JP2012179571A - Anaerobic organism processing method and device for organic waste liquid - Google Patents

Anaerobic organism processing method and device for organic waste liquid Download PDF

Info

Publication number
JP2012179571A
JP2012179571A JP2011045202A JP2011045202A JP2012179571A JP 2012179571 A JP2012179571 A JP 2012179571A JP 2011045202 A JP2011045202 A JP 2011045202A JP 2011045202 A JP2011045202 A JP 2011045202A JP 2012179571 A JP2012179571 A JP 2012179571A
Authority
JP
Japan
Prior art keywords
membrane
anaerobic
gas
liquid
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011045202A
Other languages
Japanese (ja)
Inventor
Kazuya Komatsu
和也 小松
Katsuhiko Momozaki
勝彦 百崎
Tetsuro Fukase
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011045202A priority Critical patent/JP2012179571A/en
Publication of JP2012179571A publication Critical patent/JP2012179571A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anaerobic organism processing method and a device for organic waste liquid, by which recovery water with high water quality can be effectively obtained while preventing the clogging of a reverse osmosis membrane by effectively removing hydrogen sulfide in organism processing liquid by a simple device and operation for obtaining the recovery water with the high water quality by subjecting the organic waste liquid to anaerobic organism processing, filtering the filtrate through the membrane, and subjecting the filtrate to the reverse osmotic membrane processing.SOLUTION: The organic waste liquid is subjected to the anaerobic organism processing in the anaerobic processing device 1, the anaerobically processed liquid is subjected to solid/liquid separation by membrane filtering in the membrane filtering device 2 in an aerobic condition, the membrane filtered liquid is stored in an aeration device 3 while the membrane filtered liquid is kept in the anaerobic condition, the membrane filtered liquid is aerated with the gas not containing oxygen and hydrogen sulfide desulfurized in a desulfurizing device 6 to remove the hydrogen sulfide, the aerated liquid is subjected to the reverse osmosis membrane processing by supplying the same to a reverse osmosis membrane processing device 4, and the permeated liquid is recovered.

Description

本発明は、有機排液を嫌気性生物処理し、その処理液を逆浸透膜処理して高水質の回収水を得る有機排液の嫌気性生物処理方法および装置に関し、特に嫌気性生物処理液を膜ろ過し、膜ろ過液を逆浸透膜処理する際、逆浸透膜の目詰まりを防止して、効率よく回収水を得る有機排液の嫌気性生物処理方法および装置に関するものである。   TECHNICAL FIELD The present invention relates to an anaerobic biological treatment method and apparatus for organic wastewater, which is obtained by treating an organic wastewater with an anaerobic biological treatment and treating the treated liquid with a reverse osmosis membrane to obtain high-quality recovered water. The present invention relates to an anaerobic biological treatment method and apparatus for organic effluent that efficiently collects recovered water by preventing clogging of a reverse osmosis membrane when the membrane filtrate is subjected to a reverse osmosis membrane treatment.

有機物含有排液を嫌気性生物処理する方法は、活性汚泥法のような好気性生物による処理に適しない高濃度または難分解性の有機物含有排液に対して適用されることが多い。このためその処理液はなお比較的高濃度の有機物を含有している。このような有機物濃度の高い嫌気性処理液から高純度の回収水を得るためには、好気性生物処理等により有機物濃度を低下させてから、逆浸透膜処理して高水質の回収水を得ることが行われている。   The method of treating an organic matter-containing effluent with an anaerobic organism is often applied to a highly concentrated or hardly degradable organic matter-containing effluent that is not suitable for treatment with an aerobic organism such as an activated sludge process. For this reason, the treatment liquid still contains a relatively high concentration of organic matter. In order to obtain high-purity recovered water from such anaerobic treatment liquid with high organic matter concentration, the organic matter concentration is reduced by aerobic biological treatment or the like, and then reverse osmosis membrane treatment is performed to obtain high-quality recovered water. Things have been done.

このような方法として特許文献1(特開2007−175582)には、膜面に有機物質が蓄積し、濾過抵抗の上昇が著しくなって、通水が困難になるのを防止するために、膜分離装置の前段に好気性生物処理装置を設置して、膜分離処理に先立ち、排液中の有機物質濃度を低減することが提案されている。しかしこのような方法では、装置および操作が大型化、複雑化し処理コストが高くなるという問題点がある。   As such a method, Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-175582) discloses a membrane in order to prevent an organic substance from accumulating on the membrane surface, causing a significant increase in filtration resistance and making it difficult to pass water. It has been proposed to install an aerobic biological treatment device in front of the separation device to reduce the concentration of organic substances in the effluent prior to membrane separation treatment. However, such a method has a problem that the apparatus and the operation are increased in size and complexity, and the processing cost is increased.

一方、特許文献2(特開2009−148714)には、有機物含有液を嫌気性生物処理槽に導入して嫌気性生物処理槽内のメタン生成菌群により嫌気性生物処理し、嫌気性生物処理により得られた処理液を好気性生物処理せずに嫌気状態のまま、発生ガスを気曝しながら膜ろ過し、膜ろ過液を嫌気状態のまま逆浸透膜で処理する有機物含有液の生物処理方法が提案されている。   On the other hand, in patent document 2 (Unexamined-Japanese-Patent No. 2009-148714), an organic substance containing liquid is introduce | transduced into an anaerobic biological treatment tank, an anaerobic biological treatment is carried out by the methanogen group in an anaerobic biological treatment tank, and anaerobic biological treatment is carried out. The biological treatment method for organic matter-containing liquids is obtained by subjecting the treatment liquid obtained by the above to a membrane filtration while exposing the generated gas in an anaerobic state without being subjected to an aerobic biological treatment, and treating the membrane filtrate with a reverse osmosis membrane in an anaerobic state. Has been proposed.

排液中の硫黄分は、嫌気性処理により硫化水素に分解される。液中で生成した硫化水素は、気相、すなわち嫌気性処理により発生するガスと溶解平衡を保ちながら、発生するガスとともに一部は系外に排出される(ガス中の硫化水素は、乾式脱硫や湿式(生物)脱硫により、比較的容易にガスから除去することができる)が、残部は処理液中に溶解した形で排出される。溶存硫化水素は空気中の酸素で容易に酸化され、硫黄の微粒子を生成する。そのため嫌気性生物処理液を空気に晒した後、逆浸透膜で脱塩処理する場合には、生成した硫黄微粒子が膜を目詰まりさせてしまうという問題があった。また硫化水素のまま溶存しているものについても、逆浸透膜で濃縮された際に、溶解度の低いFeSなどの硫化物として膜面に析出し、膜を目詰まりさせるという問題があった。   The sulfur content in the effluent is decomposed into hydrogen sulfide by anaerobic treatment. The hydrogen sulfide produced in the liquid is partly discharged out of the system together with the generated gas while maintaining the gas phase, that is, the gas generated by the anaerobic treatment and the dissolution equilibrium (hydrogen sulfide in the gas is dry desulfurization) Or can be removed from the gas relatively easily by wet (biological) desulfurization), but the remainder is discharged in a dissolved form in the treatment liquid. Dissolved hydrogen sulfide is easily oxidized with oxygen in the air to produce fine sulfur particles. Therefore, when the anaerobic biological treatment liquid is exposed to air and then desalted with a reverse osmosis membrane, there is a problem that the generated sulfur fine particles clog the membrane. In addition, even those dissolved in the form of hydrogen sulfide have a problem in that when they are concentrated by a reverse osmosis membrane, they are deposited on the membrane surface as sulfides such as FeS having low solubility and clog the membrane.

特許文献3(特開2000−94000)には、嫌気性生物処理により得られた嫌気性処理液を、精密ろ過膜により膜ろ過して固液分離する際、発生ガスを脱硫した脱硫発生ガスを精密ろ過膜の膜面に噴射して精密ろ過膜の膜面の目詰まりを防止することが示されている。しかしこの方法は、嫌気性処理液に含まれる濁質がろ過膜に付着するのを防止するためのものであり、これを特許文献2の膜ろ過に適用しても、硫黄分の付着防止には役立たない。つまり硫黄分は膜面で析出して付着するから、膜面に到達して析出した後に脱硫発生ガスを噴射しても析出物を剥離することはできない。またこのような方法を逆浸透膜に適用すると、逆浸透膜には高圧がかかるため、ガスが溶解し、剥離作用は期待できない。   In Patent Document 3 (Japanese Patent Laid-Open No. 2000-94000), a desulfurized gas obtained by desulfurizing a generated gas when a solid solution is separated by subjecting an anaerobic treatment liquid obtained by anaerobic biological treatment to membrane filtration with a microfiltration membrane. It has been shown that injection onto the membrane surface of the microfiltration membrane prevents clogging of the membrane surface of the microfiltration membrane. However, this method is for preventing the turbidity contained in the anaerobic treatment liquid from adhering to the filtration membrane. Even if this method is applied to the membrane filtration of Patent Document 2, it prevents the adhesion of sulfur. Is useless. In other words, since the sulfur content is deposited and adhered on the film surface, the deposit cannot be peeled off even if the desulfurization gas is injected after reaching the film surface and depositing. Moreover, when such a method is applied to a reverse osmosis membrane, a high pressure is applied to the reverse osmosis membrane, so that the gas dissolves and a peeling action cannot be expected.

特開2007−175582JP2007-175582 特開2009−148714JP2009-148714 特開2000−94000JP2000-94000

本発明の課題は、有機排液を嫌気性生物処理し、その処理液を膜ろ過し、膜ろ過液を逆浸透膜処理して高水質の回収水を得るために、簡単な装置と操作により生物処理液中の硫化水素を効果的に除去し、これにより逆浸透膜の目詰まりを防止して、効率よく高水質の回収水を得ることができる有機排液の嫌気性生物処理方法および装置を得ることである。   An object of the present invention is to perform anaerobic biological treatment of organic effluent, membrane-treat the treatment liquid, and reverse-osmosis membrane treatment of the membrane filtrate to obtain high-quality recovered water by simple equipment and operation. Organic drainage anaerobic biological treatment method and apparatus capable of effectively removing hydrogen sulfide in biological treatment liquid, thereby preventing clogging of reverse osmosis membrane and efficiently obtaining high-quality recovered water Is to get.

本発明は次の有機排液の嫌気性生物処理方法および装置である。
(1) 有機排液を嫌気性生物処理する嫌気性処理工程と、
嫌気性処理液を嫌気状態のまま、膜ろ過により固液分離する膜ろ過工程と、
膜ろ過液を嫌気的条件に保ったまま貯留し、酸素および硫化水素を含有しないガスで気曝して硫化水素を除去する気曝工程と、
気曝液を加圧下に逆浸透膜処理し、透過液を回収する逆浸透膜処理工程と
を含むことを特徴とする有機排液の生物処理方法。
(2) 膜ろ過液をpH2〜7で気曝する上記(1)記載の方法。
(3) 酸素および硫化水素を含有しないガスとして、嫌気性生物処理により発生するガスを脱硫処理したガスを用いる上記(1)または(2)記載の方法。
(4) 有機排液を嫌気性生物処理する嫌気性処理装置と、
嫌気性処理液を嫌気状態のまま、膜ろ過により固液分離する膜ろ過装置と、
膜ろ過液を嫌気的条件に保ったまま貯留し、酸素および硫化水素を含有しないガスで気曝して硫化水素を除去する気曝装置と、
気曝液を加圧下に逆浸透膜処理し、透過液を回収する逆浸透膜処理装置と
を含むことを特徴とする有機排液の生物処理装置。
(5) 気曝する膜ろ過液をpH2〜7に調整するpH調整装置を含む上記(4)記載の装置。
(6) 酸素および硫化水素を含有しないガスとして、嫌気性生物処理により発生するガスを脱硫処理して気曝装置に供給するガス供給装置を含む上記(4)または(5)記載の装置。
The present invention is the following organic anaerobic anaerobic biological treatment method and apparatus.
(1) an anaerobic treatment process for treating an organic drainage with an anaerobic organism;
A membrane filtration step for solid-liquid separation by membrane filtration while the anaerobic treatment liquid remains in an anaerobic state,
An exposure step of storing the membrane filtrate while maintaining anaerobic conditions and exposing the membrane filtrate to a gas not containing oxygen and hydrogen sulfide to remove hydrogen sulfide,
And a reverse osmosis membrane treatment step of subjecting the air exposure liquid to a reverse osmosis membrane treatment under pressure and recovering the permeate.
(2) The method according to (1) above, wherein the membrane filtrate is exposed to air at pH 2-7.
(3) The method according to (1) or (2) above, wherein a gas obtained by desulfurizing a gas generated by anaerobic biological treatment is used as the gas not containing oxygen and hydrogen sulfide.
(4) an anaerobic treatment apparatus for treating an organic drainage with an anaerobic organism;
A membrane filtration device for solid-liquid separation by membrane filtration while the anaerobic treatment liquid remains in an anaerobic state;
An air exposure device that stores the membrane filtrate in an anaerobic condition and exposes it with a gas not containing oxygen and hydrogen sulfide to remove hydrogen sulfide;
A biological treatment apparatus for organic drainage, comprising: a reverse osmosis membrane treatment apparatus for treating an air exposure liquid with a reverse osmosis membrane under pressure and collecting a permeate.
(5) The device according to (4) above, comprising a pH adjusting device for adjusting the membrane filtrate to be exposed to pH 2-7.
(6) The apparatus according to (4) or (5), further including a gas supply device that desulfurizes a gas generated by anaerobic biological treatment as a gas that does not contain oxygen and hydrogen sulfide and supplies the gas to an air exposure device.

本発明において、処理対象となる有機排液は有機物を含有する排液であり、硫黄分を含むものであるが、この他に窒素分、その他の成分、特に無機物などを含んでいてもよい。含まれる有機物も低分子から高分子のもの、あるいは可溶性のものから固形物まで、あらゆる組成、性状、特性のものが含まれていてもよい。硫黄分、窒素分としては、蛋白質などの天然由来のものから、アンモニア、テトラメチルアンモニウムヒドロキシド、アルコールなどの工場から排出される成分が含まれていてもよい。このような有機排液としては、有機物含有量が200〜50000mg−CODcr/L、特に1000〜20000mg−CODcr/L、硫黄含有量が10〜1000mg−S/L、特に10〜200mg−S/Lのものが本発明の処理に適している。   In the present invention, the organic drainage to be treated is a drainage containing an organic substance and contains a sulfur content, but may further contain a nitrogen content and other components, particularly an inorganic substance. The organic matter contained may be of any composition, properties and characteristics, from low to high molecular weight, or from soluble to solid. The sulfur content and nitrogen content may include components discharged from factories such as ammonia, tetramethylammonium hydroxide, alcohol and the like from natural sources such as proteins. As such organic drainage, the organic matter content is 200-50000 mg-CODcr / L, especially 1000-20000 mg-CODcr / L, the sulfur content is 10-1000 mg-S / L, especially 10-200 mg-S / L. Are suitable for the processing of the present invention.

本発明において、これらの有機排液を嫌気性生物処理する嫌気性生物処理方法(装置)は、従来から水処理で採用されてきた嫌気性処理方法および装置が採用できる。固形有機物を含む有機排液に対しては、有機排液を嫌気性微生物と混合して10〜30日間滞留させる嫌気性消化、メタン発酵などの浮遊式嫌気性処理が好ましい。また固形有機物を含まず、可溶性有機物を含む有機排液に対しては、粒状汚泥、担体担持汚泥等のスラッジブランケット、流動床などを用いる高負荷嫌気性処理が好ましい。これらの処理法は有機排液
の組成、性状や、処理目標水質、処理コストなどにより選択される。
In the present invention, an anaerobic biological treatment method (apparatus) for treating these organic effluents with anaerobic biological treatment can employ the anaerobic treatment method and apparatus conventionally employed in water treatment. For organic effluent containing solid organic matter, floating anaerobic treatment such as anaerobic digestion and methane fermentation in which the organic effluent is mixed with anaerobic microorganisms and retained for 10 to 30 days is preferable. For organic waste liquids that do not contain solid organic matter but contain soluble organic matter, high-load anaerobic treatment using a sludge blanket such as granular sludge and carrier-carrying sludge, a fluidized bed, or the like is preferable. These treatment methods are selected according to the composition and properties of the organic drainage, the treatment target water quality, the treatment cost, and the like.

上記嫌気性処理において生成する嫌気性処理液は、浮遊式嫌気性処理の場合、固形物含有量3000〜120000mg/L、有機物含有量2000〜100000mg/L程度、高負荷嫌気性処理の場合、固形物含有量50〜3000mg/L、有機物含有量30〜2500mg/L程度であるが、いずれの場合も膜ろ過工程(装置)において、膜ろ過により固液分離する。膜ろ過は精密ろ過(MF)、限外ろ過(UF)等のろ過膜を通してろ過を行い、主として固形物、コロイド、高分子物質などを除去する。ここで除去する固形物等の粒径は1〜500μm程度である。膜ろ過は嫌気性処理液を嫌気状態のまま、ろ過膜を通過させて固形物等を分離する。このとき嫌気性処理工程で発生するガスをろ過膜面に供給して膜面の目詰まりを防止することができる。膜面に供給するガスは脱硫処理したものでもよい。   The anaerobic treatment liquid generated in the anaerobic treatment is a solid content of 3000 to 120,000 mg / L in the case of floating anaerobic treatment, a solid content in the case of a high load anaerobic treatment of about 2000 to 100,000 mg / L. Although the substance content is about 50 to 3000 mg / L and the organic substance content is about 30 to 2500 mg / L, in any case, in the membrane filtration step (apparatus), solid-liquid separation is performed by membrane filtration. Membrane filtration is performed through filtration membranes such as microfiltration (MF) and ultrafiltration (UF) to mainly remove solids, colloids, polymer substances and the like. The particle size of the solids to be removed here is about 1 to 500 μm. In the membrane filtration, the anaerobic treatment liquid is passed through the filtration membrane while the anaerobic treatment solution is kept in an anaerobic state to separate solids and the like. At this time, the gas generated in the anaerobic treatment step can be supplied to the filtration membrane surface to prevent clogging of the membrane surface. The gas supplied to the membrane surface may be desulfurized.

膜ろ過液は気曝工程(装置)において、嫌気的条件に保ったまま貯留し、酸素および硫化水素を含有しないガスで気曝して硫化水素を除去する。気曝装置は貯留槽を兼ねることができる。酸素および硫化水素を含有しないガスとしては、嫌気性生物処理により発生するガスを脱硫処理したガスを用いるのが好ましいが、窒素ガスなど、他のガスでもよい。膜ろ過液は硫化水素を含んだ状態で流出するが、これを直接逆浸透膜に供給すると、ガス噴射しても硫黄分の析出による目詰まりが生じるので、気曝工程(装置)において硫化水素を除去することにより、逆浸透膜目詰まりを効果的に防止することができるとともに、逆浸透膜処理を効率よく行うことができる。膜ろ過液の気曝のためのガス量は0.2〜3L/L・min、好ましくは0.5〜2L/L・min程度、逆浸透膜に供給するガス中の硫化水素含有量は200ppm以下、好ましくは50ppm以下である。   In the air exposure step (apparatus), the membrane filtrate is stored while being kept under anaerobic conditions, and is exposed to a gas not containing oxygen and hydrogen sulfide to remove hydrogen sulfide. The air exposure device can also serve as a storage tank. As the gas not containing oxygen and hydrogen sulfide, a gas obtained by desulfurizing a gas generated by an anaerobic biological treatment is preferably used, but other gases such as nitrogen gas may be used. Membrane filtrate flows out in a state containing hydrogen sulfide, but if it is supplied directly to the reverse osmosis membrane, clogging due to precipitation of sulfur occurs even if gas is injected, so hydrogen sulfide is used in the exposure step (apparatus). By removing, the clogging of the reverse osmosis membrane can be effectively prevented, and the reverse osmosis membrane treatment can be performed efficiently. The amount of gas for aeration of the membrane filtrate is 0.2 to 3 L / L · min, preferably about 0.5 to 2 L / L · min. The hydrogen sulfide content in the gas supplied to the reverse osmosis membrane is 200 ppm. Hereinafter, it is preferably 50 ppm or less.

逆浸透膜処理工程(装置)では、気曝液を加圧下に逆浸透膜に供給して逆浸透膜処理を行い、透過液を回収液として回収する。逆浸透膜は浸透圧により溶媒である水を透過させ、溶質であるイオン、塩、有機物、コロイド等を阻止する半透膜であり、市販品が利用できる。逆浸透膜処理は気曝液を逆浸透膜に加圧下に供給することにより、浸透圧に抗して溶媒である水を透過させる操作である。気曝液を逆浸透膜に供給するときの圧力は浸透を超える圧力であり、使用する逆浸透膜よって異なるが、一般的には0.3〜2MPa、好ましくは0.5〜1.5MPaとされる。回収水は高純度であるので、純水として使用したり、超純水その他の原料として利用される。   In the reverse osmosis membrane treatment step (apparatus), the air exposure liquid is supplied to the reverse osmosis membrane under pressure to perform the reverse osmosis membrane treatment, and the permeate is recovered as a recovery liquid. A reverse osmosis membrane is a semipermeable membrane that permeates water as a solvent by osmotic pressure and blocks ions, salts, organic substances, colloids, and the like as solutes. Commercially available products can be used. The reverse osmosis membrane treatment is an operation of permeating water as a solvent against the osmotic pressure by supplying an air exposure liquid to the reverse osmosis membrane under pressure. The pressure when supplying the air exposure liquid to the reverse osmosis membrane is a pressure exceeding the osmosis, and varies depending on the reverse osmosis membrane to be used, but is generally 0.3 to 2 MPa, preferably 0.5 to 1.5 MPa. Is done. Since the recovered water has high purity, it can be used as pure water or used as ultrapure water or other raw materials.

逆浸透膜処理において、被処理液を酸素が溶解する条件で逆浸透膜に供給すると、硫化水素が酸化されて析出する硫黄が膜面に付着して目詰まりが発生するが、膜ろ過液を嫌気状態を保つことにより、硫化水素の酸化と、析出する硫黄による目詰まり発生を防止できる。しかし逆浸透膜処理において液が濃縮されると、硫化水素が含まれている場合は、鉄分の濃縮により硫化鉄が膜面に析出して目詰まりが発生する。このため被処理液から硫化水素を除去することにより、硫化鉄の析出を防止できるが、逆浸透膜の膜面にガスを噴出しても、すでに膜面に到達した硫化水素から硫化鉄が析出するのを阻止することはできない。   In reverse osmosis membrane treatment, if the liquid to be treated is supplied to the reverse osmosis membrane under conditions where oxygen is dissolved, hydrogen sulfide is oxidized and the precipitated sulfur adheres to the membrane surface, resulting in clogging. By maintaining the anaerobic state, oxidation of hydrogen sulfide and clogging due to precipitated sulfur can be prevented. However, when the liquid is concentrated in the reverse osmosis membrane treatment, when hydrogen sulfide is contained, iron sulfide is deposited on the membrane surface due to the concentration of iron, and clogging occurs. For this reason, it is possible to prevent precipitation of iron sulfide by removing hydrogen sulfide from the liquid to be treated. However, even if gas is blown to the membrane surface of the reverse osmosis membrane, iron sulfide is deposited from the hydrogen sulfide that has already reached the membrane surface. I can't prevent you from doing it.

本発明では、気曝工程(装置)において、酸素および硫化水素を含有しないガスで膜ろ過液を気曝して硫化水素を除去するので、硫化水素を効果的に除去することができる。ここで除去後の気曝液中の硫化水素の濃度は、鉄分が濃縮された状態で硫化鉄が析出しない濃度であり、1mg/L以下とされる。膜ろ過工程では鉄分の濃縮が起こらないので、硫化水素が含まれていてもよい。   In the present invention, in the air exposure step (apparatus), the membrane filtrate is exposed to a gas containing no oxygen and hydrogen sulfide to remove the hydrogen sulfide, so that the hydrogen sulfide can be effectively removed. Here, the concentration of hydrogen sulfide in the aeration liquid after removal is a concentration at which iron sulfide is not precipitated in a state where the iron content is concentrated, and is set to 1 mg / L or less. Since the concentration of iron does not occur in the membrane filtration step, hydrogen sulfide may be included.

気曝工程では膜ろ過液を、嫌気的条件に保ったまま貯留し、酸素および硫化水素を含有しないガスで気曝することにより、膜ろ過液中の硫化水素を酸化することなく気相に移行
させて、水中から除去することができるが、このとき膜ろ過液をpH2〜7で気曝することにより、硫化水素の除去率を高くすることができる。この場合、pH調整装置により移送中の膜ろ過液、または気曝装置内の気曝液中に塩酸、硫酸等のpH調整剤を注入することによりpH調整することができる。
In the air exposure process, the membrane filtrate is stored while maintaining anaerobic conditions and exposed to a gas that does not contain oxygen and hydrogen sulfide, so that the hydrogen sulfide in the membrane filtrate is transferred to the gas phase without being oxidized. It can be removed from the water, but at this time, the membrane filtrate is exposed to air at pH 2 to 7, whereby the removal rate of hydrogen sulfide can be increased. In this case, the pH can be adjusted by injecting a pH adjusting agent such as hydrochloric acid or sulfuric acid into the membrane filtrate being transferred by the pH adjusting device or the air exposure liquid in the air exposure device.

酸素および硫化水素を含有しないガスとして、嫌気性生物処理により発生するガスを脱硫処理したガスを用いる場合は、嫌気性生物処理により発生するガスを脱硫装置で脱硫処理して気曝装置に供給するように、ガス供給装置を構成する。このように発生ガスを用いることにより、発生ガスの精製と循環使用ができ、発生ガスの希釈を防ぎ、有効利用が可能になる。脱硫装置としては、硫化水素の吸着剤を収容する乾式脱硫装置が用いられる。この場合、気曝装置に供給するガスについて脱硫を行い、膜ろ過工程に供給するガスの脱硫を行わないように脱硫装置を構成すると、脱硫装置を通過するガス量が少なくなり、効率よく脱硫を行うことができる。   When a gas obtained by desulfurizing a gas generated by anaerobic biological treatment is used as a gas that does not contain oxygen and hydrogen sulfide, the gas generated by the anaerobic biological treatment is desulfurized by a desulfurizer and supplied to the air exposure device. Thus, the gas supply device is configured. By using the generated gas in this way, the generated gas can be purified and circulated, and the generated gas can be prevented from being diluted and effectively used. As the desulfurization apparatus, a dry desulfurization apparatus containing a hydrogen sulfide adsorbent is used. In this case, if the desulfurization device is configured so that the gas supplied to the air exposure device is desulfurized and the gas supplied to the membrane filtration process is not desulfurized, the amount of gas passing through the desulfurization device is reduced and the desulfurization is efficiently performed. It can be carried out.

本発明によれば、有機排液を嫌気性生物処理し、嫌気性処理液を嫌気状態のまま、膜ろ過により固液分離し、膜ろ過液を嫌気的条件に保ったまま貯留し、酸素および硫化水素を含有しないガスで気曝して硫化水素を除去し、気曝液を加圧下に逆浸透膜処理し、透過液を回収するようにしたので、簡単な装置と操作により生物処理液中の硫化水素を効果的に除去し、これにより逆浸透膜の目詰まりを防止して、効率よく高水質の回収水を得ることができる。   According to the present invention, the organic effluent is subjected to anaerobic biological treatment, the anaerobic treatment liquid is subjected to solid-liquid separation by membrane filtration in an anaerobic state, the membrane filtrate is stored while being maintained under anaerobic conditions, oxygen and Since hydrogen sulfide was removed by gas exposure without containing hydrogen sulfide, and the reverse exposure osmosis membrane treatment was performed on the air exposure solution under pressure, the permeate was collected. Hydrogen sulfide is effectively removed, thereby preventing clogging of the reverse osmosis membrane, and recovered water with high water quality can be obtained efficiently.

実施形態の有機排液の生物処理方法を示すフロー図である。It is a flowchart which shows the biological treatment method of the organic drainage of embodiment. 実施例における通水時間と逆浸透膜のフラックスの関係を示すグラフである。It is a graph which shows the relationship between the water flow time in an Example, and the flux of a reverse osmosis membrane.

以下、本発明の実施形態を図面により説明する。図1は実施形態の有機排液の生物処理方法および装置を示しており、1は嫌気性処理装置、2は膜ろ過装置、3は気曝装置、4は逆浸透膜処理装置、5はpH調整剤槽、6は脱硫装置、7はガスタンクである。嫌気性処理装置1は、槽内に嫌気性生物汚泥を保持し、被処理液路L1から入る有機排液と混合して嫌気性生物処理する浮遊式の嫌気性処理装置からなり、嫌気性処理液路L2が膜ろ過装置2に連絡し、発生ガス路L3が脱硫装置6に連絡している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a biological treatment method and apparatus for organic drainage according to an embodiment, wherein 1 is an anaerobic treatment apparatus, 2 is a membrane filtration apparatus, 3 is an air exposure apparatus, 4 is a reverse osmosis membrane treatment apparatus, and 5 is pH. A regulator tank, 6 is a desulfurizer, and 7 is a gas tank. The anaerobic treatment apparatus 1 is composed of a floating anaerobic treatment apparatus that retains anaerobic biological sludge in the tank and mixes it with the organic drainage liquid that enters the liquid passage L1 to be treated for anaerobic biological treatment. The liquid passage L2 communicates with the membrane filtration device 2, and the generated gas passage L3 communicates with the desulfurization device 6.

膜ろ過装置2は、限外ろ過膜からなるろ過膜モジュール11を内蔵し、嫌気性処理液路L2から送られる嫌気性処理液をろ過膜モジュール11に供給して膜ろ過するように構成されている。膜ろ過装置2から膜ろ過液路L4が気曝装置3に連絡し、濃縮液路L5がモジュール11から嫌気性処理装置1に連絡し、発生ガス路L3からガス供給路L6がモジュール11の下部に連絡している。   The membrane filtration device 2 includes a filtration membrane module 11 made of an ultrafiltration membrane, and is configured to supply the anaerobic treatment liquid sent from the anaerobic treatment liquid path L2 to the filtration membrane module 11 for membrane filtration. Yes. From the membrane filtration device 2, the membrane filtrate channel L 4 communicates with the aeration device 3, the concentrated solution channel L 5 communicates with the anaerobic treatment device 1 from the module 11, and the gas supply channel L 6 extends from the generated gas channel L 3 to the lower part of the module 11. To contact.

気曝装置3は下部に設けられた散気装置12に脱硫装置6から脱硫ガス路L7が連絡して気曝するように構成され、気曝ガスを上部から脱硫装置6に送るように気曝ガス路L8が連絡している。気曝装置3にはpH計13が設けられ、pH調整剤槽5からpH調整剤路L9が連絡している。また気曝装置3から気曝液路L11が逆浸透膜処理装置4の濃縮液室14に連絡し、濃縮液室14から濃縮液路L12が気曝装置3に連絡している。脱硫ガス路L7からガス取出路L10がガスタンク7に連絡している。   The aeration apparatus 3 is configured such that a desulfurization gas path L7 communicates with the aeration apparatus 12 provided in the lower portion from the desulfurization apparatus 6 to perform aeration, and the aeration gas is sent so as to send the aeration gas to the desulfurization apparatus 6 from above. Gas path L8 is in communication. The air exposure device 3 is provided with a pH meter 13, and a pH adjuster passage L <b> 9 communicates from the pH adjuster tank 5. Further, an air exposure liquid path L11 from the air exposure apparatus 3 communicates with the concentrated liquid chamber 14 of the reverse osmosis membrane treatment apparatus 4, and a concentrated liquid path L12 communicates with the air exposure apparatus 3 from the concentrated liquid chamber 14. A gas extraction passage L10 communicates with the gas tank 7 from the desulfurization gas passage L7.

逆浸透膜処理装置4は逆浸透膜モジュール15により濃縮液室14と透過液室16に区画され、濃縮液室14には気曝液路L11から気曝液を加圧下に供給して逆浸透膜処理す
るように構成されている。濃縮液室14から気曝装置3に循環する濃縮液路L12から、ブライン排出路L13が分岐している。透過液室16から透過液路L14が系外に連絡している。
The reverse osmosis membrane treatment device 4 is divided into a concentrated liquid chamber 14 and a permeated liquid chamber 16 by a reverse osmosis membrane module 15. It is comprised so that a film | membrane process may be carried out. A brine discharge path L13 branches from a concentrated liquid path L12 that circulates from the concentrated liquid chamber 14 to the aeration apparatus 3. A permeate passage L14 communicates from the permeate chamber 16 outside the system.

上記の装置における有機排液の生物処理方法は以下の通り行われる。被処理液路L1から有機排液を嫌気性処理装置1に導入し、内部に保持された嫌気性生物汚泥と混合して嫌気性生物処理する。このとき必要により加温して反応を促進することができる。嫌気性処理装置1は浮遊式の嫌気性処理装置の例を示しているが、スラッジブランケット、流動床などを用いる高負荷嫌気性処理装置を用いることもできる。嫌気性処理装置1から連続的または間欠的に嫌気性処理液を取出して嫌気性処理液路L2から膜ろ過装置2に送る。嫌気性処理液を間欠的に取出す場合は、嫌気性処理液の貯留槽を設けることができる。発生ガスは発生ガス路L3から脱硫装置6に送って乾式脱硫し、脱硫ガスはガス取出路L10からガスタンク7へ送る。ガスタンク4のガスはガス排出路L16から取出される。   The biological treatment method of organic effluent in the above apparatus is performed as follows. The organic waste liquid is introduced into the anaerobic treatment apparatus 1 from the liquid path L1 to be treated, and is mixed with the anaerobic biological sludge retained therein to perform the anaerobic biological treatment. At this time, the reaction can be promoted by heating as necessary. Although the anaerobic processing apparatus 1 shows an example of a floating type anaerobic processing apparatus, a high-load anaerobic processing apparatus using a sludge blanket, a fluidized bed, or the like can also be used. The anaerobic treatment liquid is taken out from the anaerobic treatment apparatus 1 continuously or intermittently and sent to the membrane filtration apparatus 2 from the anaerobic treatment liquid path L2. When taking out an anaerobic processing liquid intermittently, the storage tank of an anaerobic processing liquid can be provided. The generated gas is sent from the generated gas passage L3 to the desulfurization device 6 and dry desulfurized, and the desulfurized gas is sent from the gas outlet passage L10 to the gas tank 7. The gas in the gas tank 4 is taken out from the gas discharge path L16.

膜ろ過装置2では、ポンプP1により嫌気性処理液を嫌気性処理液路L2からろ過膜モジュール11に供給して嫌気状態のまま膜ろ過する。このときポンプP2により吸引し、膜ろ過液量を調節することができる。また、発生ガス路L3の発生ガスを、ガス供給路L6からブロアB1によりモジュール11の下部に噴出し、膜面で固形物が付着して目詰まりするのを防止して膜ろ過を行う。ろ過膜モジュール11を出る濃縮液は濃縮液路L5から嫌気性処理装置1に循環するが、その一部を分岐する汚泥排出路L15から系外に排出する。膜ろ過液は膜ろ過液路L4から気曝装置3に送る。膜ろ過装置2は、限外ろ過膜からなるろ過膜モジュール11を有する例が示されているが、嫌気性処理液の組成、性状により精密ろ過膜(MF)膜からなるろ過膜モジュールを有するものが用いられる場合もある。   In the membrane filtration device 2, the anaerobic treatment liquid is supplied from the anaerobic treatment liquid path L2 to the filtration membrane module 11 by the pump P1, and the membrane is filtered in an anaerobic state. At this time, the amount of membrane filtrate can be adjusted by suction with the pump P2. Further, the generated gas in the generated gas path L3 is blown from the gas supply path L6 to the lower part of the module 11 by the blower B1, and membrane filtration is performed while preventing solid matter from adhering to the film surface and clogging. The concentrated liquid exiting the filtration membrane module 11 circulates from the concentrated liquid path L5 to the anaerobic treatment apparatus 1, but is discharged out of the system from a sludge discharge path L15 that branches a part thereof. The membrane filtrate is sent to the air exposure device 3 from the membrane filtrate channel L4. Although the example which has the filtration membrane module 11 which consists of an ultrafiltration membrane is shown, the membrane filtration apparatus 2 has a filtration membrane module which consists of a microfiltration membrane (MF) membrane by the composition and property of an anaerobic processing liquid May be used.

気曝装置3では膜ろ過液を嫌気的条件に保ったまま貯留する。そして下部に設けられた散気装置12に、脱硫装置6から脱硫ガス路L7を通してブロアB2により脱硫ガスを供給して散気することにより、膜ろ過液を気曝する。これにより膜ろ過液中の硫化水素、その他のガス成分は放出される。気曝ガスは気曝装置3の上部から気曝ガス路L8を通して脱硫装置6に送られ、ここで脱硫されて循環し、あるいはガスタンク7に送られる。気曝装置3の槽内液はpH計13によりpH測定される。そしてpH調整剤槽5からポンプP3により、pH2〜7になるようにpH調整剤路L9を通してpH調整剤が注入される。気曝装置3の気曝液は気曝液路L11から逆浸透膜処理装置4の濃縮室14に送られ、濃縮液が濃縮液路L12から循環して気曝が行われる。   In the air exposure device 3, the membrane filtrate is stored while maintaining anaerobic conditions. Then, the membrane filtrate is exposed to air by supplying the desulfurization gas from the desulfurization device 6 through the desulfurization gas passage L7 through the blower B2 to the aeration device 12 provided in the lower portion. Thereby, hydrogen sulfide and other gas components in the membrane filtrate are released. The aeration gas is sent from the upper part of the aeration apparatus 3 to the desulfurization apparatus 6 through the aeration gas path L8, where it is desulfurized and circulated, or sent to the gas tank 7. The pH of the liquid in the tank of the air exposure device 3 is measured by the pH meter 13. Then, the pH adjusting agent is injected from the pH adjusting agent tank 5 through the pH adjusting agent passage L9 by the pump P3 so that the pH becomes 2-7. The air exposure liquid in the air exposure apparatus 3 is sent from the air exposure liquid path L11 to the concentration chamber 14 of the reverse osmosis membrane treatment apparatus 4, and the concentrate is circulated from the concentrate liquid path L12 to perform air exposure.

逆浸透膜処理装置4では、気曝液路L11から送られる気曝液をポンプP4で加圧して濃縮液室14へ供給し、逆浸透膜モジュール15により逆浸透膜処理し、逆浸透膜モジュール15を透過した透過液を、回収液として透過液室16から透過液路L14を通して回収する。濃縮液室14の濃縮液は濃縮液路L12から気曝装置3に循環するが、その途中でブライン排出路L13から一部の濃縮液を排出する。   In the reverse osmosis membrane treatment apparatus 4, the air exposure liquid sent from the air exposure liquid path L11 is pressurized by the pump P4 and supplied to the concentrated liquid chamber 14, and the reverse osmosis membrane module 15 performs the reverse osmosis membrane treatment. The permeate that has permeated through 15 is collected from the permeate chamber 16 through the permeate passage L14 as a collect liquid. The concentrated liquid in the concentrated liquid chamber 14 circulates from the concentrated liquid path L12 to the aeration apparatus 3, and a part of the concentrated liquid is discharged from the brine discharge path L13 along the way.

逆浸透膜処理装置4で逆浸透膜処理を行う場合、被処理液を酸素が溶解する条件で逆浸透膜に供給すると、硫化水素が酸化されて析出する硫黄が膜面に付着して目詰まりが発生するが、本発明では嫌気性処理液を嫌気状態のまま膜ろ過し、膜ろ過液を嫌気状態を保ったまま気曝するので、硫化水素の酸化と、析出する硫黄による逆浸透膜の目詰まり発生を防止できる。そして膜ろ過液は酸素および硫化水素を含有しないガスで気曝することにより、気曝液には酸素が溶解することなく硫化水素が除去されるので、逆浸透膜処理において鉄分が濃縮されても、硫化鉄が膜面に析出することはなく、硫化鉄による目詰まりが防止できる。   When the reverse osmosis membrane treatment apparatus 4 performs the reverse osmosis membrane treatment, if the liquid to be treated is supplied to the reverse osmosis membrane under conditions where oxygen is dissolved, hydrogen sulfide is oxidized and the precipitated sulfur adheres to the membrane surface and becomes clogged. However, in the present invention, the anaerobic treatment liquid is subjected to membrane filtration in an anaerobic state, and the membrane filtrate is exposed to air while maintaining the anaerobic state. It is possible to prevent clogging. The membrane filtrate is exposed to a gas that does not contain oxygen and hydrogen sulfide, so that hydrogen sulfide is removed from the aerated solution without dissolving oxygen. Therefore, even if iron is concentrated in the reverse osmosis membrane treatment, Iron sulfide is not deposited on the film surface, and clogging with iron sulfide can be prevented.

特許文献3の方法を逆浸透膜処理装置4に適用し、逆浸透膜の膜面にガスを噴出しても、ガスが溶解して噴出効果が小さくなり、硫化水素の除去率が低下する上、すでに膜面に到達した硫化水素から硫化鉄が析出するのを阻止することはできない。これに対して本発明のように気曝装置3において、酸素および硫化水素を含有しないガスで気曝して硫化水素を除去した後、逆浸透膜処理することにより、硫化鉄による目詰まり防止効果が高くなる。   Even if the method of Patent Document 3 is applied to the reverse osmosis membrane treatment apparatus 4 and gas is jetted onto the membrane surface of the reverse osmosis membrane, the gas dissolves and the jetting effect is reduced, and the hydrogen sulfide removal rate is reduced. It is impossible to prevent iron sulfide from precipitating from hydrogen sulfide that has already reached the film surface. On the other hand, in the air exposure apparatus 3 as in the present invention, after removing hydrogen sulfide by exposure with a gas not containing oxygen and hydrogen sulfide, the effect of preventing clogging by iron sulfide is obtained by treating with a reverse osmosis membrane. Get higher.

また特許文献3のように、膜ろ過装置2における目詰まり防止に脱硫ガスを用いると、脱硫装置6で処理するガスの硫化水素濃度を下げ、しかも被処理ガス量を多くするので、脱硫装置6の効率を低下させるが、脱硫ガスの供給を気曝装置3のみに限ることにより、脱硫装置6の脱硫効率を高くし、効率のよい処理を行うことができる。   Further, as in Patent Document 3, if desulfurization gas is used to prevent clogging in the membrane filtration device 2, the hydrogen sulfide concentration of the gas processed in the desulfurization device 6 is lowered and the amount of gas to be treated is increased. However, by restricting the supply of the desulfurization gas only to the air exposure device 3, the desulfurization efficiency of the desulfurization device 6 can be increased and an efficient process can be performed.

以下、本発明の実施例および比較例について説明する。実施例および比較例で処理した有機排液は、イソプロピルアルコール500mg/L、ジメチルスルホキシド100mg/L、テトラメチルアンモニウムヒドロキシド100mg/Lの有機物の組成を有し、TOC380mg/L、T−N15mg/L、T−S41mg/Lの合成排水である。   Examples of the present invention and comparative examples will be described below. The organic effluent treated in Examples and Comparative Examples has an organic composition of isopropyl alcohol 500 mg / L, dimethyl sulfoxide 100 mg / L, tetramethylammonium hydroxide 100 mg / L, TOC 380 mg / L, TN 15 mg / L. , T-S 41 mg / L synthetic waste water.

嫌気性処理装置1は、槽容量1m、水理学的滞留時間0.5d、SS濃度12,000mg/L(VSS/SS比0.90)であり、下水消化汚泥を種汚泥として3ヶ月馴養した嫌気性生物汚泥を保持し、温度35℃で嫌気性生物処理を行うようにされている。 The anaerobic treatment apparatus 1 has a tank capacity of 1 m 3 , a hydraulic residence time of 0.5 d, an SS concentration of 12,000 mg / L (VSS / SS ratio of 0.90), and is acclimated for 3 months using sewage digested sludge as seed sludge. Anaerobic biological sludge is retained, and anaerobic biological treatment is performed at a temperature of 35 ° C.

膜ろ過装置2は、槽外型チューブラーUFモジュール(孔径30nm)を備え、汚泥循環流量:4m/hr(膜内流速0.5m/sec)、フラックス0.6m/dで膜ろ過を行い、嫌気性生物処理槽から発生する発生ガスを4Nm/hr(膜内流速0.5m/sec)で、膜下部から通気して目詰まり防止を行うようにされている。 The membrane filtration device 2 is equipped with an outer tank type tubular UF module (pore diameter 30 nm), and performs membrane filtration with a sludge circulation flow rate: 4 m 3 / hr (in-membrane flow velocity 0.5 m / sec) and a flux 0.6 m / d. The generated gas generated from the anaerobic biological treatment tank is vented from the lower part of the film at 4 Nm 3 / hr (in-film flow rate 0.5 m / sec) to prevent clogging.

逆浸透膜処理装置4は、全芳香族ポリアミド系の超低圧膜を備えたスパイラル式逆浸透膜モジュールを備え、給水圧750kPa、給水量80L/hrで逆浸透膜処理を行うようにされている。   The reverse osmosis membrane treatment apparatus 4 includes a spiral type reverse osmosis membrane module having a wholly aromatic polyamide ultra-low pressure membrane, and performs reverse osmosis membrane treatment at a water supply pressure of 750 kPa and a water supply amount of 80 L / hr. .

〔比較例1〕:
膜ろ過装置2の分離水を開放タンク(容量200L、滞留時間2.4hr)に一時貯留し、気曝を行うことなく逆浸透膜処理装置4に供給した。
[Comparative Example 1]
The separated water of the membrane filtration device 2 was temporarily stored in an open tank (capacity 200 L, residence time 2.4 hr), and supplied to the reverse osmosis membrane treatment device 4 without air exposure.

〔比較例2〕:
膜ろ過装置2の分離水を嫌気性処理装置1の気相部と連通された密閉タンク(液容量200L、滞留時間2.4hr)に一時貯留して、分離水が空気(酸素)に晒されないようにしたうえで、気曝を行うことなく逆浸透膜処理装置4に供給した。
[Comparative Example 2]
The separation water of the membrane filtration device 2 is temporarily stored in a closed tank (liquid capacity 200 L, residence time 2.4 hr) communicated with the gas phase portion of the anaerobic treatment device 1, and the separation water is not exposed to air (oxygen). After doing so, it was supplied to the reverse osmosis membrane treatment apparatus 4 without performing air exposure.

〔実施例1〕:
膜ろ過装置2の分離水を、窒素で曝気したタンク(容量200L、滞留時間2.4hr)に一時貯留して、逆浸透膜処理装置4に供給した。
[Example 1]:
The separated water of the membrane filtration device 2 was temporarily stored in a tank (capacity 200 L, residence time 2.4 hr) aerated with nitrogen and supplied to the reverse osmosis membrane treatment device 4.

〔実施例2〕:
膜ろ過装置2の分離水を、嫌気性処理装置1から発生したガスを乾式脱硫したガスで曝気したタンク(容量200L、滞留時間2.4hr)に一時貯留して、逆浸透膜処理装置4に供給した。
[Example 2]:
The separation water of the membrane filtration device 2 is temporarily stored in a tank (capacity 200 L, residence time 2.4 hr) aerated with a gas obtained by dry desulfurization of the gas generated from the anaerobic treatment device 1, and then supplied to the reverse osmosis membrane treatment device 4. Supplied.

〔実施例3〕:
膜ろ過装置2の分離水を、硫酸でpH4に調整し、嫌気性処理装置1から発生したガスを乾式脱硫したガスで曝気したタンク(容量200L、滞留時間2.4hr)に一時貯留して、逆浸透膜処理装置4に供給した。
[Example 3]:
The separation water of the membrane filtration device 2 is adjusted to pH 4 with sulfuric acid, and temporarily stored in a tank (capacity 200 L, residence time 2.4 hr) aerated with the gas generated from the anaerobic treatment device 1 by dry desulfurization, It supplied to the reverse osmosis membrane processing apparatus 4.

比較例1、2および実施例1〜3における通水時間(hr)と逆浸透膜のフラックス(透過水量)(m/d)の推移を図2に示す。図2においてフラックスは、比較例1および2では通水開始直後から急速に低下し、約1日後には比較例1では初期の1/3、比較例2では初期の1/2まで下がってしまった。試験後の逆浸透膜の表面には比較例1では黄白色の硫黄が、比較例2では黒色の硫化鉄が主に析出しており、これらが膜を詰まらせていると考えられた。   FIG. 2 shows the transition of water passage time (hr) and reverse osmosis membrane flux (permeated water amount) (m / d) in Comparative Examples 1 and 2 and Examples 1 to 3. In FIG. 2, the flux rapidly decreases immediately after the start of water flow in Comparative Examples 1 and 2, and after about 1 day, it has decreased to 1/3 of the initial value in Comparative Example 1 and 1/2 of the initial value in Comparative Example 2. It was. On the surface of the reverse osmosis membrane after the test, yellowish white sulfur was mainly precipitated in Comparative Example 1, and black iron sulfide was mainly precipitated in Comparative Example 2, which were considered to clog the membrane.

一方、実施例1、2ではフラックスの低下は、1日後でも20%程度と少なく、150時間の通水においてもフラックスは初期の70%前後で安定していた。さらに実施例3では、フラックスは150時間の通水でも20%程度と極めて少なかった。試験後の逆浸透膜表面には、実施例1、2ではわずかに硫化鉄の析出が認められたが、実施例3ではほとんど認められなかった。   On the other hand, in Examples 1 and 2, the decrease in flux was as small as about 20% even after one day, and the flux was stable at around 70% of the initial value even when water flowed for 150 hours. Furthermore, in Example 3, the flux was very small at about 20% even when water was passed for 150 hours. On the reverse osmosis membrane surface after the test, slight precipitation of iron sulfide was observed in Examples 1 and 2, but almost no precipitation was observed in Example 3.

本発明は、有機排液を嫌気性生物処理し、その処理液を逆浸透膜処理して高水質の回収水を得る有機排液の嫌気性生物処理方法および装置、特に嫌気性生物処理液を膜ろ過し、膜ろ過液を逆浸透膜処理する際、逆浸透膜の目詰まりを防止して、効率よく回収水を得る有機排液の嫌気性生物処理方法および装置に利用可能である。   The present invention relates to an organic anaerobic biological treatment method and apparatus, particularly anaerobic biological treatment liquid, which is obtained by treating an organic waste liquid with an anaerobic biological treatment and treating the treatment liquid with a reverse osmosis membrane to obtain high-quality recovered water. When membrane filtration is performed and the membrane filtrate is subjected to a reverse osmosis membrane treatment, the reverse osmosis membrane is prevented from being clogged, and can be used for an organic anaerobic biological treatment method and apparatus for efficiently obtaining recovered water.

1: 嫌気性処理装置、2: 膜ろ過装置、3: 気曝装置、4: 逆浸透膜処理装置、5: pH調整剤槽、6: 脱硫装置、7: ガスタンク、11: ろ過膜モジュール、12: 散気装置、13: pH計、14: 濃縮液室、15: 逆浸透膜モジュール、16: 透過液室、
L1: 被処理液路、L2: 嫌気性処理液路、L3: 発生ガス路、L4: 膜ろ過液路、L5: 濃縮液路、L6: ガス供給路、L7: 脱硫ガス路、L8: 気曝ガス路、L9: pH調整剤路、L10: ガス取出路、L11: 気曝液路、L12: 濃縮液路、L13: ブライン排出路、L14: 透過液路、L15: 汚泥排出路、L16: ガス排出路、
B1,B2: ブロア、P1〜P4: ポンプ。
1: Anaerobic treatment device, 2: Membrane filtration device, 3: Exposure device, 4: Reverse osmosis membrane treatment device, 5: pH adjuster tank, 6: Desulfurization device, 7: Gas tank, 11: Filtration membrane module, 12 A diffuser, 13 a pH meter, 14 a concentrate chamber, 15 a reverse osmosis membrane module, 16 a permeate chamber,
L1: Liquid to be treated, L2: Anaerobic treatment liquid path, L3: Gas generation path, L4: Membrane filtrate liquid path, L5: Concentrated liquid path, L6: Gas supply path, L7: Desulfurization gas path, L8: Air exposure Gas path, L9: pH adjusting agent path, L10: Gas extraction path, L11: Air exposure path, L12: Concentrated liquid path, L13: Brine discharge path, L14: Permeate liquid path, L15: Sludge discharge path, L16: Gas Discharge channel,
B1, B2: Blower, P1-P4: Pump.

Claims (6)

有機排液を嫌気性生物処理する嫌気性処理工程と、
嫌気性処理液を嫌気状態のまま、膜ろ過により固液分離する膜ろ過工程と、
膜ろ過液を嫌気的条件に保ったまま貯留し、酸素および硫化水素を含有しないガスで気曝して硫化水素を除去する気曝工程と、
気曝液を加圧下に逆浸透膜処理し、透過液を回収する逆浸透膜処理工程と
を含むことを特徴とする有機排液の生物処理方法。
An anaerobic treatment process for treating organic drainage with anaerobic organisms;
A membrane filtration step for solid-liquid separation by membrane filtration while the anaerobic treatment liquid remains in an anaerobic state,
An exposure step of storing the membrane filtrate while maintaining anaerobic conditions and exposing the membrane filtrate to a gas not containing oxygen and hydrogen sulfide to remove hydrogen sulfide,
And a reverse osmosis membrane treatment step of subjecting the air exposure liquid to a reverse osmosis membrane treatment under pressure and recovering the permeate.
膜ろ過液をpH2〜7で気曝する請求項1記載の方法。   The method according to claim 1, wherein the membrane filtrate is exposed to air at pH 2-7. 酸素および硫化水素を含有しないガスとして、嫌気性生物処理により発生するガスを脱硫処理したガスを用いる請求項1または2記載の方法。   The method according to claim 1 or 2, wherein a gas obtained by desulfurizing a gas generated by an anaerobic biological treatment is used as the gas not containing oxygen and hydrogen sulfide. 有機排液を嫌気性生物処理する嫌気性処理装置と、
嫌気性処理液を嫌気状態のまま、膜ろ過により固液分離する膜ろ過装置と、
膜ろ過液を嫌気的条件に保ったまま貯留し、酸素および硫化水素を含有しないガスで気曝して硫化水素を除去する気曝装置と、
気曝液を加圧下に逆浸透膜処理し、透過液を回収する逆浸透膜処理装置と
を含むことを特徴とする有機排液の生物処理装置。
An anaerobic treatment device for anaerobic biological treatment of organic drainage;
A membrane filtration device for solid-liquid separation by membrane filtration while the anaerobic treatment liquid remains in an anaerobic state;
An air exposure device that stores the membrane filtrate in an anaerobic condition and exposes it with a gas not containing oxygen and hydrogen sulfide to remove hydrogen sulfide;
A biological treatment apparatus for organic drainage, comprising: a reverse osmosis membrane treatment apparatus for treating an air exposure liquid with a reverse osmosis membrane under pressure and collecting a permeate.
気曝する膜ろ過液をpH2〜7に調整するpH調整装置を含む請求項4記載の装置。   5. The apparatus according to claim 4, further comprising a pH adjusting device for adjusting the membrane filtrate to be exposed to pH 2-7. 酸素および硫化水素を含有しないガスとして、嫌気性生物処理により発生するガスを脱硫処理して気曝装置に供給するガス供給装置を含む請求項4または5記載の装置。   6. The apparatus according to claim 4 or 5, further comprising a gas supply device that desulfurizes a gas generated by anaerobic biological treatment as a gas not containing oxygen and hydrogen sulfide and supplies the gas to an air exposure device.
JP2011045202A 2011-03-02 2011-03-02 Anaerobic organism processing method and device for organic waste liquid Withdrawn JP2012179571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011045202A JP2012179571A (en) 2011-03-02 2011-03-02 Anaerobic organism processing method and device for organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011045202A JP2012179571A (en) 2011-03-02 2011-03-02 Anaerobic organism processing method and device for organic waste liquid

Publications (1)

Publication Number Publication Date
JP2012179571A true JP2012179571A (en) 2012-09-20

Family

ID=47011279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011045202A Withdrawn JP2012179571A (en) 2011-03-02 2011-03-02 Anaerobic organism processing method and device for organic waste liquid

Country Status (1)

Country Link
JP (1) JP2012179571A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104877A2 (en) * 2012-12-24 2014-07-03 Paques I.P. B.V. Hydrogen sulfide removal from anaerobic treatment
CN106830332A (en) * 2017-03-31 2017-06-13 长春工程学院 The device and method of the inverse recirculation reactor Treating Municipal Sewage of air-flow continuum micromeehanics three
WO2020179594A1 (en) * 2019-03-01 2020-09-10 東洋紡株式会社 Zero liquid discharge system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104877A2 (en) * 2012-12-24 2014-07-03 Paques I.P. B.V. Hydrogen sulfide removal from anaerobic treatment
WO2014104877A3 (en) * 2012-12-24 2014-10-02 Paques I.P. B.V. Hydrogen sulfide removal from anaerobic treatment
CN105073645A (en) * 2012-12-24 2015-11-18 巴格知识产权有限公司 Hydrogen sulfide removal from anaerobic treatment
US9764966B2 (en) 2012-12-24 2017-09-19 Paques I.P. B.V. Hydrogen sulfide removal from anaerobic treatment
CN106830332A (en) * 2017-03-31 2017-06-13 长春工程学院 The device and method of the inverse recirculation reactor Treating Municipal Sewage of air-flow continuum micromeehanics three
CN106830332B (en) * 2017-03-31 2023-05-12 长春工程学院 Device and method for treating urban sewage by reverse airflow continuous water inlet three-cycle reactor
WO2020179594A1 (en) * 2019-03-01 2020-09-10 東洋紡株式会社 Zero liquid discharge system
JPWO2020179594A1 (en) * 2019-03-01 2020-09-10

Similar Documents

Publication Publication Date Title
AU2007228330B2 (en) Hybrid membrane module, system and process for treatment of industrial wastewater
KR101467476B1 (en) Method for biological processing of water containing organic material
CN106132518B (en) Water treatment method and water treatment device using membrane
KR101373881B1 (en) Apparatus and method for treatment of organic substance-containing wastewater
JP5194783B2 (en) Biological treatment method and apparatus for water containing organic matter
JP2010017614A (en) Method and apparatus for treating organic wastewater
JP2012206040A (en) Treatment method and treatment apparatus of organic matter containing wastewater
JP2013085983A (en) Organic wastewater collection processing device and collection processing method
KR20070016079A (en) Method of treating organic waste water
US20220234930A1 (en) Method for Purifying Contaminated Water
JP2007244979A (en) Water treatment method and water treatment apparatus
JP2012179556A (en) Anaerobic biological processing device and method for organic waste liquid
JP2003200160A (en) Water making method and water making apparatus
JP6123840B2 (en) Organic wastewater treatment method
JP2012179571A (en) Anaerobic organism processing method and device for organic waste liquid
JP2007196137A (en) Treatment method and apparatus for biologically treated water
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP5105608B2 (en) Waste water treatment system and operation method thereof
JP2000300966A (en) Membrane sterilization method and membrane separation device
JPH0651199B2 (en) Organic wastewater treatment method
JP3087750B2 (en) Sterilization method of membrane
JP6614175B2 (en) Organic wastewater treatment method
JP4466268B2 (en) Method and apparatus for recovering activated sludge treated water
JP3387311B2 (en) Ultrapure water production equipment
JP2003340247A (en) Device and method for treating water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513