JPH11147098A - Anaerobic treatment apparatus - Google Patents
Anaerobic treatment apparatusInfo
- Publication number
- JPH11147098A JPH11147098A JP31721497A JP31721497A JPH11147098A JP H11147098 A JPH11147098 A JP H11147098A JP 31721497 A JP31721497 A JP 31721497A JP 31721497 A JP31721497 A JP 31721497A JP H11147098 A JPH11147098 A JP H11147098A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- tank
- anaerobic
- solid
- liquid separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y02W10/12—
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は嫌気性処理装置に係
り、特に、嫌気性処理の固液分離手段として膜浸漬型固
液分離槽を適用した嫌気性処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anaerobic treatment apparatus, and more particularly to an anaerobic treatment apparatus using a membrane immersion type solid-liquid separation tank as a solid-liquid separation means for anaerobic treatment.
【0002】[0002]
【従来の技術】有機性廃水の嫌気性処理においては、嫌
気性反応槽内に保持されている嫌気性汚泥量により負荷
量をはじめとする処理性能が左右される。そこで、汚泥
を高濃度で保持し、高負荷で高効率な処理を行う技術と
して、汚泥をグラニュール状に増殖させるUASB(U
pflow Anaerobic Sludge Bl
anket;上向流嫌気性汚泥床)方式や、反応槽内の
流動担体や充填材の表面に汚泥を高濃度で付着させる流
動床方式又は固定床方式が開発され、実用化されてい
る。2. Description of the Related Art In the anaerobic treatment of organic wastewater, the amount of anaerobic sludge held in an anaerobic reaction tank affects the treatment performance including load. Therefore, as a technology for maintaining sludge at a high concentration and performing high-load and high-efficiency treatment, UASB (U.
pflow Anaerobic Sludge Bl
Aquet (upflow anaerobic sludge bed) system, fluidized bed system in which sludge adheres to the surface of a fluidized carrier or a filler in a reaction tank at a high concentration or fixed bed system has been developed and put into practical use.
【0003】しかし、嫌気性汚泥をグラニュール状に増
殖させたり、担体や充填材の表面に高濃度の汚泥を付着
増殖させるには、廃水性状のコントロールや負荷量の調
整を含め運転条件の維持管理に高度な技術が要求され
る。また、負荷や廃水量の変動により、グラニュール化
した汚泥や、担体又は充填材に付着した汚泥が解体ない
し剥離し、処理水中に流出するおそれもある。However, in order to grow anaerobic sludge in the form of granules or to attach and grow high-concentration sludge on the surface of carriers and fillers, it is necessary to maintain operating conditions including control of wastewater and adjustment of load. Advanced technology is required for management. Further, fluctuations in load and amount of wastewater may cause granulated sludge or sludge adhering to a carrier or a filler to be disassembled or separated, and may flow out into treated water.
【0004】従って、グラニュール状汚泥の形成や担体
又は充填材に付着する汚泥を用いずに、反応槽内に20
000mg/L以上の高濃度の汚泥量を分散浮遊状態で
保持できる技術が確立できるならば、運転管理は非常に
容易となり、高度な技術を要することなく、高負荷対応
型の嫌気性処理を行うことが可能となり、嫌気性処理の
適用分野を拡大することができる。[0004] Therefore, the formation of granular sludge and the use of sludge adhering to a carrier or a filler do not require storage of 20 sludge in the reaction tank.
If a technology capable of maintaining a high-concentration sludge amount of 000 mg / L or more in a dispersed and floating state can be established, operation management becomes very easy, and anaerobic treatment corresponding to a high load is performed without requiring advanced technology. And the field of application of anaerobic treatment can be expanded.
【0005】グラニュール状汚泥や担体又は充填材付着
汚泥を用いないで高濃度の汚泥を反応槽内に保持する手
段としては、反応槽外に沈降分離、浮上分離、遠心分離
などの固液分離手段を設け、反応液を固液分離し、分離
汚泥を反応槽に返送する方法があるが、これらの固液分
離手段は基本的に開放系であるため、消化ガスが発生し
ている嫌気性処理に適用し難い。Means for holding high-concentration sludge in a reaction tank without using granular sludge or sludge attached to a carrier or a filler include solid-liquid separation such as sedimentation separation, flotation separation, and centrifugation outside the reaction tank. There is a method of providing a means, separating the reaction liquid into solid and liquid, and returning the separated sludge to the reaction tank.However, since these solid and liquid separation means are basically open systems, anaerobic Difficult to apply to processing.
【0006】この問題を解決するものとして、膜を用い
た固液分離手段が考えられる。例えば、今日、活性汚泥
処理における固液分離には、曝気槽内や曝気槽外にMF
(精密濾過)膜、UF(限外濾過)膜を浸漬設置した膜
分離装置により、汚泥性状に係わらず高度な処理水を得
ることができると共に運転管理も容易な非常にコンパク
トな処理装置が開発され、実用化されつつある。As a solution to this problem, a solid-liquid separation means using a membrane can be considered. For example, today, solid-liquid separation in activated sludge treatment requires MF inside or outside the aeration tank.
(Microfiltration) membrane and UF (ultrafiltration) membrane are immersed and installed to develop a very compact water treatment system that can obtain highly treated water regardless of sludge properties and is easy to manage. It is being put to practical use.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、膜分離
装置では、膜の洗浄が不可欠であるため、膜分離装置を
嫌気性処理の固液分離手段として適用するためには、嫌
気性下において膜の汚染を防止すると共に、膜を効果的
に洗浄することができる処理装置ないし処理システムの
開発が必要となる。However, in the membrane separation apparatus, since cleaning of the membrane is indispensable, in order to apply the membrane separation apparatus as a solid-liquid separation means for anaerobic treatment, the membrane must be cleaned under anaerobic conditions. It is necessary to develop a processing apparatus or a processing system capable of preventing contamination and effectively cleaning the film.
【0008】本発明は上記従来の実情に鑑みてなされた
ものであって、嫌気性反応槽と膜浸漬型固液分離槽とを
組み合わせ、グラニュール状汚泥や担体又は充填材への
付着汚泥を用いることなく、嫌気性反応槽内に分散浮遊
状態の汚泥を20000mg/L以上の高濃度で保持す
ることにより、高負荷処理下での高度処理を可能とした
嫌気性処理装置であって、嫌気性下での膜表面の汚染を
低減させると共に、膜表面を効果的に洗浄することがで
きる嫌気性処理装置を提供することを目的とする。The present invention has been made in view of the above-mentioned conventional circumstances, and combines an anaerobic reaction tank and a membrane immersion type solid-liquid separation tank to remove granular sludge and sludge adhering to a carrier or a filler. An anaerobic treatment apparatus capable of performing advanced treatment under a high load treatment by holding sludge in a dispersed and suspended state in an anaerobic reaction tank at a high concentration of 20,000 mg / L or more without using it. It is an object of the present invention to provide an anaerobic treatment apparatus capable of reducing contamination of a film surface under anaerobic conditions and effectively cleaning the film surface.
【0009】[0009]
【課題を解決するための手段】本発明の嫌気性処理装置
は、嫌気性反応槽と分離膜が浸漬して設置された密閉型
の固液分離槽と嫌気性反応槽と固液分離槽との間を嫌気
性反応液を循環させる液循環路と嫌気性反応槽と固液分
離槽との間を嫌気性反応ガスを循環させるガス循環路と
嫌気性反応槽に設けられたガス排出管と固液分離槽に設
けられた排気口と固液分離槽内の液を嫌気性反応槽に移
送する移送管と固液分離槽に空気を供給する空気供給管
と固液分離槽に供給された嫌気性反応ガス及び空気を分
離膜の下方で放出する散気手段とを備えてなることを特
徴とする。An anaerobic treatment apparatus according to the present invention comprises a closed solid-liquid separation tank in which an anaerobic reaction tank and a separation membrane are immersed, an anaerobic reaction tank, and a solid-liquid separation tank. A liquid circulation path for circulating an anaerobic reaction liquid between the anaerobic reaction tank and a gas circulation path for circulating an anaerobic reaction gas between the anaerobic reaction tank and the solid-liquid separation tank, and a gas discharge pipe provided in the anaerobic reaction tank An exhaust port provided in the solid-liquid separation tank, a transfer pipe for transferring the liquid in the solid-liquid separation tank to the anaerobic reaction tank, an air supply pipe for supplying air to the solid-liquid separation tank, and a liquid supplied to the solid-liquid separation tank A diffusing means for discharging the anaerobic reaction gas and air below the separation membrane.
【0010】本発明の嫌気性処理装置では、原水は、嫌
気性反応槽において、嫌気性汚泥(嫌気性菌)の作用で
原水中の有機物が分解され、メタンガスと炭酸ガス(C
O2)が生成する。嫌気性反応液は膜を浸漬した固液分
離槽に導入され、汚泥と処理水とに分離される。[0010] In the anaerobic treatment apparatus of the present invention, the raw water is decomposed in the anaerobic reaction tank by the action of anaerobic sludge (anaerobic bacteria), and methane gas and carbon dioxide (C
O 2 ) is produced. The anaerobic reaction liquid is introduced into a solid-liquid separation tank in which the membrane is immersed, and separated into sludge and treated water.
【0011】このように固液分離手段として膜分離手段
を採用することにより、嫌気性反応槽内の嫌気性汚泥濃
度を20000mg/L以上の高濃度に保持することが
可能となり、その結果、高負荷高度処理が可能となる。
また、膜分離手段により、嫌気性汚泥の性状に関係なく
(汚泥が分散解体状態であっても)、汚泥が処理水と共
に流出する可能性は皆無となるため、汚泥性状に関する
煩雑な運転管理が不要となる。しかも、得られる処理水
がMF膜やUF膜の膜透過水であるため、SSを含まな
い高度な処理水を得ることができる。By employing the membrane separation means as the solid-liquid separation means, the anaerobic sludge concentration in the anaerobic reaction tank can be maintained at a high concentration of 20,000 mg / L or more. Load altitude processing becomes possible.
In addition, the membrane separation means eliminates the possibility of sludge flowing out with the treated water regardless of the properties of the anaerobic sludge (even if the sludge is in a dismantled state). It becomes unnecessary. Moreover, since the obtained treated water is the permeated water of the MF membrane and the UF membrane, it is possible to obtain advanced treated water containing no SS.
【0012】その上、本発明では、膜分離に当り、消化
ガスを散気できるため、嫌気性雰囲気を維持した状態で
膜面に蓄積する汚泥層を更新し、膜透過水量(フラック
ス)の低下を防止することができる。In addition, in the present invention, digestion gas can be diffused during membrane separation, so that the sludge layer that accumulates on the membrane surface while maintaining an anaerobic atmosphere is renewed, and the amount of permeated water (flux) decreases. Can be prevented.
【0013】また、薬品洗浄時には、空気を酸気するこ
とにより、洗浄水を攪拌して洗浄効果を高めることがで
きる。Further, at the time of chemical cleaning, the cleaning effect can be enhanced by stirring the cleaning water by oxidizing the air.
【0014】[0014]
【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0015】図1は本発明の嫌気性処理装置の実施の形
態を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the anaerobic treatment apparatus of the present invention.
【0016】図1において、1は嫌気性反応槽、2は膜
浸漬型固液分離槽で槽内に分離膜3が浸漬設置されてい
る。In FIG. 1, 1 is an anaerobic reaction tank, 2 is a membrane immersion type solid-liquid separation tank, and a separation membrane 3 is immersed in the tank.
【0017】嫌気性反応槽1は、浮遊状態の嫌気性細菌
を用いた浮遊型嫌気性反応槽であり、原水の導入配管1
1と嫌気性処理で発生した嫌気性反応ガス(消化ガス)
の排出配管12を備える。The anaerobic reaction tank 1 is a floating anaerobic reaction tank using anaerobic bacteria in a floating state.
1 and anaerobic reaction gas generated by anaerobic treatment (digestion gas)
Is provided.
【0018】膜浸漬型固液分離槽2は、密閉下において
嫌気性反応槽1からの槽内汚泥混合液(嫌気性反応液)
を移送して循環させ、槽内に浸漬設置したMF膜又はU
F膜等の分離膜3により固液分離を行い、処理水を処理
水ポンプP1で吸引して配管13より抜き出すものであ
り、槽底部の分離膜3の下方には散気管4が設置されて
いる。この散気管4からは、散気ブロワBにより、嫌気
性反応槽1内の消化ガス又は空気を散気することができ
るように、嫌気性反応槽1からの消化ガス導入配管14
と空気導入配管15が接続されている。また、膜浸漬型
固液分離槽2の上部には、散気した消化ガスを嫌気性反
応槽1に返送する返送配管16及び排気用配管17が設
けられている。The membrane immersion type solid-liquid separation tank 2 is a sealed mixed liquid (anaerobic reaction liquid) from the anaerobic reaction tank 1 in a closed state.
Is transferred and circulated, and the MF membrane or U immersed and installed in the tank
Subjected to solid-liquid separation by the separation membrane 3 F film or the like, which was aspirated treated water in the treated water pump P 1 extracted from the pipe 13, below the separation membrane 3 of the tank bottom is installed diffusing tubes 4 ing. From the air diffuser 4, the digestion gas introduction pipe 14 from the anaerobic reaction tank 1 is diffused by the diffusion blower B so that the digestion gas or air in the anaerobic reaction tank 1 can be diffused.
And the air introduction pipe 15 are connected. In addition, a return pipe 16 and an exhaust pipe 17 for returning the scattered digested gas to the anaerobic reaction tank 1 are provided above the membrane immersion type solid-liquid separation tank 2.
【0019】嫌気性反応槽1の槽内液は循環ポンプP2
を備える配管18より膜浸漬型固液分離槽2に導入され
て固液分離された後、配管19より嫌気性反応槽1に返
送される。また、分離膜3の薬品洗浄時に膜浸漬型固液
分離槽2内の汚泥混合液は、膜浸漬型固液分離槽2の底
部に設けられた移送配管20及び移送ポンプP3により
嫌気性反応槽1に移送される。The liquid in the anaerobic reaction tank 1 is a circulation pump P 2
Is introduced into the membrane immersion type solid-liquid separation tank 2 through a pipe 18 provided with a solid-liquid separation, and then returned to the anaerobic reaction tank 1 through a pipe 19. Moreover, the sludge mixture of the separation membrane in the membrane submerged solid-liquid separation tank 2 during chemical cleaning of 3 anaerobic reactor by a transfer pipe 20 and transfer pump P 3 provided at the bottom of the membrane submerged solid-liquid separation tank 2 Transferred to tank 1.
【0020】5は分離膜3の薬品洗浄のための薬剤貯槽
であり、洗浄薬剤は薬注ポンプP4を備える配管21よ
り膜浸漬型固液分離槽2に供給され、洗浄廃液は配管2
2より系外へ排出される。なお、V1,V2,V3,V4,
V5,V6,V7,V8,V9はバルブである。Reference numeral 5 denotes a chemical storage tank for chemical cleaning of the separation membrane 3. The cleaning chemical is supplied to the membrane immersion type solid-liquid separation tank 2 from a pipe 21 provided with a chemical injection pump P 4 , and the cleaning waste liquid is supplied to the pipe 2.
It is discharged out of the system from 2. Note that V 1 , V 2 , V 3 , V 4 ,
V 5, V 6, V 7 , V 8, V 9 are valves.
【0021】次に、この嫌気性処理装置の運転方法を説
明する。Next, an operation method of the anaerobic treatment device will be described.
【0022】[通常運転時:バルブV1,V2,V4,V5
開,バルブV3,V6,V7,V8,V9閉]原水を配管1
1より嫌気性反応槽1に導入すると共に、嫌気性反応槽
1から循環ポンプP2で嫌気性反応槽内混合液(嫌気性
反応液)を膜浸漬型固液分離槽2に送り、嫌気性反応液
を嫌気性反応槽1,配管18,膜浸漬型固液分離槽2及
び配管19に循環させる。この循環液量が少ないと、膜
分離により汚泥濃度が高くなり過ぎるため、所望の汚泥
濃度が得られるように、循環液量を適宜設定する。通常
の場合、この循環液量は原水流入量の2倍以上、特に4
倍以上、とりわけ4〜5倍とするのが好ましい。[Normal operation: valves V 1 , V 2 , V 4 , V 5
Open, valve V 3, V 6, V 7 , V 8, V 9 closed] raw water piping 1
It is introduced into the anaerobic reactor 1 than 1, feed in the circulating pump P 2 from the anaerobic reactor 1 anaerobic reactor mixture (anaerobic reaction) to the membrane submerged solid-liquid separation tank 2, the anaerobic The reaction solution is circulated through the anaerobic reaction tank 1, the pipe 18, the membrane immersion type solid-liquid separation tank 2, and the pipe 19. If the amount of the circulating liquid is small, the sludge concentration becomes too high due to membrane separation. Therefore, the amount of the circulating liquid is appropriately set so as to obtain a desired sludge concentration. Normally, this circulating fluid volume is more than twice the raw water inflow volume, especially 4 times.
It is preferably at least two times, especially 4 to 5 times.
【0023】膜浸漬型固液分離槽2内では、分離膜3に
より嫌気性反応液を固液分離し、膜透過液を処理水ポン
プP1で吸引し配管13より処理水として系外へ抜き出
す。In the membrane immersion type solid-liquid separation tank 2, the anaerobic reaction liquid is separated into solid and liquid by the separation membrane 3, the permeated liquid is sucked by the treatment water pump P 1 , and is withdrawn from the pipe 13 as treatment water out of the system. .
【0024】この膜浸漬型固液分離槽2における膜分離
処理の条件としては、例えば、分離膜3として分離性能
が0.1μm付近の中空糸状MF膜を使用した場合、処
理水ポンプP1の吸引圧力(膜の原水側と透過水側との
圧力差)は50KPa以内であることが好ましく、膜の
透過水量(フラックス)としては、0.3〜0.9m3
/m2/dayが適当である。フラックスが過度に大き
いと、膜の目詰りの進行が速く、早期に膜の圧力損失が
増大し、逆に過度に小さいと得られる処理水量が少な
く、処理効率が低下し、好ましくない。[0024] As the conditions for the membrane separation in the membrane submerged solid-liquid separation tank 2, for example, if the separation performance as a separation membrane 3 was used hollow fiber MF membranes around 0.1 [mu] m, the treated water pump P 1 The suction pressure (pressure difference between the raw water side and the permeated water side of the membrane) is preferably within 50 KPa, and the permeated water amount (flux) of the membrane is 0.3 to 0.9 m 3.
/ M 2 / day is appropriate. If the flux is excessively large, clogging of the membrane proceeds rapidly, and the pressure loss of the membrane increases early. On the other hand, if the flux is excessively small, the amount of treated water obtained is small, and the treatment efficiency decreases, which is not preferable.
【0025】この処理水の吸引時には、嫌気性反応槽1
からの消化ガスを配管14より抜き出し、散気ブロワB
を用いて膜浸漬型固液分離槽2の底部の散気管4から散
気し、散気排ガスは配管16より嫌気性反応槽1に戻
す。During the suction of the treated water, the anaerobic reaction tank 1
Gas from the pipe 14 and diffuser blower B
The gas is diffused from the diffusion pipe 4 at the bottom of the membrane-immersion type solid-liquid separation tank 2, and the diffused exhaust gas is returned to the anaerobic reaction tank 1 through the pipe 16.
【0026】このように消化ガスを散気することによ
り、膜浸漬型固液分離槽2内に浸漬配置した分離膜3の
膜表面の汚染を低減し、膜の圧力損失の増加によるフラ
ックスの低下を防止することができる。By diffusing the digestion gas in this way, contamination of the membrane surface of the separation membrane 3 immersed and arranged in the membrane immersion type solid-liquid separation tank 2 is reduced, and the flux is reduced due to an increase in the pressure loss of the membrane. Can be prevented.
【0027】即ち、このように消化ガスを分離膜3の下
部から散気することにより、膜面には気泡上昇流に基く
水流が発生し、膜面に蓄積する汚泥層(ゲル層)を更新
するため、フラックスの低下を抑制することができる。
また、散気には、空気ではなく、消化ガスを用いるた
め、膜浸漬型固液分離槽2でも嫌気性雰囲気が維持され
て嫌気反応が行われることから、嫌気性反応槽1の容量
を小さくすることもできる。しかして、散気排ガスは、
膜浸漬型固液分離槽2から放出されることなく、嫌気性
反応層1に戻され循環されるので、膜浸漬型固液分離槽
2に供給される消化ガスが不足することもなく、膜面流
速を維持することができる。That is, the gaseous gas is diffused from the lower portion of the separation membrane 3 as described above, whereby a water flow is generated on the membrane surface based on the upward flow of bubbles, and the sludge layer (gel layer) accumulated on the membrane surface is renewed. Therefore, a decrease in flux can be suppressed.
In addition, since the digestion gas is used for the air diffusion instead of the air, the anaerobic atmosphere is maintained even in the membrane immersion type solid-liquid separation tank 2 and the anaerobic reaction is performed, so that the capacity of the anaerobic reaction tank 1 is reduced. You can also. Thus, the diffused exhaust gas
Since it is returned to the anaerobic reaction layer 1 and circulated without being released from the membrane immersion type solid-liquid separation tank 2, the digestion gas supplied to the membrane immersion type solid-liquid separation tank 2 does not run out, and The surface flow velocity can be maintained.
【0028】この消化ガスの散気量が少ないと膜面のゲ
ル層の更新が不十分となり圧力損失が増加する。消化ガ
スの散気量が多過ぎると膜浸漬型固液分離槽2内に浸漬
した分離膜3が振動したり、隣接配置された膜同士がこ
すれあって物理的な損傷を受ける恐れがある。消化ガス
の散気量は、膜浸漬型固液分離槽2の下部の水平断面積
当たり、20〜100m3/m2/hr程度とするのが好
ましい。If the amount of the digested gas diffused is small, the renewal of the gel layer on the membrane surface becomes insufficient and the pressure loss increases. If the amount of the digested gas diffused is too large, the separation membrane 3 immersed in the membrane immersion type solid-liquid separation tank 2 may vibrate or the adjacently arranged membranes may be rubbed against each other to cause physical damage. The gas diffusion amount of the digestion gas is preferably about 20 to 100 m 3 / m 2 / hr per horizontal sectional area of the lower part of the membrane immersion type solid-liquid separation tank 2.
【0029】嫌気性処理で発生する消化ガスが必要以上
に多い場合は、適宜バルブV7を開として、配管12よ
り消化ガスを排出する。この余剰の消化ガスは、メタン
を主成分とするため、ガスタンク等に貯蓄され、燃料と
して有効利用される。If the amount of digestion gas generated in the anaerobic treatment is more than necessary, the valve V 7 is opened appropriately and the digestion gas is discharged from the pipe 12. Since the surplus digestive gas is mainly composed of methane, it is stored in a gas tank or the like and is effectively used as fuel.
【0030】なお、分離膜3の圧力損失増大の防止の観
点から、処理水ポンプP1は所定時間の運転稼動と、所
定時間の運転休止とを交互に繰り返す間欠運転とするの
が好ましい。この間欠運転の時間設定は、嫌気性汚泥の
性状や濃度、運転フラックスや分離膜の性能等によって
異なるが、例えば、運転稼動5〜30分、運転休止10
秒〜5分の間欠運転とすることができる。また、この処
理水ポンプの運転休止時に、処理水や工水を分離膜の透
過水側から注入する手段も圧力損失の増大防止に有効で
ある。From the viewpoint of preventing the pressure loss of the separation membrane 3 from increasing, it is preferable that the treated water pump P 1 is set to an intermittent operation in which the operation for a predetermined time and the operation stop for a predetermined time are alternately repeated. The time setting for the intermittent operation varies depending on the properties and concentration of the anaerobic sludge, the operation flux, the performance of the separation membrane, and the like.
The operation can be intermittent operation for seconds to 5 minutes. In addition, means for injecting treated water or working water from the permeated water side of the separation membrane when the operation of the treated water pump is stopped is also effective in preventing an increase in pressure loss.
【0031】[薬品洗浄前:バルブV3,V7,V8開、
バルブV1,V2,V4,V5,V6,V9閉] [薬品洗浄時:バルブV6,V7,V8開、バルブV1,V
2,V3,V4,V5,V9閉] [薬品洗浄後:バルブV7,V8,V9開、バルブV1,V
2,V3,V4,V5,V6閉] 処理水ポンプP1の運転を長時間継続すると、分離膜3
の膜表面に汚染物質が付着、堆積してフラックスが低下
してくる。このため、定期的に又は、分離膜3の圧力損
失が所定値以上になった場合には、膜浸漬型固液分離槽
2内の液の全量を嫌気性反応槽1に移送した後、薬注ポ
ンプP4により薬剤槽5の洗浄薬剤を膜浸漬型固液分離
槽2に導入すると共に、散気管4から空気を散気し、散
気攪拌下で分離膜3の薬品洗浄を行う。[Before chemical cleaning: valves V 3 , V 7 , V 8 open,
Valve V 1, V 2, V 4 , V 5, V 6, V 9 closed] [during chemical cleaning: valve V 6, V 7, V 8 open, valve V 1, V
2, V 3, V 4, V 5, V 9 closed] [after chemical washing: valve V 7, V 8, V 9 open, the valve V 1, V
2, V 3, V 4, V 5, when V 6 closed] prolonged operation of the process water pump P 1 continues, the separation membrane 3
The contaminants adhere to and accumulate on the film surface, and the flux decreases. Therefore, periodically or when the pressure loss of the separation membrane 3 becomes a predetermined value or more, the entire amount of the liquid in the membrane immersion type solid-liquid separation tank 2 is transferred to the anaerobic reaction tank 1, The cleaning agent in the chemical tank 5 is introduced into the membrane immersion type solid-liquid separation tank 2 by the injection pump P 4, and air is diffused from the diffuser pipe 4, and the chemical cleaning of the separation membrane 3 is performed under aeration and agitation.
【0032】薬品洗浄の必要時又は頻度は膜浸漬型固液
分離槽2の運転条件や嫌気性汚泥の濃度等により異なる
が、例えば、前述した中空糸状MF膜を用いた場合は、
分離膜の圧力損失が50KPaに達した時点で行うこと
が好ましい。通常、分離膜の洗浄には酸、アルカリなど
が使用されるが、嫌気性汚泥の分離に使用した分離膜の
洗浄には、酸化剤(塩素系、過酸化水素、オゾン等)が
有効であり、酸化剤単独で、或いは、酸化剤と酸、アル
カリ、界面活性剤等との併用で薬品洗浄が行われる。The necessity or frequency of chemical cleaning depends on the operating conditions of the membrane immersion type solid-liquid separation tank 2, the concentration of anaerobic sludge, and the like. For example, when the hollow fiber MF membrane described above is used,
It is preferable to perform the process when the pressure loss of the separation membrane reaches 50 KPa. Usually, acids and alkalis are used for cleaning the separation membrane, but an oxidizing agent (chlorine, hydrogen peroxide, ozone, etc.) is effective for cleaning the separation membrane used for separating anaerobic sludge. The chemical cleaning is performed by using the oxidizing agent alone or by using the oxidizing agent and an acid, an alkali, a surfactant or the like in combination.
【0033】嫌気性処理に用いた分離膜の洗浄に、少量
の次亜塩素酸ソーダや過酸化水素等の酸化剤が有効な理
由は次の通りである。The reason why a small amount of an oxidizing agent such as sodium hypochlorite or hydrogen peroxide is effective for cleaning the separation membrane used in the anaerobic treatment is as follows.
【0034】 嫌気性処理に用いた分離膜では、汚泥
や汚染物質は還元性雰囲気下で膜表面に付着している。
そこで、少量の次亜塩素酸ソーダや過酸化水素等の酸化
剤を用いることで、付着汚泥や汚染物質の酸化還元電位
を中和し、膜表面の洗浄効果を促進することができる。 嫌気性汚泥は活性汚泥に代表される好気性汚泥に比
べ、粘性物質の蓄積が少ないのが一般的な特徴である。
粘性物質の多い好気性汚泥が膜面に付着した場合、高濃
度のカセイソーダと高濃度の次亜塩素酸ソーダや過酸化
水素で、粘性物質を可溶化ないし低分子化する必要があ
るが、粘性物質の少ない嫌気性汚泥の場合は、低濃度の
カセイソーダに少量の酸化剤を混合する程度で、十分な
洗浄効果が得られる。In the separation membrane used for the anaerobic treatment, sludge and contaminants adhere to the membrane surface under a reducing atmosphere.
Therefore, by using a small amount of an oxidizing agent such as sodium hypochlorite or hydrogen peroxide, it is possible to neutralize the oxidation-reduction potential of the attached sludge or contaminant, and to promote the cleaning effect on the membrane surface. Anaerobic sludge is generally characterized by less accumulation of viscous substances than aerobic sludge represented by activated sludge.
When aerobic sludge containing a lot of viscous substances adheres to the membrane surface, it is necessary to solubilize or reduce the molecular weight of the viscous substances with high-concentration sodium hydroxide and high-concentration sodium hypochlorite or hydrogen peroxide. In the case of anaerobic sludge with a small amount of substance, a sufficient washing effect can be obtained by mixing a small amount of oxidizing agent with low-concentration caustic soda.
【0035】薬品洗浄方法は各運転条件等により異なる
が、中空糸状MF膜の場合は、カセイソーダ0.5〜4
重量%、次亜塩素酸ソーダ(有効塩素として)250〜
500mg/Lの混合液を用い、この混合液中にて空気
散気下で6時間以上分離膜を浸漬洗浄する方式が一般的
である。この方法により膜の汚染物質が除去されない場
合は、カセイソーダや次亜塩素酸ソーダの濃度を高める
か、塩酸や硫酸、更には界面活性剤などを使用すること
もある。使用した洗浄薬剤(洗浄廃液)は、適切な中和
処理ないし還元処理等を行った後バルブV9を開として
配管22より系外に排出するか、原水に混合して嫌気性
処理に供する。The chemical cleaning method varies depending on the operating conditions and the like. In the case of a hollow fiber MF membrane, caustic soda 0.5 to 4
% By weight, sodium hypochlorite (as available chlorine) 250 ~
Generally, a 500 mg / L mixed solution is used, and the separation membrane is immersed and washed in the mixed solution for 6 hours or more under air diffusion. If this method does not remove contaminants from the film, the concentration of caustic soda or sodium hypochlorite may be increased, or hydrochloric acid, sulfuric acid, or a surfactant may be used. Cleaning agents used (waste wash liquid) is, after appropriate neutralization treatment or reduction treatment or the like or discharging valve V 9 to the outside of the system from the pipe 22 is opened, subjected to anaerobic treatment by mixing the raw water.
【0036】本発明においては、この分離膜の薬品洗浄
を分離膜下方からの空気散気による攪拌下で行うことが
できるため、膜面に付着した汚染物質を効率的に剥離除
去することができ、良好な洗浄効果を得ることができ
る。この薬品洗浄時の散気には、消化ガスを用いること
も考えられるが、以下の通り、嫌気性汚泥の分離に用い
た膜の洗浄は酸化性雰囲気で行うのが好ましく、還元性
の消化ガスの散気は不適当である。In the present invention, the chemical cleaning of the separation membrane can be performed under agitation by air diffusion from below the separation membrane, so that the contaminants adhering to the membrane surface can be efficiently removed and removed. , A good cleaning effect can be obtained. It is conceivable to use digestive gas for the aeration during this chemical cleaning, but it is preferable to perform the cleaning of the membrane used for separating anaerobic sludge in an oxidizing atmosphere as described below. Aeration is inappropriate.
【0037】 消化ガスを分離膜下部より散気する
と、消化ガス中に含まれる炭酸ガスが洗浄薬剤のカセイ
ソーダに吸収されて、カセイソーダのアルカリ度が低減
する。そのため、使用するカセイソーダの量、濃度を高
める必要があり、不経済的である。これに対し、通常の
空気では、炭酸ガスの含有率が消化ガスに比べて大幅に
少ないため、カセイソーダの効果を損なうことはない。 消化ガスには硫化水素が含まれている場合がある
が、硫化水素を含有する消化ガスを用いた場合、洗浄薬
剤中の次亜塩素酸ソーダや過酸化水素等の酸化剤と反応
して薬剤の効果が損なわれる。 嫌気性条件下で膜分離を行っているため、当然、膜
の汚染物質は還元性下で膜面に付着している。膜洗浄時
に空気散気を行うことで、膜の汚染物質の還元性の程度
が低減され、剥離し易くなる。When the digestion gas is diffused from the lower part of the separation membrane, the carbon dioxide contained in the digestion gas is absorbed by the cleaning agent caustic soda, and the alkalinity of the caustic soda is reduced. Therefore, it is necessary to increase the amount and concentration of caustic soda to be used, which is uneconomical. On the other hand, the content of carbon dioxide gas in ordinary air is much smaller than that of digestion gas, so that the effect of caustic soda is not impaired. Digestion gas may contain hydrogen sulfide, but when digestion gas containing hydrogen sulfide is used, it reacts with oxidizing agents such as sodium hypochlorite and hydrogen peroxide Effect is lost. Since membrane separation is performed under anaerobic conditions, contaminants of the membrane naturally adhere to the membrane surface under reducing conditions. By performing air aeration during film cleaning, the degree of reducibility of contaminants in the film is reduced, and the film is easily peeled.
【0038】なお、本発明において、薬品洗浄時の空気
の散気量は、少な過ぎると洗浄効果の向上効果が十分に
得られず、多過ぎると、前述の消化ガスの散気の場合の
ように分離膜の振動等の問題が生じるため、空気の散気
量は膜浸漬型固液分離槽2の水平断面積当り20〜50
m3/m2/hr程度に設定するのが好ましい。散気した
空気は配管17より系外に放出する。In the present invention, if the amount of air diffused at the time of chemical cleaning is too small, the effect of improving the cleaning effect cannot be sufficiently obtained, and if it is too large, the air is diffused as in the case of the above-mentioned gas diffusion of digestive gas. In this case, a problem such as vibration of the separation membrane occurs, so that the amount of air diffused is 20 to 50 per horizontal sectional area of the membrane immersion type solid-liquid separation tank 2.
It is preferable to set about m 3 / m 2 / hr. The diffused air is released from the pipe 17 to the outside of the system.
【0039】一般に、膜浸漬型固液分離槽は、1槽の嫌
気性反応槽に対して複数槽設置されるため、膜浸漬型固
液分離槽の薬品洗浄は順次行い、分離膜の薬品洗浄を行
っている膜浸漬型固液分離槽以外の膜浸漬型固液分離槽
から処理水を抜き出すことで、処理水を安定して得るこ
とができる。Generally, a plurality of membrane immersion type solid-liquid separation tanks are provided for one anaerobic reaction tank. Therefore, chemical cleaning of the membrane immersion type solid-liquid separation tank is performed sequentially, and chemical cleaning of the separation membrane is performed. The treated water can be stably obtained by extracting the treated water from the membrane-immersed solid-liquid separation tank other than the membrane-immersed solid-liquid separation tank in which the process is performed.
【0040】なお、図1に示す嫌気性処理装置は本発明
の実施の一形態であって、本発明はその要旨を超えない
限り何ら図示のものに限定されるものではない。The anaerobic treatment apparatus shown in FIG. 1 is an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as it does not exceed the gist.
【0041】例えば、嫌気性反応槽1は、通常の浮遊性
汚泥を用いた完全混合方式又は浮遊方式の他、これらの
方式とUASB方式、流動床方式又は固定床方式とを併
用したものであっても良く、運転方法等においても、特
に制約はない。For example, the anaerobic reaction tank 1 employs a complete mixing system or a floating system using ordinary floating sludge, or a combination of these systems with a UASB system, a fluidized bed system or a fixed bed system. There is no particular limitation on the driving method or the like.
【0042】また、嫌気性反応槽1で発生した消化ガス
は、嫌気性反応槽1から直接抜き出して膜浸漬型固液分
離槽2の散気管4から散気する他、別途ガスホルダを設
け、嫌気性反応槽1の発生ガスをガスホルダに受け、こ
のガスホルダから散気管に送気して散気し、散気排ガス
をガスホルダに戻すようにしても良い。The digestion gas generated in the anaerobic reaction tank 1 is directly extracted from the anaerobic reaction tank 1 and diffused from the diffuser pipe 4 of the membrane immersion type solid-liquid separation tank 2, and a separate gas holder is provided. The gas generated in the anaerobic reaction tank 1 may be received by a gas holder, and the gas may be sent from the gas holder to an air diffuser to diffuse air, and the diffused exhaust gas may be returned to the gas holder.
【0043】また、分離膜下方の散気管は、消化ガス散
気用と空気散気用で各々別々に設けても良く、図1の如
く、兼用しても良い。Further, the air diffusion pipes below the separation membrane may be provided separately for the gas diffusion and the gas diffusion, or may be used as shown in FIG.
【0044】更に、膜浸漬型固液分離槽2の分離汚泥の
移送配管は、図1のように、嫌気性反応槽1の槽内液の
循環配管18とは別に独立させて設けても良く、図1の
破線で示す系路18A,18Bのように配管を分岐して
設け、循環配管18を経て循環ポンプP2を利用して移
送するようにしても良い。Further, as shown in FIG. 1, the transfer pipe of the separated sludge of the membrane immersion type solid-liquid separation tank 2 may be provided independently of the circulation pipe 18 of the liquid in the anaerobic reaction tank 1. the system path 18A indicated by the broken line in FIG. 1, provided branched piping as 18B, it may be transported by using the circulation pump P 2 through the circulation pipe 18.
【0045】[0045]
【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。The present invention will be described more specifically with reference to the following examples.
【0046】実施例1 実際にUASB方式による嫌気性処理を行っているBO
D3500〜5000mg/Lの異性化糖製造廃水を用
い、本方式による効果の実証試験を行った。この実装置
の嫌気性反応槽容量当たりの負荷量は10〜15kg−
BOD/m3/dayであり、反応槽内の汚泥は粒径が
0.5〜3.2mmのグラニュール状であり、汚泥濃度
は15000mg/Lであった。また、処理水水質はS
S200〜360mg/L、BOD330〜750mg
/Lであった。Example 1 BO actually performing anaerobic treatment by the UASB method
A verification test of the effect of this method was performed using isomerized sugar production wastewater of D3500 to 5000 mg / L. The load per anaerobic reaction tank capacity of this actual device is 10 to 15 kg-
BOD / m 3 / day, the sludge in the reaction tank was in the form of granules having a particle size of 0.5 to 3.2 mm, and the sludge concentration was 15000 mg / L. The quality of the treated water is S
S200-360mg / L, BOD330-750mg
/ L.
【0047】実証試験に用いた嫌気性反応槽は直径30
0mm、高さ1000mm(有効容量50L)の密閉槽
であり、浮遊汚泥を用いた機械攪拌方式の反応槽であ
る。反応槽内には温度計と連動したヒーターを設置し、
槽内温度を実装置と同じく37℃に調整した。また、p
H計と連動したカセイソーダ注入設備により、槽内液の
pHを実装置と同じく7.2付近に調整した。嫌気性反
応槽には循環ポンプを設置し、嫌気性反応槽から膜浸漬
型固液分離槽に槽内液を移送して循環した。また、反応
槽上部のガス部は固液分離槽上部と配管で連結し、循環
ポンプの戻り液は固液分離槽から嫌気性反応槽に流下す
る構造とした。The anaerobic reactor used in the demonstration test had a diameter of 30.
It is a closed tank having a height of 0 mm and a height of 1000 mm (effective volume: 50 L), and is a reaction tank of a mechanical stirring system using suspended sludge. A heater linked to a thermometer is installed in the reaction tank,
The temperature in the tank was adjusted to 37 ° C. as in the actual apparatus. Also, p
The pH of the solution in the tank was adjusted to around 7.2 as in the actual device by means of a caustic soda injecting device linked to the H meter. A circulation pump was installed in the anaerobic reaction tank, and the liquid in the tank was transferred from the anaerobic reaction tank to the membrane-immersion type solid-liquid separation tank and circulated. Further, the gas portion at the upper part of the reaction tank was connected to the upper part of the solid-liquid separation tank by piping, and the return liquid of the circulation pump was configured to flow down from the solid-liquid separation tank to the anaerobic reaction tank.
【0048】膜浸漬型固液分離槽は長さ500mm、幅
100mm、高さ1000mm(有効容量25L)の密
閉槽であり、槽内に有効膜面積0.5m2の三菱レイヨ
ン(株)製テスト用中空糸状MF膜(「ステラポアー
L」分離性能0.1μm、膜素材ポリエチレン)を1枚
設置した。The membrane immersion type solid-liquid separation tank is a closed tank having a length of 500 mm, a width of 100 mm, and a height of 1000 mm (effective volume 25 L), and has an effective membrane area of 0.5 m 2 manufactured by Mitsubishi Rayon Co., Ltd. One hollow fiber MF membrane for use (“Stellapore L”, separation performance: 0.1 μm, membrane material polyethylene) was installed.
【0049】固液分離槽底部には散気管を全面に設置
し、固液分離槽の水平断面積当たり30m3/m2/hr
に相当する25L/minで、嫌気性反応槽上部のガス
部より消化ガスを噴出した。排ガスは槽上部の連結配管
を通して嫌気性反応槽のガス部に戻す構造とした。ま
た、中空糸膜の薬品洗浄時には、散気管から空気を固液
分離槽水平断面積当たり20m3/m2/hrに相当する
17L/minで吹き込み、排気空気は槽上部から排出
した。中空糸膜からの透過水は流量計、圧力計を経由し
て処理水ポンプで引抜き、処理水とした。なお、処理水
ポンプは8分間運転、2分間休止の間欠運転とした。At the bottom of the solid-liquid separation tank, an air diffuser was installed on the entire surface, and the horizontal sectional area of the solid-liquid separation tank was 30 m 3 / m 2 / hr.
At 25 L / min corresponding to the above, a digestion gas was spouted from the gas part at the top of the anaerobic reaction tank. The exhaust gas was returned to the gas part of the anaerobic reaction tank through the connecting pipe at the top of the tank. During chemical cleaning of the hollow fiber membrane, air was blown from the air diffuser at 17 L / min corresponding to 20 m 3 / m 2 / hr per horizontal sectional area of the solid-liquid separation tank, and exhaust air was discharged from the upper part of the tank. The permeated water from the hollow fiber membrane was drawn out by a treated water pump via a flow meter and a pressure gauge to obtain treated water. The treated water pump was operated for 8 minutes and intermittently operated for 2 minutes.
【0050】連続運転に当たり、実装置反応槽から採取
したグラニュール状汚泥を粒径0.1mm以下に破砕し
て分散状態の浮遊汚泥を作り、実装置の2倍である汚泥
濃度30000mg/Lに遠心分離濃縮し、嫌気性反応
槽内に投入した。In the continuous operation, the granular sludge collected from the reaction tank of the actual apparatus is crushed to a particle diameter of 0.1 mm or less to produce suspended sludge in a dispersed state, and the sludge concentration is 30,000 mg / L, twice that of the actual apparatus. The mixture was concentrated by centrifugation and charged into an anaerobic reaction tank.
【0051】通水原水量、処理水水量は300L/da
yに設定し、嫌気性反応槽から膜浸漬型固液分離槽への
循環水量は1200L/dayに設定した。嫌気性反応
槽容量当たりのBOD負荷量は21〜30kg―BOD
/m3/dayであり、中空糸膜のフラックスは処理水
ポンプ稼動時で0.75m3/m2/dayとした。The raw water flow and the treated water flow are 300 L / da.
y, and the amount of circulating water from the anaerobic reaction tank to the membrane immersion type solid-liquid separation tank was set to 1200 L / day. BOD load per anaerobic reactor volume is 21-30kg-BOD
/ M 3 / day, and the flux of the hollow fiber membrane was 0.75 m 3 / m 2 / day when the treated water pump was operating.
【0052】これらの試験装置、運転条件で30日間の
連続運転を行った。なお、中空糸膜の圧力損失は運転初
期は5〜15KPaであったが、連続運転25日間後に
は、中空糸膜の圧力損失が50KPaに達したため、膜
浸漬型固液分離槽内の汚泥混合液を他の水槽に移送し、
分離槽内にカセイソーダ1重量%、次亜塩素酸ソーダ5
00mg/L(有効塩素)の混合液を満たし、分離槽下
部の散気管から空気散気を行いながら、6時間の浸漬洗
浄を行った。この洗浄により、運転再開後の中空糸膜の
圧力損失は7KPaまで低下した。A continuous operation was performed for 30 days under these test equipment and operating conditions. The pressure loss of the hollow fiber membrane was 5 to 15 KPa in the initial operation, but after 25 days of continuous operation, the pressure loss of the hollow fiber membrane reached 50 KPa. Transfer the liquid to another tank,
1% by weight of sodium hydroxide and 5% sodium hypochlorite in the separation tank
The mixture was filled with a mixed solution of 00 mg / L (effective chlorine), and immersion cleaning was performed for 6 hours while air was diffused from an air diffuser at a lower portion of the separation tank. By this washing, the pressure loss of the hollow fiber membrane after restarting the operation was reduced to 7 KPa.
【0053】本実証試験結果と、同期間の実装置(通常
のUASB方式の嫌気性処理装置)の運転結果を表1に
比較して示す。Table 1 shows the results of the verification test and the results of operation of the actual apparatus (usual UASB anaerobic treatment apparatus) during the same period.
【0054】[0054]
【表1】 [Table 1]
【0055】以上の実証運転結果から明らかなように、
本発明の嫌気性処理装置ではBOD負荷量21〜30k
g/m3/dayの高負荷条件下においても、反応槽内
汚泥濃度を30000mg/L以上の高濃度に保持可能
であるため、BOD32〜110mg/L(BOD除去
率97%以上)の高度な処理水を得ることができる。な
お、膜分離を行っているため、処理水のSSは検出下限
値以下であった。As is clear from the results of the above-mentioned demonstration operation,
In the anaerobic treatment apparatus of the present invention, the BOD load is 21 to 30 k.
Even under a high load condition of g / m 3 / day, the sludge concentration in the reaction tank can be maintained at a high concentration of 30,000 mg / L or more, so that a high BOD of 32 to 110 mg / L (BOD removal rate of 97% or more) is obtained. Treated water can be obtained. In addition, since membrane separation was performed, SS of the treated water was below the detection lower limit.
【0056】[0056]
【発明の効果】以上詳述した通り、本発明の嫌気性処理
装置によれば、 嫌気性汚泥濃度を20000mg/L以上の高濃度
に保持することが可能となり、その結果高負荷処理が可
能となる。 嫌気性汚泥の性状に関係なく、安定した処理を行え
るため、運転管理及びメンテナンスが容易となる。 処理水が膜透過水であるため、SSを含まない高度
な処理水を得ることができる。 膜分離処理時には消化ガス散気で膜汚染を防止でき
る。 膜洗浄時には、空気散気で高い洗浄効果を得ること
ができる。といった効果が奏され、効率的な嫌気性処理
を行って、良好な水質の処理水を安定に得ることができ
る。As described in detail above, according to the anaerobic treatment apparatus of the present invention, the anaerobic sludge concentration can be maintained at a high concentration of 20,000 mg / L or more, and as a result, high-load treatment can be performed. Become. Regardless of the properties of the anaerobic sludge, stable treatment can be performed, so that operation management and maintenance are facilitated. Since the treated water is the membrane permeated water, it is possible to obtain advanced treated water containing no SS. At the time of membrane separation treatment, membrane contamination can be prevented by digestion gas diffusion. At the time of membrane cleaning, a high cleaning effect can be obtained by air diffusion. Thus, an effective anaerobic treatment can be performed, and the treated water having good water quality can be stably obtained.
【図1】本発明の嫌気性処理装置の実施の形態を示す系
統図である。FIG. 1 is a system diagram showing an embodiment of an anaerobic treatment device of the present invention.
1 嫌気性反応槽 2 膜浸漬型固液分離槽 3 分離膜 4 散気管 5 薬剤貯槽 P1 処理水ポンプ P2 循環ポンプ P3 移送ポンプ P4 薬注ポンプ B 散気ブロワDESCRIPTION OF SYMBOLS 1 Anaerobic reaction tank 2 Membrane immersion type solid-liquid separation tank 3 Separation membrane 4 Aerator tube 5 Chemical storage tank P 1 Treatment water pump P 2 Circulation pump P 3 Transfer pump P 4 Chemical injection pump B Diffusion blower
Claims (1)
れた密閉型の固液分離槽と嫌気性反応槽と固液分離槽と
の間を嫌気性反応液を循環させる液循環路と嫌気性反応
槽と固液分離槽との間を嫌気性反応ガスを循環させるガ
ス循環路と嫌気性反応槽に設けられたガス排出管と固液
分離槽に設けられた排気口と固液分離槽内の液を嫌気性
反応槽に移送する移送管と固液分離槽に空気を供給する
空気供給管と固液分離槽に供給された嫌気性反応ガス及
び空気を分離膜の下方で放出する散気手段とを備えてな
ることを特徴とする嫌気性反応装置。1. A liquid circulation path for circulating an anaerobic reaction liquid between a closed solid-liquid separation tank provided with an anaerobic reaction tank and a separation membrane immersed therein, and between the anaerobic reaction tank and the solid-liquid separation tank. A gas circulation path for circulating an anaerobic reaction gas between the anaerobic reaction tank and the solid-liquid separation tank, a gas discharge pipe provided in the anaerobic reaction tank, an exhaust port provided in the solid-liquid separation tank, and a solid-liquid The transfer pipe for transferring the liquid in the separation tank to the anaerobic reaction tank, the air supply pipe for supplying air to the solid-liquid separation tank, and the anaerobic reaction gas and air supplied to the solid-liquid separation tank are discharged below the separation membrane. An anaerobic reaction device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31721497A JPH11147098A (en) | 1997-11-18 | 1997-11-18 | Anaerobic treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31721497A JPH11147098A (en) | 1997-11-18 | 1997-11-18 | Anaerobic treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11147098A true JPH11147098A (en) | 1999-06-02 |
Family
ID=18085751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31721497A Pending JPH11147098A (en) | 1997-11-18 | 1997-11-18 | Anaerobic treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11147098A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100841089B1 (en) | 2007-10-02 | 2008-06-25 | 현대엔지니어링 주식회사 | The apparatus and methods of the biogas production by using anaerobic digestion coupled with membrane |
WO2012011802A2 (en) | 2010-07-19 | 2012-01-26 | Green Energy Technologies Cv | Device and method for the anaerobic digestion of organic material to biogas by means of micro-organisms |
US20120048801A1 (en) * | 2010-08-31 | 2012-03-01 | Youngseck Hong | Method for utilizing internally generated biogas for closed membrane system operation |
JP2013056321A (en) * | 2011-09-09 | 2013-03-28 | Japan Organo Co Ltd | Anaerobic biological treatment method and anaerobic biological treatment apparatus |
KR101300951B1 (en) * | 2012-06-25 | 2013-08-27 | 현대건설주식회사 | Membrance coupled anaerobic digester system by using alternate and cross flow type and method for reating organic waste for thereof |
JP2013188650A (en) * | 2012-03-12 | 2013-09-26 | Toshiba Corp | Water treatment system and water treatment method |
-
1997
- 1997-11-18 JP JP31721497A patent/JPH11147098A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100841089B1 (en) | 2007-10-02 | 2008-06-25 | 현대엔지니어링 주식회사 | The apparatus and methods of the biogas production by using anaerobic digestion coupled with membrane |
WO2012011802A2 (en) | 2010-07-19 | 2012-01-26 | Green Energy Technologies Cv | Device and method for the anaerobic digestion of organic material to biogas by means of micro-organisms |
US20120048801A1 (en) * | 2010-08-31 | 2012-03-01 | Youngseck Hong | Method for utilizing internally generated biogas for closed membrane system operation |
US8580113B2 (en) * | 2010-08-31 | 2013-11-12 | Zenon Technology Partnership | Method for utilizing internally generated biogas for closed membrane system operation |
JP2013056321A (en) * | 2011-09-09 | 2013-03-28 | Japan Organo Co Ltd | Anaerobic biological treatment method and anaerobic biological treatment apparatus |
JP2013188650A (en) * | 2012-03-12 | 2013-09-26 | Toshiba Corp | Water treatment system and water treatment method |
KR101300951B1 (en) * | 2012-06-25 | 2013-08-27 | 현대건설주식회사 | Membrance coupled anaerobic digester system by using alternate and cross flow type and method for reating organic waste for thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090127188A1 (en) | Waste gas/wastewater treatment equipment and method of treating waste gas/wastewater | |
JP2003024985A (en) | Dentrification apparatus and dentrification method | |
JPH11309480A (en) | Operating method of immersion type membrane separation device | |
JPH11114596A (en) | Production of ultrapure water and ultrapure water producing device | |
JP2008136955A (en) | Ammonia inhibition-suppressing methane fermentation apparatus | |
JPH11147098A (en) | Anaerobic treatment apparatus | |
JP3491122B2 (en) | Water treatment equipment | |
JP2000167555A (en) | Cleaning of immersion membrane | |
JP2004322084A (en) | Biological filtration system | |
JP2001170631A (en) | Method and device for stirring membrane type reaction vessel | |
JPH11197685A (en) | Method for treating membrane-separated activated sludge | |
JPH04104895A (en) | Biological treating device for organic sewage | |
JPH1119675A (en) | Treatment of organic matter-containing water and device therefor | |
JP2885737B2 (en) | Methane fermentation equipment | |
WO2019163422A1 (en) | Method for operating aerobic biological treatment device | |
JP3496115B2 (en) | Filtration membrane cleaning method in membrane filtration type water purification equipment | |
JPH07204682A (en) | Anaerobic water treatment apparatus | |
JP3570030B2 (en) | Cleaning method of immersion type membrane separation device | |
JP2004141865A (en) | Ozone treatment method of surplus sludge, treatment apparatus for surplus sludge, and sludge-ozone mixer | |
JPH11290889A (en) | Method for treating organic waste water | |
JP4335193B2 (en) | Method and apparatus for treating organic wastewater | |
JP3419257B2 (en) | Immersion membrane solid-liquid separator | |
JPH1147747A (en) | Immersion type membrane treatment apparatus | |
JPH0985294A (en) | Waste water treatment equipment | |
JP3668358B2 (en) | Structure of bioreactor with carrier |