JP3684825B2 - Chemical cleaning method for membrane - Google Patents

Chemical cleaning method for membrane Download PDF

Info

Publication number
JP3684825B2
JP3684825B2 JP08162198A JP8162198A JP3684825B2 JP 3684825 B2 JP3684825 B2 JP 3684825B2 JP 08162198 A JP08162198 A JP 08162198A JP 8162198 A JP8162198 A JP 8162198A JP 3684825 B2 JP3684825 B2 JP 3684825B2
Authority
JP
Japan
Prior art keywords
membrane
cleaning
chemical
chemical solution
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08162198A
Other languages
Japanese (ja)
Other versions
JPH11276864A (en
Inventor
晃士 堀
幹夫 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP08162198A priority Critical patent/JP3684825B2/en
Publication of JPH11276864A publication Critical patent/JPH11276864A/en
Application granted granted Critical
Publication of JP3684825B2 publication Critical patent/JP3684825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は活性汚泥を固液分離する膜の薬品洗浄方法に関するものであり、特に膜の下部より曝気を行いながら活性汚泥を濾過する浸漬型膜分離装置の膜の洗浄に好適な膜の薬品洗浄方法に関する。
【0002】
【従来の技術】
活性汚泥等の懸濁物質の固液分離を行っている膜分離装置では、運転を継続することにより、膜面に濃縮汚泥のケーキ層が付着堆積し、膜孔の目詰りで膜の濾過差圧が上昇し透過流束が低下してくるため、定期的に或いは必要に応じて膜の薬品洗浄を行う。この膜の薬品洗浄に当っては、膜を薬液に浸漬し、膜の下方から曝気するなどして膜面に曝気による気泡とそれに伴う攪拌流を当てることにより洗浄効果を高めている。
【0003】
ところで、薬品洗浄が行われる膜の表面には活性汚泥等の懸濁物質や、膜面を透過しない高分子ゲル状物質等が濃縮されており、これらが薬品洗浄により膜面から剥離されて洗浄薬液中に溶解すると、洗浄薬液が激しく発泡する。このため、膜の曝気洗浄では、洗浄開始後数十分後から数十分間にわたり、激しい発泡が生じる。
【0004】
従来、この発泡に対応するために、次のような手段が採用されている。
【0005】
▲1▼ 消泡剤を添加する。この場合、一般に消泡剤の過剰注入を防止するために、薬品洗浄の洗浄薬液の液面に泡検知器を設け、この検知結果に基づいて消泡剤が添加される。
【0006】
▲2▼ 攪拌羽根や消泡スプレー等の機械式の消泡装置を設ける。例えば、薬品洗浄槽の開口部に攪拌式の消泡装置を設けて消泡する。
【0007】
▲3▼ 発泡により溢れ出た泡を適宜洗浄して洗い流す。或いは放置する。例えば、薬品洗浄槽から溢れ出た泡を受け入れる消泡槽を設け、適宜処理するか、或いはそのまま放置する。
【0008】
【発明が解決しようとする課題】
しかしながら、上記従来法はいずれも次のような欠点があり、改良が望まれていた。
【0009】
即ち、消泡剤を添加することにより発泡を抑制することはできるが、消泡効果が長続きしないことが多く、また過剰に添加すると消泡剤が膜面に付着し、膜を汚染するという問題がある。泡検知器を設けることにより、消泡剤の過剰添加を防止することはできるが、この場合には、薬注制御のための設備が必要となる上に、このように泡検知器を設けた場合でも、検出不良により過剰添加となる恐れがある。
【0010】
攪拌羽根や消泡スプレー等の機械式の消泡設備であれば、膜を汚染することなく消泡することができるが、この場合には、消泡のための機器を設置し、またこれらが有効に機能する装置形態にする必要があるため、建造費が高くなるという問題がある。更に、装置から溢れた泡を洗い流すか放置するものでは、洗浄薬液が周囲に飛散して危険であり、また溢れた泡の処理に手間がかかるという問題がある。消泡槽を設けるものでは、その設置スペースの問題がある。
【0011】
本発明は上記従来の問題点を解決し、活性汚泥等が脱水ケーキ状で強固に付着した膜を洗浄薬液に浸漬して曝気洗浄する際の発泡を抑制して、消泡剤や消泡設備を必要とすることなく、また、薬液の飛散を防止して膜を効果的に薬品洗浄する方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の膜の薬品洗浄方法は、活性汚泥を固液分離処理した膜分離装置の膜を薬液に浸漬するとともに、膜の下方から曝気を行って洗浄する方法において、該薬液が、pH12.5〜14.0の薬液であるか、又は、0.03規定以上の強アルカリ溶液であることを特徴とする。
【0013】
本発明の方法により、発泡が抑制される機構の詳細は不明であるが、次のような作用によるものと推測される。
【0014】
即ち、膜の汚染は活性汚泥自体や微生物由来の高分子物質や膜面でのスライム生成が原因となっていることが多い。特に、活性汚泥が脱水ケーキ状に濃縮されて付着している場合などは、汚染物質の主体は微生物であると言える。そして、このように微生物が主体の汚染物質を薬剤で分解して溶解させると、微生物由来の界面活性を持つ物質が汚染物質を構成する微生物から分泌されたり、或いは微生物と洗浄薬剤との反応で界面活性を持つ物質が生成したりし、この界面活性物質が発泡現象を引き起こしているものと思われる。
【0015】
一方で、界面活性剤の特性が溶液のpHによって異なってくることは十分想定されることであり、特定のpHにおいて発泡性が極端に低下するという現象も起こりうる。
【0016】
本発明に係る洗浄薬液のpH値は、このように微生物由来の界面活性物質の発泡力が極小となるpHであると推定され、これにより、洗浄中の発泡が抑制されるものと考えられる。
【0017】
【発明の実施の形態】
以下に、本発明の実施の形態を詳細に説明する。
【0018】
本発明においては、膜を洗浄薬液に浸漬して膜の下方から曝気を行いながら薬品洗浄するに当り、洗浄薬液としてpH12.5〜14.0の薬液か、或いは、強アルカリ濃度が0.03規定以上の強アルカリ溶液を用いる。
【0019】
この洗浄薬液のpHが12.5未満であっても14.0を超えても発泡抑制効果が得られず、特に、pH14.0を超えるような薬液では、薬剤使用量が増加するため好ましくない。洗浄薬液は、特にpH12.7〜13.3の範囲であることが好ましく、一般には、pH13.0程度に調整するのが好適である。
【0020】
また、洗浄薬液の苛性ソーダ(NaOH)や苛性カリ(KOH)といった強アルカリ濃度が0.03規定未満では、発泡抑制効果が得られない。この強アルカリ濃度が高過ぎても発泡抑制効果が低下する。好ましい強アルカリ濃度は0.05〜0.3規定である。なお、0.05〜0.3規定の強アルカリ水溶液は、通常、pH12.5〜13.5程度である。
【0021】
本発明に係る薬液は、洗浄効果の面から、次亜塩素酸ソーダや過酸化水素等の酸化剤を含むことが好ましく、特に50mg/L以上、好ましくは500〜1500mg/Lの有効塩素、又は100mg/L以上、好ましくは1000〜30000mg/Lの過酸化水素を含むことが好ましい。一般的には、強アルカリ水溶液に、次亜塩素酸ソーダを添加し、300〜1200mg/Lの有効塩素濃度となるように調整して洗浄薬液とする。
【0022】
なお、浸漬型膜を曝気洗浄する場合、膜濾過部底面積当たり10〜200m3/m2/hour、好ましくは30〜120m3/m2/hourで膜の下方から曝気を行い、これにより生ずる気液混合流を膜面に当てることで、より一層の洗浄効果を得ることができる。
【0023】
本発明による薬品洗浄は、必ずしも単独で行う必要はなく、他の洗浄工程と適宜組み合せることにより、より一層の洗浄効果を得ることができる。例えば、スプレー水による洗浄等の物理洗浄や、曝気を伴わない薬液浸漬洗浄や、酸を用いた洗浄(例えば、硫酸等によりpHを2以下にした薬液による洗浄、或いは蓚酸やクエン酸の0.1〜10重量%溶液による洗浄)と組み合せて行っても良い。
【0024】
このような本発明の膜の薬品洗浄方法は、膜面に懸濁物質(特に活性汚泥)が脱水ケーキ状となって強固に付着し、スプレー水洗等では容易に剥離しない状態となった膜を洗浄する際に特に効果的である。
【0025】
以下に、硝化・脱窒を行う活性汚泥の固液分離に浸漬型膜を適用し、汚染された膜の薬品洗浄槽を備える硝化・脱窒設備を示す図1を参照して、本発明の膜の薬品洗浄法を説明する。
【0026】
図中、11は脱窒槽であり、攪拌機12を備える。13は硝化槽兼膜分離槽であり、バッフル板14で仕切られた領域内に浸漬膜15が設けられており、この浸漬膜15の下方には散気管16が設けられている。P1,P2はポンプである。
【0027】
原水は、脱窒槽11及び硝化槽兼膜分離槽13で処理され、硝化液の一部はポンプP2により脱窒槽11に返送される。硝化・脱窒後、膜15で固液分離された処理水はポンプP1により抜き出される。余剰汚泥は硝化槽兼膜分離槽13の底部より抜き出される。
【0028】
固液分離により汚染された膜15は、クレーン、ホイスト又はチューンブロック等で引き上げて薬品洗浄槽17に移し、薬品洗浄が行われる。
【0029】
この薬品洗浄槽17には、次亜塩素酸ソーダと苛性ソーダとが注入され、pHコントローラ18で所定のpHの薬液が調製される。この薬品洗浄槽17の洗浄薬液中に浸漬された膜15は、散気管19からの曝気による気液混合流により洗浄される。しかし、この薬品洗浄に当り、前述のpH条件又は強アルカリ濃度の薬液で洗浄することにより、発泡を抑制して効果的な洗浄を行える。
【0030】
なお、図1は本発明の膜の薬品洗浄法の適用例の一例を示すものであって、何ら本発明を制限するものではない。
【0031】
例えば、洗浄対象となる膜が設けられた設備は、硝化・脱窒処理設備に限らず、BODの除去のみを行う処理系であっても良く、硝化・脱窒手段としても硝化槽と脱窒槽とを併設せずに、間欠曝気を行って、同一の槽内で硝化・脱窒を行うものであっても良い。更に、リン除去を行う系であっても良い。また、活性汚泥処理系に限らず、凝集汚泥やその他の懸濁水を膜濾過する装置にも適用可能である。
【0032】
また、膜を浸漬した膜分離槽を複数槽設け、薬品洗浄時には、洗浄を行う系列の膜分離槽から被処理水を抜き出し、この槽に薬液を注入して膜分離槽内で薬品洗浄を行っても良い。この場合には、図1に示す薬品洗浄槽に設けられるpHコントローラや薬液注入設備は膜分離槽に設けられる。
【0033】
また、図1では、薬液の調製は、薬品洗浄槽でpHコントローラ及び薬注設備を用いて行うようになっているが、専用の薬液調製設備で調製した薬液を移送するようにしても良い。また、pHコントローラを設ける他、手動でpHを調整しても良いし、pHを調整せず、薬液を所定量混合するだけでも、結果的に本発明の条件を満たすような薬液が調製されれば良い。薬注手段としても、ポンプ等により自動で所定量を注入しても良いし、pH計やORP計と連動して注入しても良い。また、手動で注入しても良い。
【0034】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0035】
実施例1,2、比較例1
埋立浸出水を活性汚泥によりBOD除去及び窒素除去を行った後、活性汚泥と処理水との固液分離に数十日間使用し、濾過差圧が当初の3kPaから25〜35kPaまで上昇した膜について、洗浄試験を行った。
【0036】
この膜は、外圧型中空系MF膜:三菱レイヨン社製「ステラポアーL(UMF424SLI)」をシート状に成形したものであり、膜面積は4m2、公称孔径0.1μm、内径270μm、外径410μm、材質は親水化ポリエチレンである。
【0037】
膜濾過の条件は、フラックスを0.3m3/m2/dayで一定とし、バッフル板を備えた旋回流式曝気槽に浸漬して、旋回流上昇部底面積当り50〜150m3/m2/hourで被処理水の活性汚泥を曝気しながら、8分濾過、2分停止のサイクルを繰り返す間欠濾過を行った。
【0038】
このような条件で10日間の濾過を行った膜は、わずかに着色した高分子物質で膜面が汚染され、膜面の一部には脱水ケーキ状の活性汚泥が付着していた。
【0039】
この汚染された膜を、表1に示す洗浄薬液を満たした、バッフル板を備える旋回流式曝気槽に浸漬して膜の下方から旋回流上昇部(膜濾過部)底面積当り100m3/m2/hourで曝気することにより180分間洗浄した。
【0040】
この薬品洗浄における発泡の状況を観察し、結果を表1に示した。
【0041】
また、洗浄後の膜を水道水に漬けてフラックス0.3m3/m2/dayにおける差圧を測定することにより洗浄効果を調べ、結果を表1に併記した。この膜の使用前の差圧は3kPaであるので、この値に近いほど洗浄効果が高いことになる。
【0042】
【表1】

Figure 0003684825
【0043】
表1より、本発明の方法によれば、薬品洗浄時の発泡を防止して効果的な洗浄を行えることがわかる。
【0044】
【発明の効果】
以上詳述した通り、本発明の膜の薬品洗浄方法によれば、膜の薬品洗浄に当り、薬液の発泡を効果的に抑制することができる。このため、消泡剤の添加や、消泡のための設備などを必要とすることなく、優れた洗浄効果で効率的な膜の薬品洗浄を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の膜の薬品洗浄方法の適用例を説明する硝化・脱窒設備の系統図である。
【符号の説明】
11 脱窒槽
13 硝化槽兼膜分離槽
15 膜
16,19 散気管
17 薬品洗浄槽
18 pHコントローラ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to chemical cleaning methods membrane separating active sludge, solid-liquid, submerged membrane chemicals suitable membrane cleaning of the membrane separation device in particular filtering the activated sludge while aeration from the lower portion of the film The present invention relates to a cleaning method.
[0002]
[Prior art]
In a membrane separator that performs solid-liquid separation of suspended solids such as activated sludge, by continuing operation, a cake layer of concentrated sludge adheres and accumulates on the membrane surface. Since the pressure increases and the permeation flux decreases, chemical cleaning of the membrane is performed periodically or as necessary. In this chemical cleaning of the membrane, the cleaning effect is enhanced by immersing the membrane in a chemical solution and aeration from the lower side of the membrane so as to apply air bubbles and a stirring flow associated therewith to the membrane surface.
[0003]
By the way, suspended surfaces such as activated sludge and polymer gel-like substances that do not permeate the membrane surface are concentrated on the surface of the membrane where chemical cleaning is performed, and these are separated from the membrane surface and cleaned by chemical cleaning. When dissolved in the chemical, the cleaning chemical foams violently. For this reason, in aeration cleaning of the membrane, intense foaming occurs for several tens of minutes after the start of cleaning.
[0004]
Conventionally, the following means have been adopted to cope with this foaming.
[0005]
(1) Add an antifoaming agent. In this case, generally, in order to prevent excessive injection of the antifoaming agent, a foam detector is provided on the surface of the cleaning chemical solution for chemical cleaning, and the antifoaming agent is added based on the detection result.
[0006]
(2) Provide a mechanical defoaming device such as a stirring blade or defoaming spray. For example, a stirring type defoaming device is provided at the opening of the chemical cleaning tank to defoam.
[0007]
(3) Rinse the foam overflowing by foaming as appropriate. Or leave it alone. For example, a defoaming tank for receiving bubbles overflowing from the chemical cleaning tank is provided and appropriately treated or left as it is.
[0008]
[Problems to be solved by the invention]
However, each of the above conventional methods has the following drawbacks, and improvement has been desired.
[0009]
That is, although foaming can be suppressed by adding an antifoaming agent, the antifoaming effect often does not last long, and when added excessively, the antifoaming agent adheres to the film surface and contaminates the film. There is. By providing a foam detector, it is possible to prevent excessive addition of the antifoaming agent, but in this case, equipment for chemical injection control is required and the foam detector is provided in this way. Even in such a case, there is a risk of excessive addition due to poor detection.
[0010]
If it is mechanical defoaming equipment such as a stirring blade or defoaming spray, it can defoam without contaminating the membrane. In this case, equipment for defoaming is installed, There is a problem that the construction cost increases because it is necessary to make the device form functioning effectively. Furthermore, when the overflowing foam from the apparatus is washed away or left unattended, there is a problem that the cleaning chemical solution is scattered around and dangerous, and the processing of the overflowing foam is troublesome. In the case of providing a defoaming tank, there is a problem of the installation space.
[0011]
The present invention solves the above-mentioned conventional problems, suppresses foaming when the activated sludge and the like are firmly attached in a dehydrated cake and immersed in a cleaning chemical solution to perform aeration cleaning, and defoaming agent and antifoaming equipment It is another object of the present invention to provide a method for effectively cleaning a film without the need for chemicals and preventing scattering of chemicals.
[0012]
[Means for Solving the Problems]
The membrane chemical cleaning method of the present invention is a method of immersing a membrane of a membrane separation apparatus in which activated sludge is subjected to solid-liquid separation treatment in a chemical solution and cleaning by performing aeration from below the membrane, wherein the chemical solution has a pH of 12.5. It is a chemical solution of ˜14.0 or a strong alkaline solution of 0.03 N or more.
[0013]
Although the details of the mechanism by which foaming is suppressed by the method of the present invention are unknown, it is presumed to be due to the following actions.
[0014]
That is, membrane contamination is often caused by activated sludge itself, microorganism-derived polymeric substances, and slime formation on the membrane surface. In particular, when the activated sludge is concentrated in the form of a dehydrated cake and adhered, it can be said that the main contaminant is a microorganism. Then, when the contaminants mainly composed of microorganisms are decomposed and dissolved by the drug in this way, the substances having surface activity derived from the microorganisms are secreted from the microorganisms constituting the contaminants, or the reaction between the microorganisms and the cleaning drug is caused. It is thought that a surface active substance is generated and this surface active substance causes a foaming phenomenon.
[0015]
On the other hand, it is fully assumed that the properties of the surfactant differ depending on the pH of the solution, and a phenomenon that foamability is extremely lowered at a specific pH may also occur.
[0016]
The pH value of the cleaning chemical solution according to the present invention is thus estimated to be a pH at which the foaming power of the microorganism-derived surfactant is minimized, and this is considered to suppress foaming during cleaning.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0018]
In the present invention, when chemical cleaning is performed while the membrane is immersed in a cleaning chemical solution and aerated from below the membrane, the cleaning chemical solution is a chemical solution having a pH of 12.5 to 14.0 or a strong alkali concentration of 0.03. Use a strong alkaline solution above the specified level.
[0019]
Even if the pH of this cleaning chemical solution is less than 12.5 or exceeds 14.0, the foaming suppression effect is not obtained, and in particular, a chemical solution exceeding pH 14.0 is not preferable because the amount of drug used increases. . The cleaning chemical solution is particularly preferably in the range of pH 12.7 to 13.3, and in general, it is suitable to adjust to about pH 13.0.
[0020]
Moreover, if the strong alkali concentration such as caustic soda (NaOH) or caustic potash (KOH) in the cleaning chemical solution is less than 0.03 N, the foaming suppression effect cannot be obtained. Even if this strong alkali concentration is too high, the foaming suppression effect decreases. A preferred strong alkali concentration is 0.05 to 0.3 N. In addition, 0.05-0.3N strong alkaline aqueous solution is normally about pH 12.5-13.5.
[0021]
The chemical solution according to the present invention preferably contains an oxidizing agent such as sodium hypochlorite and hydrogen peroxide from the viewpoint of the cleaning effect, particularly 50 mg / L or more, preferably 500 to 1500 mg / L of effective chlorine, or It is preferable to contain hydrogen peroxide of 100 mg / L or more, preferably 1000 to 30000 mg / L. In general, sodium hypochlorite is added to a strong alkaline aqueous solution and adjusted to an effective chlorine concentration of 300 to 1200 mg / L to obtain a cleaning chemical solution.
[0022]
In the case of aerated washing the submerged membrane, 10 to 200 m per membrane filtration unit bottom area 3 / m 2 / hour, preferably performs aeration from below the membrane in 30~120m 3 / m 2 / hour, thereby resulting A further cleaning effect can be obtained by applying the gas-liquid mixed flow to the film surface.
[0023]
The chemical cleaning according to the present invention is not necessarily performed alone, and a further cleaning effect can be obtained by appropriately combining with other cleaning steps. For example, physical cleaning such as cleaning with spray water, chemical solution immersion cleaning without aeration, cleaning with an acid (for example, cleaning with a chemical solution having a pH of 2 or less with sulfuric acid or the like, or oxalic acid or citric acid with a pH of 0.2). Cleaning with 1 to 10% by weight solution) may be performed in combination.
[0024]
In such a chemical cleaning method for a membrane of the present invention, a suspended substance (especially activated sludge) adheres firmly in the form of a dehydrated cake on the membrane surface, and a membrane that is not easily peeled off by spray water washing or the like. It is particularly effective when cleaning.
[0025]
In the following, referring to FIG. 1 showing a nitrification / denitrification facility that applies a submerged membrane for solid-liquid separation of activated sludge for nitrification / denitrification and that has a chemical cleaning tank for the contaminated membrane, The chemical cleaning method for the membrane will be described.
[0026]
In the figure, reference numeral 11 denotes a denitrification tank, which includes a stirrer 12. Reference numeral 13 denotes a nitrification tank / membrane separation tank. An immersion film 15 is provided in an area partitioned by a baffle plate 14, and an air diffuser 16 is provided below the immersion film 15. P 1 and P 2 are pumps.
[0027]
Raw water is treated with denitrification tank 11 and the nitrification tank and the membrane separation tank 13, a portion of the nitrified liquid is returned by the pump P 2 to the denitrification tank 11. After nitrification / denitrification, the treated water separated into solid and liquid by the membrane 15 is extracted by the pump P 1 . Excess sludge is extracted from the bottom of the nitrification tank / membrane separation tank 13.
[0028]
The membrane 15 contaminated by the solid-liquid separation is lifted by a crane, a hoist, a tune block or the like and transferred to the chemical cleaning tank 17, where chemical cleaning is performed.
[0029]
Sodium hypochlorite and caustic soda are injected into the chemical cleaning tank 17, and a chemical solution having a predetermined pH is prepared by the pH controller 18. The film 15 immersed in the cleaning chemical solution in the chemical cleaning tank 17 is cleaned by a gas-liquid mixed flow by aeration from the diffuser tube 19. However, in this chemical cleaning, by performing cleaning with a chemical solution having the above-mentioned pH condition or strong alkali concentration, foaming can be suppressed and effective cleaning can be performed.
[0030]
FIG. 1 shows an example of application of the chemical cleaning method for a film of the present invention, and does not limit the present invention.
[0031]
For example, the equipment provided with the membrane to be cleaned is not limited to the nitrification / denitrification treatment equipment, but may be a treatment system that only removes BOD. As a nitrification / denitrification means, a nitrification tank and a denitrification tank In this case, nitrification and denitrification may be performed in the same tank by intermittent aeration. Further, a system for removing phosphorus may be used. Moreover, it is applicable not only to an activated sludge treatment system but also to an apparatus that performs membrane filtration of aggregated sludge and other suspended water.
[0032]
In addition, multiple membrane separation tanks with immersed membranes are provided, and when chemical cleaning is performed, water to be treated is extracted from the membrane separation tanks of the series to be cleaned, and chemicals are injected into these tanks to perform chemical cleaning in the membrane separation tanks. May be. In this case, the pH controller and chemical solution injection equipment provided in the chemical cleaning tank shown in FIG. 1 are provided in the membrane separation tank.
[0033]
In FIG. 1, the chemical solution is prepared using a pH controller and a chemical injection facility in a chemical cleaning tank, but a chemical solution prepared by a dedicated chemical solution preparation facility may be transferred. In addition to providing a pH controller, the pH may be adjusted manually, or even if the pH is not adjusted and only a predetermined amount of the chemical is mixed, a chemical that satisfies the conditions of the present invention is prepared. It ’s fine. As the medicine injection means, a predetermined amount may be automatically injected by a pump or the like, or may be injected in conjunction with a pH meter or an ORP meter. Moreover, you may inject | pour manually.
[0034]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0035]
Examples 1 and 2 and Comparative Example 1
For membranes in which landfill leachate has been BOD removed and nitrogen removed by activated sludge and then used for several tens of days for solid-liquid separation between activated sludge and treated water, and the filtration differential pressure has increased from the original 3 kPa to 25 to 35 kPa A cleaning test was conducted.
[0036]
This membrane is an external pressure type hollow fiber MF membranes: is obtained by molding by Mitsubishi Rayon Co., Ltd. The "STERAPORE L (UMF424SLI)" into a sheet, membrane area 4m 2, nominal pore size 0.1 [mu] m, internal diameter 270 .mu.m, an outer diameter of 410μm The material is hydrophilic polyethylene.
[0037]
The conditions of membrane filtration were fixed at 0.3 m 3 / m 2 / day, immersed in a swirling flow aeration tank equipped with a baffle plate, and 50 to 150 m 3 / m 2 per swirling flow rising portion bottom area. While the activated sludge of the water to be treated was aerated at / hour, intermittent filtration was performed by repeating a cycle of 8 minutes filtration and 2 minutes stop.
[0038]
The membrane that had been filtered for 10 days under such conditions was contaminated with a slightly colored polymer substance, and dehydrated cake-like activated sludge was adhered to a part of the membrane surface.
[0039]
This contaminated membrane was immersed in a swirling aeration tank filled with a cleaning chemical solution shown in Table 1 and provided with a baffle plate, and 100 m 3 / m per bottom area of the swirling flow rising portion (membrane filtering portion) from below the membrane. Washed for 180 minutes by aeration at 2 / hour.
[0040]
The state of foaming in this chemical cleaning was observed, and the results are shown in Table 1.
[0041]
The washed effect was examined by immersing the washed membrane in tap water and measuring the differential pressure at a flux of 0.3 m 3 / m 2 / day, and the results are shown in Table 1. Since the differential pressure before use of this membrane is 3 kPa, the closer to this value, the higher the cleaning effect.
[0042]
[Table 1]
Figure 0003684825
[0043]
From Table 1, it can be seen that according to the method of the present invention, foaming during chemical cleaning can be prevented and effective cleaning can be performed.
[0044]
【The invention's effect】
As described in detail above, according to the chemical cleaning method for a film of the present invention, foaming of a chemical solution can be effectively suppressed in chemical cleaning of the film. For this reason, it is possible to perform chemical cleaning of the membrane efficiently with an excellent cleaning effect without adding an antifoaming agent or equipment for defoaming.
[Brief description of the drawings]
FIG. 1 is a system diagram of a nitrification / denitrification facility for explaining an application example of the chemical cleaning method for a membrane of the present invention.
[Explanation of symbols]
11 Denitrification tank 13 Nitrification / membrane separation tank 15 Membranes 16, 19 Aeration pipe 17 Chemical washing tank 18 pH controller

Claims (3)

活性汚泥を固液分離処理した膜分離装置の膜を薬液に浸漬するとともに、膜の下方から曝気を行って洗浄する方法において、
該薬液が、pH12.5〜14.0の薬液であるか、又は、0.03規定以上の強アルカリ溶液であることを特徴とする膜の薬品洗浄方法。
In the method of immersing the membrane of the membrane separation device obtained by solid-liquid separation treatment of activated sludge in the chemical solution and performing aeration from below the membrane and cleaning,
A chemical cleaning method for a film, wherein the chemical solution is a chemical solution having a pH of 12.5 to 14.0 or a strong alkaline solution of 0.03 N or more.
請求項1において、該薬液は50mg/L以上の有効塩素、又は100mg/L以上の過酸化水素を含むことを特徴とする膜の薬品洗浄方法。2. The chemical cleaning method for a film according to claim 1, wherein the chemical solution contains 50 mg / L or more of effective chlorine or 100 mg / L or more of hydrogen peroxide. 請求項1又は2において、膜濾過部底面積当り10〜200mIn Claim 1 or 2, 10-200m per membrane filtration part bottom area 3 /m/ M 2 /hourで曝気することを特徴とする膜の薬品洗浄方法。A chemical cleaning method for a membrane, characterized by aeration with / hour.
JP08162198A 1998-03-27 1998-03-27 Chemical cleaning method for membrane Expired - Fee Related JP3684825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08162198A JP3684825B2 (en) 1998-03-27 1998-03-27 Chemical cleaning method for membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08162198A JP3684825B2 (en) 1998-03-27 1998-03-27 Chemical cleaning method for membrane

Publications (2)

Publication Number Publication Date
JPH11276864A JPH11276864A (en) 1999-10-12
JP3684825B2 true JP3684825B2 (en) 2005-08-17

Family

ID=13751411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08162198A Expired - Fee Related JP3684825B2 (en) 1998-03-27 1998-03-27 Chemical cleaning method for membrane

Country Status (1)

Country Link
JP (1) JP3684825B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517694B (en) * 2013-06-28 2018-05-29 三菱化学株式会社 The washing methods of filter membrane
CN108404699A (en) * 2017-02-09 2018-08-17 埃尔微尘科技(北京)有限公司 A kind of Liqiud-gas mixing device
CN108465380A (en) * 2018-05-31 2018-08-31 四川奥恒环保科技有限公司 The cleaning method of reverse osmosis membrane

Also Published As

Publication number Publication date
JPH11276864A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
KR101306389B1 (en) Method for cleaning separation membrane module, and method for fresh water generation
JP6103794B1 (en) Water treatment method and water treatment apparatus
EP1189683B1 (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
JP2001070967A (en) Cleaning system for laundry waste water
KR20140033154A (en) Washing method for separation membrane module
US20170182465A1 (en) Water treatment method and water treatment apparatus each using membrane
KR20130137004A (en) Chemical cleaning method for immersed membrane element
JPH11309480A (en) Operating method of immersion type membrane separation device
JP3491122B2 (en) Water treatment equipment
JP3684825B2 (en) Chemical cleaning method for membrane
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP2012086182A (en) Water treatment method and water treatment device
JP3773337B2 (en) Operation method of organic sewage treatment equipment
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP2002177956A (en) Water cleaning method and water cleaning plant
JP4385483B2 (en) Wastewater treatment method
KR100348417B1 (en) Apparatus and method of submerged membrane wastewater treatment with stabilized sludge
JPH11147098A (en) Anaerobic treatment apparatus
JP4493371B2 (en) Concentration separation method of sludge
JP4335193B2 (en) Method and apparatus for treating organic wastewater
JP3257944B2 (en) Sewage treatment method and sewage treatment apparatus
JP3994620B2 (en) Membrane immersion type solid-liquid separation apparatus and method
JP3570030B2 (en) Cleaning method of immersion type membrane separation device
JP4124957B2 (en) Filter body washing method and apparatus
JPH10216776A (en) Biological treatment method for organic waste water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees