JP2005238151A - Treatment apparatus and treatment method for organic waste - Google Patents

Treatment apparatus and treatment method for organic waste Download PDF

Info

Publication number
JP2005238151A
JP2005238151A JP2004053772A JP2004053772A JP2005238151A JP 2005238151 A JP2005238151 A JP 2005238151A JP 2004053772 A JP2004053772 A JP 2004053772A JP 2004053772 A JP2004053772 A JP 2004053772A JP 2005238151 A JP2005238151 A JP 2005238151A
Authority
JP
Japan
Prior art keywords
organic waste
methane fermentation
treatment
removal
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004053772A
Other languages
Japanese (ja)
Inventor
Masami Ono
正巳 小野
Toshiaki Tsubone
俊明 局
Takeshi Tsuji
猛志 辻
Shigeki Fujiwara
茂樹 藤原
Tomonori Matsuzaki
智徳 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2004053772A priority Critical patent/JP2005238151A/en
Publication of JP2005238151A publication Critical patent/JP2005238151A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method and a treatment apparatus for organic waste, which can simplify a process to treat an organic waste containing ammonia nitrogen and solid matters by methane fermentation and can minituarize a methane fermentation bath. <P>SOLUTION: The treatment apparatus for organic waste is provided with a pretreatment facility 1 for organic waste, a methane fermentation bath 2 for reducing the volume of pre-treated organic waste and recovering methane gas, a dehydration facility 4 for performing solid-liquid separation of organic waste after methane fermentation in the methane fermentation bath 2, and a wastewater treatment facility 5 for treating wastewater separated in the dehydration facility 4, wherein an ammonia removal bath 6 is provided for removing ammonia generated in the methane fermentation bath 6 and organic waste is directly returned to the methane fermentation bath 2 after ammonia-removing treatment in the ammonia removal bath 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、有機性廃棄物の処理装置および処理方法、特に、アンモニア態窒素を含有し、かつ固形物を含有する有機性廃棄物をメタン発酵処理(嫌気性消化処理)するプロセスの簡素化およびメタン発酵槽の小型化を図ることができる、有機性廃棄物の処理方法および処理装置に関するものである。   The present invention relates to a processing apparatus and a processing method for organic waste, in particular, simplification of a process for fermenting methane fermentation (anaerobic digestion processing) of organic waste containing ammonia nitrogen and containing solid matter, and The present invention relates to a method and apparatus for treating organic waste that can reduce the size of a methane fermentation tank.

有機性廃棄物の処理、処分は大きな社会問題となっており、特に、食品リサイクル法の実施により、生ゴミ、厨芥類の処理は、解決必至の課題として対応が求められている。このような状況の下、近年、わが国においては、下水汚泥処理、屎尿処理に加え厨芥処理を対象とした固形有機性廃棄物のメタン発酵技術が数多く開発されている。   The treatment and disposal of organic waste has become a major social problem. In particular, due to the implementation of the Food Recycling Law, the treatment of raw garbage and moss has been required to be addressed as an inevitable issue. Under such circumstances, in recent years, many methane fermentation technologies for solid organic waste have been developed in Japan in addition to sewage sludge treatment and manure treatment.

その中で、メタン発酵処理において阻害要因となるアンモニア態窒素の処理についても、多くの技術が開発されている。例え、特許文献1には、メタン発酵処理した廃棄物の一部に熱アルカリ処理・アンモニア除去処理を施し、これを未処理廃棄物と混合し再度メタン発酵に供する廃棄物処理法が開示されている。以下、この技術を従来技術という。   Among them, many technologies have also been developed for the treatment of ammonia nitrogen, which is a hindrance factor in methane fermentation treatment. For example, Patent Document 1 discloses a waste treatment method in which a part of waste treated with methane fermentation is subjected to hot alkali treatment / ammonia removal treatment, mixed with untreated waste, and again subjected to methane fermentation. Yes. Hereinafter, this technique is referred to as a conventional technique.

この従来技術によれば、メタン発酵処理された一部の廃棄物からアンモニアを除去し、これを再度メタン発酵槽に戻すため、このメタン発酵槽内における廃棄物のアンモニア態窒素濃度を低下させることができ、効率良く固形有機性廃棄物を処理することができる。   According to this prior art, in order to remove ammonia from some waste treated by methane fermentation and return it to the methane fermentation tank again, the ammonia nitrogen concentration of the waste in this methane fermentation tank is reduced. And solid organic waste can be treated efficiently.

特開2001−137812号公報JP 2001-137812 A

しかしながら、従来技術はメタン発酵処理された廃棄物を、前処理を施した有機性廃棄物と混合してメタン発酵槽に戻し、再度メタン発酵処理を施すため、大容量のメタン発酵槽が必要となるといった問題を有している。   However, the conventional technology mixes waste that has been subjected to methane fermentation treatment with organic waste that has been subjected to pretreatment, returns it to the methane fermentation tank, and performs methane fermentation treatment again, so a large-capacity methane fermentation tank is required. Has the problem of becoming.

従って、この発明の目的は、アンモニア態窒素を含有し、かつ固形物を含有する有機性廃棄物をメタン発酵処理するプロセスの簡素化およびメタン発酵槽の小型化を図ることができる、有機性廃棄物の処理方法および処理装置を提供することにある。   Therefore, an object of the present invention is to provide organic waste that can simplify the process of methane fermentation treatment of organic waste containing ammonia nitrogen and solid matter, and downsize the methane fermenter. The object is to provide a processing method and a processing apparatus for an object.

この発明は、上述した目的を達成するためになされたものであって、下記を特徴とするものである。   The present invention has been made to achieve the above-described object, and is characterized by the following.

請求項1記載の発明は、有機性廃棄物の前処理設備と、前処理された有機性廃棄物を減容化するとともにメタンガスを回収するメタン発酵槽と、前記メタン発酵槽によりメタン発酵した後の有機性廃棄物を固液分離する脱水設備と、前記脱水設備により分離した排水を処理する排水処理設備とを備えた、有機性廃棄物の処理装置において、前記メタン発酵槽で発生したアンモニアを除去するアンモニア除去槽が設置され、前記アンモニア除去槽によりアンモニア除去処理された有機性廃棄物は、前記メタン発酵槽に直接、戻されることに特徴を有するものである。   The invention according to claim 1 is a pretreatment facility for organic waste, a methane fermentation tank for reducing the volume of the pretreated organic waste and collecting methane gas, and after methane fermentation by the methane fermentation tank In the organic waste treatment apparatus comprising a dehydration facility for solid-liquid separation of the organic waste and a wastewater treatment facility for treating the wastewater separated by the dehydration facility, the ammonia generated in the methane fermentation tank is removed. An ammonia removal tank to be removed is installed, and the organic waste that has been subjected to ammonia removal treatment by the ammonia removal tank is directly returned to the methane fermentation tank.

請求項2記載の発明は、アンモニア態窒素を含有または生成し、かつ、固形物を含有する有機性廃棄物をメタン発酵槽においてメタン発酵処理する、有機性廃棄物の処理方法において、メタン発酵処理を施した有機性廃棄物に含まれるアンモニア態窒素をアンモニア除去槽において除去し、さらに、アンモニア除去処理した有機性廃棄物を、前記メタン発酵槽に直接、戻すことに特徴を有するものである。   The invention according to claim 2 is a method for treating organic waste in which methane fermentation treatment is performed on an organic waste containing or generating ammonia nitrogen and containing solid matter in a methane fermentation tank. The ammonia nitrogen contained in the organic waste subjected to is removed in an ammonia removal tank, and the organic waste subjected to the ammonia removal treatment is directly returned to the methane fermentation tank.

請求項3記載の発明は、請求項2記載の発明において、メタン発酵処理およびアンモニア態窒素の除去処理に供する有機性廃棄物の固形物濃度は、5から30%の範囲内であることに特徴を有するものである。   The invention according to claim 3 is characterized in that, in the invention according to claim 2, the solid matter concentration of the organic waste used for the methane fermentation treatment and the ammonia nitrogen removal treatment is in the range of 5 to 30%. It is what has.

請求項4記載の発明は、請求項2または3記載の発明において、メタン発酵処理およびアンモニア態窒素の除去処理の方法がストリッピング法であることに特徴を有するものである。   The invention described in claim 4 is characterized in that, in the invention described in claim 2 or 3, the method of methane fermentation treatment and ammonia nitrogen removal treatment is a stripping method.

請求項5記載の発明は、請求項4記載の発明において、ストリッピングによるアンモニア態窒素の除去処理において、空気、窒素およびメタン発酵処理で生成したガスの少なくとも1つを用いることに特徴を有するものである。   The invention described in claim 5 is characterized in that, in the invention described in claim 4, in the removal of ammonia nitrogen by stripping, at least one of air, nitrogen, and gas generated by methane fermentation is used. It is.

請求項6記載の発明は、請求項4または5記載の発明において、ストリッピングによるアンモニア態窒素の除去処理を、下記式(1)で定義されるガス液比が20から1000の範囲内に維持されるようにして行うことに特徴を有するものである。   The invention according to claim 6 is the invention according to claim 4 or 5, wherein the ammonia nitrogen removal treatment by stripping is maintained within a gas-liquid ratio defined by the following formula (1) within a range of 20 to 1000. It is characterized in that it is performed as described above.

ガス液比=G/L=G(V/t) ---(1)
但し、(1)式において、
G:ガス流量[m3/h]、
L:有機性廃棄物量[m3/h]、
V:処理する有機性廃棄物体積[m3]、
t:処理時間[h]
である。
Gas-liquid ratio = G / L = G (V / t) --- (1)
However, in equation (1):
G: Gas flow rate [m 3 / h],
L: amount of organic waste [m 3 / h],
V: Organic waste volume to be treated [m 3 ],
t: Processing time [h]
It is.

請求項7記載の発明は、請求項4から6の何れか1つに記載の発明において、ストリッピングによるアンモニア態窒素の除去処理を、30から90℃の温度範囲下で行うことに特徴を有するものである。   The invention described in claim 7 is characterized in that, in the invention described in any one of claims 4 to 6, the removal of ammonia nitrogen by stripping is performed in a temperature range of 30 to 90 ° C. Is.

請求項8記載の発明は、請求項4から7の何れか1つに記載の発明において、ストリッピングによるアンモニア態窒素の除去処理を、−0.03から0.03MPaGの圧力範囲下で行うことに特徴を有するものである。   The invention according to claim 8 is the invention according to any one of claims 4 to 7, wherein the ammonia nitrogen removal treatment by stripping is performed under a pressure range of -0.03 to 0.03 MPaG. It has the characteristics.

請求項9記載の発明は、請求項4から8の何れか1つに記載の発明において、ストリッピングによるアンモニア態窒素の除去処理時にアルカリを添加して有機性廃棄物のpHを7から10の範囲内に調整することに特徴を有するものである。   The invention according to claim 9 is the invention according to any one of claims 4 to 8, wherein the pH of the organic waste is adjusted to 7 to 10 by adding alkali during the removal of ammonia nitrogen by stripping. It is characterized by adjusting within the range.

請求項10記載の発明は、請求項4から8の何れか1つに記載の発明において、ストリッピングによるアンモニア態窒素の除去処理時にアルカリを添加して有機性廃棄物のpHを7から10の範囲内に調整するとともに、アンモニア態窒素の除去処理において発生する排ガスを60℃以下に冷却処理した後、処理ガスと処理液とに分離し、回収した処理液をアンモニア除去槽に戻すことに特徴を有するものである。   The invention according to claim 10 is the invention according to any one of claims 4 to 8, wherein the pH of the organic waste is adjusted to 7 to 10 by adding alkali during the removal of ammonia nitrogen by stripping. The exhaust gas generated in the ammonia nitrogen removal treatment is cooled to 60 ° C. or lower, and then separated into a treatment gas and a treatment liquid, and the recovered treatment liquid is returned to the ammonia removal tank. It is what has.

請求項11記載の発明は、請求項4から8の何れか1つに記載の発明において、ストリッピングによるアンモニア態窒素の除去処理において発生する排ガスを60℃以下に冷却処理した後、処理ガスと処理液とに分離し、回収した処理液にアルカリを添加し、アンモニア除去槽に戻すことに特徴を有するものである。   The invention according to claim 11 is the invention according to any one of claims 4 to 8, wherein the exhaust gas generated in the removal process of ammonia nitrogen by stripping is cooled to 60 ° C. or lower, It is characterized in that it is separated into a processing solution and an alkali is added to the recovered processing solution and returned to the ammonia removal tank.

この発明によれば、アンモニア態窒素を含有し、かつ固形物を含有する有機性廃棄物をメタン発酵処理するプロセスの簡素化およびメタン発酵槽の小型化を図ることができる。   According to the present invention, it is possible to simplify the process of subjecting organic waste containing ammonia nitrogen and solid matter to methane fermentation and to reduce the size of the methane fermentation tank.

この発明の有機性廃棄物の処理装置の一実施態様を、図面を参照しながら説明する。   One embodiment of the organic waste treatment apparatus of the present invention will be described with reference to the drawings.

図1は、この発明の有機性廃棄物の処理装置を示すブロック図、図2は、アンモニア除去槽部分の詳細図である。   FIG. 1 is a block diagram showing an organic waste processing apparatus of the present invention, and FIG. 2 is a detailed view of an ammonia removal tank portion.

図1および図2に示すように、厨芥、あるいは下水汚泥などの有機性廃棄物は、前処理設備1において混合、粉砕された後、メタン発酵槽2に送られ、ここで後工程の処理負荷を軽減するために減容化されるとともに資源再利用の観点からメタンガスが回収される。回収されたメタンガスは、ガス精製設備3に送られ、発電などに利用される。一方、メタン発酵後の有機性廃棄物は、脱水設備4に送られて固液分離される。脱水設備4において固形分として分離された脱水ケーキは、焼却処理またはコンポスト化される。一方、排水(ろ過水)は、排水処理設備5に送られ、処理水は、河川などに放流される。   As shown in FIG. 1 and FIG. 2, organic waste such as soot or sewage sludge is mixed and pulverized in the pretreatment facility 1 and then sent to the methane fermentation tank 2, where the processing load of the post-process is here. In order to reduce the volume, methane gas is recovered from the viewpoint of resource reuse. The recovered methane gas is sent to the gas purification facility 3 and used for power generation and the like. On the other hand, the organic waste after methane fermentation is sent to the dehydration facility 4 and separated into solid and liquid. The dehydrated cake separated as a solid content in the dehydration equipment 4 is incinerated or composted. On the other hand, the waste water (filtered water) is sent to the waste water treatment facility 5, and the treated water is discharged into a river or the like.

メタン発酵槽2においてメタン発酵処理(嫌気性消化処理)された有機性廃棄物の一部は、アンモニア除去槽6に送られ、ここで有機性廃棄物に含まれるアンモニア態窒素の少なくとも一部が除去される。アンモニア態窒素の少なくとも一部が除去された有機性廃棄物は、メタン発酵槽2に戻される。   Part of the organic waste that has been subjected to methane fermentation treatment (anaerobic digestion treatment) in the methane fermentation tank 2 is sent to the ammonia removal tank 6, where at least a part of the ammonia nitrogen contained in the organic waste is contained. Removed. The organic waste from which at least a part of the ammonia nitrogen has been removed is returned to the methane fermentation tank 2.

有機性廃棄物に含まれるタンパク質などの窒素成分は、ほとんどがメタン発酵処理時にアンモニア態窒素に変化するため、それ以前に除去処理を行っても効果は著しく小さい。一方、同様の理由からアンモニア態窒素の除去処理をメタン発酵処理後に行うことはメタン発酵の阻害要因を取り除くことにならない。従って、メタン発酵と同時に並行してアンモニア態窒素を除去することにより、換言すれば、生成したアンモニア態窒素がメタン発酵菌の活動に対する許容濃度を超えて蓄積しないよう除去することにより、メタン発酵処理を円滑に進めることが可能となる。   Most of nitrogen components such as proteins contained in organic waste change to ammonia nitrogen during the methane fermentation treatment, so the effect is remarkably small even if the removal treatment is performed before that. On the other hand, for the same reason, the ammonia nitrogen removal treatment after the methane fermentation treatment does not remove the methane fermentation inhibition factor. Therefore, by removing ammonia nitrogen in parallel with methane fermentation, in other words, by removing so that the produced ammonia nitrogen does not accumulate beyond the allowable concentration for the activity of methane fermentation bacteria, Can be carried out smoothly.

メタン発酵処理およびアンモニア態窒素の除去処理に供する有機性廃棄物の固形物濃度は、5から30%の範囲内で行うのが好ましい。固形物濃度が5%未満では、高いメタン発酵効率を得ることができない。固形物濃度の上限を30%に限定した理由は、次の通りである。厨芥の場合、平均的な固形物濃度は20%程度であるが、水分を多く含む野菜、果実等の含有率が低い厨芥では固形物濃度は30%程度である。30%はこうした固形物濃度の高い厨芥に対しても希釈することなく処理可能な量である。固形物濃度が30%を超えると、(1)アンモニア除去槽における撹拌所要動力の増大、(2)廃棄物を加熱、冷却する際の熱交換の効率低下を招く。   The solid waste concentration of the organic waste used for the methane fermentation treatment and ammonia nitrogen removal treatment is preferably within a range of 5 to 30%. If the solid concentration is less than 5%, high methane fermentation efficiency cannot be obtained. The reason why the upper limit of the solid concentration is limited to 30% is as follows. In the case of persimmons, the average solid concentration is about 20%, but in persimmons with a low content of vegetables, fruits and the like containing a lot of water, the solid concentration is about 30%. 30% is an amount that can be processed without dilution even for such a high concentration of soot. When the solid concentration exceeds 30%, (1) the required power for stirring in the ammonia removal tank is increased, and (2) the efficiency of heat exchange when heating and cooling the waste is reduced.

メタン発酵槽2によるアンモニア態窒素の除去処理は、ストリッピング法で行うことが好ましい。アンモニア態窒素の除去処理には、生物脱窒法、塩素処理法、吸着法、晶析法など様々な方法があり、この発明においてもその手段は限定されないが、対象の固形物濃度が高く、それに伴って粘度が高いこと(数千cP以上)、またシンプルな設備で短時間に低コスト、小スペースで効率よく実施できる方法であることからストリッピング法が最適と言える。   The removal of ammonia nitrogen by the methane fermentation tank 2 is preferably performed by a stripping method. There are various methods for removing ammonia nitrogen, such as biological denitrification, chlorination, adsorption, and crystallization. The method is not limited in this invention as well, but the concentration of the target solid is high. The stripping method can be said to be optimal because it has a high viscosity (several thousand cP or more) and can be carried out efficiently with a simple equipment at a low cost in a short time and in a small space.

ストリッピング法による場合、空気、窒素ガスおよびメタン発酵処理にて生成したメタンを主成分とするガスの少なくとも1つを用いることが好ましい。これらのガスは、運転負荷を増大させないので好ましいが、安全なものであれば、上記ガスに限定されるものではない。   In the case of the stripping method, it is preferable to use at least one of air, nitrogen gas, and gas mainly composed of methane produced by methane fermentation treatment. These gases are preferable because they do not increase the operation load, but are not limited to the above gases as long as they are safe.

ストリッピング法によりアンモニア態窒素を除去処理するに際しては、下記式(1)で定義されるガス液比を20から1000の範囲内に維持することが好ましい。   When the ammonia nitrogen is removed by the stripping method, it is preferable to maintain the gas-liquid ratio defined by the following formula (1) within the range of 20 to 1000.

ガス液比=G/L=G(V/t) ---(1)
但し、(1)式において、
G:ガス流量[m3/h]、
L:有機性廃棄物量[m3/h]
V:処理する有機性廃棄物体積[m3]、
t:処理時間[h]
である。
Gas-liquid ratio = G / L = G (V / t) --- (1)
However, in equation (1)
G: Gas flow rate [m 3 / h],
L: Amount of organic waste [m 3 / h]
V: Organic waste volume to be treated [m 3 ],
t: Processing time [h]
It is.

ガス液比を上記範囲内に限定するのは、ガス液比が20未満の場合には、アンモニア態窒素を効率良く除去することは難しく、一方、ガス液比が1000を超えると除去効率は高くなるが大型ブロワーが必要となり運転負荷は重くなり、同時にアンモニア態窒素に同伴する水または蒸気量が増えて、ガス処理の負荷が増大するからである。   The reason why the gas-liquid ratio is limited to the above range is that when the gas-liquid ratio is less than 20, it is difficult to efficiently remove ammonia nitrogen, while when the gas-liquid ratio exceeds 1000, the removal efficiency is high. However, a large-sized blower is required and the operation load becomes heavy. At the same time, the amount of water or steam accompanying the ammonia nitrogen increases, and the load of gas treatment increases.

ストリッピング処理は、30から90℃の範囲内の温度下で行うことが好ましい。これは、ストリッピング処理温度が30℃未満であると、気液平衡の制約から液相のアンモニア態窒素を効率よく気相に移動させることは難しく、一方、ストリッピング温度が90℃を超えると除去効率は高くなるが水の蒸気圧も高くなりアンモニア態窒素に同伴する水または蒸気量が増大するからである。   The stripping treatment is preferably performed at a temperature in the range of 30 to 90 ° C. This is because when the stripping temperature is less than 30 ° C, it is difficult to efficiently transfer the liquid phase ammonia nitrogen to the gas phase due to the limitation of gas-liquid equilibrium, while when the stripping temperature exceeds 90 ° C. This is because the removal efficiency is increased, but the vapor pressure of water is also increased, and the amount of water or vapor accompanying the ammonia nitrogen is increased.

ストリッピング処理は、−0.03から0.03MPaGの範囲内の圧力下で行うことが望ましい。これは、ストリッピング処理圧力が−0.03MPaG未満の場合には、アンモニア態窒素の除去効率は顕著に高くなるが水の蒸発飛散も増大させることになり、一方、ストリッピング処理圧力が0.03MPaGを超える場合には、アンモニア態窒素の分離速度が小さいため長い処理時間が必要となるからである。   The stripping treatment is desirably performed under a pressure in the range of -0.03 to 0.03 MPaG. This is because when the stripping treatment pressure is less than -0.03 MPaG, the ammonia nitrogen removal efficiency is remarkably increased, but the evaporation and scattering of water is also increased. This is because when it exceeds 03 MPaG, a long treatment time is required because the separation rate of ammonia nitrogen is small.

ストリッピング処理に際して、有機性廃棄物にアルカリを添加して、有機性廃棄物のpHを7から10の範囲内に調整することが望ましい。これは、液相におけるアンモニア態窒素は、その存在形態の殆どがフリーのアンモニアであるためストリッピングによる分離除去が容易となるからである。しかしながら、pHが7未満であると解離平衡の制約から液相におけるアンモニア態窒素は、アンモニウムイオン形態としての存在比が高いため、除去効率は著しく低下する。一方、pHを10を超えて高くしてもアンモニア態窒素の存在形態に大きな変化はなく、薬剤を大量に費やすのみである。   In the stripping treatment, it is desirable to adjust the pH of the organic waste within the range of 7 to 10 by adding alkali to the organic waste. This is because ammonia nitrogen in the liquid phase is easy to separate and remove by stripping because most of its existence form is free ammonia. However, when the pH is less than 7, the nitrogen nitrogen in the liquid phase has a high abundance ratio as an ammonium ion form due to the restriction of dissociation equilibrium, and thus the removal efficiency is significantly lowered. On the other hand, even if the pH is increased beyond 10, there is no significant change in the form of ammonia nitrogen, and only a large amount of drug is consumed.

アンモニア態窒素の除去処理の際に発生するアンモニア態窒素と水または蒸気を含む排ガスは、コンデンサー7により60℃以下に冷却処理され、気液分離器8によって処理ガスと処理液とに分離される。回収された処理液の少なくとも一部は、アンモニア除去槽6に戻される。これによって、ストリッピングの進行に伴い処理を施す有機性廃棄物の含水率の低下、粘度の増大を抑えて除去効率を高く維持することが可能となる。なお、冷却処理温度は、アンモニア態窒素の除去処理温度、すなわちストリッピング温度より低くするとより効果的である。分離された処理ガス(アンモニアキャリアガス)は、例えば、硫酸に吸収させて硫安として回収される。   The exhaust gas containing ammonia nitrogen and water or steam generated during the removal process of ammonia nitrogen is cooled to 60 ° C. or less by the condenser 7 and separated into a processing gas and a processing liquid by the gas-liquid separator 8. . At least a part of the collected processing liquid is returned to the ammonia removal tank 6. This makes it possible to maintain a high removal efficiency by suppressing a decrease in the moisture content and an increase in viscosity of the organic waste to be treated as the stripping proceeds. Note that it is more effective that the cooling temperature is lower than the ammonia nitrogen removal temperature, that is, the stripping temperature. The separated processing gas (ammonia carrier gas) is, for example, absorbed into sulfuric acid and recovered as ammonium sulfate.

ストリッピング処理に際して、有機性廃棄物にアルカリを添加する代わりに、回収された上記処理液にアルカリまたはアルカリ水溶液を添加し、この処理液をアンモニア除去槽6に戻してストリッピング処理時のpH調整を行っても良い。処理液にアルカリを添加することにより処理液自体のpHが高くなり、排ガス中のアンモニア態窒素の溶解を抑制できる。すなわち、冷却分離においてアンモニア態窒素と同伴水の分離効率を著しく向上させることができる。さらに、排ガスは、少量といえども硫化水素を含んでいるが、冷却分離工程においてアルカリを添加した処理水でこれを捕集することができるため、処理ガスとしてのアンモニア態窒素の処理負荷を著しく軽減することが可能となる。   In the stripping treatment, instead of adding alkali to the organic waste, alkali or an alkaline aqueous solution is added to the recovered treatment liquid, and the treatment liquid is returned to the ammonia removal tank 6 to adjust the pH during the stripping treatment. May be performed. By adding alkali to the treatment liquid, the pH of the treatment liquid itself is increased, and dissolution of ammonia nitrogen in the exhaust gas can be suppressed. That is, the separation efficiency of ammonia nitrogen and accompanying water can be significantly improved in the cooling separation. Furthermore, although the exhaust gas contains hydrogen sulfide even in a small amount, it can be collected with treated water to which alkali is added in the cooling separation process, so that the treatment load of ammonia nitrogen as the treatment gas is remarkably increased. It becomes possible to reduce.

メタン発酵を効率良く行うために好ましいアンモニア態窒素濃度は、3000mg/L以下、さらに好ましくは2500mg/L以下である。特に、メタン発酵を50℃以上の高温で行う場合は、アンモニア態窒素濃度を2000mg/L以下に維持することが望ましい。   In order to perform methane fermentation efficiently, the preferable ammonia nitrogen concentration is 3000 mg / L or less, more preferably 2500 mg / L or less. In particular, when methane fermentation is performed at a high temperature of 50 ° C. or higher, it is desirable to maintain the ammonia nitrogen concentration at 2000 mg / L or lower.

固形物濃度が高く粘性の高い有機性廃棄物のアンモニア態窒素を効率良く除去する上で、ストリッピング槽内での有機性廃棄物(処理汚泥)の撹拌、即ち、有機性廃棄物(処理汚泥)中のキャリアガスの分散、および有機性廃棄物の気液界面を更新させることも高い効果を生み出す。撹拌機9の撹拌方式に特に制限はなく水平撹拌、垂直撹拌の何れでも良い。また、撹拌翼は、パドルタイプ、タービンタイプ、スパイラルタイプ等を使用することができる。撹拌翼の数量、大きさ、さらには回転数についてもストリッピング槽内の有機性廃棄物を適度に混合できるものであれば任意に選定できるが、例えば、固形物濃度および粘度が著しく高い有機性廃棄物を処理する場合においては、毎分数回転から数十回転の低速・高トルク型のものを使用することが望ましい。   Agitation of organic waste (treated sludge) in the stripping tank, that is, organic waste (treated sludge), in order to efficiently remove ammonia nitrogen from organic waste with high solids and high viscosity ) Dispersion of the carrier gas in the inside and renewing the gas-liquid interface of the organic waste also produces a high effect. There is no restriction | limiting in particular in the stirring system of the stirrer 9, Either horizontal stirring or vertical stirring may be sufficient. Moreover, a paddle type, a turbine type, a spiral type etc. can be used for a stirring blade. The number, size, and rotation speed of the stirring blade can be arbitrarily selected as long as the organic waste in the stripping tank can be mixed appropriately. For example, the organic matter has a remarkably high solid concentration and viscosity. When processing waste, it is desirable to use a low-speed, high-torque type of several to several tens of revolutions per minute.

有機性廃棄物の処理量:50m3/日、メタン発酵処理時間:20日、アンモニア除去処理する廃棄物量:50m3/日とした場合、図3に示すように、アンモニア除去処理された有機性廃棄物をメタン発酵に直接戻すこの発明では、メタン発酵槽の有効容積は1000m3で済むのに対して、図4に示すように、未発酵の有機性廃棄物と混合してメタン発酵槽に戻す、上述した従来技術では、倍の2000m3もの有効容積を要する。このことから、この発明によれば、固形物を含有する有機性廃棄物をメタン発酵処理するプロセスの簡素化およびメタン発酵槽の小型化を図ることができることが分かる。 Assuming that the amount of organic waste treated is 50 m 3 / day, the methane fermentation treatment time is 20 days, and the amount of waste to be removed from ammonia is 50 m 3 / day, as shown in FIG. In this invention, which returns waste directly to methane fermentation, the effective volume of the methane fermenter is only 1000 m 3 , whereas it is mixed with unfermented organic waste as shown in FIG. Returning, the above-described prior art requires an effective volume that is twice as large as 2000 m 3 . From this, according to this invention, it turns out that simplification of the process which carries out the methane fermentation process of the organic waste containing a solid substance, and size reduction of a methane fermenter can be achieved.

以下に、有機性廃棄物として厨芥を例に挙げ、この発明をさらに詳細に説明する。なお、有機性廃棄物としては、厨芥以外に下水処理汚泥、屎尿、その他のアンモニア態窒素を含有する有機性廃棄物を含む。   Hereinafter, the present invention will be described in more detail with reference to an example of organic waste. The organic waste includes organic waste containing sewage treatment sludge, manure, and other ammonia nitrogen in addition to soot.

アンモニア態窒素を5000mg/L含有する厨芥100重量部を、パドル型の二枚翼を有する撹拌機を具備した容器に装填し、常圧下、温度80℃において空気を用いてストリッピング試験を行った。使用した厨芥の固形物濃度は25%であり、比重はほぼ1.0であった。排ガスはコンデンサーで40℃に冷却し、気液分離器中で分離した処理液に苛性ソーダを添加し、これをストリッピング槽に循環してストリッピング槽内の有機性廃棄物をpH=8.0にコントロールした。上記式(1)に示すガス液比が450となるよう空気を吹き込み、この状態を150分間維持した。そして、終了後の厨芥を採取しアンモニア態窒素濃度を測定した。この結果、アンモニア態窒素濃度は704mg/Lであり、アンモニア態窒素除去率は86%であった。   100 parts by weight of soot containing 5000 mg / L of ammonia nitrogen was charged into a container equipped with a stirrer having two paddle blades, and a stripping test was performed using air at a temperature of 80 ° C. under normal pressure. . The solid matter concentration of the soot used was 25%, and the specific gravity was approximately 1.0. The exhaust gas is cooled to 40 ° C. with a condenser, caustic soda is added to the treatment liquid separated in the gas-liquid separator, and the organic waste in the stripping tank is circulated through the stripping tank to pH = 8.0. Controlled. Air was blown so that the gas-liquid ratio shown in the above formula (1) was 450, and this state was maintained for 150 minutes. And the soot after completion | finish was extract | collected and the ammonia nitrogen concentration was measured. As a result, the ammonia nitrogen concentration was 704 mg / L, and the ammonia nitrogen removal rate was 86%.

比較例として、実施例1と同様のストリッピング試験を排ガスをコンデンサーで40℃に冷却し、気液分離器中で分離した処理液に苛性ソーダを添加せず、ストリッピング槽に循環しながら実施した。なお、ストリッピング槽内の有機性廃棄物のpHコントロールは、ストリッピング槽に直接苛性ソーダ水溶液を添加しながら行った。その結果150分後のストリッピング槽内の有機性廃棄物のアンモニア態窒素濃度は1513mg/Lであり、アンモニア態窒素の除去率は70%であり、この発明の方法に比べてアンモニア態窒素の除去率が低かった。   As a comparative example, the same stripping test as in Example 1 was performed while cooling the exhaust gas to 40 ° C. with a condenser and circulating it in the stripping tank without adding caustic soda to the treatment liquid separated in the gas-liquid separator. . In addition, pH control of the organic waste in a stripping tank was performed while adding the caustic soda aqueous solution directly to a stripping tank. As a result, the ammonia nitrogen concentration of the organic waste in the stripping tank after 150 minutes was 1513 mg / L, and the removal rate of ammonia nitrogen was 70%. Compared with the method of the present invention, the ammonia nitrogen concentration The removal rate was low.

実施例と同様のストリッピング試験を温度70℃にて実施した。その結果、150分後のアンモニア態窒素濃度は1593mg/Lであり、アンモニア態窒素の除去率は68%であった。   A stripping test similar to that of the example was performed at a temperature of 70 ° C. As a result, the ammonia nitrogen concentration after 150 minutes was 1593 mg / L, and the removal rate of ammonia nitrogen was 68%.

実施例2と同様のストリッピング試験を圧力−0.02MPaGで実施した。その結果120分後のアンモニア態窒素濃度は921mg/Lであり、アンモニア態窒素の除去率は82%であった。   A stripping test similar to that of Example 2 was performed at a pressure of -0.02 MPaG. As a result, the ammonia nitrogen concentration after 120 minutes was 921 mg / L, and the removal rate of ammonia nitrogen was 82%.

実施例1と同様のストリッピング試験をpH7、8および9に維持しながら実施した。その結果、60分後のアンモニア態窒素濃度はpH=7、8および9に対してそれぞれ4483mg/L、2093mg/L、および1391mg/Lであり、アンモニア態窒素の除去率はそれぞれ10%、58%、および72%であった。   The same stripping test as in Example 1 was carried out while maintaining pH 7, 8 and 9. As a result, the ammonia nitrogen concentration after 60 minutes was 4483 mg / L, 2093 mg / L, and 1391 mg / L for pH = 7, 8, and 9, respectively, and the removal rate of ammonia nitrogen was 10% and 58%, respectively. %, And 72%.

この発明の有機性廃棄物の処理装置を示すブロック図である。It is a block diagram which shows the processing apparatus of the organic waste of this invention. アンモニア除去槽部分の詳細図である。It is detail drawing of an ammonia removal tank part. この発明による有機性廃棄物の処理量を示す説明図である。It is explanatory drawing which shows the processing amount of the organic waste by this invention. 従来技術による有機性廃棄物の処理量を示す説明図である。It is explanatory drawing which shows the processing amount of the organic waste by a prior art.

符号の説明Explanation of symbols

1:前処理設備
2:メタン発酵槽
3:ガス精製設備
4:脱水設備
5:排水処理設備
6:アンモニア除去槽
7:コンデンサー
8:気液分離器
9:撹拌機
1: Pretreatment equipment 2: Methane fermentation tank 3: Gas purification equipment 4: Dewatering equipment 5: Wastewater treatment equipment 6: Ammonia removal tank 7: Condenser 8: Gas-liquid separator 9: Stirrer

Claims (11)

有機性廃棄物の前処理設備と、前処理された有機性廃棄物を減容化するとともにメタンガスを回収するメタン発酵槽と、前記メタン発酵槽によりメタン発酵した後の有機性廃棄物を固液分離する脱水設備と、前記脱水設備により分離した排水を処理する排水処理設備とを備えた、有機性廃棄物の処理装置において、
前記メタン発酵槽で発生したアンモニアを除去するアンモニア除去槽が設置され、前記アンモニア除去槽によりアンモニア除去処理された有機性廃棄物は、前記メタン発酵槽に直接、戻されることをことを特徴とする、有機性廃棄物の処理装置。
Organic waste pretreatment equipment, methane fermentation tank for reducing the volume of pretreated organic waste and collecting methane gas, and organic waste after methane fermentation by the methane fermentation tank In an organic waste treatment apparatus comprising a dehydration facility for separation and a wastewater treatment facility for treating wastewater separated by the dehydration facility,
An ammonia removal tank for removing ammonia generated in the methane fermentation tank is installed, and the organic waste that has been subjected to the ammonia removal treatment by the ammonia removal tank is directly returned to the methane fermentation tank. , Organic waste treatment equipment.
アンモニア態窒素を含有または生成し、かつ、固形物を含有する有機性廃棄物をメタン発酵槽においてメタン発酵処理する、有機性廃棄物の処理方法において、
メタン発酵処理を施した有機性廃棄物に含まれるアンモニア態窒素をアンモニア除去槽において除去し、さらに、アンモニア除去処理した有機性廃棄物を、前記メタン発酵槽に直接、戻すことを特徴とする、有機性廃棄物の処理方法。
In a method for treating organic waste, in which organic waste containing or producing ammonia nitrogen and containing solid matter is subjected to methane fermentation in a methane fermentation tank,
Ammonia nitrogen contained in the organic waste subjected to the methane fermentation treatment is removed in the ammonia removal tank, and the organic waste subjected to the ammonia removal treatment is directly returned to the methane fermentation tank. Organic waste disposal methods.
メタン発酵処理およびアンモニア態窒素の除去処理に供する有機性廃棄物の固形物濃度は、5から30%の範囲内であることを特徴とする、請求項2記載の、有機性廃棄物の処理方法。   The method for treating organic waste according to claim 2, wherein the solid waste concentration of the organic waste subjected to methane fermentation treatment and ammonia nitrogen removal treatment is in the range of 5 to 30%. . メタン発酵処理およびアンモニア態窒素の除去処理の方法がストリッピング法であることを特徴とする、請求項2または3記載の、有機性廃棄物の処理方法。   The method of treating organic waste according to claim 2 or 3, wherein the method of methane fermentation treatment and ammonia nitrogen removal treatment is a stripping method. ストリッピングによるアンモニア態窒素の除去処理において、空気、窒素およびメタン発酵処理で生成したガスの少なくとも1つを用いることを特徴とする、請求項4記載の、有機物廃棄物の処理方法。   5. The method for treating organic waste according to claim 4, wherein at least one of air, nitrogen, and a gas generated by methane fermentation is used in the removal of ammonia nitrogen by stripping. ストリッピングによるアンモニア態窒素の除去処理を、下記式(1)で定義されるガス液比が20から1000の範囲内に維持されるようにして行うことを特徴とする、請求項4または5記載の、有機性廃棄物の処理方法。
ガス液比=G/L=G(V/t) ---(1)
但し、(1)式において、
G:ガス流量[m3/h]、
L:有機性廃棄物量[m3/h]、
V:処理する有機性廃棄物体積[m3]、
t:処理時間[h]
である。
6. The ammonia nitrogen removal treatment by stripping is performed such that the gas-liquid ratio defined by the following formula (1) is maintained within a range of 20 to 1000. Of organic waste.
Gas-liquid ratio = G / L = G (V / t) --- (1)
However, in equation (1):
G: Gas flow rate [m 3 / h],
L: amount of organic waste [m 3 / h],
V: Organic waste volume to be treated [m 3 ],
t: Processing time [h]
It is.
ストリッピングによるアンモニア態窒素の除去処理を、30から90℃の温度範囲下で行うことを特徴とする、請求項4から6の何れか1つに記載の、有機性廃棄物の処理方法。   The method for treating organic waste according to any one of claims 4 to 6, wherein the removal of ammonia nitrogen by stripping is performed in a temperature range of 30 to 90 ° C. ストリッピングによるアンモニア態窒素の除去処理を、−0.03から0.03MPaGの圧力範囲下で行うことを特徴とする、請求項4から7の何れか1つに記載の、有機性廃棄物の処理方法。   The removal of ammonia nitrogen by stripping is performed under a pressure range of -0.03 to 0.03 MPaG, The organic waste according to any one of claims 4 to 7, Processing method. ストリッピングによるアンモニア態窒素の除去処理時にアルカリを添加して有機性廃棄物のpHを7から10の範囲内に調整することを特徴とする、請求項4から8の何れか1つに記載の、有機性廃棄物の処理方法。   The alkali waste is added during the removal treatment of ammonia nitrogen by stripping to adjust the pH of the organic waste within a range of 7 to 10, according to any one of claims 4 to 8. , Organic waste disposal methods. ストリッピングによるアンモニア態窒素の除去処理時にアルカリを添加して有機性廃棄物のpHを7から10の範囲内に調整するとともに、アンモニア態窒素の除去処理において発生する排ガスを60℃以下に冷却処理した後、処理ガスと処理液とに分離し、回収した処理液をアンモニア除去槽に戻すことを特徴とする、請求項4から8の何れか1つに記載の、有機性廃棄物の処理方法。   During the removal of ammonia nitrogen by stripping, alkali is added to adjust the pH of the organic waste within the range of 7 to 10, and the exhaust gas generated during the removal of ammonia nitrogen is cooled to 60 ° C or lower. The organic waste processing method according to any one of claims 4 to 8, wherein the processing liquid is separated into a processing gas and a processing liquid, and the recovered processing liquid is returned to the ammonia removal tank. . ストリッピングによるアンモニア態窒素の除去処理において発生する排ガスを60℃以下に冷却処理した後、処理ガスと処理液とに分離し、回収した処理液にアルカリを添加し、アンモニア除去槽に戻すことを特徴とする、請求項4から8の何れか1つに記載の、有機性廃棄物の処理方法。   After the exhaust gas generated in the removal process of ammonia nitrogen by stripping is cooled to 60 ° C. or lower, it is separated into a processing gas and a processing liquid, an alkali is added to the recovered processing liquid, and the process is returned to the ammonia removal tank. The method for treating organic waste according to any one of claims 4 to 8, characterized in that it is characterized in that
JP2004053772A 2004-02-27 2004-02-27 Treatment apparatus and treatment method for organic waste Pending JP2005238151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053772A JP2005238151A (en) 2004-02-27 2004-02-27 Treatment apparatus and treatment method for organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053772A JP2005238151A (en) 2004-02-27 2004-02-27 Treatment apparatus and treatment method for organic waste

Publications (1)

Publication Number Publication Date
JP2005238151A true JP2005238151A (en) 2005-09-08

Family

ID=35020447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053772A Pending JP2005238151A (en) 2004-02-27 2004-02-27 Treatment apparatus and treatment method for organic waste

Country Status (1)

Country Link
JP (1) JP2005238151A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112904A (en) * 2007-11-02 2009-05-28 Osaka Gas Co Ltd Methane fermentation system for treating waste
WO2009119120A1 (en) * 2008-03-28 2009-10-01 国立大学法人帯広畜産大学 Methane fermentation system, feed production apparatus and feed production method
JP2010036161A (en) * 2008-08-07 2010-02-18 Osaka Gas Co Ltd Organic waste treatment method
JP2010142691A (en) * 2008-12-16 2010-07-01 Osaka Gas Co Ltd Method and apparatus for treatment of organic waste by combined methane fermentation
CN106241928A (en) * 2016-08-15 2016-12-21 陕西华源矿业有限责任公司 A kind of high ammonia-nitrogen wastewater processes technique and system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112904A (en) * 2007-11-02 2009-05-28 Osaka Gas Co Ltd Methane fermentation system for treating waste
WO2009119120A1 (en) * 2008-03-28 2009-10-01 国立大学法人帯広畜産大学 Methane fermentation system, feed production apparatus and feed production method
JPWO2009119120A1 (en) * 2008-03-28 2011-07-21 国立大学法人帯広畜産大学 Methane fermentation system, feed production apparatus and feed production method
JP2010036161A (en) * 2008-08-07 2010-02-18 Osaka Gas Co Ltd Organic waste treatment method
JP2010142691A (en) * 2008-12-16 2010-07-01 Osaka Gas Co Ltd Method and apparatus for treatment of organic waste by combined methane fermentation
CN106241928A (en) * 2016-08-15 2016-12-21 陕西华源矿业有限责任公司 A kind of high ammonia-nitrogen wastewater processes technique and system

Similar Documents

Publication Publication Date Title
CN112474707A (en) Efficient single-stage washing method and harmless treatment process for fly ash
JP2005238103A (en) Treatment method for organic waste
JP6649769B2 (en) Organic matter processing system and organic matter processing method
JP5726576B2 (en) Method and apparatus for treating organic waste
CN112142150A (en) Device and method for synchronously recovering nitrogen and phosphorus in biogas slurry with high efficiency and low consumption
JP5797150B2 (en) Magnesium ammonium phosphate production suppression system and methane fermentation system
JP4864339B2 (en) Organic waste processing apparatus and processing method
JP2005238151A (en) Treatment apparatus and treatment method for organic waste
WO2024060693A1 (en) Coal chemical wastewater treatment method and system
JP4409928B2 (en) Organic waste treatment methods
JP2006281074A (en) Organic sludge treatment method
JP3600815B2 (en) Anaerobic fermentation system for organic waste
JP2017148777A (en) Method and device for methane fermentation
JP3970163B2 (en) Organic waste treatment method and apparatus
JP2009207944A (en) Method for removing hydrogen sulfide from biogas
JP2004034000A (en) Sludge treatment method and apparatus for reducing generation of excess sludge
JP2002113494A (en) Method and apparatus for treating livestock waste
CN110372144B (en) Leather factory sewage and sludge cleaning treatment method and device
JP2004024929A (en) Methane fermentation method and system for the same
JP5235643B2 (en) Method and apparatus for treating organic waste by combined methane fermentation
JP2010269223A (en) Method and apparatus for treating organic waste
Sun et al. Current advances in coal chemical wastewater treatment technology
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge
JP4010733B2 (en) Organic wastewater treatment method and apparatus
JP2003211194A (en) Methane fermentation method and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105