JPH09187785A - Recovery and purification device for drain - Google Patents

Recovery and purification device for drain

Info

Publication number
JPH09187785A
JPH09187785A JP8018038A JP1803896A JPH09187785A JP H09187785 A JPH09187785 A JP H09187785A JP 8018038 A JP8018038 A JP 8018038A JP 1803896 A JP1803896 A JP 1803896A JP H09187785 A JPH09187785 A JP H09187785A
Authority
JP
Japan
Prior art keywords
water
tank
pressurized water
oxygen
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8018038A
Other languages
Japanese (ja)
Other versions
JP3433601B2 (en
Inventor
Masayoshi Oinuma
正芳 老沼
Kiminobu Osawa
公伸 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP01803896A priority Critical patent/JP3433601B2/en
Publication of JPH09187785A publication Critical patent/JPH09187785A/en
Application granted granted Critical
Publication of JP3433601B2 publication Critical patent/JP3433601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the lowering of removing effect for bacteria adhered to a separating membrane surface of a membrane separation device and lower ing of flux from occurring by feeding pressurized water in which oxygen is pressure dissolved into a fluidized biological treatment device. SOLUTION: A fluidized biological treatment device 2 is constituted of a biological reaction tank 6 and a pressurized water preparation device 10 for pressure dissolving the oxygen. Optional type pressurized water preparation devices 10 can be used as far as the pressurized water is brought into contact with oxygen containing gas or air in the devices. For instance, compressed air from an air compressor 11 is mixed with treated water from a tank 3 in an ejector 12 to prepare oxygen containing pressurized water, which is stored in a pressure tank 14. The oxygen containing pressurized water is fed into the bottom section of a biological reaction tank 6 by a feed pipe 16. A large amount of oxygen is replenished into the biological reaction tank 6 by the arrangement. Biological degradation, therefore, can be carried out sufficiently even when the organic matter concentration is high, and nitrification can be carried out perfectly, and even when NH4 <+> concentration is high, adhered bacteria can be removed completely and the lowering of flux can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、半導体、液晶等
の製造工場において、超純水を用いる洗浄工程から流出
する洗浄排水を回収、浄化し、超純水製造用の原水に利
用するための排水の回収、浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for recovering and purifying cleaning waste water flowing out from a cleaning process using ultrapure water in a semiconductor, liquid crystal, etc. manufacturing plant and using it as raw water for manufacturing ultrapure water. Related to wastewater collection and purification equipment.

【0002】[0002]

【従来の技術】近年、取水量、排水量の規制によって、
超純水を用いる洗浄工程から流出する洗浄排水を回収
し、図1(A)に示すようにpH調整槽1でpHを中性
化し、次いでポンプにより流動式生物処理装置2に供給
して排水中のイソプロピールアルコール、メタノール、
酢酸、アセトン等の有機物(TOC)や、NH4 + を分
解除去し、その処理水のタンク3から殺菌剤としてCl
2 が連続的に供給される殺菌槽4に供給し、殺菌槽から
限外濾過膜や精密濾過膜等の膜分離装置5にポンプで加
圧して供給することにより流動式生物処理装置からの菌
体を分離し、膜を透過した透過水を超純水製造用原水と
し、超純水製造システムに送水している。尚、殺菌槽で
のCl2 の連続添加は、運転の継続によって後段の膜分
離装置の膜面に菌体が付着し、フラックスが低下するの
を防止するためである。
2. Description of the Related Art In recent years, due to regulation of water intake and drainage,
The cleaning wastewater flowing out from the cleaning process using ultrapure water is recovered, the pH is neutralized in the pH adjusting tank 1 as shown in FIG. 1 (A), and then the water is supplied to the fluid biological treatment apparatus 2 by the pump. Isopropyl alcohol, methanol,
Organic substances (TOC) such as acetic acid and acetone, and NH 4 + are decomposed and removed, and Cl is used as a bactericide from the treated water tank 3.
2 is continuously supplied to the sterilization tank 4, and the sterilization tank pressurizes the membrane separation device 5 such as an ultrafiltration membrane or a microfiltration membrane with a pump to supply the bacteria from the fluid biological treatment apparatus. The body is separated, and the permeated water that has permeated the membrane is used as raw water for ultrapure water production and is sent to the ultrapure water production system. The continuous addition of Cl 2 in the sterilization tank is for preventing the bacterial cells from adhering to the membrane surface of the membrane separation device at the subsequent stage and lowering the flux due to continuous operation.

【0003】従来、使用されている流動式生物処理装置
2は、図2に示すように生物反応槽6と、酸素溶解槽8
とからなり、生物反応槽6は微生物を担持した粒状又は
ペレット状の活性炭による充填層7を有し、処理される
べき排水は充填層中を上向流で通水し、充填層を一定に
展開する。そして、酸素溶解槽8中には散気装置9が設
けられ、散気装置が水中に空気を曝気して水に溶存さ
せ、循環ポンプP1 が酸素溶解槽の溶存酸素を含む水を
生物反応槽6の底部に供給し、生物反応槽中の活性炭に
付着した微生物に酸素を補給する。
A conventional fluid-type biological treatment apparatus 2 used in the past is a biological reaction tank 6 and an oxygen dissolution tank 8 as shown in FIG.
The biological reaction tank 6 has a packed bed 7 of activated carbon in the form of granules or pellets carrying microorganisms, and the wastewater to be treated is passed through the packed bed in an upward flow to make the packed bed uniform. expand. Further, an air diffuser 9 is provided in the oxygen dissolving tank 8, the air diffuser aerates air into the water and dissolves it in water, and the circulation pump P1 transfers water containing dissolved oxygen in the oxygen dissolving tank to the biological reaction tank. Oxygen is supplied to the microorganisms adhering to the activated carbon in the bioreactor, which is supplied to the bottom of No. 6.

【0004】[0004]

【発明が解決しようとする課題】取水量、排水量の規制
によって排水の回収量が多くなると、排水中のTOC濃
度は2〜10ppm、NH4 +の濃度は10〜30ppm
に高まる。これらのTOC、及びNH4 +は次の(1)
式、及び(2),(3)式によってTOCはCO2に、
NH4 +はNO3 -に分解される。 CH3 COOH+2O2 → 2CO2 +2H2 O・・・・・・・・(1) NH4 ++2O2 → NO2 -+2H2 O ・・・・・・・・・・・・・・(2) NO2 -+(1/2)O2 → NO3 - ・・・・・・・・・・・・・・・・(3) つまり、TOCの1ppm(=2.5ppmasCH3
COOH)を分解するのに溶存酸素は2.7ppm、N
4 +の1ppmを硝化するには溶存酸素が4.4ppm
必要になる。従って、上述したTOC、NH4 +を高濃度
で含む排水の場合、従来の酸素溶解槽で生物反応槽に溶
存酸素を供給したので、TOCの生物分解は充分に行え
るが、NH4 +を硝化する溶存酸素が不足し、NH4 +を完
全に硝化できず、NH4 +が残存した処理水が殺菌槽4に
流入する。そうすると、殺菌槽中でNH4 +とCl2 が結
合して殺菌力の弱いクロラミンになるので膜分離装置の
分離膜の膜面に付着する菌体の除去効果が低くなり、フ
ラックスが低下するという問題が生じる。
When the amount of collected wastewater increases due to regulation of the amount of water intake and the amount of wastewater, the TOC concentration in the wastewater is 2 to 10 ppm and the concentration of NH 4 + is 10 to 30 ppm.
To increase. These TOC and NH 4 + have the following (1)
According to the equations and equations (2) and (3), TOC becomes CO 2 ,
NH 4 + is decomposed into NO 3 . CH 3 COOH + 2O 2 → 2CO 2 + 2H 2 O ········ (1) NH 4 + + 2O 2 → NO 2 - + 2H 2 O ·············· (2) NO 2 - + (1/2) O 2 → NO 3 - ················ (3) in other words, TOC of 1ppm (= 2.5ppmasCH 3
Dissolved oxygen is 2.7ppm, N to decompose COOH)
Dissolved oxygen is 4.4 ppm to nitrify 1 ppm of H 4 +
Will be needed. Therefore, in the case of the above-mentioned wastewater containing a high concentration of TOC and NH 4 + , since dissolved oxygen was supplied to the biological reaction tank in the conventional oxygen dissolution tank, TOC can be sufficiently biodegraded, but NH 4 + is nitrified. The amount of dissolved oxygen is insufficient, NH 4 + cannot be nitrified completely, and the treated water in which NH 4 + remains flows into the sterilization tank 4. Then, NH 4 + and Cl 2 are combined in the sterilization tank to form chloramine, which has a weak bactericidal power, so that the effect of removing the bacterial cells adhering to the membrane surface of the separation membrane of the membrane separation device becomes low and the flux is lowered. The problem arises.

【0005】[0005]

【課題を解決するための手段】本発明は、上述した問題
点を解消するため、水に溶解する空気量は水の圧力に比
例することに着目して開発されたもので、生物を付着し
た担体を保有する流動式生物処理装置と、該生物処理装
置からの流出水に塩素系殺菌剤を添加して膜濾過する膜
分離装置を備えた、超純水を用いた洗浄工程から流出す
る排水の回収、浄化装置において、前記流動式生物処理
装置に酸素を加圧溶解した加圧水を供給することを特徴
とする。
In order to solve the above-mentioned problems, the present invention was developed by paying attention to the fact that the amount of air dissolved in water is proportional to the pressure of water. Wastewater flowing out from a washing process using ultrapure water, which is equipped with a flow-type biological treatment device having a carrier and a membrane separation device for adding a chlorine-based bactericide to the outflow water from the biological treatment device to perform membrane filtration. In the collecting and purifying apparatus, the pressurized biological water treatment apparatus is supplied with pressurized water in which oxygen is dissolved under pressure.

【0006】[0006]

【発明の実施の形態】本発明の流動式生物処理装置2
は、図1Bに示したように図2と同様な生物反応槽6
と、酸素を加圧溶解した加圧水を生物反応槽に供給する
ための加圧水製造装置10とからなる。この加圧水製造
装置は加圧状態で水と、酸素含有ガスや空気とを接触さ
せるものであれば任意の手段を採用することができる
が、図示の実施形態では、図1(B)に示すように、エ
アコンプレッサ11からの圧縮空気と、ポンプPによる
タンク3からの処理水を垂直に配置されたエジェクター
12に下から供給し、エジェクター中で混合した気液
は、エジェクターの上端に接続した上下方向に蛇行した
気体溶解管13中を流れる過程で空気は液中に溶解して
加圧タンク14の内部に噴出する。そして、液に溶解し
なかった空気は加圧タンクの頂部に接続した戻り管15
でエジェクタ12の負圧部に戻し、再度、液と混合して
溶解させる。
BEST MODE FOR CARRYING OUT THE INVENTION Fluidized biological treatment apparatus 2 of the present invention
As shown in FIG. 1B, the biological reaction tank 6 similar to that shown in FIG.
And a pressurized water producing apparatus 10 for supplying pressurized water in which oxygen is dissolved under pressure to the biological reaction tank. This pressurized water producing apparatus can employ any means as long as it brings water into contact with oxygen-containing gas or air in a pressurized state, but in the illustrated embodiment, as shown in FIG. 1 (B). The compressed air from the air compressor 11 and the treated water from the tank 3 by the pump P are supplied to the ejector 12 arranged vertically from below, and the gas-liquid mixed in the ejector is connected to the upper end of the ejector. In the process of flowing in the gas dissolving pipe 13 that meanders in the direction, air is dissolved in the liquid and jetted into the pressure tank 14. The air not dissolved in the liquid is returned to the return pipe 15 connected to the top of the pressure tank.
Then, it is returned to the negative pressure portion of the ejector 12, and mixed again with the liquid to be dissolved.

【0007】従って、加圧タンク14に得られた加圧水
を供給管16で生物反応槽6の底部に供給することによ
り、加圧水に溶解した多量の酸素を生物反応槽に補給す
ることができる。
Therefore, by supplying the pressurized water obtained in the pressurized tank 14 to the bottom of the biological reaction tank 6 through the supply pipe 16, a large amount of oxygen dissolved in the pressurized water can be supplied to the biological reaction tank.

【0008】エアコンプレッサ11がエジェクタ12に
供給する空気の量と、供給管16で生物反応槽6に供給
する加圧水中に溶解した空気の量とが常に一定して等し
くなるように制御されることが望ましいが、そのような
制御は実際上、困難であるため、エアコンプレッサがエ
ジェクタに供給する空気量を、加圧水中に溶解する空気
量よりも若干多くしてある。これにより加圧タンク中に
は、戻り管15でエジェクタに戻すための液に溶解しな
かった空気が占める面積が次第に大きくなる。そして、
加圧タンク中の加圧水は供給管16で生物反応槽に供給
されるので液面は下降し、一定量の空気を溶解した一定
圧力の加圧水を一定流量で生物反応槽に供給することが
できなくなる。
The amount of air supplied from the air compressor 11 to the ejector 12 and the amount of air dissolved in the pressurized water supplied to the biological reaction tank 6 through the supply pipe 16 are controlled to be always constant and equal. However, since such control is difficult in practice, the amount of air supplied to the ejector by the air compressor is set to be slightly larger than the amount of air dissolved in the pressurized water. As a result, the area occupied by the air not dissolved in the liquid for returning to the ejector in the return pipe 15 gradually increases in the pressurized tank. And
Since the pressurized water in the pressurized tank is supplied to the biological reaction tank through the supply pipe 16, the liquid level is lowered, and it is impossible to supply the pressurized water having a fixed pressure in which a fixed amount of air is dissolved at a constant flow rate to the biological reaction tank. .

【0009】これを防止するため、加圧タンクには液面
の所定の上限、下限を換出する液位検出器17を設け、
その信号を適当な増幅回路(図示)を介してエアコンプ
レッサの、エジェクターへの圧縮空気供給管18に設け
た電磁開閉弁19に送信し、電磁開閉弁19を制御する
ようにしてある。つまり、加圧タンク内の液面が下限よ
りも下がると、液位検出器17はこれを検知して電磁開
閉弁19を閉じ、エアコンプレッサからエジェクタへの
圧縮空気を停める。これによりエジェクタは加圧タンク
の空気を戻り管15から吸引し、処理水タンクからの液
に混合して溶解させる。こうして加圧タンク中の空気が
占める面積が減少し、加圧水の液面が上昇し、上限に到
達すると、液位検出器がこれを検知して電磁開閉弁19
を開にし、エアコンプレッサは圧縮空気をエジェクタに
供給して液に混合、溶解させる。この動作を繰返すこと
により、加圧タンク内の加圧水の液面を上限と下限の間
に維持し、空気(酸素)の溶解量が一定で、一定圧力に
加圧された加圧水を一定流量で生物反応槽に供給するこ
とができる。
In order to prevent this, the pressure tank is provided with a liquid level detector 17 for exchanging predetermined upper and lower limits of the liquid level,
The signal is transmitted to an electromagnetic on-off valve 19 provided in a compressed air supply pipe 18 of an air compressor of an air compressor via an appropriate amplifier circuit (illustration) to control the electromagnetic on-off valve 19. That is, when the liquid level in the pressurized tank falls below the lower limit, the liquid level detector 17 detects this and closes the electromagnetic opening / closing valve 19 to stop the compressed air from the air compressor to the ejector. As a result, the ejector sucks the air in the pressurized tank through the return pipe 15, mixes it with the liquid from the treated water tank, and dissolves it. In this way, the area occupied by the air in the pressurized tank is reduced, the liquid level of the pressurized water rises, and when the upper limit is reached, the liquid level detector detects this and the solenoid opening / closing valve 19
The air compressor supplies compressed air to the ejector to mix and dissolve it in the liquid. By repeating this operation, the level of the pressurized water in the pressurized tank is maintained between the upper limit and the lower limit, the amount of dissolved air (oxygen) is constant, and the pressurized water pressurized to a constant pressure has a constant flow rate. It can be fed to the reaction vessel.

【0010】こうして本発明によれば、超純水を用いる
洗浄工程から流出する洗浄排水を回収し、pH調整槽1
でpHを中性化し、次いでポンプにより生物反応槽6に
供給して粒状又はペレット状の活性炭による充填層7中
を上向流で通水し、活性炭が担持する微生物で排水中の
TOC、NH4 +で分解する際、生物反応槽には加圧水製
造装置10からの酸素を充分に溶解した加圧水が供給さ
れているので、TOCの濃度が高くても生物分解を充分
に行えると共に、NH4 +の濃度が高くてもこれを完全に
硝化することができる。そして、殺菌槽4に供給される
処理水はNH4 +を含まないため、Cl2 と結合してのク
ロラミンは生成しない。従って、殺菌槽で添加されたC
2 は膜分離装置の膜面に付着する菌体を充分に除去す
るので、膜分離装置のフラックスは低下せず、膜を透過
した処理水を超純水製造システムに供給することができ
る。
Thus, according to the present invention, the cleaning waste water flowing out from the cleaning process using the ultrapure water is recovered, and the pH adjusting tank 1 is collected.
To neutralize the pH with a pump, and then feed the biological reaction tank 6 with a pump to pass through the packed bed 7 of the activated carbon in the form of granules or pellets in an upward flow. At the time of decomposing with 4 + , since the pressurized water in which oxygen is sufficiently dissolved from the pressurized water producing device 10 is supplied to the bioreaction tank, the biodegradation can be sufficiently performed even if the concentration of TOC is high, and the NH 4 + It can be completely nitrified even if the concentration is high. Since the treated water supplied to the sterilization tank 4 does not contain NH 4 + , chloramine combined with Cl 2 is not generated. Therefore, C added in the sterilization tank
Since l 2 sufficiently removes the bacterial cells adhering to the membrane surface of the membrane separator, the flux of the membrane separator does not decrease, and the treated water that has permeated the membrane can be supplied to the ultrapure water production system.

【0011】超純水製造システムは通常の処理方法が使
用でき、例えば、凝集、沈殿、濾過、吸着等で構成され
る前処理工程、イオン交換、逆浸透膜脱塩、脱気等で構
成される一次純水製造工程、紫外線酸化、殺菌、イオン
交換、膜濾過等で構成される二次純水製造工程から形成
される。本発明によって処理された回収水は、工業用
水、市水、地下水等の原水と共に超純水製造システムの
前処理工程に供給されてもよいし、処理された回収水は
超純水製造システムの一次純水製造工程に供給してもよ
い。又、本発明の回収水の処理工程に続いて、イオン交
換、逆浸透膜脱塩工程を設けて、回収水の水質を向上し
て二次純水製造工程に供給してもよい。
The ultrapure water production system can use a usual treatment method. For example, it is constituted by a pretreatment step including coagulation, precipitation, filtration, adsorption and the like, ion exchange, reverse osmosis membrane desalination, deaeration and the like. It is formed from a primary pure water production process including a secondary pure water production process including ultraviolet oxidation, sterilization, ion exchange, and membrane filtration. The recovered water treated according to the present invention may be supplied to the pretreatment step of the ultrapure water production system together with raw water such as industrial water, city water, and groundwater, and the treated recovered water may be supplied to the ultrapure water production system. It may be supplied to the primary pure water production process. Further, an ion exchange and reverse osmosis membrane desalting step may be provided subsequent to the treatment step of the recovered water of the present invention to improve the water quality of the recovered water and supply it to the secondary pure water producing step.

【0012】本発明による図1(A),(B)の浄化装
置と、図1(A),図2の従来の浄化装置の比較テスト
を行った結果を次に示す。使用した回収排水はA社の半
導体を洗浄した排水で、TOC≒10ppm、NH4 +
10ppmであった。生物反応槽は、いずれも直径1
m、高さ4mで、充填層は10/32メッシュの粒状活
性炭2.5m3 で構成した。排水は10m3 /時の流量
で各装置に供給した。本発明の浄化装置では溶存酸素5
0ppmの加圧水を加圧水製造装置から3m3 /時×6
kg/cm2 で生物反応槽に供給した。又、従来の浄化
装置では酸素溶解槽から循環ポンプで溶存酸素8.5p
pmを含む水を13.5m3 /時で生物反応槽に供給し
た。
The comparison test results of the purifying apparatus of FIGS. 1A and 1B according to the present invention and the conventional purifying apparatus of FIGS. 1A and 2 are shown below. The collected wastewater used is the semiconductor A's semiconductor washed wastewater, TOC ≈ 10 ppm, NH 4 +
It was 10 ppm. All bioreactors have a diameter of 1
m, height 4 m, the packed bed was composed of 2.5 m 3 of 10/32 mesh granular activated carbon. Waste water was supplied to each device at a flow rate of 10 m 3 / hour. In the purification device of the present invention, dissolved oxygen is 5
Pressurized water of 0ppm from pressurized water production equipment 3m 3 / hour × 6
The bioreactor was fed at kg / cm 2 . Also, in the conventional purifier, the dissolved oxygen is 8.5 p from the oxygen dissolution tank with the circulation pump.
Water containing pm was fed to the bioreactor at 13.5 m 3 / h.

【0013】その結果、従来の浄化装置の膜分離装置の
膜を透過した処理水の溶存酸素量は<1ppm、NH4 +
は5〜6ppm、TOCは0.3ppmであるのに対
し、本発明の浄化装置の膜分離装置の膜を透過した処理
水中の溶存酸素量は4〜5ppm、NH4 +は<1pp
m、TOCは0.2ppmであり、処理水中のNH4 +
加圧水を生物反応槽に供給することで1ppm以下まで
低減でき、膜フラックスも安定化した。
As a result, the dissolved oxygen content of the treated water that has permeated the membrane of the membrane separator of the conventional purifier is <1 ppm, NH 4 +
Is 5 to 6 ppm and TOC is 0.3 ppm, whereas the amount of dissolved oxygen in the treated water that has permeated the membrane of the membrane separation device of the purification device of the present invention is 4 to 5 ppm, and NH 4 + is <1 pp.
m and TOC were 0.2 ppm, NH 4 + in the treated water could be reduced to 1 ppm or less by supplying pressurized water to the biological reaction tank, and the membrane flux was also stabilized.

【0014】[0014]

【発明の効果】以上で明らかなように、本発明では流動
式生物処理装置に酸素を加圧溶解した加圧水を供給する
ため、生物反応槽で排水中のTOC、NH4 +で分解する
際、水中には溶存酸素が充分にあるのでTOCの濃度が
高くても生物分解を充分に行えると共に、NH4 +の濃度
が高くてもこれを完全に硝化することができる。そし
て、殺菌槽4に供給される処理水はNH4 +を含まないた
め、Cl2 と結合してのクロラミンは生成しない。従っ
て、殺菌槽で添加されたCl2 は膜分離装置の膜面に付
着する菌体を充分に除去するので、膜分離装置のフラッ
クスは低下せず、膜を透過した処理水を超純水製造シス
テムに供給することができる。
EFFECTS OF THE INVENTION As is clear from the above, in the present invention, pressurized water in which oxygen is dissolved under pressure is supplied to the fluid-type biological treatment apparatus. Therefore, when decomposing TOC and NH 4 + in wastewater in the biological reaction tank, Since there is sufficient dissolved oxygen in the water, biodegradation can be sufficiently performed even if the concentration of TOC is high, and even if the concentration of NH 4 + is high, this can be completely nitrified. Since the treated water supplied to the sterilization tank 4 does not contain NH 4 + , chloramine combined with Cl 2 is not generated. Therefore, since Cl 2 added in the sterilization tank sufficiently removes the bacterial cells attached to the membrane surface of the membrane separation device, the flux of the membrane separation device does not decrease, and the treated water that has permeated the membrane is processed into ultrapure water. Can be supplied to the system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Aは排水の回収、浄化装置のフローシート、B
は本発明による流動式生物処理装置である。
FIG. 1A is a flow sheet of a wastewater recovery and purification device, B
Is a flow-type biological treatment apparatus according to the present invention.

【図2】従来の排水の回収、浄化装置に使用されている
流動式生物処理装置である。
FIG. 2 is a flow type biological treatment device used in a conventional waste water recovery and purification device.

【符号の説明】[Explanation of symbols]

1 pH調整槽 2 流動式生物処理装置 3 処理水のタンク 4 殺菌槽 5 膜分離装置 6 流動式生物処理装置の生物反応槽 7 生物反応槽の充填層 10 加圧水製造装置 11 エアコンプレッサ 12 エジェクタ 13 気体溶解管 14 加圧タンク 15 戻り管 16 供給管 1 pH adjusting tank 2 Fluid type biological treatment apparatus 3 Treated water tank 4 Sterilization tank 5 Membrane separation apparatus 6 Bioreactor tank of fluid type biological treatment apparatus 7 Packing layer of biological reaction tank 10 Pressurized water production apparatus 11 Air compressor 12 Ejector 13 Gas Melting pipe 14 Pressurized tank 15 Return pipe 16 Supply pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/50 540 C02F 1/50 540A 550 550H 560 560E 560H 1/76 ZAB 1/76 ZABA ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 1/50 540 C02F 1/50 540A 550 550H 560 560E 560H 1/76 ZAB 1/76 ZABA

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 生物を付着した担体を保有する流動式生
物処理装置と、該生物処理装置からの流出水に塩素系殺
菌剤を添加して膜濾過する膜分離装置を備えた、超純水
を用いた洗浄工程から流出する排水の回収、浄化装置に
おいて、前記流動式生物処理装置に酸素を加圧溶解した
加圧水を供給することを特徴とする排水の回収、浄化装
置。
1. Ultrapure water comprising a fluid-type biological treatment apparatus having a carrier having organisms attached thereto, and a membrane separator for adding a chlorine-based bactericide to the outflow water from the biological treatment apparatus to perform membrane filtration. In a device for collecting and purifying wastewater flowing out from a washing process using the above, a device for collecting and purifying wastewater, characterized in that pressurized water in which oxygen is dissolved under pressure is supplied to the fluid biological treatment device.
JP01803896A 1996-01-09 1996-01-09 Wastewater recovery and purification equipment Expired - Fee Related JP3433601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01803896A JP3433601B2 (en) 1996-01-09 1996-01-09 Wastewater recovery and purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01803896A JP3433601B2 (en) 1996-01-09 1996-01-09 Wastewater recovery and purification equipment

Publications (2)

Publication Number Publication Date
JPH09187785A true JPH09187785A (en) 1997-07-22
JP3433601B2 JP3433601B2 (en) 2003-08-04

Family

ID=11960517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01803896A Expired - Fee Related JP3433601B2 (en) 1996-01-09 1996-01-09 Wastewater recovery and purification equipment

Country Status (1)

Country Link
JP (1) JP3433601B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054096A1 (en) * 1997-05-27 1998-12-03 Hitachi Zosen Corporation System for recovering and treating waste water
JP2000202481A (en) * 1999-01-12 2000-07-25 Kurita Water Ind Ltd Toc component removing device at ultrapure water production device
JP2002336887A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2007152285A (en) * 2005-12-07 2007-06-21 Kurita Water Ind Ltd Liquid treatment method and apparatus
KR100856504B1 (en) * 2007-05-30 2008-09-04 동아정밀공업(주) Multistep wastewater treatment apparatus by low density high pressure
WO2013015128A1 (en) * 2011-07-22 2013-01-31 栗田工業株式会社 Biological treatment method and treatment device for amine-containing waste water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481660A (en) * 1977-12-12 1979-06-29 Ishikawajima Harima Heavy Ind Co Ltd Method of treating waste water
JPS55153195U (en) * 1979-04-17 1980-11-05
JPS56139195A (en) * 1980-04-02 1981-10-30 Meidensha Electric Mfg Co Ltd Biological disposal of waste water containing organism
JPH05329477A (en) * 1991-08-08 1993-12-14 Kurita Water Ind Ltd Membrane separation
JPH0679272A (en) * 1992-09-02 1994-03-22 Kurita Water Ind Ltd Device for production of pure water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481660A (en) * 1977-12-12 1979-06-29 Ishikawajima Harima Heavy Ind Co Ltd Method of treating waste water
JPS55153195U (en) * 1979-04-17 1980-11-05
JPS56139195A (en) * 1980-04-02 1981-10-30 Meidensha Electric Mfg Co Ltd Biological disposal of waste water containing organism
JPH05329477A (en) * 1991-08-08 1993-12-14 Kurita Water Ind Ltd Membrane separation
JPH0679272A (en) * 1992-09-02 1994-03-22 Kurita Water Ind Ltd Device for production of pure water

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054096A1 (en) * 1997-05-27 1998-12-03 Hitachi Zosen Corporation System for recovering and treating waste water
US6379548B1 (en) 1997-05-27 2002-04-30 Hitachi Zosen Corporation System for recovering and treating waste water
JP2000202481A (en) * 1999-01-12 2000-07-25 Kurita Water Ind Ltd Toc component removing device at ultrapure water production device
JP4696326B2 (en) * 1999-01-12 2011-06-08 栗田工業株式会社 TOC component removal equipment in ultrapure water production equipment
JP2002336887A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2007152285A (en) * 2005-12-07 2007-06-21 Kurita Water Ind Ltd Liquid treatment method and apparatus
JP4591703B2 (en) * 2005-12-07 2010-12-01 栗田工業株式会社 Liquid processing method and apparatus
KR100856504B1 (en) * 2007-05-30 2008-09-04 동아정밀공업(주) Multistep wastewater treatment apparatus by low density high pressure
WO2013015128A1 (en) * 2011-07-22 2013-01-31 栗田工業株式会社 Biological treatment method and treatment device for amine-containing waste water
JP2013022536A (en) * 2011-07-22 2013-02-04 Kurita Water Ind Ltd Biological treatment method for amine-containing wastewater and treatment equipment

Also Published As

Publication number Publication date
JP3433601B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
TWI410378B (en) Wastewater treatment plant containing organic matter and its handling method
JP3358066B2 (en) Wastewater treatment method and plant
US9315402B2 (en) Systems and methods for wastewater treatment
KR101373881B1 (en) Apparatus and method for treatment of organic substance-containing wastewater
US20100018918A1 (en) Method and device for the aerobic treatment of waste water
JP5238002B2 (en) Organic waste water treatment apparatus and treatment method
JP4625508B2 (en) Nitrate waste liquid treatment method and apparatus
JP3323040B2 (en) Ultrapure water production equipment
JP2009254967A (en) Water treatment system
US6365048B1 (en) Method for treatment of organic matter contaminated drinking water
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
JP2003024985A (en) Dentrification apparatus and dentrification method
WO2009099209A1 (en) Apparatus and method for treatment of radioactive nitrate salt liquid waste
JP3433601B2 (en) Wastewater recovery and purification equipment
JPH10290993A (en) Purified water treating apparatus
JPS61111198A (en) Apparatus for producing ultra-pure water
JPH0647399A (en) Water purifying treatment method
JPS6331592A (en) Method for making ultrapure water
KR101054613B1 (en) Apparatus for waste water single reactor composed of biological and membrane process
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
JP4765308B2 (en) Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method
KR100327095B1 (en) Method for nitrate removal in ground water
JP2000225393A (en) Method and apparatus for treating wastewater
JP3392298B2 (en) Wastewater treatment method
JP2006116376A (en) Waste water treatment system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees