JP3570030B2 - Cleaning method of immersion type membrane separation device - Google Patents

Cleaning method of immersion type membrane separation device Download PDF

Info

Publication number
JP3570030B2
JP3570030B2 JP21171295A JP21171295A JP3570030B2 JP 3570030 B2 JP3570030 B2 JP 3570030B2 JP 21171295 A JP21171295 A JP 21171295A JP 21171295 A JP21171295 A JP 21171295A JP 3570030 B2 JP3570030 B2 JP 3570030B2
Authority
JP
Japan
Prior art keywords
membrane
cleaning
washing
water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21171295A
Other languages
Japanese (ja)
Other versions
JPH0957074A (en
Inventor
幹夫 北川
晃士 堀
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP21171295A priority Critical patent/JP3570030B2/en
Publication of JPH0957074A publication Critical patent/JPH0957074A/en
Application granted granted Critical
Publication of JP3570030B2 publication Critical patent/JP3570030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は浸漬型膜分離装置の洗浄方法に係り、特に、好気性生物処理反応槽又は、これに連結された槽内に浸漬設置された膜分離装置の膜を安全かつ効率的に洗浄する方法に関する。
【0002】
【従来の技術】
近年、合併浄化槽、その他の各種生活系排水処理設備において、排水処理設備のコンパクト化と高度な処理水質を安定して得ることを目的として、活性汚泥処理装置や接触曝気処理装置の曝気槽内に中空糸形状のMF(精密濾過)膜やUF(限外濾過)膜モジュールを浸漬した膜分離機付き好気性生物処理装置が開発されている。
【0003】
このように曝気槽内に中空糸膜モジュールを浸漬することにより、沈澱槽が不要になるとともに、生物処理反応槽内の生物濃度を高めることができることから、原水の水量変動や水質変動に対しても安定した高度な処理を継続的に行うことが可能となる上に、処理水中に汚泥や原水のSSが流出することも皆無となって、運転管理が容易となる。
【0004】
しかしながら、曝気槽に浸漬した膜モジュールには、膜の表面に原水中の蛋白質や脂質等の種々の汚染物質が付着し、経時により膜の透過性能を大幅に低減させる。そのため、汚染物質の付着により、膜の透過性能が低下した場合には、膜の洗浄を行って透過性能を回復させることが必要となる。
【0005】
従来、この膜の洗浄手段としては、塩酸やカセイソーダ、又は次亜塩素酸ソーダを含有した洗浄水中に曝気槽から取り出した膜を浸漬するか、或いは、膜を曝気槽に浸漬したままの状態で膜の透過液側(二次側)からこれらの洗浄水を注入して、膜の表面に付着した各種の汚染物質を除去する(特開平3−77629号公報,同4−131182号公報)薬品洗浄法が一般的である。
【0006】
【発明が解決しようとする課題】
上記従来の薬品洗浄方法のうち、膜を曝気槽から取り出す方法では、膜の取り出し、洗浄後の膜の浸漬作業を要し、効率的ではない。曝気槽に浸漬したままの状態で膜を洗浄する方法であれば、この膜の取り出し、洗浄後の膜の浸漬作業が不要となり、効率的な洗浄を行えるが、塩酸やカセイソーダ、次亜塩素酸ソーダ等の薬品を用いる従来の洗浄方法では、次のような問題があった。
【0007】
即ち、膜表面の汚染物質が未分解の蛋白質や脂質が主体である場合には、このような薬品洗浄では十分な洗浄効果を得ることができず、温度を高めた高濃度なカセイソーダや次亜塩素酸ソーダを多量に、かつ頻繁に使用したり、カセイソーダや次亜塩素酸ソーダを用いた後、更に塩酸を使用して洗浄を行うなど、洗浄操作が煩雑であった。しかも、このような洗浄法では洗浄用の薬品が使用時に危険性を伴うものであるため、洗浄作業は高度な技術を持った専門の作業員が十分な管理の元に行う必要があるといった問題もあった。
【0008】
一方で、今後、蛋白質や脂質を高濃度に含有する生活系排水を、よりコンパクトな装置で高度に処理することが必要となり、そのために、膜モジュールを浸漬した曝気槽の採用は、益々増加することが予測されることから、浸漬膜をより効果的に洗浄することができ、しかも安全性の高い洗浄方法を確立することが望まれている。
【0009】
本発明は上記従来の問題点を解決し、好気性生物処理反応槽又は、これに連結された槽内に浸漬設置された膜分離装置を高い安全性にて効率的に洗浄する浸漬型膜分離装置の洗浄方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の浸漬型膜分離装置の洗浄方法は、好気性生物処理反応槽内又は、該生物処理反応槽と連結された槽内に浸漬設置された膜分離装置を洗浄する方法において、蛋白質分解酵素を含む洗浄水及び/又は脂質分解酵素を含む洗浄水を膜の透過液流出側から注入して洗浄を行った後、過酸化水素を含む洗浄水を膜の透過液流出側から注入することを特徴とする。
【0011】
蛋白質や脂質を高濃度に含んだ生活系排水を、中空糸膜モジュールを組み入れた好気性生物処理装置で処理した場合、汚染物質の付着により透過性能が低下した膜を洗浄するに当っては、膜の表面や内部に付着した未分解の蛋白質や脂質からなる汚染物質を効率的に低分子化させるとともに、膜の表面や内部から低分子化した汚染物質を排除することが必要となる。
【0012】
本発明においては、膜面に付着した蛋白質や脂質からなる汚染物質を低分子化させる手段として、蛋白質分解酵素や脂質分解酵素を含んだ洗浄水を用い、この酵素含有洗浄水を膜透過液側(二次側)から膜内に流入させ、洗浄水中の酵素が膜の原水側(一次側)に透過する際に、膜内や膜表面に付着している汚染物質を低分子化させることにより、安全かつ効率的な洗浄を行う。
【0013】
更に、このような酵素による洗浄を行った後、過酸化水素を含有する洗浄水を膜の透過液側(二次側)から注入し、酵素により低分子化された汚染物質を分解し、また、過酸化水素の分解で発生する酸素気泡により低分子化した汚染物質を膜面から剥離排除させることにより、より一層高い洗浄効果を得ることができる。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明を詳細に説明する。
【0015】
図1は、本発明の浸漬型膜分離装置の洗浄方法の一実施例を示す系統図であって、中空糸膜浸漬型活性汚泥処理装置の中空糸膜モジュールの洗浄に本発明方法を適用した例を示すものである。
【0016】
図中、1は曝気槽であり、曝気管2を備え、中部には中空糸膜分離装置3が浸漬されている。4は減圧ポンプ、5,6,7は、各々、蛋白質分解酵素含有洗浄水、脂質分解酵素含有洗浄水、過酸化水素含有洗浄水の貯槽である。5A,6A,7Aはポンプ、11〜15の各符号は配管を示す。
【0017】
まず、本実施例装置の構成及び運転条件等について説明する。
【0018】
本実施例において、原水は、厨房排水に代表される生活系排水であり、炭水化物以外に蛋白質や脂質を含むものである。基本的には原水は原水調整槽に貯留した後、この活性汚泥処理装置に導入するが、原水量が少ない場合は原水調整槽を省き、直接導入することも可能である。
【0019】
曝気槽1は、負荷量5Kg−BOD/m ・day以上の高負荷量運転も可能であるが、原水変動に伴う処理水質の変動を防止する観点から、また発生汚泥量を低減させる面からも2Kg−BOD/m ・day以下で運転することが好ましい。
【0020】
この曝気槽1に浸漬された膜分離装置3は、中空糸膜状のMF膜又はUF膜を用いたものであり、この膜分離装置3からは通水量に見合った膜透過液を排出させる。この透過液の排出手段としては、図示の如く、減圧ポンプ4又は真空ポンプを用いて中空糸膜内部を減圧にして透過液を吸引する方法と、槽全体を加圧状態とし、その槽内の圧力を利用して透過液を流出させる方法とがあるが、構造面や運転操作面からは中空糸膜内部を減圧にして透過液を吸引する方法が適当である。この際、連続的に透過液を吸引する方式とせずに、10分〜30分間の一定時間吸引後、数分間の一定時間吸引休止を行う間欠吸引方式を採用することにより、膜表面への汚染物質の付着量を低減することができる。
【0021】
本実施例の装置において、配管11より曝気槽1に導入された原水は、曝気管2からの曝気空気で好気的に生物処理され、その後、中空糸膜分離装置3で処理される。中空糸膜の透過液は、減圧ポンプ4による吸引で、配管12より系外へ排出される。
【0022】
装置の運転により膜面に汚染物質が付着して膜の透過液量が低減した場合には、原水の導入及び減圧ポンプ4を停止し、本発明方法に従って酵素を含んだ洗浄水を透過液側(二次側)から圧入して膜表面の汚染物質を低分子化ないし溶解させて膜の洗浄を行う。
【0023】
本発明において、酵素洗浄に用いる蛋白質分解酵素としては、ズブチリシンやプロテアーゼ−N等が、脂質分解酵素としてはリパーゼ−Pやリポザイム等が使用可能である。特に、洗浄する膜分離装置の原水が、活性汚泥処理が行われている一般的な家庭の厨房排水を主体とする場合には、蛋白質分解酵素としてプロテアーゼ−N(天野製薬(株)製)を0.5〜10重量%、特に2重量%含む洗浄水を用い、更に、脂質分解酵素としてリパーゼ−P(天野製薬(株)製)を0.5〜10重量%、特に5重量%含む洗浄水を用いることが適当である。洗浄水量は膜の汚染状況によるが、洗浄圧力として1〜3Kg/cm に加圧した洗浄水を膜面積1m 当たり1〜5L(リットル)用い、最低30分間は膜内に洗浄水が滞留するような条件で洗浄を行うことが好ましい。
【0024】
本発明の実施に当り、特に注意すべき点は、蛋白質分解酵素と脂質分解酵素とを併用する際、両酵素を混合しない点である。即ち、両酵素を混合すると、脂質分解酵素が蛋白質分解酵素により不活性化される可能性があるため、蛋白質分解酵素と脂質分解酵素とを併用する場合には、必ず、蛋白質分解酵素を含む洗浄水で洗浄した後、脂質分解酵素を含む洗浄水で洗浄する。或いは、脂質分解酵素を含む洗浄水で洗浄した後、蛋白質分解酵素を含む洗浄水で洗浄する。
【0025】
なお、洗浄後の洗浄排液中には、十分に多くの活性を持った酵素が含まれているため、洗浄排液に残留している酵素の活性を、曝気槽内液中の蛋白質や脂質の酵素分解に利用することも可能である。その際、曝気槽が曝気状態で曝気槽内の活性汚泥の活性が高いと、洗浄排液中の残留酵素は活性汚泥により分解されてしまうため、残留酵素の酵素活性を有効に活用するためには、曝気を一次停止して、槽内を緩やかな撹拌状態に置くことが好ましい。曝気を停止することで、活性汚泥の活性は一時的に低下し酵素の分解が防止される。
【0026】
本発明においては、これらの手段で酵素洗浄した後、2〜3重量%の過酸化水素を含有する洗浄水を、膜の透過液側(二次側)から注入し、酵素により低分子化された汚染物質を分解すると共に、過酸化水素の分解時に発生する酸素気泡により膜面から剥離排除する。
【0027】
なお、この過酸化水素による洗浄時には、曝気を行うか、又は曝気槽内の撹拌を十分に行い、過酸化水素を含んだ洗浄排液を槽内に速やかに拡散・希釈させる。即ち、洗浄排液中に残留している過酸化水素は、活性汚泥への酸素供給源として有効に使用されるが、過酸化水素濃度が高濃度の時は活性汚泥の活性が阻害される。そのため、この過酸化水素による洗浄に当っては、洗浄排液が曝気槽内混合液で希釈された後の過酸化水素濃度が2000mg/L以下になるように、注入量や注入速度を調整すると共に、十分な混合、撹拌を行う必要がある。
【0028】
図1に示す装置において、具体的な洗浄操作は次の通りである。
【0029】
即ち、まず、原水の導入を停止すると共に、曝気及び減圧ポンプ4を停止した後、ポンプ5Aを作動させて貯槽5内の蛋白質分解酵素含有洗浄水を配管13を経て膜分離装置3の透過液側より所定の流量で所定時間注入する。
【0030】
その後ポンプ5Aを停止すると共に、ポンプ6Aを作動させて、貯槽6内の脂質分解酵素含有洗浄水を配管14を経て膜分離装置3の透過液側より、所定の流量で所定時間注入する。
【0031】
このようにして蛋白質分解酵素による洗浄及び脂質分解酵素による洗浄を行った後は、過酸化水素による洗浄を行う。
【0032】
即ち、ポンプ6Aを停止すると共に、ポンプ7Aを作動させて、貯槽7内の過酸化水素含有洗浄水を配管15を経て膜分離装置3の透過液側より、所定の流量で所定時間注入する。
【0033】
この際、前述の如く、洗浄排液中の残留過酸化水素を速やかに槽内に拡散・希釈させるために、曝気を再開するなどして十分な撹拌を行う。
【0034】
過酸化水素による洗浄後は、ポンプ7Aを停止して、原水の導入を行うと共に、減圧ポンプ4を作動させて処理を再開する。
【0035】
なお、図示の装置は、曝気槽内に中空糸膜分離装置を設置したものであるが、本発明は、生物反応槽と連結している別な槽内に膜分離装置を浸漬設置し、生物反応槽と膜設置槽との間でポンプやエアーリフトポンプ等の手段で槽内液を移送する方式を採用した装置の洗浄にも適用可能である。
【0036】
また、洗浄する膜の形態としても、中空糸膜に限らず、例えば平膜、チューブラー膜等の他の形態の膜であっても良い。
【0037】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。
【0038】
実施例1,比較例1,2
食堂の厨房から排出されるSS:300〜2200mg/L、BOD:500〜3300mg/L、N−ヘキサン可溶性物質(脂質由来):70〜1200mg/L、有機体窒素(蛋白質由来):30〜550mg/Lの排水を原水とする図1に示すような装置において、本発明による洗浄効果を調べた。
【0039】
曝気槽容量は1000Lで、この曝気槽内に、中空糸UF膜として、有効表面積4m の三菱レイヨン(株)製「ステラポア−L(分画特性0.1μm、膜素材ポリエチレン)」を3組浸漬した(中空糸膜の全有効表面積は12m )。装置への原水通水量は600L/day、曝気槽容量当たりの負荷量は0.3〜2.0Kg−BOD/m ・dayとした。
【0040】
曝気槽内の汚泥濃度は10000mg/Lに調整し、曝気槽内水温は24〜28℃とした。曝気は曝気槽底部から行い、曝気槽内液のDO濃度を3mg/L以上に保持した。処理水は中空糸UF膜の透過液流出側から減圧ポンプを用いて、減圧下(圧力−0.05〜−0.1Kg/cm )、各中空糸UF膜当り、200L/day(3組で600L/day)で引き抜いた。この透過液の引き抜きは、20分間吸引、2分間休止の間欠方式とした。
【0041】
以上の条件で連続運転を1ケ月間行い、膜透過液(処理水)水質としては、BOD:20mg/L以下、N−ヘキサン可溶性物質:5mg/L以下の高水質を安定に得た。
【0042】
連続運転1ケ月後に3組の中空糸UF膜を下記の方法で別々に洗浄した。洗浄前後の最大透過液量を水温25℃の水道水を用いて測定し、結果を表1に示した。
【0043】
実施例1:蛋白質分解酵素としてプロテアーゼ−Nを水道水に2重量%溶解した蛋白質分解酵素含有洗浄水と、脂質分解酵素としてリパーゼ−Pを水道水に5重量%溶解した脂質分解酵素含有洗浄水とを用い、先に蛋白質含有洗浄水を1L/hrの水量で中空糸UF膜の透過液流出側から30分間通水した。次に、同様な方法で脂質分解酵素含有洗浄水を同条件で30分間通水した。最後に過酸化水素を3重量%含んだ水道水を30分間通水した。
【0044】
比較例1:4重量%カセイソーダ水溶液(温度70℃)を、2L/hrの水量で膜の透過液流出側から30分間通水し、その後、5重量%塩酸水溶液を2L/hrの水量で同様に30分通水し、最後に透過液のpHが中性になるまで、水道水を透過液流出側から通水した。
【0045】
比較例2:カセイソーダ水溶液の代りに4重量%の次亜塩素酸ソーダ水溶液(温度70℃)を用いたこと以外は比較例1と同様にして洗浄を行った。
【0046】
【表1】

Figure 0003570030
【0047】
表1より、蛋白質分解酵素及び脂質分解酵素と過酸化水素による本発明の洗浄方法によれば、カセイソーダと塩酸、又は、次亜塩素酸ソーダと塩酸を用いる従来の洗浄方法に比べて、1.5〜1.8倍の最大透過液量を得ることができ、洗浄効率が大幅に改善されることが明らかである。
【0048】
【発明の効果】
以上詳述した通り、本発明の浸漬型膜分離装置の洗浄方法によれば、
▲1▼ 膜の洗浄を効率的に行うことができるため、洗浄頻度を低減できる。
▲2▼ 酵素による洗浄で、取り扱い上危険な薬品を必要としないため、洗浄作業が容易で、専門の作業員による高度な管理も不要となる。
▲3▼ 洗浄排液を生物処理反応槽内に排出することが可能となるため、洗浄排液処理が不要となる。
▲4▼ 洗浄排液中に残留している酵素を生物処理反応槽内液中の蛋白質や脂質の酵素分解に、また、過酸化水素を活性汚泥の酸素供給源として、それぞれ有効に活用できる。
といった効果が奏され、好気性生物処理反応槽又は、これに連結された槽内に浸漬設置された膜分離装置を高い安全性にて効率的に洗浄することができる。
【図面の簡単な説明】
【図1】本発明の一実施例方法を示す系統図である。
【符号の説明】
1 曝気槽
2 曝気管
3 中空糸膜分離装置
4 減圧ポンプ
5 蛋白質分解酵素含有洗浄水貯槽
6 脂質分解酵素含有洗浄水貯槽
7 過酸化水素含有洗浄水貯槽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for cleaning an immersion type membrane separation device, and particularly to a method for safely and efficiently cleaning a membrane of an aerobic biological treatment reaction tank or a membrane separation apparatus immersed and installed in a tank connected thereto. About.
[0002]
[Prior art]
In recent years, in merger septic tanks and other various types of domestic wastewater treatment facilities, the purpose of making wastewater treatment facilities more compact and stably obtaining advanced treated water quality is to install activated sludge treatment equipment and contact aeration treatment equipment in the aeration tanks. An aerobic biological treatment apparatus equipped with a membrane separator in which a hollow fiber-shaped MF (microfiltration) membrane or a UF (ultrafiltration) membrane module is immersed has been developed.
[0003]
By immersing the hollow fiber membrane module in the aeration tank in this way, a precipitation tank is not required, and the concentration of organisms in the biological treatment reaction tank can be increased. In addition, stable and advanced treatment can be continuously performed, and sludge and raw water SS do not flow out into the treated water, thereby facilitating operation management.
[0004]
However, on the membrane module immersed in the aeration tank, various contaminants such as proteins and lipids in the raw water adhere to the surface of the membrane, and the permeation performance of the membrane is significantly reduced with time. Therefore, when the permeability of the membrane is reduced due to the attachment of the contaminant, it is necessary to clean the membrane to restore the permeability.
[0005]
Conventionally, as a means for cleaning this film, the film taken out of the aeration tank is immersed in cleaning water containing hydrochloric acid, caustic soda, or sodium hypochlorite, or in a state where the film is immersed in the aeration tank. These washing waters are injected from the permeated liquid side (secondary side) of the membrane to remove various contaminants adhering to the surface of the membrane (JP-A-3-77629, JP-A-4-131182). Washing methods are common.
[0006]
[Problems to be solved by the invention]
Of the above-mentioned conventional chemical cleaning methods, the method of taking out the film from the aeration tank requires the work of taking out the film and immersing the film after cleaning, which is not efficient. If the method is to wash the membrane while it is immersed in the aeration tank, it is not necessary to take out the membrane and immerse the membrane after washing, and it is possible to carry out efficient washing, but hydrochloric acid, caustic soda, hypochlorous acid, etc. The conventional cleaning method using a chemical such as soda has the following problems.
[0007]
In other words, when the contaminants on the membrane surface are mainly composed of undegraded proteins and lipids, a sufficient cleaning effect cannot be obtained by such chemical cleaning, and high-concentration caustic soda or hypoxia at elevated temperatures is used. The washing operation was complicated, such as using a large amount and frequently of sodium chlorate, or using caustic soda or sodium hypochlorite, and then washing with hydrochloric acid. In addition, such cleaning methods involve the dangers of cleaning chemicals during use, and the problem is that cleaning operations must be carried out by well-managed specialists with sufficient skills. There was also.
[0008]
On the other hand, in the future, it will be necessary to treat domestic wastewater containing proteins and lipids at a high concentration with a more compact device, and the use of aeration tanks immersed with membrane modules will increase more and more. Therefore, it is desired to establish a cleaning method which can more effectively clean the immersion film and has high safety.
[0009]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and provides an immersion type membrane separation for efficiently and efficiently washing a membrane separation apparatus installed in an aerobic biological treatment reaction tank or a tank connected thereto with high safety. An object of the present invention is to provide a method for cleaning an apparatus.
[0010]
[Means for Solving the Problems]
The method for cleaning an immersion type membrane separation device of the present invention is a method for cleaning a membrane separation device immersed and installed in an aerobic biological treatment reaction tank or a tank connected to the biological treatment reaction tank, the method comprising the steps of: After injecting washing water containing lipolytic enzyme and / or washing water containing lipolytic enzyme from the permeate outflow side of the membrane to perform washing , injecting wash water containing hydrogen peroxide from the permeate outflow side of the membrane. Features.
[0011]
When a domestic wastewater containing a high concentration of proteins and lipids is treated with an aerobic biological treatment device that incorporates a hollow fiber membrane module, in cleaning the membrane whose permeation performance has decreased due to the attachment of contaminants, It is necessary to efficiently reduce the molecular weight of undegraded contaminants consisting of undegraded proteins and lipids attached to the surface and inside of the membrane, and to eliminate the low molecular weight contaminants from the surface and inside of the membrane.
[0012]
In the present invention, as a means for reducing the molecular weight of contaminants consisting of proteins and lipids attached to the membrane surface, washing water containing proteolytic enzymes and lipolytic enzymes is used. When the enzyme in the wash water permeates into the raw water side (primary side) of the membrane by flowing into the membrane from the (secondary side), it reduces the contaminants attached to the membrane and on the membrane surface to lower molecules. Perform safe and efficient cleaning.
[0013]
Further, after performing such an enzyme washing, washing water containing hydrogen peroxide is injected from the permeated liquid side (secondary side) of the membrane to decompose contaminants degraded to low molecular weight by the enzyme, and Further, by removing the contaminants degraded by the oxygen bubbles generated by the decomposition of hydrogen peroxide from the film surface, a higher cleaning effect can be obtained.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a system diagram showing an embodiment of a method for cleaning a submerged membrane separation device of the present invention, in which the method of the present invention is applied to cleaning a hollow fiber membrane module of a hollow fiber membrane submerged activated sludge treatment device. This is an example.
[0016]
In the figure, reference numeral 1 denotes an aeration tank provided with an aeration tube 2, and a hollow fiber membrane separation device 3 is immersed in the center. Reference numeral 4 denotes a decompression pump, and reference numerals 5, 6, and 7 denote storage tanks for proteolytic enzyme-containing wash water, lipolytic enzyme-containing wash water, and hydrogen peroxide-containing wash water, respectively. Reference numerals 5A, 6A, and 7A indicate pumps, and reference numerals 11 to 15 indicate piping.
[0017]
First, the configuration, operating conditions, and the like of the apparatus of this embodiment will be described.
[0018]
In this embodiment, the raw water is domestic wastewater represented by kitchen wastewater, and contains proteins and lipids in addition to carbohydrates. Basically, raw water is stored in a raw water adjustment tank and then introduced into this activated sludge treatment apparatus. However, when the amount of raw water is small, the raw water adjustment tank can be omitted and directly introduced.
[0019]
The aeration tank 1 can be operated at a high load of 5 kg-BOD / m 3 · day or more, but from the viewpoint of preventing the fluctuation of the treated water quality due to the fluctuation of the raw water, and from the viewpoint of reducing the amount of generated sludge. It is also preferable to operate at 2 kg-BOD / m 3 · day or less.
[0020]
The membrane separator 3 immersed in the aeration tank 1 uses a hollow fiber membrane-like MF membrane or UF membrane, and discharges a membrane permeated liquid corresponding to the flow rate from the membrane separator 3. As a means for discharging the permeated liquid, as shown in the figure, a method in which the inside of the hollow fiber membrane is depressurized by using a decompression pump 4 or a vacuum pump to suction the permeated liquid, There is a method in which the permeate is allowed to flow out using pressure. From the viewpoint of the structure and operation and operation, a method in which the inside of the hollow fiber membrane is depressurized and the permeate is suctioned is appropriate. At this time, the surface of the membrane is contaminated by adopting an intermittent suction system in which suction is stopped for a certain period of time for several minutes after suction for a certain period of time from 10 minutes to 30 minutes instead of a system for continuously sucking the permeate. The amount of substances attached can be reduced.
[0021]
In the apparatus of the present embodiment, the raw water introduced into the aeration tank 1 from the pipe 11 is subjected to aerobic biological treatment with aerated air from the aeration pipe 2, and then treated by the hollow fiber membrane separation device 3. The permeated liquid of the hollow fiber membrane is discharged out of the system from the pipe 12 by suction by the vacuum pump 4.
[0022]
When the operation of the apparatus causes contaminants to adhere to the membrane surface and the permeate volume of the membrane is reduced, the introduction of raw water and the depressurizing pump 4 are stopped, and the washing water containing the enzyme is removed according to the method of the present invention. (Secondary side) to reduce the molecular weight or dissolve contaminants on the membrane surface by press-fitting to wash the membrane.
[0023]
In the present invention, subtilisin and protease-N can be used as the proteolytic enzymes used for enzyme washing, and lipase-P and lipozyme can be used as the lipolytic enzymes. In particular, when the raw water of the membrane separation device to be washed mainly consists of kitchen wastewater of a general home where activated sludge treatment is performed, protease-N (manufactured by Amano Pharmaceutical Co., Ltd.) is used as a protease. Washing water containing 0.5 to 10% by weight, particularly 2% by weight, and further containing 0.5 to 10% by weight, especially 5% by weight of lipase-P (manufactured by Amano Pharmaceutical Co., Ltd.) as a lipolytic enzyme. It is appropriate to use water. The amount of cleaning water depends on the contamination status of the membrane, but the cleaning water pressurized to 1 to 3 kg / cm 2 as the cleaning pressure is used in an amount of 1 to 5 L (liter) per 1 m 2 of the membrane area, and the cleaning water stays in the membrane for at least 30 minutes. It is preferable to perform washing under such conditions.
[0024]
In carrying out the present invention, it should be particularly noted that, when a protease and a lipolytic enzyme are used in combination, the enzymes are not mixed. That is, if both enzymes are mixed, the lipolytic enzyme may be inactivated by the proteolytic enzyme. Therefore, when using the proteolytic enzyme and the lipolytic enzyme in combination, be sure to wash the lipolytic enzyme containing the proteolytic enzyme. After washing with water, the plate is washed with washing water containing a lipolytic enzyme. Alternatively, after washing with washing water containing a lipolytic enzyme, washing is performed with washing water containing a protease.
[0025]
Since the washing wastewater after washing contains an enzyme having a sufficiently large amount of activity, the activity of the enzyme remaining in the washing wastewater is measured by the protein and lipid in the liquid in the aeration tank. It can also be used for enzymatic degradation of. At this time, if the activated sludge in the aeration tank has high activity while the aeration tank is in the aerated state, the residual enzyme in the washing wastewater will be decomposed by the activated sludge. Preferably, the aeration is temporarily stopped and the inside of the tank is kept in a gentle stirring state. By stopping the aeration, the activity of the activated sludge is temporarily reduced, and the decomposition of the enzyme is prevented.
[0026]
In the present invention, after the enzyme is washed by these means, washing water containing 2 to 3% by weight of hydrogen peroxide is injected from the permeated liquid side (secondary side) of the membrane to be depolymerized by the enzyme. while decomposing the contaminants, it peels removed from the membrane surface by the oxygen bubbles generated during the decomposition of hydrogen peroxide.
[0027]
At the time of cleaning with hydrogen peroxide, aeration is performed or the inside of the aeration tank is sufficiently stirred, so that the cleaning wastewater containing hydrogen peroxide is quickly diffused and diluted in the tank. That is, the hydrogen peroxide remaining in the washing wastewater is effectively used as an oxygen supply source to the activated sludge, but when the hydrogen peroxide concentration is high, the activity of the activated sludge is inhibited. Therefore, in this cleaning with hydrogen peroxide, the injection amount and the injection speed are adjusted so that the concentration of hydrogen peroxide after the cleaning effluent is diluted with the mixture in the aeration tank is 2000 mg / L or less. In addition, it is necessary to perform sufficient mixing and stirring.
[0028]
In the apparatus shown in FIG. 1, a specific washing operation is as follows.
[0029]
That is, first, the introduction of raw water is stopped, the aeration and the decompression pump 4 are stopped, and then the pump 5A is operated to remove the protease-containing washing water in the storage tank 5 through the pipe 13 through the permeate of the membrane separation device 3. Inject at a predetermined flow rate from the side for a predetermined time.
[0030]
Thereafter, the pump 5A is stopped, and the pump 6A is operated to inject the lipolytic enzyme-containing washing water in the storage tank 6 from the permeate side of the membrane separation device 3 via the pipe 14 at a predetermined flow rate for a predetermined time.
[0031]
After the washing with the proteolytic enzyme and the washing with the lipolytic enzyme in this manner, washing with hydrogen peroxide is performed.
[0032]
That is, while the pump 6A is stopped, the pump 7A is operated, and the hydrogen peroxide-containing cleaning water in the storage tank 7 is injected through the pipe 15 from the permeate side of the membrane separation device 3 at a predetermined flow rate for a predetermined time.
[0033]
At this time, as described above, in order to quickly diffuse and dilute the residual hydrogen peroxide in the cleaning wastewater into the tank, sufficient agitation is performed by restarting aeration.
[0034]
After the cleaning with hydrogen peroxide, the pump 7A is stopped, the raw water is introduced, and the decompression pump 4 is operated to restart the processing.
[0035]
Although the illustrated device has a hollow fiber membrane separation device installed in an aeration tank, the present invention provides a bioreactor in which a membrane separation device is immersed and installed in another tank connected to a biological reaction tank. The present invention is also applicable to cleaning of an apparatus adopting a method of transferring a liquid in a tank between a reaction tank and a membrane installation tank by means such as a pump or an air lift pump.
[0036]
The form of the membrane to be washed is not limited to the hollow fiber membrane, but may be a membrane of another form such as a flat membrane or a tubular membrane.
[0037]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0038]
Example 1, Comparative Examples 1 and 2
SS discharged from the kitchen of the cafeteria: 300-2200 mg / L, BOD: 500-3300 mg / L, N-hexane soluble substance (derived from lipid): 70-1200 mg / L, organic nitrogen (derived from protein): 30-550 mg The cleaning effect according to the present invention was examined in an apparatus as shown in FIG. 1 using / L wastewater as raw water.
[0039]
The capacity of the aeration tank is 1000 L. In this aeration tank, three sets of “Stellapore-L” (fractionation characteristics: 0.1 μm, polyethylene membrane) manufactured by Mitsubishi Rayon Co., Ltd. having an effective surface area of 4 m 2 are formed as hollow fiber UF membranes. It was immersed (the total effective surface area of the hollow fiber membrane was 12 m 2 ). Raw water through water to devices 600L / day, load per aeration tank volume was 0.3~2.0Kg-BOD / m 3 · day .
[0040]
The concentration of sludge in the aeration tank was adjusted to 10,000 mg / L, and the temperature of the water in the aeration tank was set to 24-28 ° C. Aeration was performed from the bottom of the aeration tank, and the DO concentration of the liquid in the aeration tank was maintained at 3 mg / L or more. The treated water was decompressed (pressure -0.05 to -0.1 kg / cm 2 ) from the permeate outflow side of the hollow fiber UF membrane under reduced pressure (pressure -0.05 to -0.1 kg / cm 2 ), and 200 L / day (three sets) per each hollow fiber UF membrane At 600 L / day). This permeate was withdrawn for 20 minutes by an intermittent method with a 2 minute pause.
[0041]
Under the above conditions, continuous operation was performed for one month, and as the water quality of the membrane permeated liquid (treated water), a high water quality of BOD: 20 mg / L or less and N-hexane soluble substance: 5 mg / L or less was stably obtained.
[0042]
One month after continuous operation, three sets of hollow fiber UF membranes were separately washed by the following method. The maximum amount of permeate before and after washing was measured using tap water at a water temperature of 25 ° C., and the results are shown in Table 1.
[0043]
Example 1: Protease-N-containing washing water in which 2% by weight of protease-N was dissolved in tap water as a protease, and lipase-containing washing water in which 5% by weight of lipase-P was dissolved in tap water as a lipolytic enzyme Using the above, the protein-containing washing water was first passed for 30 minutes from the permeate outflow side of the hollow fiber UF membrane at a water amount of 1 L / hr. Next, lipolytic enzyme-containing washing water was passed in the same manner for 30 minutes under the same conditions. Finally, tap water containing 3% by weight of hydrogen peroxide was passed for 30 minutes.
[0044]
Comparative Example 1: A 4% by weight aqueous solution of sodium hydroxide (temperature: 70 ° C.) was passed through the permeate outlet side of the membrane for 30 minutes at a water amount of 2 L / hr, and then a 5% by weight aqueous hydrochloric acid solution was used at 2 L / hr. For 30 minutes, and finally tap water was passed from the permeate outlet side until the pH of the permeate became neutral.
[0045]
Comparative Example 2: Cleaning was performed in the same manner as in Comparative Example 1 except that a 4% by weight aqueous solution of sodium hypochlorite (temperature: 70 ° C.) was used instead of the aqueous solution of sodium hydroxide.
[0046]
[Table 1]
Figure 0003570030
[0047]
As shown in Table 1, according to the cleaning method of the present invention using protease and lipolytic enzyme and hydrogen peroxide, as compared with the conventional cleaning method using caustic soda and hydrochloric acid, or the conventional cleaning method using sodium hypochlorite and hydrochloric acid. It is clear that a maximum permeate volume of 5 to 1.8 times can be obtained, and the cleaning efficiency is greatly improved.
[0048]
【The invention's effect】
As described above in detail, according to the cleaning method of the immersion type membrane separation device of the present invention,
{Circle around (1)} Since the film can be efficiently cleaned, the frequency of cleaning can be reduced.
(2) Since cleaning with enzymes does not require dangerous chemicals in handling, the cleaning operation is easy and sophisticated management by specialized workers is not required.
{Circle around (3)} Since the washing wastewater can be discharged into the biological treatment reaction tank, the washing wastewater treatment becomes unnecessary.
{Circle around (4)} Enzymes remaining in the washing wastewater can be effectively used for enzymatic decomposition of proteins and lipids in the liquid in the biological treatment reaction tank, and hydrogen peroxide can be effectively used as an oxygen supply source for activated sludge.
Thus, the aerobic biological treatment reaction tank or the membrane separation device immersed and installed in the tank connected thereto can be efficiently washed with high safety.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a method according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Aeration tank 2 Aeration tube 3 Hollow fiber membrane separation device 4 Decompression pump 5 Washing water storage tank containing proteolytic enzyme 6 Washing water storage tank containing lipolytic enzyme 7 Washing water storage tank containing hydrogen peroxide

Claims (1)

好気性生物処理反応槽内又は、該生物処理反応槽と連結された槽内に浸漬設置された膜分離装置を洗浄する方法において、蛋白質分解酵素を含む洗浄水及び/又は脂質分解酵素を含む洗浄水を膜の透過液流出側から注入して洗浄を行った後、過酸化水素を含む洗浄水を膜の透過液流出側から注入することを特徴とする浸漬型膜分離装置の洗浄方法。In a method for cleaning a membrane separation device immersed and installed in an aerobic biological treatment reaction tank or a tank connected to the biological treatment reaction tank, cleaning water containing a protease and / or cleaning containing a lipolytic enzyme A method for cleaning an immersion type membrane separation device, comprising: injecting water from a permeate outflow side of a membrane to perform washing, and then injecting cleaning water containing hydrogen peroxide from a permeate outflow side of the membrane.
JP21171295A 1995-08-21 1995-08-21 Cleaning method of immersion type membrane separation device Expired - Fee Related JP3570030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21171295A JP3570030B2 (en) 1995-08-21 1995-08-21 Cleaning method of immersion type membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21171295A JP3570030B2 (en) 1995-08-21 1995-08-21 Cleaning method of immersion type membrane separation device

Publications (2)

Publication Number Publication Date
JPH0957074A JPH0957074A (en) 1997-03-04
JP3570030B2 true JP3570030B2 (en) 2004-09-29

Family

ID=16610356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21171295A Expired - Fee Related JP3570030B2 (en) 1995-08-21 1995-08-21 Cleaning method of immersion type membrane separation device

Country Status (1)

Country Link
JP (1) JP3570030B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905607B1 (en) * 2006-09-07 2011-04-01 Degremont SCREENING DEVICE FOR EFFLUENT TREATMENT PLANT, METHOD OF OPERATING THE DEVICE AND INSTALLATION EQUIPPED WITH THE DEVICE.
BE1022511B1 (en) * 2015-03-31 2016-05-18 Realco S.A. Method for identifying the nature of clogging present in a membrane filtration plant
DK3240624T3 (en) * 2014-12-31 2021-04-06 Realco S A METHOD FOR IDENTIFYING THE TYPE OF CLOGGING IN A MEMBRANE FILTERING APPARATUS

Also Published As

Publication number Publication date
JPH0957074A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
JP5908186B2 (en) Water treatment method and water treatment apparatus using membrane
JP2009297611A (en) Hydrogen peroxide-containing organic water treatment method and apparatus
JP2007061697A (en) Separation film cleaning method and organic wastewater treatment system
JP3570030B2 (en) Cleaning method of immersion type membrane separation device
JP2002361281A (en) Method and apparatus for reducing quantity of excessive sludge in biological treatment of organic contaminated water
JPH0131403B2 (en)
JPH11128920A (en) Operation of organic wastewater treatment apparatus
JPH04104895A (en) Biological treating device for organic sewage
JP3858282B2 (en) Immersion membrane separator
JP3221801B2 (en) Water treatment method
JP2010005560A (en) Method and apparatus for treating organic alkali wastewater
JPH07112198A (en) Method for reducing weight of sludge by digestion and device therefor
JP2002177981A (en) Waste water treatment method and equipment
JPH10309595A (en) Biological treatment
JPH11147098A (en) Anaerobic treatment apparatus
CN113648837A (en) Method for cleaning highly-polluted reverse osmosis membrane
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
JPH0819789A (en) Method and apparatus for aerobic treatment of organic waste solution
JP3684825B2 (en) Chemical cleaning method for membrane
JP4244001B2 (en) Membrane cleaning method for membrane activated sludge treatment equipment
JPH0985294A (en) Waste water treatment equipment
JP2001286886A (en) Treatment process of wastewater
KR20080043613A (en) Excess sludge treatment apparatus and method thereof using membrane bio reactor
JPH04135694A (en) Water treating device
JPH032039B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees