceeds more quickly than when using anaerobic sludge directly, and MAP can be generated efficiently in a short time. And space can be saved.
【0013】次いで第2固液分離工程では、MAPを含
んだ汚泥が導入されて、MAP汚泥と分離液に分離され
る。アンモニアが除去された分離液は、嫌気性処理工程
に返送され、嫌気性処理でのアンモニアの希釈、アルカ
リ剤の補給に利用される。このため、嫌気性処理工程で
のアンモニア性窒素濃度が低下し、遊離アンモニアによ
る阻害が抑制されるとともに、メタン発酵の至適pHと
するためのアルカリ剤を削減できる。また、分離液の返
送率は、前記した方法と同一であり、有機性廃棄物投入
量1部当たり0.5から1.5部に調整する。この時、
アンモニアを除去した分離液と共に、第1固液分離工程
の分離汚泥の一部又は全量を嫌気性処理工程に返送し、
処理を安定化させるため、槽内の汚泥濃度を高くしても
良い。TS100g/kgの分離汚泥を、有機性廃棄物
の投入量1部当たり、0.05〜0.2部返送すること
により、槽内の汚泥濃度は、TSとして5〜20g/k
g分増加させることが可能となる。槽内の汚泥濃度を高
くできると、投入有機物負荷の変動に強く、処理の安定
性が向上する。Next, in the second solid-liquid separation step, sludge containing MAP is introduced and separated into MAP sludge and a separated liquid. The separated liquid from which the ammonia has been removed is returned to the anaerobic treatment step, and is used for diluting the ammonia and replenishing the alkali agent in the anaerobic treatment. For this reason, the concentration of ammonia nitrogen in the anaerobic treatment step is reduced, the inhibition by free ammonia is suppressed, and the amount of alkaline agent for adjusting the pH to the optimum for methane fermentation can be reduced. The return rate of the separated liquid is the same as the above-mentioned method, and is adjusted to 0.5 to 1.5 parts per part of the input amount of the organic waste. At this time,
Along with the separated liquid from which ammonia has been removed, part or all of the separated sludge of the first solid-liquid separation step is returned to the anaerobic treatment step,
To stabilize the treatment, the sludge concentration in the tank may be increased. By returning 100 g / kg of separated sludge to 0.05 to 0.2 parts of TS per 1 part of the input amount of organic waste, the sludge concentration in the tank becomes 5 to 20 g / k as TS.
g. When the sludge concentration in the tank can be increased, the load of the organic matter input is fluctuated, and the stability of the treatment is improved.
【0014】次に、本発明を図面を用いて説明する。図
1〜3は、本発明の処理方法を示すフロー工程図の一例
である。図1において、有機性廃棄物4は、まず嫌気性
処理工程1にて可溶化され有機酸を経由してメタンガス
と炭酸ガスに分解される。この際、有機性廃棄物4に混
入していたアンモニア性窒素あるいは有機性廃棄物の分
解過程で生成するアンモニア性窒素が、メタン発酵を阻
害する。これらのアンモニア性窒素を、次のMAP生成
工程2でリン酸水素ナトリウム8、塩化マグネシウム9
を添加し、水酸化ナトリウム10でpH8.5〜9.5
に調整し、滞留時間30分〜60分間攪拌して、不溶性
のMAPとしてアンモニアを固定する。Next, the present invention will be described with reference to the drawings. 1 to 3 are examples of a flow process chart showing the processing method of the present invention. In FIG. 1, an organic waste 4 is first solubilized in an anaerobic treatment step 1 and decomposed into methane gas and carbon dioxide gas via an organic acid. At this time, the ammonia nitrogen mixed into the organic waste 4 or the ammonia nitrogen generated in the process of decomposing the organic waste inhibits the methane fermentation. These ammonia nitrogens are converted into sodium hydrogen phosphate 8 and magnesium chloride 9 in the next MAP generation step 2.
And pH 8.5-9.5 with sodium hydroxide 10.
, And the mixture is stirred for a residence time of 30 to 60 minutes to fix ammonia as an insoluble MAP.
【0015】次の固液分離工程3で、不溶性のMAP
は、嫌気性処理工程で生成した汚泥と共に系外に除去さ
れる。アンモニアが除去された分離液5は、嫌気性処理
工程1のアンモニア濃度を下げるための希釈として、ま
た嫌気性処理工程1へのアルカリの補給として、嫌気性
処理工程1へ返送される。ここで、分離液5の分配量の
目安は、有機性廃棄物の全窒素濃度が単位重量当たり3
〜5g/kgの場合、前記したように分離液の返送率は
有機性廃棄物投入量1部当たり0.5から1.5部とな
る。固液分離で分離された汚泥7は、肥効成分を含み、
脱水性も良好であるため、コンポスト等に利用可能であ
る。In the next solid-liquid separation step 3, insoluble MAP
Is removed out of the system together with the sludge generated in the anaerobic treatment step. The separated liquid 5 from which the ammonia has been removed is returned to the anaerobic treatment step 1 as a dilution for reducing the ammonia concentration in the anaerobic treatment step 1 and as a supply of alkali to the anaerobic treatment step 1. Here, the standard of the distribution amount of the separation liquid 5 is that the total nitrogen concentration of the organic waste is 3 per unit weight.
In the case of 55 g / kg, as described above, the return rate of the separated liquid is 0.5 to 1.5 parts per part of the input amount of the organic waste. Sludge 7 separated by solid-liquid separation contains fertilizing components,
Since it has good dehydration properties, it can be used for compost and the like.
【0016】次に、図2において、有機性廃棄物4は、
まず嫌気性処理工程1にて可溶化され有機酸を経由して
メタンガスと炭酸ガスに分解される。この際、有機性廃
棄物4に混入していたアンモニア性窒素あるいは有機性
廃棄物の分解過程で生成するアンモニア性窒素がメタン
発酵を阻害する。嫌気性処理汚泥の全量は、第1固液分
離工程11で汚泥14とアンモニア性窒素を含有した分
離液13とに分離される。これらのアンモニア性窒素を
含んだ分離液13は、次のMAP生成工程2でリン酸水
素ナトリウム8、塩化マグネシウム9を添加し、水酸化
ナトリウム10でpH8.5〜9.5に調整され、滞留
時間15分〜30分間攪拌される。MAP生成工程2で
は、溶解していたアンモニア性窒素が不溶性のMAPと
して固定される。次の第2固液分離工程12で、不溶性
のMAPを含む汚泥7’は分離され、アンモニアが除去
された分離液5は、嫌気性処理工程1のアンモニア濃度
を下げるための希釈として、また嫌気性処理工程1への
アルカリの補給として嫌気性処理工程1へ返送される。
図3は、図2の改良法であり、第1固液分離工程11で
分離された汚泥14を嫌気性処理工程1に返送してい
る。これにより処理の安定性が向上する。Next, in FIG. 2, the organic waste 4 is
First, it is solubilized in an anaerobic treatment step 1 and decomposed into methane gas and carbon dioxide gas via an organic acid. At this time, the ammonia nitrogen mixed in the organic waste 4 or the ammonia nitrogen generated in the process of decomposing the organic waste inhibits the methane fermentation. The total amount of the anaerobic treated sludge is separated into a sludge 14 and a separation liquid 13 containing ammonia nitrogen in a first solid-liquid separation step 11. The separation liquid 13 containing these ammoniacal nitrogens is added with sodium hydrogen phosphate 8 and magnesium chloride 9 in the next MAP generation step 2, adjusted to pH 8.5 to 9.5 with sodium hydroxide 10, and retained. Stir for 15-30 minutes. In the MAP generation step 2, the dissolved ammonia nitrogen is fixed as insoluble MAP. In the next second solid-liquid separation step 12, the sludge 7 'containing insoluble MAP is separated, and the separated liquid 5 from which ammonia has been removed is used as a dilution for lowering the ammonia concentration in the anaerobic treatment step 1 and as an anaerobic treatment. It is returned to the anaerobic treatment step 1 as a supply of alkali to the anaerobic treatment step 1.
FIG. 3 shows an improved method of FIG. 2 in which the sludge 14 separated in the first solid-liquid separation step 11 is returned to the anaerobic treatment step 1. This improves the stability of the processing.
【0017】[0017]
【実施例】以下、本発明を実施例により具体的に説明す
る。実施例1 図1に示した本発明のフロー工程図に従って実験を行っ
た。実験に用いた嫌気性処理工程とMAP生成工程の仕
様を表1に示す。ここでは、固液分離工程として遠心分
離を使用した。The present invention will be described below in more detail with reference to examples. Example 1 An experiment was performed according to the flow process diagram of the present invention shown in FIG. Table 1 shows the specifications of the anaerobic treatment step and the MAP generation step used in the experiment. Here, centrifugation was used as the solid-liquid separation step.
【0018】[0018]
【表1】 [Table 1]
【0019】表2に示す合成生ごみを供試試料とした。The synthetic garbage shown in Table 2 was used as a test sample.
【表2】 [Table 2]
【0020】メタン生成槽に合成生ごみ5kgと、種汚
泥としてメタン発酵処理装置から採取した汚泥(TS5
0g/kg)5kgを入れ、55℃にて約20日間嫌気
性処理した。この嫌気性処理汚泥の性状は、TS52g
/kg、SS38g/kg、アンモニア性窒素濃度3.
3g/kgであった。その後、合成生ごみを0.33k
g/dで嫌気性処理槽に供給し、滞留時間30日で処理
した。嫌気性処理槽から流出する嫌気性処理汚泥に、リ
ン酸水素ナトリウム35g/kg、塩化マグネシウム2
5g/kgを添加し、水酸化ナトリウムでpH8.5〜
9.5に調整した後、約60分間攪拌させてMAPを生
成させた。これを遠心分離機で遠心分離させ、その分離
液を0.33L/dの比率で嫌気性処理槽に返送した。In a methane production tank, 5 kg of synthetic garbage and sludge collected from a methane fermentation treatment apparatus as seed sludge (TS5
(0 g / kg) and anaerobically treated at 55 ° C. for about 20 days. The properties of this anaerobic sludge are as follows:
/ Kg, SS38g / kg, ammonia nitrogen concentration 3.
It was 3 g / kg. Then, 0.33k of synthetic garbage
The solution was supplied to the anaerobic treatment tank at g / d, and treated with a residence time of 30 days. 35 g / kg of sodium hydrogen phosphate and magnesium chloride 2 were added to the anaerobic treatment sludge flowing out of the anaerobic treatment tank.
5 g / kg, pH 8.5 with sodium hydroxide
After adjusting to 9.5, the mixture was stirred for about 60 minutes to generate MAP. This was centrifuged with a centrifuge, and the separated liquid was returned to the anaerobic treatment tank at a rate of 0.33 L / d.
【0021】この処理による定常運転を約1ヶ月間継続
させたところ、アンモニアによる阻害もなく、残留酢酸
濃度も低く、処理が良好に行われていた。さらに、滞留
時間を20日にしたところ、30日の時と同様、処理が
良好に行われたため、約1ヶ月後に滞留時間を15日と
した。滞留時間15日の処理汚泥のアンモニア性窒素濃
度は1.9g/kgと低く抑えられたため、CODCr除
去率は82%と高く、残留酢酸濃度は20mg/kg、
残留プロピオン酸濃度は800mg/kgと残留有機酸
濃度を低く保つことができた。滞留時間15日の処理汚
泥性状を表3に示す。When the steady operation by this treatment was continued for about one month, there was no inhibition by ammonia, the residual acetic acid concentration was low, and the treatment was performed well. Further, when the retention time was set to 20 days, the treatment was performed well as in the case of 30 days. Therefore, the retention time was set to 15 days after about one month. Since the ammonia nitrogen concentration of the treated sludge at the residence time of 15 days was kept low at 1.9 g / kg, the COD Cr removal rate was as high as 82%, the residual acetic acid concentration was 20 mg / kg,
The residual propionic acid concentration was 800 mg / kg, and the residual organic acid concentration could be kept low. Table 3 shows the properties of the treated sludge at a residence time of 15 days.
【0022】実施例2 図2に示した本発明のフロー工程図を用いて実験を行っ
た。実験に用いた嫌気性処理工程とMAP生成工程の仕
様は実施例1と同じである。ここでは、第1固液分離工
程、第2固液分離工程として遠心分離を使用した。実施
例1と同じく表2に示す合成生ごみを供試試料とした。
実施例1の実験終了後、引き続き実施例2の実験を行っ
た。嫌気性処理槽の滞留時間20日から運転を開始し
た。嫌気性処理汚泥の全量を遠心分離し、その分離液を
MAP生成工程に導入し、リン酸水素ナトリウム35g
/kg、塩化マグネシウム25g/kg添加し、水酸化
ナトリウムでpH8.5〜9.5に調整した後、約30
分間攪拌させてMAPを生成させた。次いで、これを遠
心分離機で遠心分離し、アンモニアが除去された分離液
を嫌気性処理工程に返送した。この処理による定常運転
を約1ヶ月継続させたところ、残留有機酸濃度も低く、
アンモニアによる阻害も認められず、処理は良好に行わ
れていた。さらに滞留時間を15日としたところ、処理
汚泥のアンモニア性窒素濃度は1.7g/kg、COD
Cr除去率は85%、残留酢酸濃度は21mg/kg、残
留プロピオン酸濃度は770mg/kgであり、良好な
処理が行われていた。滞留時間15日の処理汚泥性状を
表3に示す。Example 2 An experiment was conducted using the flow chart of the present invention shown in FIG. The specifications of the anaerobic treatment step and the MAP generation step used in the experiment are the same as those in the first embodiment. Here, centrifugation was used as the first solid-liquid separation step and the second solid-liquid separation step. As in Example 1, synthetic garbage shown in Table 2 was used as a test sample.
After the experiment of Example 1 was completed, the experiment of Example 2 was continuously performed. The operation was started from a residence time of the anaerobic treatment tank of 20 days. The entire amount of the anaerobic sludge is centrifuged, and the separated liquid is introduced into a MAP generation step, and 35 g of sodium hydrogen phosphate is added.
/ G, 25 g / kg of magnesium chloride and pH adjusted to 8.5 to 9.5 with sodium hydroxide.
MAP was formed by stirring for minutes. Next, this was centrifuged with a centrifuge, and the separated solution from which ammonia had been removed was returned to the anaerobic treatment step. When the steady operation by this treatment was continued for about one month, the residual organic acid concentration was low,
No inhibition by ammonia was observed, and the treatment was performed well. Further, when the residence time was set to 15 days, the ammonia nitrogen concentration of the treated sludge was 1.7 g / kg and the COD
The Cr removal rate was 85%, the residual acetic acid concentration was 21 mg / kg, and the residual propionic acid concentration was 770 mg / kg, indicating that a good treatment was performed. Table 3 shows the properties of the treated sludge at a residence time of 15 days.
【0023】比較例1 比較実験として、合成生ごみを嫌気性処理工程のみで処
理を行った。実験装置仕様は実施例と同じである。実施
例と同じく表2に示す合成生ごみを供試試料とした。メ
タン生成槽に合成生ごみ5kgと種汚泥としてメタン発
酵処理装置から採取した汚泥(TS50g/kg)5k
gを入れ、55℃にて約20日間嫌気性処理した。この
嫌気性処理汚泥の性状は、TS53g/kg、SS37
g/kg、アンモニア性窒素濃度3.3g/kgであっ
た。その後、合成生ごみを0.33kg/dで嫌気性処
理槽に供給し、滞留時間30日で処理した。約2週間
後、滞留時間を20日にしたところ、処理汚泥のアンモ
ニア性窒素は3.5g/kgまで増加し、CODCrは除
去率が71%と低下し、残留酢酸濃度が510mg/k
g、残留プロピオン酸濃度が3200mg/kgまで増
加した。滞留時間20日の処理汚泥の性状を表3に示
す。滞留時間を15日としたところ、さらに残留有機酸
濃度が増加し、処理汚泥のpHが5まで低下し、処理が
継続できなかった。Comparative Example 1 As a comparative experiment, synthetic garbage was treated only in the anaerobic treatment step. The experimental device specifications are the same as in the example. Synthetic garbage shown in Table 2 was used as a test sample as in the examples. 5kg of synthetic garbage in the methane production tank and 5k of sludge (TS50g / kg) collected from methane fermentation treatment equipment as seed sludge
g, and subjected to anaerobic treatment at 55 ° C. for about 20 days. The properties of the anaerobic sludge are as follows: TS 53 g / kg, SS37
g / kg, and the ammoniacal nitrogen concentration was 3.3 g / kg. Thereafter, the synthetic garbage was supplied to the anaerobic treatment tank at 0.33 kg / d, and treated for a residence time of 30 days. After about 2 weeks, when the residence time was increased to 20 days, the ammonia nitrogen of the treated sludge increased to 3.5 g / kg, the COD Cr removal rate decreased to 71%, and the residual acetic acid concentration decreased to 510 mg / k.
g, the residual propionic acid concentration increased to 3200 mg / kg. Table 3 shows the properties of the treated sludge having a residence time of 20 days. When the residence time was set to 15 days, the residual organic acid concentration further increased, the pH of the treated sludge dropped to 5, and the treatment could not be continued.
【0024】[0024]
【表3】 [Table 3]
【0025】[0025]
【発明の効果】本発明は、有機性廃棄物を嫌気性処理す
る方法において、嫌気性処理汚泥又は処理汚泥の分離液
を、リン酸塩及びマグネシウム化合物の存在下でpH8
〜10、好ましくは8.5〜9.5の状態にすることに
より、嫌気性処理で生成されたアンモニア性窒素を不溶
性のMAPとして分離し、アンモニア性窒素を除去した
分離液を嫌気性処理へ返送することにより、以下のよう
な効果がある。 (1) 嫌気性処理のアンモニア性窒素濃度を低減でき
ることから、遊離アンモニアによる阻害をなくし、安定
したメタン発酵が可能。 (2) 肥効成分であるMAPが汚泥に含まれ、汚泥の
コンポストヘの適用が図れる。 (3) 分離液の返送量を変えることにより、アンモニ
ア性窒素の変動にも対応可能。 (4) アンモニア性窒素の除去及びメタン発酵が効率
的に行えることにより、省スペース化が可能となる。According to the present invention, there is provided a method for anaerobically treating an organic waste, comprising: converting an anaerobic treated sludge or a separated liquid of the treated sludge to pH 8 in the presence of a phosphate and a magnesium compound.
-10, preferably 8.5 to 9.5, thereby separating the ammoniacal nitrogen produced in the anaerobic treatment as insoluble MAP and subjecting the separated liquid from which the ammoniacal nitrogen has been removed to the anaerobic treatment. Returning has the following effects. (1) Ammoniacal nitrogen concentration in anaerobic treatment can be reduced, so that inhibition by free ammonia is eliminated and stable methane fermentation is possible. (2) MAP, which is a fertilizer, is contained in sludge, and sludge can be applied to compost. (3) It is possible to cope with fluctuations of ammonia nitrogen by changing the return amount of the separated liquid. (4) Efficient removal of ammonia nitrogen and efficient methane fermentation can save space.
【図1】本発明の処理方法を実施するための一例を示す
フロー工程図。FIG. 1 is a flowchart showing an example for implementing a processing method of the present invention.
【図2】本発明の処理方法を実施するための他の例を示
すフロー工程図。FIG. 2 is a flowchart showing another example for implementing the processing method of the present invention.
【図3】本発明の処理方法を実施するための別の例を示
すフロー工程図。FIG. 3 is a flowchart showing another example for carrying out the processing method of the present invention.
1:嫌気処理工程、2:MAP生成工程、3:固液分離
工程、4:有機性廃棄物、5:分離液、6:嫌気性処理
汚泥、7、7’:MAP汚泥、8:リン酸塩、9:Mg
化合物、10:pH調整剤、11:第1固液分離工程、
12:第2固液分離工程、13:第1固液分離水、1
4:第1固液分離汚泥1: Anaerobic treatment step, 2: MAP generation step, 3: Solid-liquid separation step, 4: Organic waste, 5: Separation liquid, 6: Anaerobic treatment sludge, 7, 7 ': MAP sludge, 8: Phosphoric acid Salt, 9: Mg
Compound, 10: pH adjuster, 11: first solid-liquid separation step,
12: second solid-liquid separation step, 13: first solid-liquid separation water, 1
4: First solid-liquid separation sludge
───────────────────────────────────────────────────── フロントページの続き (72)発明者 米山 豊 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D004 AA02 AA03 AB05 BA04 CA13 CA15 CA18 CA35 CB44 CC11 CC12 4D059 AA05 AA07 BA12 BA34 BE19 BE37 BF14 CC01 DA01 DA08 DA39 EB05 EB13 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yutaka Yoneyama 11-1 Haneda Asahimachi, Ota-ku, Tokyo F-term in Ebara Corporation (reference) 4D004 AA02 AA03 AB05 BA04 CA13 CA15 CA18 CA35 CB44 CC11 CC12 4D059 AA05 AA07 BA12 BA34 BE19 BE37 BF14 CC01 DA01 DA08 DA39 EB05 EB13
Claims (3)
いて、嫌気性処理後の汚泥を、その一部又は全量にリン
酸塩及び/又はマグネシウム化合物を添加して、リン酸
マグネシウムアンモニウムを生成させた後、その一部又
は全量を固液分離し、この分離液を嫌気性処理に返送す
ることを特徴とする有機性廃棄物の処理方法。1. A method for anaerobically treating an organic waste, wherein a phosphate and / or a magnesium compound is added to a part or all of the sludge after the anaerobic treatment to produce magnesium ammonium phosphate. A method for treating organic waste, comprising: performing solid-liquid separation on a part or the entire amount thereof after the reaction, and returning the separated liquid to anaerobic treatment.
いて、嫌気性処理後の汚泥を固液分離して、その分離液
の一部又は全量にリン酸塩及び/又はマグネシウム化合
物を添加して、リン酸マグネシウムアンモニウムを生成
させた後、その一部又は全量を固液分離し、この分離液
を嫌気性処理に返送することを特徴とする有機性廃棄物
の処理方法。2. A method for anaerobically treating an organic waste, comprising subjecting the sludge after the anaerobic treatment to solid-liquid separation, and adding a phosphate and / or a magnesium compound to a part or all of the separated liquid. A process for producing a magnesium ammonium phosphate, and then performing solid-liquid separation on part or all of the magnesium ammonium phosphate, and returning the separated solution to anaerobic treatment.
汚泥は、その一部又は全量を嫌気性処理に返送すること
を特徴とする請求項2に記載の有機性廃棄物の処理方
法。3. The method for treating organic waste according to claim 2, wherein the sludge obtained by solid-liquid separation of the sludge after the anaerobic treatment is returned partially or entirely to the anaerobic treatment. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22759499A JP3724990B2 (en) | 1999-08-11 | 1999-08-11 | Organic waste treatment method and equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22759499A JP3724990B2 (en) | 1999-08-11 | 1999-08-11 | Organic waste treatment method and equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001047003A true JP2001047003A (en) | 2001-02-20 |
JP3724990B2 JP3724990B2 (en) | 2005-12-07 |
Family
ID=16863381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22759499A Expired - Lifetime JP3724990B2 (en) | 1999-08-11 | 1999-08-11 | Organic waste treatment method and equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3724990B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005211713A (en) * | 2004-01-27 | 2005-08-11 | Fuji Electric Holdings Co Ltd | Methane fermentation apparatus |
JP2007117948A (en) * | 2005-10-31 | 2007-05-17 | Ebara Corp | Method and apparatus for treating high-concentration organic waste liquid |
JPWO2005049511A1 (en) * | 2003-11-21 | 2007-06-07 | 株式会社荏原製作所 | Method and apparatus for producing / recovering magnesium ammonium phosphate |
JP2007196095A (en) * | 2006-01-24 | 2007-08-09 | Ebara Corp | Organic waste treatment method and apparatus |
WO2009041009A1 (en) * | 2007-09-25 | 2009-04-02 | Kubota Corporation | Method and apparatus for treatment of organic waste |
JP2023519085A (en) * | 2020-01-15 | 2023-05-10 | ドランコ,ナームローゼ フェンノートシャップ | Methods of manufacturing bioproducts from organic material streams |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101227558B1 (en) * | 2012-08-23 | 2013-01-29 | 뉴엔텍(주) | Sludge drawing system of digester |
KR101227556B1 (en) * | 2012-08-23 | 2013-01-29 | 뉴엔텍(주) | High efficiency sludge reduce apparatus |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56150494A (en) * | 1980-04-24 | 1981-11-20 | Ebara Infilco Co Ltd | Disposal of organic waste water |
JPS6324760B2 (en) * | 1977-11-11 | 1988-05-23 | Ebara Infilco | |
JPS63139088A (en) * | 1986-12-01 | 1988-06-10 | 株式会社荏原製作所 | Manufacture of sludge fertilizer |
JPH0663598A (en) * | 1992-08-11 | 1994-03-08 | Ebara Infilco Co Ltd | Anaerobic treatment of organic waste |
JPH0671297A (en) * | 1992-08-14 | 1994-03-15 | Ngk Insulators Ltd | Organic sludge treating method |
JPH0777640B2 (en) * | 1986-09-26 | 1995-08-23 | 福岡市 | Dephosphorization device |
JPH0839096A (en) * | 1994-07-29 | 1996-02-13 | Ebara Res Co Ltd | Treatment of organic sewage |
JPH0994600A (en) * | 1995-09-29 | 1997-04-08 | Ebara Corp | Treatment of phosphorus-containing sewage |
JPH09201599A (en) * | 1996-01-26 | 1997-08-05 | Kubota Corp | Method for recovering useful substance from organic waste and utilizing the same as resources |
JPH10286592A (en) * | 1997-04-16 | 1998-10-27 | Ataka Kogyo Kk | Waste treatment method |
JPH10337594A (en) * | 1997-04-09 | 1998-12-22 | Ataka Kogyo Kk | Apparatus for waste disposal |
JPH1157791A (en) * | 1997-08-28 | 1999-03-02 | Unitika Ltd | Method of removing phosphorus from organic sludge |
JPH1177007A (en) * | 1997-09-02 | 1999-03-23 | Ebara Corp | Anaerobic digestion of organic waste |
JPH11197639A (en) * | 1998-01-19 | 1999-07-27 | Kubota Corp | Treatment of organic waste |
JPH11221541A (en) * | 1998-02-10 | 1999-08-17 | Kubota Corp | Method for recycling organic waste |
JP2000296399A (en) * | 1999-04-13 | 2000-10-24 | Maezawa Ind Inc | Waste water treating apparatus |
-
1999
- 1999-08-11 JP JP22759499A patent/JP3724990B2/en not_active Expired - Lifetime
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6324760B2 (en) * | 1977-11-11 | 1988-05-23 | Ebara Infilco | |
JPS56150494A (en) * | 1980-04-24 | 1981-11-20 | Ebara Infilco Co Ltd | Disposal of organic waste water |
JPH0777640B2 (en) * | 1986-09-26 | 1995-08-23 | 福岡市 | Dephosphorization device |
JPS63139088A (en) * | 1986-12-01 | 1988-06-10 | 株式会社荏原製作所 | Manufacture of sludge fertilizer |
JPH0663598A (en) * | 1992-08-11 | 1994-03-08 | Ebara Infilco Co Ltd | Anaerobic treatment of organic waste |
JPH0671297A (en) * | 1992-08-14 | 1994-03-15 | Ngk Insulators Ltd | Organic sludge treating method |
JPH0839096A (en) * | 1994-07-29 | 1996-02-13 | Ebara Res Co Ltd | Treatment of organic sewage |
JPH0994600A (en) * | 1995-09-29 | 1997-04-08 | Ebara Corp | Treatment of phosphorus-containing sewage |
JPH09201599A (en) * | 1996-01-26 | 1997-08-05 | Kubota Corp | Method for recovering useful substance from organic waste and utilizing the same as resources |
JPH10337594A (en) * | 1997-04-09 | 1998-12-22 | Ataka Kogyo Kk | Apparatus for waste disposal |
JPH10286592A (en) * | 1997-04-16 | 1998-10-27 | Ataka Kogyo Kk | Waste treatment method |
JPH1157791A (en) * | 1997-08-28 | 1999-03-02 | Unitika Ltd | Method of removing phosphorus from organic sludge |
JPH1177007A (en) * | 1997-09-02 | 1999-03-23 | Ebara Corp | Anaerobic digestion of organic waste |
JPH11197639A (en) * | 1998-01-19 | 1999-07-27 | Kubota Corp | Treatment of organic waste |
JPH11221541A (en) * | 1998-02-10 | 1999-08-17 | Kubota Corp | Method for recycling organic waste |
JP2000296399A (en) * | 1999-04-13 | 2000-10-24 | Maezawa Ind Inc | Waste water treating apparatus |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005049511A1 (en) * | 2003-11-21 | 2007-06-07 | 株式会社荏原製作所 | Method and apparatus for producing / recovering magnesium ammonium phosphate |
JP4516025B2 (en) * | 2003-11-21 | 2010-08-04 | 荏原エンジニアリングサービス株式会社 | Method and apparatus for producing / recovering magnesium ammonium phosphate |
JP2005211713A (en) * | 2004-01-27 | 2005-08-11 | Fuji Electric Holdings Co Ltd | Methane fermentation apparatus |
JP2007117948A (en) * | 2005-10-31 | 2007-05-17 | Ebara Corp | Method and apparatus for treating high-concentration organic waste liquid |
JP4642635B2 (en) * | 2005-10-31 | 2011-03-02 | 荏原エンジニアリングサービス株式会社 | High concentration organic waste liquid treatment method and apparatus |
JP2007196095A (en) * | 2006-01-24 | 2007-08-09 | Ebara Corp | Organic waste treatment method and apparatus |
WO2009041009A1 (en) * | 2007-09-25 | 2009-04-02 | Kubota Corporation | Method and apparatus for treatment of organic waste |
JP2023519085A (en) * | 2020-01-15 | 2023-05-10 | ドランコ,ナームローゼ フェンノートシャップ | Methods of manufacturing bioproducts from organic material streams |
Also Published As
Publication number | Publication date |
---|---|
JP3724990B2 (en) | 2005-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001506535A (en) | Method of treating wastewater containing ammonia | |
WO2009102142A2 (en) | Nitrogen-rich waste water treatment method and method for producing struvite | |
WO2005049511A1 (en) | Method of formation/recovery of magnesium ammonium phosphate and apparatus therefor | |
JP2001047003A (en) | Treatment of organic waste | |
JP6649769B2 (en) | Organic matter processing system and organic matter processing method | |
CN108751627A (en) | The method of neutral Fenton conditioning excess sludge microorganism electrolytic hydrogen production recycling phosphorus | |
JP4455498B2 (en) | Method and apparatus for using recovered magnesium ammonium phosphate | |
JP4007584B2 (en) | Method and apparatus for recovering phosphorus and nitrogen | |
JPH1157773A (en) | Biological dephosphorizing device | |
JP4818594B2 (en) | Organic acid generation method, organic acid generation apparatus, and wastewater treatment apparatus | |
JP2003225697A (en) | Anaerobic fermentation system of organic waste | |
Gernaey et al. | Control strategy evaluation for combined N and P removal using a benchmark wastewater treatment plant | |
JP2005193146A (en) | Method for treating organic waste and the treating system | |
JPH10118687A (en) | Treatment method of organic wastewater | |
JP2001252686A (en) | Anaerobic treatment method for organic waste water | |
JP6829956B2 (en) | Anaerobic treatment method and anaerobic treatment equipment | |
JP3198674B2 (en) | Method and apparatus for treating wastewater containing organic nitrogen | |
JP2003053396A (en) | Method and equipment for treatment of organic sludge | |
JP2003260435A (en) | Apparatus and method for treating nitrogen-containing organic waste | |
JP4411850B2 (en) | Biological dephosphorization method and apparatus | |
JP2002079298A (en) | Method and apparatus for methane fermentation treatment of organic waste | |
CN114735814A (en) | Method for synchronously denitrifying circulating cooling water concentrated water and municipal sewage of power plant | |
JP2000263091A (en) | Sewage and sludge treatment method | |
JP2001149981A (en) | Method for treating sewage and sludge | |
JPH0671297A (en) | Organic sludge treating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3724990 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090930 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100930 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100930 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110930 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120930 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130930 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |