JPS61209097A - Apparatus for treatment of sewage - Google Patents

Apparatus for treatment of sewage

Info

Publication number
JPS61209097A
JPS61209097A JP60048616A JP4861685A JPS61209097A JP S61209097 A JPS61209097 A JP S61209097A JP 60048616 A JP60048616 A JP 60048616A JP 4861685 A JP4861685 A JP 4861685A JP S61209097 A JPS61209097 A JP S61209097A
Authority
JP
Japan
Prior art keywords
reaction tank
liquid
fluidized bed
bed reaction
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60048616A
Other languages
Japanese (ja)
Other versions
JPH0635000B2 (en
Inventor
Mikio Kitagawa
幹夫 北川
Motoyuki Yoda
依田 元之
Atsushi Watanabe
敦 渡辺
Miwako Hattori
服部 美和子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP4861685A priority Critical patent/JPH0635000B2/en
Publication of JPS61209097A publication Critical patent/JPS61209097A/en
Publication of JPH0635000B2 publication Critical patent/JPH0635000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To enhance treatment efficiency, by introducing the treated water of a fluidized bed reaction tank into a membrane separation apparatus through a pump and guiding the conc. solution to the liquid inlet side of the reaction tank by utilizing pressure. CONSTITUTION:The liquid supplied to a fluidized bed reaction tank 2 from an introducing pipe 1 receives anaerobic or aerobic treatment by a fluidized bed. In the fluidized bed reaction tank 2, fluidized carriers are developed by the liquid recirculated through pipings 3, 8 so as to be set to a predetermined development rate. The recirculated liquid is raised in its temp. by heat such as Joule heat generated in a membrane separation apparatus 5 and a pump 4 and the temp. of the liquid in the reaction tank 2 is also raised to perform biological treatment with good efficiency.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、汚水の処理装置に係り、特に流動床反応槽と
膜分離装置とを組み合せた汚水の処理装置に関するもの
である。 [従来の技術1 各種産業廃水、生活廃水等の有機性廃水の処理方法とし
て、生物的処理方法がある。 生物的処理方法は、微生物を利用して主に水中の有機物
を除去するために用いられる方法である。この生物的処
理を行う装置として流動床式のものがある。 流動床式の汚水の処理装置は、容器状の反応槽内に菌体
を担持させた担体を投入して流動床を形成し、この反応
槽内に原水を供給し、槽内を流動状態に保ちつつ、処理
を行うものである。流動床方式の汚水の処理装置は、微
生物を担体粒子表面に高濃度で保持せしめることができ
るので、処理。 効率が高く、好適な処理方式である。 また、近年、処理水の水質をより優れたものとする高度
な処理を要する場合も多くなっている。 そのため、例えば、2次処理(生物処理)液に更に高次
の処理を施す高次処理が採用されることがある。この高
次処理を行う装置の1つとして膜分離装置がある。 ところで、流動床反応槽においては、一般に流動床の担
体(ゼオライトや砂等)を所定の展開率で展開させるた
めに、流動床反応槽から取り出された処理液の一部を流
動床反応槽の入口側に循環させるようにしており、この
処理液の循環を行うための循環ポンプが設置されている
。 また、精密濾過膜や限外濾過膜等の透過膜を内蔵した膜
分離装置においては、この膜分離装置の液受け入れ側に
所定圧力で被処理液を供給する必要があり、このために
、膜分離装置の上流側に液供給用のポンプを設置してい
る。 而して、流動床式反応槽と膜分離装置とを組み合せた従
来の汚水の処理装置においては、少なくとも2台のポン
プ、即ち、流動床反応槽の展開率を保つために該反応槽
の処理液を循環させるための循環ポンプと、膜分離装置
に液を供給するための供給ポンプとを設置しなければな
らなかった。 [発明が解決しようとする問題点] 流動床反応槽と膜分離装置とを組み合せた従来の汚水の
処理装置においては、ポンプの設置台数が多く、コスト
(イニシャルコスト及びランニングコストの双方)が増
大していた。 また、膜分離装置の濃縮液は、供給ポンプ、ポール洗浄
装置、膜モジュール等から発生する熱によって加温され
ているのであるが、この濃縮液に加えられる熱の有効な
利用が図られていなかった。(流動床反応槽が嫌気性流
動床反応槽である場合、処理槽内の液温を高めると嫌気
性分解反応が活発となる。従って、膜分離装置の濃縮液
に加えられる熱を、流動床反応槽内の液温を高めるため
の加熱用熱源として利用すれば、それだけ外部から熱エ
ネルギーを加えることなく、処理効率を高めることがで
きるはずである。しかるに、従来の汚水の処理装置にお
いては、かかる膜分離装置において生ずる熱の有効な利
用が図られていなかった。) そのため、汚水処理装置の系統全体におけるエネルギー
消費に無駄があった。 c問題点を解決するための手段] 本発明は、流動床反応槽と、流動床反応槽の処理水を更
に高次処理する膜分離装置とを備えた汚水の処理装置に
おいて、流動床反応槽の処理水をポンプを介して膜分離
装置に導入し、この膜分離装置の濃縮液を、該濃縮液の
圧を利用してポンプ等を介することなく反応槽の液入口
側へ導くように構成したものである。 [作用] 本発明においては、流動床反応槽における担体粒子の展
開率を所定のものとするために循環させる液として、膜
分離装置の濃縮液(濃縮側出口液)が用いられる。 そのため、ポンプの設置台数が減少できるようになり、
コスト(イニシャルコスト及びランニングコストの双方
)を低減することが可能とされる。 また、膜分離装置の濃縮液が保有する熱を、流動床反応
槽内の液温を為めるための熱エネルギーとして利用でき
るようになる。 なお、IN!分離装置に供給される液量は(処理水とし
て該膜分離装置から取り出される水の量よりも例えば数
十倍程度も多く)流動床反応槽の展開率を所定展開率以
上に保つために必要とする最低水準よりも大量であるこ
と、膜分離装置から取り出される濃縮液は、通常1kg
/rn’若しくはそれ以上の圧力を保持していることか
ら、膜分離装置の濃縮液は、流動床反応槽における担体
の展開を行わせるための循環液として十分に使用できる
。 [実施例] 以下図面を参照して実施例について説明する。 第1図は本発明の実施例に係る汚水の処理装置の構成を
示す系統図である。第1図において2はゼオライトや砂
等の適宜の流動担体を有する流動床反応槽であって、そ
の底部に接続された原水供給管lから原水が導入される
。流動床反応槽2の上部には該流動床反応槽2内におい
て処理を受(すた液を取り出すための取り出し管3が接
続されており、この取り出し管3の途中にはポンプ4が
設置されている。 このポンプ4によって加圧された液は膜分離装置(例え
ば、精密濾過装置、限外濾過装置、逆浸透装置など)5
に導入される。膜分離装置5の透過膜6を透過した液は
、処理液として配管7から取り出され、放流工程や再利
用工程に送られる。 膜分離装置5の濃縮液は配管8から流動床反応槽2の液
導入側に循環される。 本実施例においては、膜分離装置5を迂回するバイパス
管路9が設置されており、ポンプ4によって加圧された
液はこのバイパス管路9を通って直に流動床反応槽2の
液導入側に循環可能とされている。 図中10.11及び12はそれぞれ配管3.8及び9に
設けられた弁である。 このように構成された実施例に係る汚水の処理装置にお
いて、導入管lから流動床反応槽2に供給された液は、
この反応槽内部において形成されている流動床によって
嫌気的若しくは好気的な処理を受ける。この流動床反応
槽2においては、配管3及び8を通って循環される液に
よって流動担体が所定の展開率となるように展開されて
いる。 この循環された液は、膜分離装W5及びポンプ4におい
て発生するジュール熱等の熱によって加温されており(
運転条件によっては例えばlO〜20℃程度昇温する。 )、流動床反応槽2内の液温も高められている。そのた
め、この流動床反応槽2内においては、極めて効率の良
い生物処理が行われる。 生物処理を受けた液は、配管3、ポンプ4を経て膜分離
装置5に導入され膜分離処理を受け、これにより極めて
水質の優れた処理水が得られる。 バイパス管路9は、膜分離装置5を修理したり膜の洗浄
を行ったりするために膜分離装置5を停止する際に使用
される系統であって、弁10及び11を閉とすると共に
弁12を開とすることにより、流動床反応槽2から取り
出された液はポンプ4かも配管9を経て流動床反応槽2
の液導入側に循環される。そのため、本実施例において
は、膜分離装置5を停止している時でも、連続的に流動
床反応槽2の運転を継続することができる。 なお、本発明において、流動床反応槽2としては嫌気性
流動床反応槽及び好気性流動床反応槽のいずれであ・っ
ても良い。 [効果] 以上詳述した通り、本発明の汚水の処理装置は、流動床
反応槽における担体粒子の展開率を所定の展開率とする
ための循環液として、膜分離装置の濃縮液を用いるよう
にしたものであり、■ ポンプ設置台数が少なくて足り
、イニシャルコスト及びランニングコストの双方が低減
される。 ■ 膜分離装置やポンプにおいて発生する熱を流動床反
応槽内の液温を高めるための熱源として利用することが
でき、効率の良い生物処理を行うことが可能とされる。 ■ 流動床式反応槽内の液温か高められるので、膜分離
装置の透過水量を多くすることかでまふ−C−赫に 瞳
会鎗功署ζセいでt÷無処理れる液の温度が高い程その
透過水量が多くなる。なお、本発明において流動床反応
槽が嫌気性流動床反応槽である場合は、その処理液温が
好気性流動反応槽のものに比べ生物反応による熱の発生
が更に多いので、膜の透過水量が一層多くなる。) ■ 処理水は、生物処理及び膜分離装置の二段の処理を
受けているので、極めて優れた水質のものとなる。 等の優れた効果が奏される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sewage treatment device, and particularly to a sewage treatment device that combines a fluidized bed reaction tank and a membrane separation device. [Prior Art 1] Biological treatment methods are available as methods for treating organic wastewater such as various industrial wastewaters and domestic wastewaters. The biological treatment method is a method mainly used to remove organic matter from water using microorganisms. A fluidized bed type device is available for this biological treatment. A fluidized bed type wastewater treatment device places a carrier supporting bacterial cells into a container-shaped reaction tank to form a fluidized bed, and supplies raw water to the reaction tank to bring the tank into a fluidized state. Processing is performed while maintaining the data. Fluidized bed wastewater treatment equipment can retain microorganisms at high concentrations on the surface of carrier particles. This is a highly efficient and suitable processing method. Moreover, in recent years, there are many cases in which sophisticated treatment is required to improve the quality of treated water. Therefore, for example, higher-order treatment in which a secondary treatment (biological treatment) liquid is subjected to higher-order treatment may be employed. A membrane separation device is one of the devices that perform this high-level processing. By the way, in a fluidized bed reaction tank, in order to develop the carrier (zeolite, sand, etc.) in the fluidized bed at a predetermined development rate, a part of the treated liquid taken out from the fluidized bed reaction tank is generally transferred to the fluidized bed reaction tank. The processing liquid is circulated to the inlet side, and a circulation pump is installed to circulate the processing liquid. In addition, in a membrane separation device with a built-in permeable membrane such as a microfiltration membrane or an ultrafiltration membrane, it is necessary to supply the liquid to be treated at a predetermined pressure to the liquid receiving side of the membrane separation device. A pump for liquid supply is installed upstream of the separation device. Therefore, in a conventional wastewater treatment system that combines a fluidized bed reaction tank and a membrane separation device, at least two pumps are used to treat the reaction tank in order to maintain the expansion rate of the fluidized bed reaction tank. A circulation pump to circulate the liquid and a feed pump to supply the liquid to the membrane separation device had to be installed. [Problems to be solved by the invention] In a conventional wastewater treatment device that combines a fluidized bed reaction tank and a membrane separation device, a large number of pumps are installed, which increases costs (both initial costs and running costs). Was. In addition, the concentrated liquid in membrane separation equipment is heated by heat generated from the supply pump, pole cleaning device, membrane module, etc., but the heat added to the concentrated liquid is not used effectively. Ta. (If the fluidized bed reaction tank is an anaerobic fluidized bed reaction tank, increasing the temperature of the liquid in the treatment tank will activate the anaerobic decomposition reaction. Therefore, the heat added to the concentrated liquid in the membrane separation device is If it is used as a heating heat source to raise the temperature of the liquid in the reaction tank, it should be possible to increase the treatment efficiency without adding heat energy from the outside.However, in conventional wastewater treatment equipment, (The heat generated in such a membrane separation device was not utilized effectively.) Therefore, energy consumption in the entire system of the sewage treatment device was wasted. C. Means for Solving Problems] The present invention provides a wastewater treatment apparatus comprising a fluidized bed reaction tank and a membrane separation device for performing higher level treatment on the treated water of the fluidized bed reaction tank. The treated water is introduced into the membrane separation device through a pump, and the concentrated liquid from the membrane separation device is guided to the liquid inlet side of the reaction tank using the pressure of the concentrated liquid without going through a pump or the like. This is what I did. [Function] In the present invention, the concentrated liquid (concentration side outlet liquid) of the membrane separation device is used as the liquid to be circulated in order to maintain a predetermined expansion rate of carrier particles in the fluidized bed reaction tank. Therefore, the number of pumps installed can be reduced,
It is possible to reduce costs (both initial costs and running costs). Furthermore, the heat held by the concentrated liquid in the membrane separator can be used as thermal energy to raise the temperature of the liquid in the fluidized bed reaction tank. In addition, IN! The amount of liquid supplied to the separation device (for example, several tens of times larger than the amount of water taken out from the membrane separation device as treated water) is necessary to maintain the development rate of the fluidized bed reaction tank at a predetermined development rate or higher. The amount of concentrated liquid taken out from the membrane separation device is usually 1 kg.
Since the pressure is maintained at /rn' or higher, the concentrated liquid from the membrane separation device can be sufficiently used as a circulating liquid for developing the carrier in the fluidized bed reaction tank. [Examples] Examples will be described below with reference to the drawings. FIG. 1 is a system diagram showing the configuration of a wastewater treatment apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 2 denotes a fluidized bed reaction tank having a suitable fluidized carrier such as zeolite or sand, into which raw water is introduced from a raw water supply pipe 1 connected to the bottom of the tank. A take-out pipe 3 is connected to the upper part of the fluidized bed reaction tank 2 for taking out the liquid that has been processed in the fluidized bed reactor 2, and a pump 4 is installed in the middle of the take-out pipe 3. The liquid pressurized by this pump 4 is transferred to a membrane separation device (e.g., precision filtration device, ultrafiltration device, reverse osmosis device, etc.) 5.
will be introduced in The liquid that has passed through the permeable membrane 6 of the membrane separator 5 is taken out from the pipe 7 as a treated liquid and sent to a discharge process or a reuse process. The concentrated liquid from the membrane separator 5 is circulated through the pipe 8 to the liquid introduction side of the fluidized bed reaction tank 2 . In this embodiment, a bypass line 9 is installed to bypass the membrane separation device 5, and the liquid pressurized by the pump 4 is directly introduced into the fluidized bed reaction tank 2 through this bypass line 9. It is said that it can be circulated to the side. In the figure, 10.11 and 12 are valves provided in pipes 3.8 and 9, respectively. In the wastewater treatment apparatus according to the embodiment configured as described above, the liquid supplied from the introduction pipe 1 to the fluidized bed reaction tank 2 is as follows.
Anaerobic or aerobic treatment is performed in a fluidized bed formed inside this reaction tank. In this fluidized bed reaction tank 2, the fluidized carrier is expanded to a predetermined expansion rate by the liquid circulated through the pipes 3 and 8. This circulated liquid is heated by heat such as Joule heat generated in the membrane separator W5 and the pump 4 (
Depending on the operating conditions, the temperature may be increased, for example, by about 10 to 20°C. ), the temperature of the liquid in the fluidized bed reaction tank 2 is also increased. Therefore, extremely efficient biological treatment is performed within this fluidized bed reaction tank 2. The biologically treated liquid is introduced into a membrane separator 5 via a pipe 3 and a pump 4 and undergoes membrane separation treatment, thereby obtaining treated water of extremely high quality. The bypass pipe line 9 is a system used when stopping the membrane separator 5 to repair the membrane separator 5 or to clean the membrane, and closes the valves 10 and 11 and closes the valve. By opening 12, the liquid taken out from the fluidized bed reaction tank 2 passes through the pump 4 or piping 9 to the fluidized bed reaction tank 2.
The liquid is circulated to the liquid introduction side. Therefore, in this embodiment, even when the membrane separator 5 is stopped, the fluidized bed reaction tank 2 can be continuously operated. In the present invention, the fluidized bed reaction tank 2 may be either an anaerobic fluidized bed reaction tank or an aerobic fluidized bed reaction tank. [Effects] As detailed above, the sewage treatment device of the present invention uses the concentrated liquid of the membrane separation device as the circulating fluid for adjusting the expansion rate of carrier particles to a predetermined expansion rate in the fluidized bed reaction tank. (1) Fewer pumps are required, reducing both initial and running costs. ■ The heat generated by membrane separators and pumps can be used as a heat source to raise the temperature of the liquid in the fluidized bed reaction tank, making it possible to carry out efficient biological treatment. ■ Since the temperature of the liquid in the fluidized bed reaction tank is raised, the amount of water permeated through the membrane separator can be increased. The higher the value, the greater the amount of permeated water. In addition, in the case where the fluidized bed reactor in the present invention is an anaerobic fluidized bed reactor, the temperature of the treated liquid is higher than that of an aerobic fluidized bed reactor, since heat generation due to biological reaction is higher than that of an aerobic fluidized bed reactor, so the amount of water permeated through the membrane is becomes even more common. ) ■ The treated water undergoes two stages of biological treatment and membrane separation equipment, resulting in extremely high quality water. Excellent effects such as these can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る汚水の処理装置の構成を
示す系統図である。 2・・・流動床反応層、 4・・・ポンプ、 5・・・膜分離装置。
FIG. 1 is a system diagram showing the configuration of a wastewater treatment apparatus according to an embodiment of the present invention. 2... Fluidized bed reaction bed, 4... Pump, 5... Membrane separation device.

Claims (2)

【特許請求の範囲】[Claims] (1)反応槽処理液の一部を、循環ポンプを介して反応
槽入口側へ循環させながら汚水を処理する流動床反応槽
を備えた汚水の処理装置において、循環ポンプの吐出側
に連絡されており前記循環される反応槽処理液を受け入
れて膜分離処理する透過膜を内蔵した膜分離装置を設置
すると共に、この膜分離装置の濃縮液を前記反応槽入口
側へ循環させるように膜分離装置と流動床反応槽とを連
絡したことを特徴とする汚水の処理装置。
(1) In a wastewater treatment device equipped with a fluidized bed reaction tank that processes wastewater while circulating a part of the reaction tank treatment liquid to the reaction tank inlet side via a circulation pump, a part of the reaction tank treatment liquid is connected to the discharge side of the circulation pump. A membrane separation device with a built-in permeable membrane that receives and membrane-separates the circulating reaction tank treated liquid is installed, and a membrane separation device is installed so that the concentrated liquid of this membrane separation device is circulated to the inlet side of the reaction tank. A wastewater treatment device characterized in that the device and a fluidized bed reaction tank are connected.
(2)膜分離装置を迂回して循環ポンプの吐出側と流動
床反応槽とを連絡しており、膜分離装置の運転停止時に
通液されるバイパス系統が設けられていることを特徴と
する特許請求の範囲第1項に記載の汚水の処理装置。
(2) A bypass system is provided which connects the discharge side of the circulation pump and the fluidized bed reaction tank by bypassing the membrane separator, and through which liquid is passed when the membrane separator stops operating. A sewage treatment device according to claim 1.
JP4861685A 1985-03-12 1985-03-12 Sewage treatment equipment Expired - Lifetime JPH0635000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4861685A JPH0635000B2 (en) 1985-03-12 1985-03-12 Sewage treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4861685A JPH0635000B2 (en) 1985-03-12 1985-03-12 Sewage treatment equipment

Publications (2)

Publication Number Publication Date
JPS61209097A true JPS61209097A (en) 1986-09-17
JPH0635000B2 JPH0635000B2 (en) 1994-05-11

Family

ID=12808340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4861685A Expired - Lifetime JPH0635000B2 (en) 1985-03-12 1985-03-12 Sewage treatment equipment

Country Status (1)

Country Link
JP (1) JPH0635000B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821347A1 (en) * 2001-02-23 2002-08-30 Vanlaer Fluides Et Automation Aqueous solution treatment procedure uses fermentation between two membrane treatments with same membrane
JP2009213990A (en) * 2008-03-10 2009-09-24 Fuji Electric Holdings Co Ltd Methane fermentation method and apparatus
JP2013056321A (en) * 2011-09-09 2013-03-28 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP2014008431A (en) * 2012-06-28 2014-01-20 Swing Corp Method and apparatus for anaerobic digestion treatment of organic wastewater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840971A (en) * 1971-10-01 1973-06-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840971A (en) * 1971-10-01 1973-06-15

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821347A1 (en) * 2001-02-23 2002-08-30 Vanlaer Fluides Et Automation Aqueous solution treatment procedure uses fermentation between two membrane treatments with same membrane
JP2009213990A (en) * 2008-03-10 2009-09-24 Fuji Electric Holdings Co Ltd Methane fermentation method and apparatus
JP2013056321A (en) * 2011-09-09 2013-03-28 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP2014008431A (en) * 2012-06-28 2014-01-20 Swing Corp Method and apparatus for anaerobic digestion treatment of organic wastewater

Also Published As

Publication number Publication date
JPH0635000B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
JPH0663592A (en) Ultra-pure water producing apparatus
CN103626352A (en) Advanced treatment and recycling process and apparatus for sewage reaching standard
KR101721251B1 (en) SBR Process coupled with Membrane Process
CN101659495A (en) Membrane distillation bioreactor device and method
KR100940123B1 (en) Floating catalysis sewage disposal facility system
JPS61209097A (en) Apparatus for treatment of sewage
JP2007050387A (en) Apparatus for treating organic waste liquor
KR101948185B1 (en) Treatment of reverse osmosis concentrated water using Electro-Dialysis system and vacuum evaporation drying system
KR101840548B1 (en) Wastewater treatment system
CN212864254U (en) Organic waste water liquid phase catalytic oxidation processing system
CN111867983B (en) High solids dissolved air flotation system and method
KR102250903B1 (en) Treatment System of The Wastewater Containing Silica Capable of removing nitrogen and Phosphorus
JPS61185399A (en) Apparatus for treating organic waste water
US10618032B2 (en) Low temperature wet air oxidation
JP2008188533A (en) Water treatment apparatus
CN219709323U (en) Concentrated water recovery system of nitrogen and phosphorus wastewater treatment system
JPH02194899A (en) Aerobic digestion and concentration apparatus
CN213865577U (en) Biological wastewater treatment system
CN115745179B (en) Dynamic hydrolysis acidification device for high-concentration sulfate wastewater
CN220976743U (en) Organic matter processing apparatus of reverse osmosis dense water
JPS6048196A (en) Method for removing phosphorus from organic waste liquid
KR101993680B1 (en) Treatment System of The Wastewater Containing Silica
CN215480247U (en) Diving pool sewage and waste gas treatment system
CN107200439A (en) A kind of nitrogenous effluent heterotrophic nitrification aerobic denitrifying bioremediation and its device
CN114790050B (en) System and method for advanced wastewater treatment and bypass RO (reverse osmosis) membrane collaborative regeneration

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term