JPH05329477A - Membrane separation - Google Patents

Membrane separation

Info

Publication number
JPH05329477A
JPH05329477A JP19923591A JP19923591A JPH05329477A JP H05329477 A JPH05329477 A JP H05329477A JP 19923591 A JP19923591 A JP 19923591A JP 19923591 A JP19923591 A JP 19923591A JP H05329477 A JPH05329477 A JP H05329477A
Authority
JP
Japan
Prior art keywords
membrane
water
membrane separation
treatment
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19923591A
Other languages
Japanese (ja)
Other versions
JPH0787914B2 (en
Inventor
Shigeki Sawada
繁樹 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP19923591A priority Critical patent/JPH0787914B2/en
Publication of JPH05329477A publication Critical patent/JPH05329477A/en
Publication of JPH0787914B2 publication Critical patent/JPH0787914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To improve the membrane filtration efficiency of the membrane sepn. device in the membrane sepn. method for treating biologically treated water with the membrane sepn. device and to improve the treatment efficiency. CONSTITUTION:A chlorine agent 13 is added to the biologically treated water from an aerobic membrane treatment device 10 to adjust the free chlorine concn. thereof to 0.3 to 1.5mg/l and thereafter, this water is supplied to the membrane sepn. device 17. The filterability of the bacteria contained in the outflow water of the aerobic membrane treatment device is improved and the membrane sepn. efficiency is improved. This method is particularly effective for the treatment of the recovered water from washing of the ultrapure water of a semiconductor production process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は膜分離方法に係り、特
に、原水を好気性生物膜処理装置で処理した後、膜分離
装置で処理する膜分離方法において、膜分離装置におけ
る膜濾過効率を改善し、処理効率の向上を図る膜分離方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation method, and more particularly to a membrane separation method in which raw water is treated by an aerobic biomembrane treatment apparatus and then treated by the membrane separation apparatus. The present invention relates to a membrane separation method for improving the treatment efficiency.

【0002】[0002]

【従来の技術】半導体製造プロセスで使用される超純水
は、半導体洗浄に用いられた後回収され、その後再処理
されて循環使用されている。即ち、この洗浄回収水に
は、イソプロピルアルコールなどの有機溶媒が混入して
おり、TOCとして1〜5mg/l検出される。このた
め、従来は、この洗浄回収水をUV(紫外線)酸化した
後、RO(逆浸透)膜処理などを施して再処理し、回収
系超純水として循環使用している。
2. Description of the Related Art Ultrapure water used in a semiconductor manufacturing process is used for cleaning semiconductors, then recovered, and then reprocessed for recycling. That is, an organic solvent such as isopropyl alcohol is mixed in the wash and recovered water, and TOC of 1 to 5 mg / l is detected. For this reason, conventionally, this cleaning / recovered water is subjected to UV (ultraviolet) oxidation, then subjected to RO (reverse osmosis) membrane treatment or the like to be reprocessed, and is recycled and used as recovery system ultrapure water.

【0003】一方、上記処理方法において、UV酸化の
代りに、活性炭流動層を用い、活性炭表面に付着した貧
栄養細菌により洗浄回収水中のTOCを分離処理する方
法も提案されている。この活性炭流動層による方法は、
UV酸化に比べて低コストでTOC分解をすることが可
能である。
On the other hand, in the above treatment method, a method has been proposed in which, instead of UV oxidation, a fluidized bed of activated carbon is used, and TOC in washing and recovery water is separated by oligotrophic bacteria adhering to the surface of activated carbon. This activated carbon fluidized bed method is
It is possible to perform TOC decomposition at a lower cost than UV oxidation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、UV酸
化に代えて単に活性炭流動層を採用するだけでは、後段
のRO膜処理におけるROスパイラル膜モジュールを菌
体で詰まらせてしまうという問題がある。このような問
題を解決するために、UF(限外濾過)膜分離装置など
を用いて菌体の後工程への流出を阻止する工程を組み入
れることは有効な方法である。従って、このような菌体
分離用の膜分離装置において、高い濾過速度を確保する
ことができるならば、半導体製造プロセスにおける洗浄
回収水の処理法として実用上極めて有効な方法が提供さ
れる。
However, if the activated carbon fluidized bed is simply used instead of UV oxidation, there is a problem that the RO spiral membrane module in the subsequent RO membrane treatment is clogged with cells. In order to solve such a problem, it is an effective method to incorporate a step of blocking the outflow of bacterial cells to a subsequent step using a UF (ultrafiltration) membrane separator or the like. Therefore, in such a membrane separation apparatus for separating bacterial cells, if a high filtration rate can be secured, a practically extremely effective method is provided as a method for treating washing and collecting water in the semiconductor manufacturing process.

【0005】なお、従来、膜分離装置に供給される浮遊
式活性汚泥処理からの流出水に酸化剤として塩素を添加
することは公知である。しかしながら、これらの従来法
では超純水回収系における処理を対象としてはおらず、
このため、これらに示唆ないし開示される塩素量では十
分な効果が得られない。即ち、従来、一般に菌体ファウ
リングのために添加される塩素量は、塩素剤として1/
10ppmオーダー程度であり、このような添加量では
十分な効果は得られない。
It is known that chlorine is added as an oxidant to the outflow water from the floating activated sludge process, which is supplied to the membrane separator. However, these conventional methods do not target the treatment in the ultrapure water recovery system,
Therefore, sufficient effects cannot be obtained with the amounts of chlorine suggested or disclosed. That is, conventionally, the amount of chlorine generally added for cell fouling is 1 / l as a chlorine agent.
It is on the order of 10 ppm, and a sufficient effect cannot be obtained with such an addition amount.

【0006】本発明は上記従来の実情に鑑みてなされた
ものであって、生物処理水を膜分離装置で処理する膜分
離方法において、膜分離装置における膜濾過効率を改善
し、処理効率の向上を図る膜分離方法を提供することを
目的とする。
The present invention has been made in view of the above conventional circumstances, and in a membrane separation method for treating biologically treated water with a membrane separation apparatus, the membrane filtration efficiency in the membrane separation apparatus is improved and the treatment efficiency is improved. It is an object of the present invention to provide a membrane separation method for achieving the above.

【0007】[0007]

【課題を解決するための手段】本発明の膜分離方法は、
好気性生物膜処理装置からの生物処理水を膜分離処理す
る膜分離方法において、該生物処理水に塩素剤を添加し
て、遊離塩素濃度を0.3〜1.5mg/lとした後、
該膜分離装置に供給することを特徴とする。
Means for Solving the Problems The membrane separation method of the present invention comprises:
In the membrane separation method for subjecting the biologically treated water from the aerobic biofilm treatment device to membrane separation, after adding a chlorine agent to the biologically treated water to adjust the free chlorine concentration to 0.3 to 1.5 mg / l,
It is characterized in that it is supplied to the membrane separation device.

【0008】従来、塩素添加による滅菌、殺菌処理は実
施されており、例えば、上水道では、給水栓での遊離残
留塩素濃度で0.1mg/l(結合塩素で0.4mg/
l)以上に保持するように水道法施工規則で定められて
いる。また、通常、殺菌に必要な塩素量は、遊離塩素と
して0.1〜0.5mg/lといわれている。このよう
に、従来、塩素処理と殺菌効果については多くの事例が
報告されているが、膜濾過における効果について検討さ
れた事例はない。本発明者は、塩素処理と濾過性につい
て検討を加えたところ、濾過性を良くする最適な塩素処
理領域のあることを明らかにし、本発明を完成させた。
[0008] Conventionally, sterilization and sterilization treatments have been carried out by adding chlorine. For example, in waterworks, the free residual chlorine concentration at a water tap is 0.1 mg / l (combined chlorine is 0.4 mg / l).
l) It is stipulated by the Waterworks Law Construction Regulations to maintain the above. The amount of chlorine required for sterilization is generally said to be 0.1 to 0.5 mg / l as free chlorine. As described above, many cases have been reported so far regarding the chlorine treatment and the bactericidal effect, but no case has been examined regarding the effect on the membrane filtration. The present inventor has conducted studies on chlorine treatment and filterability, and has clarified that there is an optimum chlorine treatment region that improves filterability, and completed the present invention.

【0009】以下に本発明を詳細に説明する。本発明に
おいては、原水を好気性生物膜式処理装置に供給して得
られる生物処理水に塩素剤を添加して、該流出水中の遊
離塩素濃度を0.3〜1.5mg/lとした後膜分離装
置に供給する。
The present invention will be described in detail below. In the present invention, the chlorine agent is added to the biologically treated water obtained by supplying the raw water to the aerobic biofilm treatment device so that the free chlorine concentration in the outflow water is 0.3 to 1.5 mg / l. Supply to the post-membrane separation device.

【0010】本発明において、塩素剤の添加量は、生物
膜式処理装置の流出水中の遊離塩素濃度が0.3mg/
l未満となる量では、十分な菌体の濾過性の改善効果が
得られず、逆に、1.5mg/lを超えると、菌体の細
胞膜を破壊するものと思われるような現象が生じ、濾過
比抵抗が大きくなるため好ましくない。この場合には、
破壊した菌体から流出する粘質物が、膜分離装置の膜面
に付着し、長期的な膜汚染を生じることとなる。また、
このような塩素剤の過剰添加は、後工程に耐塩素性のな
い高分子複合膜によるRO膜分離工程がある場合、この
RO膜に悪影響を及ぼすため好ましくない。
In the present invention, the amount of chlorine agent added is such that the concentration of free chlorine in the effluent of the biofilm treatment apparatus is 0.3 mg /
When the amount is less than 1, the effect of improving the filterability of the microbial cells cannot be sufficiently obtained. On the contrary, when the amount exceeds 1.5 mg / l, a phenomenon that seems to destroy the cell membrane of the microbial cells occurs. However, it is not preferable because the filtration resistivity increases. In this case,
The viscous substance flowing out from the destroyed cells adheres to the membrane surface of the membrane separation device, resulting in long-term membrane contamination. Also,
Excessive addition of such a chlorine agent is unfavorable since it adversely affects the RO membrane when there is a RO membrane separation step using a polymer composite membrane having no chlorine resistance in the subsequent step.

【0011】本発明で使用される塩素剤としては特に制
限はないが、塩素ガス、次亜塩素酸ナトリウムなどが挙
げられる。
The chlorine agent used in the present invention is not particularly limited, but examples thereof include chlorine gas and sodium hypochlorite.

【0012】なお、本発明において、生物処理装置とし
ては、活性炭流動層(好気性バイオフィルター)、特に
貧栄養細菌を用いた活性炭流動層が挙げられる。膜分離
装置の膜モジュールとしては菌体によって閉塞し難い構
造のものが良く、例えば、 波形スペーサーを挿入したスパイラル膜モジュー
ル。 内径1mm以上の中空糸膜モジュールで内圧クロス
フロー形式のもの。 外圧クロスフロー中空糸膜モジュール。 等が、膜の充填率が高く、膜面積が大きいことから好ま
しい。膜の種類は、MF(精密濾過)、UF、ROなど
から、後段の処理プロセスに応じて選定されるが、その
材質としては塩素に対する耐久性の強いものであること
が重要である。
In the present invention, examples of the biological treatment apparatus include an activated carbon fluidized bed (aerobic biofilter), particularly an activated carbon fluidized bed using oligotrophic bacteria. The membrane module of the membrane separation device preferably has a structure that is difficult to be blocked by bacterial cells, for example, a spiral membrane module having a corrugated spacer inserted. Hollow fiber membrane module with an inner diameter of 1 mm or more, with internal pressure cross flow type. External pressure cross-flow hollow fiber membrane module. Etc. are preferable because the filling rate of the film is high and the film area is large. The type of membrane is selected from MF (microfiltration), UF, RO, etc. according to the subsequent treatment process, but it is important that the material has a high durability against chlorine.

【0013】このような本発明の方法は、特にTOC濃
度の低い、半導体製造プロセスの超純水の洗浄回収水の
処理に有効であり、その他、TOC濃度の低い上水等の
処理に適用可能である。
The method of the present invention as described above is particularly effective for treating cleaning and recovery water of ultrapure water having a low TOC concentration in the semiconductor manufacturing process, and is also applicable to treatment of tap water having a low TOC concentration. Is.

【0014】特に、本発明の方法は、半導体製造プロセ
スの超純水の洗浄回収水の処理工程において、UV酸化
に代るTOC除去工程として極めて有効であり、後段の
RO処理におけるRO膜の生物障害を、RO膜の劣化を
ひき起こすことなく効果的に防止し、良好な処理を可能
とする。
In particular, the method of the present invention is extremely effective as a TOC removal step in place of UV oxidation in the treatment step of washing and recovering ultrapure water in the semiconductor manufacturing process, and is a biological material of the RO film in the RO treatment in the latter stage. The failure is effectively prevented without causing deterioration of the RO film, and good processing is possible.

【0015】[0015]

【作用】半導体製造プロセスの洗浄回収水のように、T
OC濃度が非常に低い(例えば1〜10mg/l)原水
を、貧栄養細菌を用いる活性炭流動層(好気性バイオフ
ィルター)で処理した場合、活性炭流動層からの流出水
中には、フロックを形成していない棹菌(シュードモナ
ス属)が多く含有される。
[Operation] Like cleaning and recovery water in the semiconductor manufacturing process, T
When raw water having a very low OC concentration (for example, 1 to 10 mg / l) is treated with an activated carbon fluidized bed (aerobic biofilter) using oligotrophic bacteria, flocs are formed in the outflow water from the activated carbon fluidized bed. It contains a lot of non-bacillus (Pseudomonas spp.).

【0016】このように棹菌が多く存在する流出水で
は、従来のように1/10ppmオーダーの塩素を添加
しても、十分な濾過性の改善効果は得られない。
As described above, in the effluent containing a large amount of Bacteria, even if chlorine of 1/10 ppm order is added as in the conventional case, a sufficient effect of improving the filterability cannot be obtained.

【0017】これに対して、本発明方法に従って、流出
水中の遊離塩素量として0.3〜1.5mg/lとい
う、従来よりも多量に塩素剤を添加した場合には、菌体
の濾過性が良くなり、また、膜面での菌体の蓄積が防止
され、後段の膜分離装置の透過流束及び濾過速度が著し
く改善される。
On the other hand, according to the method of the present invention, when a chlorine agent is added in an amount of 0.3 to 1.5 mg / l as the amount of free chlorine in the effluent, which is larger than in the conventional case, the filterability of the cells is high. In addition, the bacterial cells are prevented from accumulating on the membrane surface, and the permeation flux and filtration rate of the latter membrane separation device are significantly improved.

【0018】[0018]

【実施例】以下に図面を参照して本発明の膜分離方法に
ついて具体的に説明する。なお、以下においては、半導
体製造プロセスの超純水の洗浄回収水を原水として処理
する場合について説明するが、本発明は何ら図示の方法
に限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The membrane separation method of the present invention will be specifically described below with reference to the drawings. In addition, in the following, the case of treating the cleaning and recovery water of ultrapure water in the semiconductor manufacturing process as raw water will be described, but the present invention is not limited to the illustrated method.

【0019】第1図は本発明の一実施例を示す系統図で
ある。
FIG. 1 is a system diagram showing an embodiment of the present invention.

【0020】第1図において、1は原水(ここでは、半
導体製造プロセスの洗浄回収水)の導入管であり、原水
を原水槽2に導入して一時貯留する。3はpH調整ユニ
ット、4はN(窒素),P(リン)注入ユニットであ
り、それぞれ、原水槽2よりポンプ5Aを備える配管5
から送給される原水に、配管6より酸又はアルカリを添
加してpH調整し、更に、配管7中のpH調整水に配管
8より窒素及び/又はリンを添加して、原水を下記に示
す貧栄養細菌の繁殖可能な条件に調整する。 pH=5〜9 TOC:N:P=100:5:1 9,10はそれぞれ曝気槽、活性炭流動層が形成された
好気性生物処理装置であり、曝気槽9は貧栄養細菌への
酸素供給のために、活性炭流動層10の循環ラインに設
けられる。
In FIG. 1, reference numeral 1 is an inlet pipe for raw water (here, cleaning / recovered water in the semiconductor manufacturing process), which is introduced into the raw water tank 2 and temporarily stored therein. 3 is a pH adjusting unit, 4 is an N (nitrogen), P (phosphorus) injection unit, and a pipe 5 equipped with a pump 5A from the raw water tank 2
Acid or alkali is added to the raw water sent from the pipe 6 to adjust the pH, and nitrogen and / or phosphorus is added to the pH-adjusted water in the pipe 7 from the pipe 8 to show the raw water below. Adjust to conditions that allow the reproduction of oligotrophic bacteria. pH = 5-9 TOC: N: P = 100: 5: 1 9 and 10 are an aeration tank and an aerobic biological treatment apparatus in which a fluidized bed of activated carbon is formed, respectively, and the aeration tank 9 supplies oxygen to oligotrophic bacteria. Is provided in the circulation line of the activated carbon fluidized bed 10.

【0021】なお、この循環ラインは、ポンプ11Aを
備える導入管11、エゼクタ12Aを備える抜出管12
とで構成される。
The circulation line includes an introduction pipe 11 having a pump 11A and an extraction pipe 12 having an ejector 12A.
Composed of and.

【0022】好気性生物処理装置10の活性炭流動層で
は、原水との良好な接触を図るために、流動層展開率3
0〜50%の範囲で流動させて、活性炭表面に付着した
貧栄養細菌により、原水中のTOCを分解させる。な
お、活性炭は10〜40メッシュのものを標準として用
いる。
In the activated carbon fluidized bed of the aerobic biological treatment apparatus 10, the fluidized bed expansion rate is 3 in order to achieve good contact with raw water.
The TOC in the raw water is decomposed by the oligotrophic bacteria adhering to the surface of the activated carbon by making it flow in the range of 0 to 50%. The activated carbon used is 10 to 40 mesh as a standard.

【0023】13は塩素注入ユニットであり、配管14
中の好気性生物処理装置の流出水に、本発明に従って、
配管15より塩素剤を注入する。
Reference numeral 13 is a chlorine injection unit, and a pipe 14
According to the present invention, the effluent of the aerobic biotreatment device therein,
A chlorine agent is injected through the pipe 15.

【0024】本実施例においては、この塩素注入ユニッ
ト13より、菌体を含む流出水に、流出水中の遊離塩素
濃度が0.3〜1.5mg/lとなるように次亜塩素酸
ナトリウム等の塩素剤を添加する。
In the present embodiment, the chlorine injecting unit 13 is used to adjust the concentration of free chlorine in the effluent containing microbial cells to 0.3 to 1.5 mg / l in the effluent. Add the chlorine agent.

【0025】16は、流出水を一時貯留するための中間
水槽であり、後段の膜分離装置17の原水槽ともなる。
Reference numeral 16 is an intermediate water tank for temporarily storing the outflow water, and also serves as a raw water tank of the membrane separation device 17 in the subsequent stage.

【0026】中間水槽16内の水は、ポンプ18Aを備
える配管18より膜分離装置17に導入され膜分離処理
される。この膜分離処理装置では活性炭流動層の流出水
が膜濾過される。この際、流出水中の菌体は、添加され
た塩素剤によりその濾過性が大幅に改善されているた
め、含有される菌体等が効率的に除去される。この膜分
離装置17の膜モジュール構成は、前述の如く、後段の
処理プロセス等に応じて適宜決定される。
The water in the intermediate water tank 16 is introduced into the membrane separation device 17 through a pipe 18 equipped with a pump 18A and subjected to membrane separation treatment. In this membrane separation treatment device, the effluent of the activated carbon fluidized bed is subjected to membrane filtration. At this time, since the filterability of the bacterial cells in the outflow water is significantly improved by the added chlorine agent, the bacterial cells and the like contained therein are efficiently removed. As described above, the membrane module configuration of the membrane separation device 17 is appropriately determined according to the subsequent treatment process and the like.

【0027】この膜分離装置17の透過水は、配管1
9、処理水槽20及び配管21を経て系外へ排出され、
必要に応じて更にRO膜処理等の膜分離処理を施された
後、半導体製造プロセス等に循環使用される。
The permeated water of the membrane separation device 17 is the pipe 1
9, discharged through the treated water tank 20 and the pipe 21 to the outside of the system,
If necessary, after being subjected to a membrane separation treatment such as an RO membrane treatment, it is recycled for use in a semiconductor manufacturing process or the like.

【0028】なお、この処理水槽20は、逆洗水槽とし
て利用することもでき、このような逆洗ユニットを用い
ることにより膜分離装置17のMF膜、UF膜等の濾過
速度を高く維持することが可能とされる。
The treated water tank 20 can also be used as a backwash water tank, and by using such a backwash unit, the filtration speed of the MF membrane, the UF membrane and the like of the membrane separation device 17 can be maintained high. Is possible.

【0029】このようにして得られる処理水は、TOC
が高度に除去されており、しかも、膜分離装置により菌
体も十分に除去された、高純度水である。
The treated water thus obtained is TOC
Is highly purified, and the bacterial cells are also sufficiently removed by the membrane separation device, which is high-purity water.

【0030】以下に実験例を挙げて、本発明の効果をよ
り具体的に示す。 実験例1 以下の条件により、遊離塩素濃度と濾過比抵抗との関係
を調べた。
The effects of the present invention will be more specifically shown below with reference to experimental examples. Experimental Example 1 The relationship between the free chlorine concentration and the filtration resistivity was examined under the following conditions.

【0031】原水としてはシュードモナス属の貧栄養細
菌を下記条件にて超純水中に懸濁させたものを用いた。原水 菌数:5×106 個/ml 濃度:0.16mg/l この原水を0.45μMF濾紙(ミリポア社製)を用い
て定圧加圧濾過したときの濾過曲線を求め、濾過比抵抗
を求めたところ4.4×108 m/kgであった。次
に、この原水に対して、次亜塩素酸ナトリウムをその添
加量を変えて添加し、同様に濾過比抵抗を求め、遊離塩
素濃度と濾過比抵抗との関係を第2図に示した。
As raw water, oligotrophic bacteria of the genus Pseudomonas were suspended in ultrapure water under the following conditions. Raw water bacteria count: 5 × 10 6 cells / ml Concentration: 0.16 mg / l This raw water was subjected to constant pressure filtration using 0.45 μMF filter paper (manufactured by Millipore) to obtain a filtration curve to obtain a filtration resistivity. As a result, it was 4.4 × 10 8 m / kg. Next, to this raw water, sodium hypochlorite was added by changing its addition amount, and similarly the filtration specific resistance was determined. The relationship between the free chlorine concentration and the filtration specific resistance is shown in FIG.

【0032】第2図より、次のことが明らかである。即
ち、遊離塩素濃度が0.1mg/l以上1.5mg/l
未満の範囲では、次亜塩素酸ナトリウム無添加の場合に
比べて濾過比抵抗は小さくなり、濾過性が改善されてい
る。特に、遊離塩素濃度が0.3〜1.5mg/lであ
ると実用的な改善効果が得られている。一方、遊離塩素
濃度1.5mg/lを超えて過剰に添加した場合には、
無添加のときに比べて濾過比抵抗は逆に上昇しており、
塩素過剰添加では濾過性が悪くなることが明らかであ
る。
From FIG. 2, the following is clear. That is, the free chlorine concentration is 0.1 mg / l or more and 1.5 mg / l
Within the range of less than, the filtration resistivity becomes smaller and the filterability is improved as compared with the case where sodium hypochlorite is not added. Particularly, when the free chlorine concentration is 0.3 to 1.5 mg / l, a practical improvement effect is obtained. On the other hand, when the free chlorine concentration exceeds 1.5 mg / l and is added excessively,
On the contrary, the filtration resistivity is increasing compared to when it was not added,
It is clear that the filterability deteriorates when chlorine is added in excess.

【0033】実験例2 塩素剤添加の効果が実際のUF膜濾過において与える影
響について検証するために、下記条件にて通水比較を行
なった。 原水:超純水にTOCが4mg/lとなるようにイソプ
ロピルアルコールを添加した模擬原水 活性炭流動層:クラレコールKW((株) クラレ製:商
標) 20/40メッシュ 流動展開率 50% UF膜分離装置: UF膜=ポリスルホン膜(分画分子量=2万),平膜 膜モジュール=波形スペーサーを挿入した薄層平膜セル 有効膜面積(0.0336m2 ) 30分間に3分の逆洗を実施(逆洗圧:0.2kg/c
2 ) 上記原水を活性炭流動層で処理した後、流出水をUF膜
分離装置で処理する際、流出水に遊離塩素濃度が1.0
mg/lとなるように次亜塩素酸ナトリウムを添加した
場合(No.1)と、全く添加しない場合(No.2)
とについて、それぞれ、通水開始後(10〜20日
後)、定常となったところでのUF膜分離装置の濾過速
度を調べ、結果を表1に示した。
Experimental Example 2 In order to verify the effect of the addition of a chlorine agent on the actual UF membrane filtration, a water flow comparison was carried out under the following conditions. Raw water: Simulated raw water in which isopropyl alcohol was added to ultrapure water so that TOC was 4 mg / l Activated carbon fluidized bed: Kuraray Coal KW (trademark of Kuraray Co., Ltd.) 20/40 mesh Flow rate of expansion 50% UF membrane separation Equipment: UF membrane = polysulfone membrane (molecular weight cut-off = 20,000), flat membrane Membrane module = thin-layer flat membrane cell with corrugated spacers Effective membrane area (0.0336m 2 ) Backwash for 3 minutes in 30 minutes (Backwash pressure: 0.2 kg / c
m 2 ) After treating the above raw water with a fluidized bed of activated carbon and then treating the effluent with a UF membrane separator, the effluent has a free chlorine concentration of 1.0.
When sodium hypochlorite was added so as to be mg / l (No. 1) and when not added at all (No. 2)
With respect to and, the filtration rate of the UF membrane separator at the time when it became steady after the start of water flow (after 10 to 20 days) was examined, and the results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】上記結果から、生物菌体を含む流出水に塩
素剤を遊離塩素として0.3〜1.5mg/lの範囲で
添加することにより濾過性能を改善することができるこ
とが明らかである。
From the above results, it is clear that the filtration performance can be improved by adding a chlorine agent as free chlorine in the range of 0.3 to 1.5 mg / l to the effluent containing biological cells.

【0036】[0036]

【発明の効果】以上詳述した通り、本発明の膜分離方法
によれば、生物処理水に含有される菌体の濾過性を大幅
に改善することにより、膜分離装置の濾過効率を高め、
膜の閉塞を防止して、長期間安定かつ高処理効率にて処
理することが可能とされる。本発明の膜分離方法は、特
に、半導体製造プロセスの超純水の回収処理工程のUV
酸化に代るTOC除去工程として、工業的に極めて有用
である。
As described in detail above, according to the membrane separation method of the present invention, the filtration efficiency of the membrane separation apparatus is improved by greatly improving the filterability of the cells contained in the biologically treated water.
It is possible to prevent clogging of the membrane and perform stable treatment with high treatment efficiency for a long period of time. The membrane separation method of the present invention is particularly applicable to the UV of the ultrapure water recovery treatment step in the semiconductor manufacturing process.
It is industrially extremely useful as a TOC removal step that replaces oxidation.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1図は本発明の膜分離方法の一実施例を示す
系統図である。
FIG. 1 is a system diagram showing an embodiment of the membrane separation method of the present invention.

【図2】第2図は実験例1の結果を示すグラフである。FIG. 2 is a graph showing the results of Experimental Example 1.

【符号の説明】[Explanation of symbols]

2 原水槽 3 pH調整ユニット 4 N,P注入ユニット 9 曝気槽 10 好気性生物処理装置 13 塩素注入ユニット 16 中間水槽 17 膜分離装置 20 処理水槽 2 Raw water tank 3 pH adjustment unit 4 N, P injection unit 9 Aeration tank 10 Aerobic biological treatment device 13 Chlorine injection unit 16 Intermediate water tank 17 Membrane separation device 20 Treated water tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 好気性生物膜処理装置からの生物処理水
を膜分離処理する膜分離方法において、該生物処理水に
塩素剤を添加して、遊離塩素濃度を0.3〜1.5mg
/lとした後、該膜分離装置に供給することを特徴とす
る膜分離方法。
1. A membrane separation method for subjecting biologically treated water from an aerobic biological membrane treatment device to a membrane separation treatment, wherein a chlorine agent is added to the biologically treated water to give a free chlorine concentration of 0.3 to 1.5 mg.
/ L, and then supplying to the membrane separation device.
JP19923591A 1991-08-08 1991-08-08 Membrane separation method Expired - Lifetime JPH0787914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19923591A JPH0787914B2 (en) 1991-08-08 1991-08-08 Membrane separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19923591A JPH0787914B2 (en) 1991-08-08 1991-08-08 Membrane separation method

Publications (2)

Publication Number Publication Date
JPH05329477A true JPH05329477A (en) 1993-12-14
JPH0787914B2 JPH0787914B2 (en) 1995-09-27

Family

ID=16404409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19923591A Expired - Lifetime JPH0787914B2 (en) 1991-08-08 1991-08-08 Membrane separation method

Country Status (1)

Country Link
JP (1) JPH0787914B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251184A (en) * 1994-03-11 1995-10-03 Shinko Pantec Co Ltd Treatment of water to be treated such as organic waste water and device therefor
JPH07328693A (en) * 1994-06-10 1995-12-19 Japan Organo Co Ltd Ultrapure water producing device
JPH09187785A (en) * 1996-01-09 1997-07-22 Kurita Water Ind Ltd Recovery and purification device for drain
JP2002159984A (en) * 2000-11-27 2002-06-04 Kurita Water Ind Ltd Biodegradation method for toc component
JP2002336887A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2002336886A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2003190979A (en) * 2001-10-18 2003-07-08 Kurita Water Ind Ltd Apparatus for manufacturing ultrapure water and method
JP2003340481A (en) * 2002-05-24 2003-12-02 Kurita Water Ind Ltd Biological activated carbon tower and apparatus for producing purified water
JP2008229484A (en) * 2007-03-20 2008-10-02 Kurita Water Ind Ltd Treatment method of concentrated wastewater from pure water production apparatus, and treatment apparatus for the concentrated wastewater
JP2010082599A (en) * 2008-10-02 2010-04-15 Japan Organo Co Ltd Water treatment apparatus and water treatment method
JP2011183273A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and method for producing ultrapure water
JP2011183274A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and process for producing ultrapure water
US8916048B2 (en) 2010-03-05 2014-12-23 Kurita Water Industries Ltd. Water treatment method and method for producing ultrapure water
JP2018153749A (en) * 2017-03-17 2018-10-04 オルガノ株式会社 Water treatment method and water treatment system using reverse osmosis membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI537046B (en) * 2011-07-06 2016-06-11 栗田工業股份有限公司 Method of membrane separation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251184A (en) * 1994-03-11 1995-10-03 Shinko Pantec Co Ltd Treatment of water to be treated such as organic waste water and device therefor
JPH07328693A (en) * 1994-06-10 1995-12-19 Japan Organo Co Ltd Ultrapure water producing device
JPH09187785A (en) * 1996-01-09 1997-07-22 Kurita Water Ind Ltd Recovery and purification device for drain
JP2002159984A (en) * 2000-11-27 2002-06-04 Kurita Water Ind Ltd Biodegradation method for toc component
JP2002336887A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2002336886A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2003190979A (en) * 2001-10-18 2003-07-08 Kurita Water Ind Ltd Apparatus for manufacturing ultrapure water and method
JP2003340481A (en) * 2002-05-24 2003-12-02 Kurita Water Ind Ltd Biological activated carbon tower and apparatus for producing purified water
JP2008229484A (en) * 2007-03-20 2008-10-02 Kurita Water Ind Ltd Treatment method of concentrated wastewater from pure water production apparatus, and treatment apparatus for the concentrated wastewater
JP2010082599A (en) * 2008-10-02 2010-04-15 Japan Organo Co Ltd Water treatment apparatus and water treatment method
JP2011183273A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and method for producing ultrapure water
JP2011183274A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and process for producing ultrapure water
US8916048B2 (en) 2010-03-05 2014-12-23 Kurita Water Industries Ltd. Water treatment method and method for producing ultrapure water
JP2018153749A (en) * 2017-03-17 2018-10-04 オルガノ株式会社 Water treatment method and water treatment system using reverse osmosis membrane

Also Published As

Publication number Publication date
JPH0787914B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
EP1900417B1 (en) Method of bacteriostasis or disinfection for permselective membrane
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
JP3198923B2 (en) Cleaning method of membrane
CN103249472B (en) Chemical cleaning method for immersed membrane element
JPH05329477A (en) Membrane separation
JP5194783B2 (en) Biological treatment method and apparatus for water containing organic matter
JP2010017614A (en) Method and apparatus for treating organic wastewater
JP3227863B2 (en) Ultrapure water production method
JP2007244979A (en) Water treatment method and water treatment apparatus
KR101279695B1 (en) A process and an apparatus for treating waters containing a biologically treated water
JP3721871B2 (en) Production method of ultra pure water
JP2005185985A (en) Method and apparatus for producing water
JP2008510619A (en) Anoxic biological reduction systems and methods
AU2012324220B2 (en) Fresh water generation system
JP3712110B2 (en) Purification method of sewage secondary treated water
JP3651306B2 (en) Method and apparatus for treating water containing trace organic matter
JP3221801B2 (en) Water treatment method
KR101054613B1 (en) Apparatus for waste water single reactor composed of biological and membrane process
JP3387311B2 (en) Ultrapure water production equipment
JP2887284B2 (en) Ultrapure water production method
JP2003340247A (en) Device and method for treating water
JPH09294977A (en) Water purifying apparatus
KR101575345B1 (en) Biological Treatment Apparatus and Biological Treatment Process of Aqueous Organic Wastes
JPS6331592A (en) Method for making ultrapure water
JP3266915B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 16

EXPY Cancellation because of completion of term