JP2014061486A - Water treatment method and water treatment system - Google Patents

Water treatment method and water treatment system Download PDF

Info

Publication number
JP2014061486A
JP2014061486A JP2012208688A JP2012208688A JP2014061486A JP 2014061486 A JP2014061486 A JP 2014061486A JP 2012208688 A JP2012208688 A JP 2012208688A JP 2012208688 A JP2012208688 A JP 2012208688A JP 2014061486 A JP2014061486 A JP 2014061486A
Authority
JP
Japan
Prior art keywords
water
treated
semipermeable membrane
osmosis membrane
forward osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012208688A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yoshizaki
耕大 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2012208688A priority Critical patent/JP2014061486A/en
Publication of JP2014061486A publication Critical patent/JP2014061486A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method and a water treatment system capable of relatively easily concentrating the water to be treated and efficiently treating the obtained concentrated water.SOLUTION: Provided is a water treatment method comprising:a step in which, in a state where the water to be treated is introduced into a positive osmosis membrane device and is made present on the primary side of a first semi-permeable membrane provided at the positive osmosis membrane device, and a hypertonic solution under the osmotic pressure higher than that of the water to be treated is made present, the water from the water to be treated is permeated from the primary side of the first semi-permeable membrane to the secondary side, thus the water to be treated is concentrated, and concentrated water is obtained; and a step in which the concentrated water is introduced into a reaction tank, and aeration treatment is performed.

Description

本発明は、正浸透膜装置を利用した水処理方法および水処理システムに関する。   The present invention relates to a water treatment method and a water treatment system using a forward osmosis membrane device.

従来、微生物存在下で被処理水を曝気処理する活性汚泥法による水処理が広く知られており、また、活性汚泥法による水処理をよりコンパクトな設備で行う方法として膜分離活性汚泥法が近年普及しつつある。膜分離活性汚泥法は、精密ろ過膜(MF膜)や限外ろ過膜(UF膜)を用いて反応槽中の活性汚泥濃度を高めて、高効率に生物処理を行えるようにするものである。さらに特許文献1には、MF膜やUF膜よりも精密分離することができる逆浸透膜を用いた水処理方法が開示され、被処理水を逆浸透膜を用いて膜分離処理することにより透過水と濃縮水とに分離し、濃縮水を生物処理する水処理方法が開示されている。特許文献1に開示された方法によれば、逆浸透膜を用いることにより高純度の水が得られる一方、濃縮水には被処理水中の懸濁物質や溶解性の炭素、窒素、リン成分等が濃縮される形となり、生物処理をよりコンパクトな設備で行うことができる。   Conventionally, water treatment by an activated sludge method for aeration treatment of water to be treated in the presence of microorganisms is widely known, and membrane separation activated sludge method has recently been used as a method for performing water treatment by an activated sludge method with more compact equipment. It is becoming popular. The membrane separation activated sludge method increases the activated sludge concentration in the reaction tank using a microfiltration membrane (MF membrane) or ultrafiltration membrane (UF membrane) to enable highly efficient biological treatment. . Further, Patent Document 1 discloses a water treatment method using a reverse osmosis membrane that can be separated more precisely than an MF membrane or a UF membrane. Permeation is performed by subjecting water to be treated to a membrane separation treatment using a reverse osmosis membrane. A water treatment method that separates water and concentrated water and biologically treats the concentrated water is disclosed. According to the method disclosed in Patent Document 1, high-purity water can be obtained by using a reverse osmosis membrane, while concentrated water contains suspended substances, soluble carbon, nitrogen, phosphorus components, etc. in water to be treated. As a result, the biological treatment can be performed with more compact equipment.

特開2009−72766号公報JP 2009-72766 A

しかし、特許文献1に開示されるように被処理水を逆浸透膜を用いて処理する場合、膜の目詰まり防止のために高度な前処理が必要となる場合が多く、処理が煩雑化しやすくなる。本発明は前記事情に鑑みてなされたものであり、その目的は、比較的簡便に被処理水を濃縮し、得られた濃縮水を効率的に処理することができる水処理方法および水処理システムを提供することにある。   However, when treating the water to be treated using a reverse osmosis membrane as disclosed in Patent Document 1, it is often necessary to perform advanced pretreatment to prevent clogging of the membrane, and the treatment tends to be complicated. Become. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a water treatment method and a water treatment system capable of concentrating water to be treated relatively easily and efficiently treating the obtained concentrated water. Is to provide.

上記課題を解決することができた本発明の水処理方法とは、被処理水を正浸透膜装置に導入して、正浸透膜装置に備えられた第1半透膜の一次側に被処理水を存在させ、二次側に被処理水よりも高浸透圧の高張溶液を存在させた状態で、被処理水中の水を第1半透膜の一次側から二次側に浸透させることにより、被処理水を濃縮して濃縮水を得る工程と、前記濃縮水を反応槽に導入して曝気処理する工程とを有するところに特徴を有する。本発明の水処理方法は、被処理水から水を除去して濃縮するのに逆浸透処理ではなく正浸透処理を採用することで、逆浸透処理のように半透膜を挟んだ浸透圧差に対抗して被処理水に過大な圧力を負荷しなくてすみ、被処理水に含まれる固形分の濃度や大きさに対する許容範囲が広くなるため、逆浸透処理ほど高度な前処理をする必要がない。正浸透処理により得られた濃縮水は、塩濃度が高められることによって、曝気処理の際に供給される気泡を小さくすることができ、濃縮水への酸素溶解効率を高めることができる。その結果、曝気処理の効率化を図ることができる。   The water treatment method of the present invention that has been able to solve the above-mentioned problem is that the water to be treated is introduced into the forward osmosis membrane device and treated on the primary side of the first semipermeable membrane provided in the forward osmosis membrane device. By allowing water in the treated water to permeate from the primary side to the secondary side of the first semipermeable membrane in a state where a hypertonic solution having higher osmotic pressure than the treated water is present on the secondary side. The present invention is characterized in that it includes a step of concentrating water to be treated to obtain concentrated water and a step of introducing the concentrated water into a reaction vessel and subjecting to aeration. The water treatment method of the present invention employs a forward osmosis treatment instead of a reverse osmosis treatment to remove and concentrate water from the water to be treated, thereby creating an osmotic pressure difference across a semipermeable membrane as in the reverse osmosis treatment. In contrast, it is not necessary to apply excessive pressure to the water to be treated, and the tolerance for the concentration and size of the solids contained in the water to be treated is widened. Absent. Concentrated water obtained by forward osmosis treatment can reduce the bubbles supplied during the aeration treatment by increasing the salt concentration, and can improve the efficiency of dissolving oxygen in the concentrated water. As a result, the efficiency of the aeration process can be improved.

曝気処理は微生物存在下で行うことが好ましく、これにより、濃縮水中の有機性の溶質(溶解性物質)を除去することができる。微生物存在下で曝気処理することにより得られた曝気処理水は正浸透膜装置に返送してもよく、これにより、第1半透膜の一次側の被処理水の溶質濃度を下げて、第1半透膜の水の浸透量を高めることが可能となる。   The aeration treatment is preferably performed in the presence of microorganisms, whereby organic solutes (soluble substances) in the concentrated water can be removed. Aeration treated water obtained by aeration treatment in the presence of microorganisms may be returned to the forward osmosis membrane device, thereby reducing the solute concentration of water to be treated on the primary side of the first semipermeable membrane. It becomes possible to increase the amount of water permeated through one semipermeable membrane.

本発明の水処理方法は、さらに、高張溶液を逆浸透膜装置に導入して、逆浸透膜装置に備えられた第2半透膜の一次側から二次側に高張溶液中の水を浸透させることにより処理水を得る工程と、前記高張溶液を逆浸透膜装置から正浸透膜装置に返送する工程とを有することが好ましい。この場合、高張溶液が正浸透膜装置と逆浸透膜装置との間を循環する形となり、正浸透膜装置に供給する高張溶液が逆浸透膜装置で濃縮されて溶質濃度が所望程度に高く維持され、正浸透処理を安定して行えるようになる。   The water treatment method of the present invention further introduces a hypertonic solution into the reverse osmosis membrane device, and permeates the water in the hypertonic solution from the primary side to the secondary side of the second semipermeable membrane provided in the reverse osmosis membrane device. It is preferable to have the process of obtaining treated water by making it, and the process of returning the said hypertonic solution from a reverse osmosis membrane apparatus to a forward osmosis membrane apparatus. In this case, the hypertonic solution circulates between the forward osmosis membrane device and the reverse osmosis membrane device, and the hypertonic solution supplied to the forward osmosis membrane device is concentrated by the reverse osmosis membrane device to maintain the solute concentration as high as desired. Thus, the forward osmosis treatment can be stably performed.

本発明はまた、本発明の水処理方法に好適に用いられる水処理システムも提供する。本発明の水処理システムは、第1半透膜を備え、第1半透膜を挟んで被処理水が存在する一次側と被処理水よりも高浸透圧の高張溶液が存在する二次側とを有し、被処理水中の水を第1半透膜の一次側から二次側に浸透させることにより、被処理水が濃縮されて濃縮水が得られる正浸透膜装置と;散気装置を備え、第1半透膜の一次側から排出された濃縮水を曝気処理する反応槽とを有するものである。本発明の水処理システムは、さらに、反応槽の流出部と正浸透膜装置の第1半透膜の一次側流入部とに連通し、反応槽の曝気処理水を正浸透膜装置の第1半透膜の一次側に移送する返送流路を設けてもよい。また、第2半透膜を備え、第2半透膜を挟んで高張溶液が存在する一次側と高張溶液よりも低浸透圧の処理水が存在する二次側とを有し、高張溶液中の水を第2半透膜の一次側から二次側に浸透させることにより処理水が得られる逆浸透膜装置がさらに設けられ;第1半透膜の二次側流出部と第2半透膜の一次側流入部とに連通し、高張溶液を第1半透膜の二次側から第2半透膜の一次側に移送する第1流路と;第2半透膜の一次側流出部と第1半透膜の二次側流入部とに連通し、高張溶液を第2半透膜の一次側から第1半透膜の二次側に移送する第2流路とが設けられることも好ましい。   The present invention also provides a water treatment system suitably used in the water treatment method of the present invention. The water treatment system of the present invention includes a first semipermeable membrane, a primary side on which the treated water exists with the first semipermeable membrane interposed therebetween, and a secondary side on which a hypertonic solution having a higher osmotic pressure than the treated water exists. A forward osmosis membrane device in which the water to be treated is concentrated to obtain concentrated water by permeating the water in the treated water from the primary side to the secondary side of the first semipermeable membrane; And a reaction tank for aeration treatment of the concentrated water discharged from the primary side of the first semipermeable membrane. The water treatment system of the present invention further communicates with the outflow part of the reaction vessel and the primary inflow part of the first semipermeable membrane of the forward osmosis membrane device, and aeration treated water in the reaction vessel is supplied to the first osmosis membrane device. A return channel for transferring to the primary side of the semipermeable membrane may be provided. And a second semipermeable membrane, having a primary side on which the hypertonic solution exists and a secondary side on which treated water having a lower osmotic pressure than the hypertonic solution exists, with the second semipermeable membrane interposed therebetween, A reverse osmosis membrane device is further provided to obtain treated water by permeating the water from the primary side to the secondary side of the second semipermeable membrane; the secondary side outflow portion of the first semipermeable membrane and the second semipermeable membrane A first flow path communicating with the primary side inlet of the membrane and transferring the hypertonic solution from the secondary side of the first semipermeable membrane to the primary side of the second semipermeable membrane; the primary side outflow of the second semipermeable membrane; And a second flow path for communicating the hypertonic solution from the primary side of the second semipermeable membrane to the secondary side of the first semipermeable membrane. It is also preferable.

正浸透膜装置は被処理水中に設けられてもよい。正浸透膜装置を被処理水中に設けることにより、正浸透膜装置が設置される水深に対応して第1半透膜の一次側の被処理水に水圧がかかり、第1半透膜の一次側から二次側への水の浸透が促進されて、被処理水の濃縮を好適に行いやすくなる。   The forward osmosis membrane device may be provided in the water to be treated. By providing the forward osmosis membrane device in the water to be treated, water pressure is applied to the treated water on the primary side of the first semipermeable membrane corresponding to the depth of water in which the forward osmosis membrane device is installed, and the primary of the first semipermeable membrane. The penetration of water from the side to the secondary side is promoted, and it becomes easier to concentrate the water to be treated.

本発明の水処理方法および水処理システムによれば、被処理水から水を除去して濃縮するのに正浸透処理を採用することで、比較的簡便に被処理水を濃縮することができ、さらに、得られた濃縮水は塩濃度が高められているため、曝気処理で供給される気泡を小さくすることができ、濃縮水への酸素溶解効率を高めて曝気処理の効率化を図ることができる。   According to the water treatment method and the water treatment system of the present invention, by adopting forward osmosis treatment to remove and concentrate water from the water to be treated, the water to be treated can be concentrated relatively easily, Furthermore, since the concentrated water obtained has a high salt concentration, bubbles supplied by the aeration treatment can be reduced, and the efficiency of the aeration treatment can be improved by increasing the efficiency of dissolving oxygen in the concentrated water. it can.

本発明の水処理システムの一例を表す。An example of the water treatment system of this invention is represented. 本発明の水処理システムの他の一例を表す。The other example of the water treatment system of this invention is represented. 本発明の水処理システムの他の一例を表す。The other example of the water treatment system of this invention is represented. 本発明の水処理システムの他の一例を表す。The other example of the water treatment system of this invention is represented.

本発明は、正浸透膜装置を用いた水処理方法と水処理システムに関し、正浸透膜装置を用いて被処理水の溶質濃度を高めて曝気処理することにより、被処理水を効率的に処理することを可能にするものである。   The present invention relates to a water treatment method and a water treatment system using a forward osmosis membrane device, and efficiently treats the water to be treated by aeration treatment by increasing the solute concentration of the water to be treated using the forward osmosis membrane device. It is possible to do.

本発明の水処理方法は、被処理水を正浸透膜装置に導入して、被処理水中の水を正浸透膜装置に備えられた半透膜に浸透させることにより、被処理水を濃縮して濃縮水を得る正浸透処理工程と、濃縮水を反応槽に導入して曝気処理する曝気工程とを有する。被処理水を濃縮するのに逆浸透処理ではなく正浸透処理を採用することにより、半透膜を挟んだ浸透圧差に対抗して被処理水に過大な圧力を負荷しなくてすみ、また正浸透処理では被処理水に含まれる固形分の濃度や大きさに対する許容範囲が広くなるため、逆浸透処理ほど高度な前処理をする必要がなくなる。被処理水は、正浸透処理工程で濃縮される結果、塩濃度が高められて、曝気処理の際に濃縮水に供給された気泡を小さくすることができる。そのため、濃縮水への酸素溶解効率が高まって、曝気処理の効率化を図ることができる。また、水処理システムの設計条件にもよるが、得られる濃縮水の水量を被処理水量よりも減少させることが可能となり、反応槽をコンパクト化することができる。   The water treatment method of the present invention concentrates the water to be treated by introducing the water to be treated into the forward osmosis membrane device and permeating the water in the water to be treated into the semipermeable membrane provided in the forward osmosis membrane device. A forward osmosis treatment step for obtaining concentrated water, and an aeration step for introducing the concentrated water into the reaction tank and performing an aeration treatment. By adopting forward osmosis treatment instead of reverse osmosis treatment to concentrate the treated water, it is possible to avoid overloading the treated water against the osmotic pressure difference across the semipermeable membrane. In the osmosis treatment, the permissible range for the concentration and size of the solid content contained in the water to be treated is widened, so that it is not necessary to perform a pretreatment as advanced as the reverse osmosis treatment. As a result of concentration of the water to be treated in the forward osmosis treatment step, the salt concentration is increased, and the bubbles supplied to the concentrated water during the aeration treatment can be reduced. Therefore, the efficiency of dissolving oxygen in concentrated water is increased, and the efficiency of the aeration process can be improved. Further, although depending on the design conditions of the water treatment system, the amount of concentrated water obtained can be reduced from the amount of water to be treated, and the reaction vessel can be made compact.

本発明において処理対象となる被処理水は特に限定されない。被処理水には、曝気処理により処理可能な有機物や無機物が含まれ、例えば、曝気処理により被処理水のCOD(化学的酸素要求量)やBOD(生物学的酸素要求量)が低減されるものが好ましい。被処理水には、例えば、曝気処理により酸化されうる有機化合物が含まれ、このような被処理水を用いれば、本発明の水処理方法または水処理システムにより被処理水中のCODを低減することができる。被処理水に生物分解性の有機化合物が含まれる場合は、微生物存在下で曝気処理を行うことで、被処理水のBOD等を低減することができる。被処理水には2価鉄塩等の無機化合物が含まれていてもよく、曝気処理により2価鉄イオンを酸化して不溶化することも可能である。本発明で用いられる被処理水としては、例えば、下水、し尿、畜産糞尿、厨房排水、工場排水、埋立浸出水等が挙げられる。   In the present invention, the water to be treated is not particularly limited. The treated water includes organic substances and inorganic substances that can be treated by aeration treatment. For example, the aeration treatment reduces COD (chemical oxygen demand) and BOD (biological oxygen demand) of the treated water. Those are preferred. The water to be treated contains, for example, an organic compound that can be oxidized by aeration treatment. If such water to be treated is used, COD in the water to be treated can be reduced by the water treatment method or the water treatment system of the present invention. Can do. When the water to be treated contains a biodegradable organic compound, the BOD or the like of the water to be treated can be reduced by performing aeration treatment in the presence of microorganisms. The water to be treated may contain an inorganic compound such as a divalent iron salt, and it is possible to oxidize and insolubilize the divalent iron ion by aeration treatment. Examples of water to be treated used in the present invention include sewage, human waste, livestock manure, kitchen wastewater, factory wastewater, landfill leachate, and the like.

正浸透処理工程では、被処理水を正浸透膜装置に導入し、正浸透膜装置により被処理水を濃縮して、溶質濃度が高められた濃縮水を得る。正浸透膜装置には、被処理水中の水を浸透させるための半透膜が備えられており、本発明では、正浸透膜装置に備えられた半透膜を「第1半透膜」と称する。   In the forward osmosis treatment step, the treated water is introduced into the forward osmosis membrane device, and the treated water is concentrated by the forward osmosis membrane device to obtain concentrated water having an increased solute concentration. The forward osmosis membrane device is provided with a semipermeable membrane for infiltrating water in the water to be treated. In the present invention, the semipermeable membrane provided in the forward osmosis membrane device is referred to as a “first semipermeable membrane”. Called.

正浸透膜装置に備えられる第1半透膜は、少なくとも水分子が透過し、一定の大きさ以上の分子やイオンが透過しない膜であれば特に限定されず、公知の半透膜を用いることができる。第1半透膜としては、逆浸透処理に一般に用いられる半透膜を使用してもよく、膜を構成する材料や膜の形式等は特に限定されない。膜の構成材料としては、例えば、酢酸セルロース、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン等が挙げられ、膜の形式としては、中空糸膜、スパイラル膜、チューブラ膜等が挙げられる。   The first semipermeable membrane provided in the forward osmosis membrane device is not particularly limited as long as it is a membrane that transmits at least water molecules and does not transmit molecules or ions of a certain size or larger, and uses a known semipermeable membrane. Can do. As the first semipermeable membrane, a semipermeable membrane generally used for reverse osmosis treatment may be used, and the material constituting the membrane, the type of membrane, and the like are not particularly limited. Examples of the constituent material of the membrane include cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone, and the like, and examples of the membrane include a hollow fiber membrane, a spiral membrane, and a tubular membrane.

正浸透膜装置は第1半透膜を挟んで一次側と二次側を有する。本発明において、半透膜を挟んだ一次側と二次側とは、半透膜を浸透する水の透過方向に基づき定められ、水は全体として半透膜の一次側から二次側に浸透する。なお、水が全体として半透膜の一次側から二次側に浸透するとは、水分子の一部が半透膜の二次側から一次側に浸透したとしても、全体としてみれば、水分子は半透膜の一次側から二次側に浸透する方が優勢であることを意味する。正浸透膜装置は、第1半透膜を挟んで第1半透膜の一次側と二次側とに区分され、第1半透膜の一次側には被処理水が存在することとなる。   The forward osmosis membrane device has a primary side and a secondary side across a first semipermeable membrane. In the present invention, the primary side and the secondary side sandwiching the semipermeable membrane are determined based on the permeation direction of the water that permeates the semipermeable membrane, and the water penetrates from the primary side to the secondary side as a whole. To do. It should be noted that water penetrates from the primary side to the secondary side of the semipermeable membrane as a whole even if a part of the water molecules penetrates from the secondary side to the primary side of the semipermeable membrane, Means that permeation from the primary side to the secondary side of the semipermeable membrane is dominant. The forward osmosis membrane device is divided into a primary side and a secondary side of the first semipermeable membrane across the first semipermeable membrane, and water to be treated exists on the primary side of the first semipermeable membrane. .

正浸透膜装置では、第1半透膜の二次側に、被処理水よりも高浸透圧の高張溶液が存在している。つまり正浸透膜装置では、第1半透膜を挟んだ一次側に存在する被処理水の浸透圧が相対的に低くなり、二次側に存在する高張溶液の浸透圧は相対的に高くなる。正浸透膜装置では、被処理水と高張溶液の浸透圧差を利用して、被処理水中の水が第1半透膜の一次側から二次側に浸透することとなる。   In the forward osmosis membrane device, a hypertonic solution having a higher osmotic pressure than the water to be treated exists on the secondary side of the first semipermeable membrane. That is, in the forward osmosis membrane device, the osmotic pressure of the water to be treated existing on the primary side across the first semipermeable membrane is relatively low, and the osmotic pressure of the hypertonic solution existing on the secondary side is relatively high. . In the forward osmosis membrane device, the water in the water to be treated permeates from the primary side to the secondary side of the first semipermeable membrane using the osmotic pressure difference between the water to be treated and the hypertonic solution.

高張溶液は、溶質が溶解した水溶液であり、被処理水よりも高い浸透圧を示すものであれば、特に限定されない。等温条件では、高張溶液が被処理水よりも高浸透圧であることは、高張溶液が被処理水よりも高い溶質濃度(モル濃度)を有することを意味する。高張溶液は人工的に調製してもよく、外部に存在する溶質濃度の高い溶液を高張溶液として利用するものであってもよい。前者の場合、溶質としては水に可溶な物質を用いればよく、例えば、塩類、糖類、水溶性高分子等を溶質として用いることができる。また、半透膜や機器に不具合を与えなければ、溶質として酸やアルカリを用いてもよい。後者の場合、海水や塩湖水等のかん水;尿等を高張溶液として用いることができる。また、し尿処理水や埋立浸出水処理水、一部の工場廃水処理水等は塩類を比較的高濃度に含んでいる場合があり、このような処理水を高張溶液として用いてもよい。   The hypertonic solution is not particularly limited as long as it is an aqueous solution in which a solute is dissolved and exhibits an osmotic pressure higher than that of water to be treated. Under isothermal conditions, the hypertonic solution having a higher osmotic pressure than the treated water means that the hypertonic solution has a higher solute concentration (molar concentration) than the treated water. The hypertonic solution may be artificially prepared, or a solution having a high solute concentration existing outside may be used as the hypertonic solution. In the former case, a substance soluble in water may be used as the solute. For example, salts, saccharides, water-soluble polymers and the like can be used as the solute. In addition, an acid or an alkali may be used as a solute as long as it does not cause a problem with the semipermeable membrane or the device. In the latter case, brine such as seawater and salt lake water; urine and the like can be used as the hypertonic solution. Further, human waste treated water, landfill leachate treated water, some factory waste water treated water, and the like may contain salts at a relatively high concentration, and such treated water may be used as a hypertonic solution.

高張溶液は、逆浸透処理により調製してもよい。例えば、外部に存在する溶質濃度の高い溶液の溶質濃度を逆浸透処理によりさらに高めて、高張溶液として用いてもよい。また、正浸透処理工程では、第1半透膜の一次側から二次側に水が浸透することにより高張溶液が希釈されるが、水で希釈された高張溶液を逆浸透処理により濃縮して溶質濃度を高めて、再び正浸透膜装置の第1半透膜の二次側に供給してもよい。   The hypertonic solution may be prepared by reverse osmosis treatment. For example, the solute concentration of a solution having a high solute concentration present outside may be further increased by reverse osmosis treatment and used as a hypertonic solution. In the forward osmosis treatment process, the hypertonic solution is diluted by the permeation of water from the primary side to the secondary side of the first semipermeable membrane, but the hypertonic solution diluted with water is concentrated by the reverse osmosis treatment. The solute concentration may be increased and supplied again to the secondary side of the first semipermeable membrane of the forward osmosis membrane device.

被処理水と高張溶液の浸透圧は、van’t Hoffの式に基づき、溶質濃度(モル濃度)と温度をパラメータとして求めることができる。あるいは、被処理水と高張溶液とを半透膜を挟んで同一液面高さとなるように設置した後、それぞれの液面高さの変化を観察することで、被処理水と高張溶液の浸透圧の大小を判別してもよい。この場合、高張溶液の液面高さが高くなれば、高張溶液が被処理水よりも浸透圧が高いと判断される。   The osmotic pressures of the water to be treated and the hypertonic solution can be obtained based on the van't Hoff equation using the solute concentration (molar concentration) and temperature as parameters. Alternatively, after setting the water to be treated and the hypertonic solution to have the same liquid level across the semipermeable membrane, the permeation of the water to be treated and the hypertonic solution is observed by observing changes in the respective liquid levels. The magnitude of the pressure may be determined. In this case, if the liquid surface height of the hypertonic solution increases, it is determined that the hypertonic solution has a higher osmotic pressure than the water to be treated.

正浸透処理工程では、上記のように被処理水中の水を第1半透膜の一次側から二次側に浸透させることにより、被処理水から濃縮水が得られる。このとき、被処理水から水を除去して濃縮するのに逆浸透処理ではなく正浸透処理を採用することで、逆浸透処理のように半透膜を挟んだ浸透圧差に対抗して被処理水に過大な圧力を負荷しなくてすむ。また、逆浸透膜装置による処理では一般に、装置の詰まりを防止するために、精密ろ過膜(MF膜)や限外ろ過膜(UF膜)や活性炭等を用いた高度な前処理が必要となるところ、正浸透膜装置による処理では、被処理水に含まれる固形分の濃度や大きさに対する許容範囲が広くなるため、逆浸透処理ほど高度な前処理をしなくても装置の詰まりが起こりにくい。つまり、正浸透膜装置では、多少固形分濃度が高い被処理水や、様々な粒径の固形分が含まれる被処理水を用いても、正浸透処理が可能となる。そのため、被処理水の濃縮を効率的に行えるようになり、また、装置の詰まり防止のための付帯設備(例えば、前処理設備)を過剰に設けなくてすむ。   In the forward osmosis treatment step, concentrated water is obtained from the treated water by allowing water in the treated water to permeate from the primary side to the secondary side of the first semipermeable membrane as described above. At this time, by adopting forward osmosis treatment instead of reverse osmosis treatment to remove and concentrate water from the treated water, it is treated against the osmotic pressure difference across the semipermeable membrane like reverse osmosis treatment. There is no need to put excessive pressure on the water. Further, in the treatment with a reverse osmosis membrane device, in general, in order to prevent clogging of the device, advanced pretreatment using a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), activated carbon or the like is required. However, in the treatment with the forward osmosis membrane device, the tolerance for the concentration and size of the solid content contained in the water to be treated is widened, so the device is less likely to be clogged even if the pretreatment is not as advanced as reverse osmosis treatment. . That is, in the forward osmosis membrane device, forward osmosis treatment can be performed even when water to be treated having a slightly higher solid content concentration or water to be treated containing solid contents of various particle sizes is used. Therefore, it becomes possible to efficiently concentrate the water to be treated, and it is not necessary to provide ancillary equipment (for example, pretreatment equipment) for preventing clogging of the apparatus.

正浸透処理工程で得られた濃縮水、すなわち正浸透膜装置の第1半透膜の一次側から排出された濃縮水は、反応槽に導入して曝気処理する。曝気工程では、酸素含有ガス(例えば、空気や純酸素)を濃縮水に導入し、曝気処理を行う。曝気工程で濃縮水を曝気処理することにより、濃縮水のCODやBOD等を低減することができる。   The concentrated water obtained in the forward osmosis treatment step, that is, the concentrated water discharged from the primary side of the first semipermeable membrane of the forward osmosis membrane device is introduced into the reaction tank and aerated. In the aeration process, an oxygen-containing gas (for example, air or pure oxygen) is introduced into the concentrated water to perform an aeration process. By subjecting the concentrated water to an aeration process in the aeration process, COD, BOD, and the like of the concentrated water can be reduced.

曝気処理では、曝気処理される水の塩濃度(無機イオン濃度)が高いほど、曝気により供給された気泡を小さくできることが経験上知られており、本発明では、被処理水を濃縮して塩濃度を高めることによって、曝気処理の際に濃縮水に供給された気泡を小さくすることができる。その結果、濃縮水への酸素溶解効率が高まって、曝気処理の効率化を図ることができる。また、曝気処理により得られる曝気処理水の返送条件にもよるが、正浸透処理工程で被処理水を濃縮することにより濃縮水の水量を被処理水の水量よりも低減させることが可能となり、曝気処理する反応槽のコンパクト化を図ることができる。   In aeration treatment, it is known from experience that the higher the salt concentration (inorganic ion concentration) of water to be aerated, the smaller the bubbles supplied by aeration. In the present invention, the water to be treated is concentrated to give a salt. By increasing the concentration, bubbles supplied to the concentrated water during the aeration process can be reduced. As a result, the efficiency of dissolving oxygen in concentrated water is increased, and the efficiency of the aeration process can be improved. In addition, depending on the return conditions of the aerated treated water obtained by the aerated treatment, it becomes possible to reduce the amount of concentrated water from the amount of treated water by concentrating the treated water in the forward osmosis treatment process, The reaction tank for aeration can be made compact.

反応槽には、濃縮水を曝気処理するための散気装置が備えられている。散気装置としては、水処理に一般に用いられる公知の散気装置を用いればよい。散気装置は、酸素含有ガスを反応槽の濃縮水に供給するものであってもよく、酸素含有ガスを含む濃縮水を反応槽に供給するものであってもよい。   The reaction tank is equipped with an air diffuser for aeration treatment of concentrated water. As a diffuser, a known diffuser generally used for water treatment may be used. The air diffuser may supply oxygen-containing gas to the concentrated water in the reaction tank, or supply concentrated water containing the oxygen-containing gas to the reaction tank.

酸素含有ガスを反応槽に供給する場合、散気装置としては、例えば、メンブレン型散気装置、ディフューザー型散気装置、多孔型散気装置等を用いればよい。また、酸素含有ガスを撹拌羽根で細分化しながら濃縮水に供給する水中機械式撹拌装置を用いてもよい。   When supplying the oxygen-containing gas to the reaction tank, for example, a membrane type diffuser, a diffuser type diffuser, a porous diffuser, or the like may be used as the diffuser. Moreover, you may use the underwater mechanical stirring apparatus which supplies oxygen-containing gas to concentrated water, subdividing with a stirring blade.

酸素含有ガスを含む濃縮水を反応槽に供給する場合は、例えば、ガス供給手段を備えた管路を反応槽の濃縮水中に開口して設け、当該管路を通して反応槽に濃縮水を供給することにより、管路を流れる濃縮水にガス供給手段から酸素含有ガスが供給されて、これを反応槽に供給すればよい。ガス供給手段としては、管路にガス供給口を設けたり、管路にガス供給管を挿入すればよく、ガス供給口やガス供給管の管路に接続しない側の端は、大気開放するか、送風機(ブロア)や圧縮機(コンプレッサー)等を接続して強制的に酸素含有ガスを供給すればよい。ガス供給口やガス供給管の管路に接続しない側の端が大気開放されている場合は、管路に濃縮水が流れることで、エジェクター効果により大気中の空気が自然吸気され、管路の濃縮水中に空気が混入される。濃縮水が流れる管路は、濃縮水が反応槽との間を循環するように循環管路として設けられることが好ましい。   When supplying concentrated water containing an oxygen-containing gas to the reaction tank, for example, a pipe line provided with a gas supply means is provided in the concentrated water of the reaction tank, and the concentrated water is supplied to the reaction tank through the pipe line. Thus, the oxygen-containing gas may be supplied from the gas supply means to the concentrated water flowing through the pipe and supplied to the reaction vessel. As a gas supply means, a gas supply port may be provided in the pipeline, or a gas supply tube may be inserted into the pipeline, and the end of the side not connected to the gas supply port or the pipeline of the gas supply tube should be open to the atmosphere. The oxygen-containing gas may be forcibly supplied by connecting a blower, a compressor, or the like. If the gas supply port or the end of the gas supply pipe that is not connected to the pipe line is open to the atmosphere, the concentrated water flows through the pipe line, and the air in the atmosphere is naturally aspirated by the ejector effect. Air is mixed in the concentrated water. The conduit through which the concentrated water flows is preferably provided as a circulation conduit so that the concentrated water circulates between the reaction tank.

曝気工程では、曝気処理を微生物存在下で行うことが好ましい。曝気処理を微生物存在下で行うことにより、濃縮水を好気性生物処理することができ、濃縮水中の有機性の溶質(溶解性成分)を除去することができる。例えば、濃縮水中の溶解性炭素成分は二酸化炭素ガスとして濃縮水から除去され、溶解性窒素成分は窒素ガスとして濃縮水から除去され、溶解性リン成分は汚泥に固定化されて濃縮水から除去される。微生物存在下で曝気処理する方法としては、活性汚泥法(膜分離活性汚泥法を含む)、担体法、固定床生物膜法等が挙げられる。   In the aeration step, it is preferable to perform the aeration treatment in the presence of microorganisms. By performing the aeration treatment in the presence of microorganisms, the concentrated water can be subjected to an aerobic biological treatment, and organic solutes (soluble components) in the concentrated water can be removed. For example, soluble carbon components in concentrated water are removed from the concentrated water as carbon dioxide gas, soluble nitrogen components are removed from the concentrated water as nitrogen gas, and soluble phosphorus components are immobilized on sludge and removed from the concentrated water. The Examples of the aeration process in the presence of microorganisms include an activated sludge method (including a membrane separation activated sludge method), a carrier method, a fixed bed biofilm method, and the like.

反応槽は、少なくとも曝気処理を行う槽を有していればよく、曝気処理を行わない槽を有していてもよい。例えば曝気処理を微生物存在下で行う場合は、反応槽として嫌気槽および/または無酸素槽をさらに設けることにより、濃縮水に含まれる窒素および/またはリンを除去することができる。この場合、正浸透膜装置から排出された濃縮水は、一般的には反応槽として嫌気槽や無酸素槽に導入されるが、本発明では、濃縮水は好気槽に導入されるのに先立って嫌気槽や無酸素槽に導入されてもよい。   The reaction tank should just have the tank which performs an aeration process at least, and may have the tank which does not perform an aeration process. For example, when the aeration treatment is performed in the presence of microorganisms, nitrogen and / or phosphorus contained in the concentrated water can be removed by further providing an anaerobic tank and / or an oxygen-free tank as a reaction tank. In this case, the concentrated water discharged from the forward osmosis membrane device is generally introduced into an anaerobic tank or an oxygen-free tank as a reaction tank, but in the present invention, the concentrated water is introduced into an aerobic tank. It may be introduced into an anaerobic tank or an oxygen-free tank in advance.

正浸透膜装置から排出された濃縮水は、反応槽に導入される前に沈殿槽や流量調整槽等に導入されてもよい。すなわち、正浸透膜装置から排出された濃縮水は、反応槽に導入されるのに先立って、他の槽や装置に導入されてもよい。   The concentrated water discharged from the forward osmosis membrane device may be introduced into a settling tank, a flow rate adjusting tank or the like before being introduced into the reaction tank. That is, the concentrated water discharged from the forward osmosis membrane device may be introduced into another tank or device prior to being introduced into the reaction tank.

曝気工程で濃縮水を曝気処理することにより得られる曝気処理水は、水質に応じて、下水や河川等に放流されるか、さらに処理が行われる。さらなる処理は従来公知の方法から適宜選択して行えばよく、例えば、曝気処理を微生物存在下で行う場合は、曝気処理水を固液分離処理(例えば、沈殿処理や膜分離処理)することが好ましい。固液分離処理を行うことにより、固形分濃度が低減された曝気処理水を得ることができる。また、曝気処理水の溶解性金属濃度が高い場合は金属除去処理(例えば、酸またはアルカリの添加による凝集沈殿処理やキレート処理)を行ってもよい。処理に伴い汚泥等の固形分が発生した場合は、濃縮や脱水等の減容化処理を行ってもよい。   Aeration-treated water obtained by aeration treatment of concentrated water in the aeration process is discharged into sewage, rivers, etc., or further processed according to the water quality. The further treatment may be appropriately selected from conventionally known methods. For example, when the aeration treatment is performed in the presence of microorganisms, the aeration treatment water may be subjected to solid-liquid separation treatment (for example, precipitation treatment or membrane separation treatment). preferable. By performing the solid-liquid separation treatment, aerated treated water having a reduced solid content concentration can be obtained. Further, when the dissolved metal concentration of the aerated treated water is high, metal removal treatment (for example, coagulation precipitation treatment or chelation treatment by addition of acid or alkali) may be performed. When solid content such as sludge is generated during the treatment, volume reduction treatment such as concentration and dehydration may be performed.

曝気処理を微生物存在下で行う場合は、濃縮水中の炭素成分や窒素成分、リン成分等が除去され溶質濃度が低減する。また、2価鉄イオンを含有する濃縮水を曝気処理する場合なども、2価鉄イオンが酸化されて不溶化し、濃縮水の溶質濃度が低減する。このように曝気処理により濃縮水中の溶質濃度が低減する場合、曝気処理により得られる曝気処理水を正浸透膜装置に返送することも好ましく、これにより第1半透膜の一次側の被処理水の溶質濃度を下げて、第1半透膜の水の浸透量を高めることが可能となる。なお、正浸透膜装置に返送する曝気処理水は、固液分離処理が施されて固形分濃度が低減されたものであってもよく、金属除去処理により溶質濃度がさらに低減されたものであってもよく、曝気処理水にはこれらの処理が施されたものも含まれる。   When the aeration treatment is performed in the presence of microorganisms, the carbon component, nitrogen component, phosphorus component and the like in the concentrated water are removed, and the solute concentration is reduced. Moreover, also when carrying out the aeration process of the concentrated water containing a bivalent iron ion, bivalent iron ion is oxidized and insolubilized, and the solute density | concentration of concentrated water reduces. Thus, when the solute concentration in the concentrated water is reduced by the aeration treatment, it is also preferable to return the aeration treated water obtained by the aeration treatment to the forward osmosis membrane device, whereby the treated water on the primary side of the first semipermeable membrane. It is possible to increase the amount of water permeated through the first semipermeable membrane by lowering the solute concentration. The aerated treated water returned to the forward osmosis membrane device may have been subjected to solid-liquid separation treatment to reduce the solid content concentration, or the solute concentration further reduced by metal removal treatment. The aerated treated water may include those subjected to these treatments.

曝気処理水を正浸透膜装置に返送する場合、曝気処理水は一部または全部が正浸透膜装置に返送されればよいが、曝気処理水は一部のみを正浸透膜装置に返送することが好ましい。曝気処理水の一部のみを正浸透膜装置に返送することにより、例えば微生物により処理できない無機塩類等が濃縮水や曝気処理水中に過度に濃縮せず、第1半透膜の一次側の被処理水(この場合、被処理水には返送された曝気処理水も含まれることとなる)の溶質濃度が高くなりすぎて第1半透膜の水の浸透量が大きく低下するのが防止される。反応槽をコンパクトにする点からは、正浸透膜装置に返送する曝気処理水の量は、第1半透膜を透過する水の透過量よりも少ないことが好ましい。   When returning aerated treated water to the forward osmosis membrane device, it is sufficient that a part or all of the aerated treated water is returned to the forward osmosis membrane device, but only a part of the aerated treated water is returned to the forward osmosis membrane device. Is preferred. By returning only a part of the aerated treated water to the forward osmosis membrane device, for example, inorganic salts that cannot be treated by microorganisms are not excessively concentrated in the concentrated water or aerated treated water, and the primary semi-permeable membrane is covered. It is prevented that the solute concentration of the treated water (in this case, the treated aerated treated water will include the returned aerated treated water) becomes too high and the amount of water permeated through the first semipermeable membrane is greatly reduced. The From the viewpoint of making the reaction tank compact, it is preferable that the amount of aerated treated water returned to the forward osmosis membrane device is smaller than the amount of water permeated through the first semipermeable membrane.

次に、本発明の水処理方法と水処理システムの構成例について、図面を参照して説明する。なお、本発明は、図面に示した実施態様に限定されるものではない。   Next, configuration examples of the water treatment method and the water treatment system of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments shown in the drawings.

図1には、本発明の水処理システムの第1実施態様を示した。図1に示した水処理システムは、第1半透膜を備えた正浸透膜装置1と、散気装置12を備えた反応槽11を有する。被処理水21は、正浸透膜装置1に導入されて濃縮され、濃縮水25が得られる。濃縮水25は、反応槽11に導入されて曝気処理され、曝気処理水26が得られる。   FIG. 1 shows a first embodiment of the water treatment system of the present invention. The water treatment system shown in FIG. 1 has a forward osmosis membrane device 1 provided with a first semipermeable membrane and a reaction tank 11 provided with an aeration device 12. The water to be treated 21 is introduced into the forward osmosis membrane device 1 and concentrated to obtain concentrated water 25. The concentrated water 25 is introduced into the reaction tank 11 and subjected to an aeration process, whereby an aerated process water 26 is obtained.

正浸透膜装置1は、第1半透膜を挟んで一次側と二次側を有する。被処理水21は、第1半透膜の一次側に導入され、第1半透膜の二次側には被処理水21よりも高浸透圧の高張溶液22が導入される。その結果、正浸透膜装置1では、第1半透膜の一次側に被処理水21が存在し、二次側に被処理水21よりも高浸透圧の高張溶液22が存在することとなる。正浸透膜装置1では、この状態で被処理水21中の水を第1半透膜の一次側から二次側に浸透させることにより、被処理水21が濃縮されて濃縮水25が得られる。   The forward osmosis membrane device 1 has a primary side and a secondary side across a first semipermeable membrane. The treated water 21 is introduced to the primary side of the first semipermeable membrane, and the hypertonic solution 22 having a higher osmotic pressure than the treated water 21 is introduced to the secondary side of the first semipermeable membrane. As a result, in the forward osmosis membrane device 1, the treated water 21 exists on the primary side of the first semipermeable membrane, and the hypertonic solution 22 having a higher osmotic pressure than the treated water 21 exists on the secondary side. . In the forward osmosis membrane device 1, in this state, the water to be treated 21 is permeated from the primary side to the secondary side of the first semipermeable membrane, whereby the water to be treated 21 is concentrated and the concentrated water 25 is obtained. .

図1に示した水処理システムでは、第1半透膜の二次側に導入する高張溶液22に海水を用いている。海水を海からポンプで汲み上げて正浸透膜装置1に供給し、正浸透膜装置1から排出された高張溶液23を海に戻している。このように、高張溶液22として海水を用いることにより、低コストに正浸透処理を行うことができる。   In the water treatment system shown in FIG. 1, seawater is used for the hypertonic solution 22 introduced into the secondary side of the first semipermeable membrane. Seawater is pumped up from the sea and supplied to the forward osmosis membrane device 1, and the hypertonic solution 23 discharged from the forward osmosis membrane device 1 is returned to the sea. Thus, by using seawater as the hypertonic solution 22, forward osmosis treatment can be performed at low cost.

正浸透膜装置1で濃縮された濃縮水25は、散気装置12を備えた反応槽11に導入され、曝気処理される。このとき、濃縮水25は被処理水21よりも水量が減るため、反応槽11の容積をコンパクトにすることができる。また、濃縮水25は被処理水21よりも塩濃度が高くなるため、反応槽11で散気装置12から供給された気泡を小さくして、濃縮水25への酸素溶解効率を高めることができ、曝気処理の効率化を図ることができる。   The concentrated water 25 concentrated by the forward osmosis membrane device 1 is introduced into the reaction tank 11 equipped with the air diffuser 12 and aerated. At this time, the concentrated water 25 has a smaller amount of water than the water 21 to be treated, so that the volume of the reaction tank 11 can be made compact. In addition, since the concentrated water 25 has a higher salt concentration than the water 21 to be treated, the bubbles supplied from the air diffuser 12 in the reaction tank 11 can be reduced to increase the efficiency of dissolving oxygen in the concentrated water 25. The efficiency of the aeration process can be improved.

図2には、本発明の水処理システムの第2実施態様を示した。第2実施態様の水処理システムは、高張溶液として海水を用いるのではなく、高張溶液を逆浸透膜装置で処理しながら循環利用している点と、固液分離された曝気処理水を正浸透膜装置に返送している点で、第1実施態様の水処理システムとは異なる。なお下記の説明で、第1実施態様に関する説明と重複する部分の説明を省く。   FIG. 2 shows a second embodiment of the water treatment system of the present invention. The water treatment system of the second embodiment does not use seawater as a hypertonic solution, but circulates and uses the hypertonic solution while treating it with a reverse osmosis membrane device, and forwardly permeates aeration-treated water that has been solid-liquid separated. It differs from the water treatment system of the first embodiment in that it is returned to the membrane device. In the following description, the description of the same part as the description of the first embodiment is omitted.

図2に示した水処理システムは、第2半透膜を備えた逆浸透膜装置5をさらに有している。逆浸透膜装置5としては、逆浸透処理に用いられる公知の装置を用いればよく、逆浸透膜装置5の第2半透膜を構成する材料や膜の形式等は特に限定されない。   The water treatment system shown in FIG. 2 further includes a reverse osmosis membrane device 5 having a second semipermeable membrane. As the reverse osmosis membrane device 5, a known device used for reverse osmosis treatment may be used, and the material and the form of the membrane constituting the second semipermeable membrane of the reverse osmosis membrane device 5 are not particularly limited.

逆浸透膜装置5は第2半透膜を挟んで一次側と二次側を有する。そして、正浸透膜装置1の第1半透膜の二次側流出部と逆浸透膜装置5の第2半透膜の一次側流入部とに連通して第1流路6が設けられ、逆浸透膜装置5の第2半透膜の一次側流出部と正浸透膜装置1の第1半透膜の二次側流入部とに連通して第2流路7が設けられている。なお、第1半透膜の二次側流入部と二次側流出部、第2半透膜の一次側流入部と一次側流出部は、それぞれ、高張溶液22,23が流入する部分または流出する部分として定められる。   The reverse osmosis membrane device 5 has a primary side and a secondary side across the second semipermeable membrane. And the 1st flow path 6 is provided in communication with the secondary side outflow part of the 1st semipermeable membrane of the forward osmosis membrane apparatus 1, and the primary inflow part of the 2nd semipermeable membrane of the reverse osmosis membrane apparatus 5, A second flow path 7 is provided in communication with the primary side outflow portion of the second semipermeable membrane of the reverse osmosis membrane device 5 and the secondary side inflow portion of the first semipermeable membrane of the forward osmosis membrane device 1. The secondary inflow portion and the secondary outflow portion of the first semipermeable membrane, and the primary inflow portion and the primary outflow portion of the second semipermeable membrane are respectively the portion into which the hypertonic solutions 22 and 23 flow in or the outflow portion. To be determined

正浸透膜装置1の第1半透膜の二次側から流出した高張溶液23は、第1流路6を通って、逆浸透膜装置5の第2半透膜の一次側に移送される。逆浸透膜装置5では、高張溶液23が第2半透膜の一次側に存在することとなり、一方、第2半透膜の二次側には、高張溶液23よりも低浸透圧の処理水24が存在している。逆浸透膜装置5では、この状態で第2半透膜の一次側に存在する高張溶液23を加圧することにより、高張溶液23中の水を第2半透膜の一次側から二次側に浸透させて処理水24を得る。その結果、高張溶液23は逆浸透膜装置5で水が除去されて、溶質濃度が高められる。溶質濃度が高められ、逆浸透膜装置5の第2半透膜の一次側から流出した高張溶液22は、第2流路7を通って、正浸透膜装置1の第1半透膜の二次側に移送される。つまり、正浸透膜装置1から流出した高張溶液23は、逆浸透膜装置5に導入されて溶質濃度が高められ、溶質濃度が高められた高張溶液22は逆浸透膜装置5から正浸透膜装置1に返送されることとなる。   The hypertonic solution 23 flowing out from the secondary side of the first semipermeable membrane of the forward osmosis membrane device 1 passes through the first flow path 6 and is transferred to the primary side of the second semipermeable membrane of the reverse osmosis membrane device 5. . In the reverse osmosis membrane device 5, the hypertonic solution 23 exists on the primary side of the second semipermeable membrane, while the treated water having a lower osmotic pressure than the hypertonic solution 23 is present on the secondary side of the second semipermeable membrane. 24 exists. In the reverse osmosis membrane device 5, in this state, the hypertonic solution 23 existing on the primary side of the second semipermeable membrane is pressurized, so that the water in the hypertonic solution 23 is changed from the primary side to the secondary side of the second semipermeable membrane. The treated water 24 is obtained by infiltration. As a result, water is removed from the hypertonic solution 23 by the reverse osmosis membrane device 5 and the solute concentration is increased. The hypertonic solution 22 whose solute concentration has been increased and has flowed out from the primary side of the second semipermeable membrane of the reverse osmosis membrane device 5 passes through the second flow path 7 and becomes the second semipermeable membrane of the forward osmosis membrane device 1. It is transferred to the next side. That is, the hypertonic solution 23 flowing out from the forward osmosis membrane device 1 is introduced into the reverse osmosis membrane device 5 to increase the solute concentration, and the hypertonic solution 22 having the increased solute concentration is transferred from the reverse osmosis membrane device 5 to the forward osmosis membrane device. 1 will be returned.

図2に示した水処理システムを用いる場合、本発明の水処理方法は、被処理水を正浸透膜装置に導入して、正浸透膜装置に備えられた第1半透膜の一次側に被処理水を存在させ、二次側に被処理水よりも高浸透圧の高張溶液を存在させた状態で、被処理水中の水を第1半透膜の一次側から二次側に浸透させることにより、被処理水を濃縮して濃縮水を得る工程と、高張溶液を逆浸透膜装置に導入して、逆浸透膜装置に備えられた第2半透膜の一次側から二次側に高張溶液中の水を浸透させることにより処理水を得る工程と、高張溶液を逆浸透膜装置から正浸透膜装置に返送する工程とを有することとなる。   When the water treatment system shown in FIG. 2 is used, the water treatment method of the present invention introduces water to be treated into the forward osmosis membrane device, and places it on the primary side of the first semipermeable membrane provided in the forward osmosis membrane device. Water to be treated is allowed to permeate from the primary side to the secondary side of the first semipermeable membrane in a state where the water to be treated is present and a hypertonic solution having a higher osmotic pressure than the water to be treated is present on the secondary side. The process of concentrating water to be treated to obtain concentrated water, and introducing a hypertonic solution into the reverse osmosis membrane device from the primary side to the secondary side of the second semipermeable membrane provided in the reverse osmosis membrane device There are a step of obtaining treated water by permeating water in the hypertonic solution and a step of returning the hypertonic solution from the reverse osmosis membrane device to the forward osmosis membrane device.

図2に示した水処理システムでは、このように高張溶液22,23を正浸透膜装置1と逆浸透膜装置5との間を循環させることにより、正浸透膜装置1に供給する高張溶液22の溶質濃度を所望程度に高く維持して、正浸透処理を安定して行うことができるようになる。つまり、正浸透膜装置1から流出した高張溶液23は、正浸透膜装置1に流入する高張溶液22よりも水で希釈されて溶質濃度が低下するが、高張溶液23をそのまま正浸透膜装置1に再び供給すると、正浸透膜装置1の第1半透膜の一次側と二次側との間に十分な浸透圧差が確保されず、第1半透膜を透過する水の浸透量が減ってしまうところ、正浸透膜装置1から流出した高張溶液23を逆浸透膜装置5で処理して正浸透膜装置1に返送することにより、溶質濃度が高められた高張溶液22を正浸透膜装置1に供給でき、正浸透処理を安定して行うことができるようになる。   In the water treatment system shown in FIG. 2, the hypertonic solution 22 and 23 supplied to the forward osmosis membrane device 1 by circulating the hypertonic solutions 22 and 23 between the forward osmosis membrane device 1 and the reverse osmosis membrane device 5 in this way. Thus, the forward osmosis treatment can be stably carried out while maintaining the solute concentration of the solution as high as desired. That is, the hypertonic solution 23 that flows out from the forward osmosis membrane device 1 is diluted with water and has a lower solute concentration than the hypertonic solution 22 that flows into the forward osmosis membrane device 1. Is supplied again, a sufficient osmotic pressure difference is not ensured between the primary side and the secondary side of the first semipermeable membrane of the forward osmosis membrane device 1, and the amount of water permeating through the first semipermeable membrane is reduced. Therefore, by treating the hypertonic solution 23 flowing out from the forward osmosis membrane device 1 with the reverse osmosis membrane device 5 and returning it to the forward osmosis membrane device 1, the hypertonic solution 22 having an increased solute concentration can be obtained. 1 so that the forward osmosis treatment can be performed stably.

また、高張溶液22,23は、基本的に正浸透膜装置1と逆浸透膜装置5の間の閉じた系を循環しているため、不純物等の混入が防止され、精密ろ過膜(MF膜)や限外ろ過膜(UF膜)や活性炭等による前処理を行うことなく逆浸透処理を比較的簡便に行うことが可能となる。   Further, since the hypertonic solutions 22 and 23 basically circulate through a closed system between the forward osmosis membrane device 1 and the reverse osmosis membrane device 5, contamination of impurities and the like is prevented, and a microfiltration membrane (MF membrane) ), Ultrafiltration membrane (UF membrane), pretreatment with activated carbon or the like, and reverse osmosis treatment can be performed relatively easily.

第2流路7には、正浸透膜装置1に導入する高張溶液22の溶質濃度調整手段が設けられていることが好ましい。図2では、第2流路7に調整タンク9が設けられ、調整タンク9に溶質または希釈水の供給装置10が設けられ、供給装置10から溶質または希釈水を供給することにより、高張溶液22の溶質濃度を調整できるように構成されている。正浸透膜装置1において被処理水21中の水の第1半透膜の浸透量を調整するためには、高張溶液22の溶質濃度を調整することが主な操作因子となる。従って、逆浸透膜装置5から流出する高張溶液22が所望程度の溶質濃度を有していない場合は、第2流路7に設けられた溶質濃度調整手段により、高張溶液22の溶質濃度を調整することが好ましい。   The second flow path 7 is preferably provided with a solute concentration adjusting means for the hypertonic solution 22 introduced into the forward osmosis membrane device 1. In FIG. 2, an adjustment tank 9 is provided in the second flow path 7, a solute or dilution water supply device 10 is provided in the adjustment tank 9, and the solute or dilution water is supplied from the supply device 10, thereby allowing the hypertonic solution 22. It is comprised so that the solute density | concentration of can be adjusted. In order to adjust the permeation amount of the first semipermeable membrane of water in the treated water 21 in the forward osmosis membrane device 1, adjusting the solute concentration of the hypertonic solution 22 is a main operating factor. Accordingly, when the hypertonic solution 22 flowing out from the reverse osmosis membrane device 5 does not have a desired solute concentration, the solute concentration of the hypertonic solution 22 is adjusted by the solute concentration adjusting means provided in the second flow path 7. It is preferable to do.

高張溶液22,23には、正浸透膜装置1の第1半透膜または逆浸透膜装置5の第2半透膜を洗浄するための薬剤や、ファウリングを防止するための薬剤を加えてもよい。このような薬剤としては、酸、アルカリ、殺菌剤、酸化剤等が挙げられる。   To the hypertonic solutions 22 and 23, an agent for cleaning the first semipermeable membrane of the forward osmosis membrane device 1 or the second semipermeable membrane of the reverse osmosis membrane device 5 and an agent for preventing fouling are added. Also good. Such agents include acids, alkalis, bactericides, oxidants and the like.

図2に示した水処理システムでは、曝気処理は微生物存在下で行っており、反応槽11で濃縮水25を曝気処理(好気性生物処理)することにより汚泥が発生する。従って、反応槽11から流出した汚泥(微生物)を含む曝気処理水26は、沈殿槽14で固液分離されて固形分濃度が低減された曝気処理水26’と汚泥27とに固液分離される。固液分離された曝気処理水26’は、水質に応じてそのまま放流されるか、さらに処理が施される。汚泥27は濃縮や脱水等の減容化処理を施してもよい。また、汚泥27の少なくとも一部を反応槽11に返送して、反応槽11の微生物濃度を調整してもよい。   In the water treatment system shown in FIG. 2, aeration treatment is performed in the presence of microorganisms, and sludge is generated by aeration treatment (aerobic biological treatment) of the concentrated water 25 in the reaction tank 11. Therefore, the aerated treated water 26 containing sludge (microorganisms) flowing out from the reaction tank 11 is solid-liquid separated into the aerated treated water 26 ′ and the sludge 27 which are solid-liquid separated in the sedimentation tank 14 to reduce the solid content concentration. The The aerated treated water 26 ′ that has been subjected to solid-liquid separation is discharged as it is depending on the water quality, or further processed. The sludge 27 may be subjected to volume reduction processing such as concentration and dehydration. Alternatively, at least a part of the sludge 27 may be returned to the reaction tank 11 to adjust the microorganism concentration in the reaction tank 11.

図2に示した水処理システムではまた、反応槽11から流出し、沈殿槽14で固液分離された曝気処理水26’を正浸透膜装置1に返送している。そのために、反応槽11の流出部と正浸透膜装置1の第1半透膜の一次側流入部とに連通する返送流路15が設けられている。返送流路15は、反応槽11から流出する曝気処理水26を直接または他の装置や流路を介して正浸透膜装置1の第1半透膜の一次側流入部に返送するように設けられていればよい。曝気処理水26’は、反応槽11で好気性生物処理されることにより溶質濃度が低減されるため、これを正浸透膜装置1の第1半透膜の一次側に導入することにより、第1半透膜の一次側の被処理水(被処理水には返送された曝気処理水26’も含まれる)の溶質濃度を下げて、第1半透膜の水の浸透量を高めることが可能となる。   In the water treatment system shown in FIG. 2, the aerated treated water 26 ′ flowing out from the reaction tank 11 and separated into solid and liquid in the precipitation tank 14 is returned to the forward osmosis membrane device 1. For this purpose, a return passage 15 is provided which communicates with the outflow portion of the reaction tank 11 and the primary inflow portion of the first semipermeable membrane of the forward osmosis membrane device 1. The return flow path 15 is provided so as to return the aerated treated water 26 flowing out from the reaction tank 11 to the primary inflow portion of the first semipermeable membrane of the forward osmosis membrane device 1 directly or via another device or flow path. It only has to be done. The aerated treated water 26 ′ is reduced in solute concentration by being subjected to aerobic biological treatment in the reaction tank 11. Therefore, by introducing this into the primary side of the first semipermeable membrane of the forward osmosis membrane device 1, Decreasing the solute concentration of the treated water on the primary side of the one semipermeable membrane (including the returned aerated treated water 26 ′) to increase the amount of water permeated through the first semipermeable membrane. It becomes possible.

図3には、本発明の水処理システムの第3実施態様を示した。第3実施態様の水処理システムは、第1流路6に調整タンク8を設けている点と、沈殿槽14を設ける代わりに反応槽11に浸漬膜ろ材13を設けている点と、膜ろ材13で固液分離することにより得られた膜ろ過水を曝気処理水26として正浸透膜装置1に返送している点で、第2実施態様の水処理システムとは異なる。なお下記の説明で、第2実施態様に関する説明と重複する部分の説明を省く。   FIG. 3 shows a third embodiment of the water treatment system of the present invention. In the water treatment system of the third embodiment, the adjustment tank 8 is provided in the first flow path 6, the submerged membrane filter medium 13 is provided in the reaction tank 11 instead of the precipitation tank 14, and the membrane filter medium 13 is different from the water treatment system of the second embodiment in that the membrane filtrate obtained by solid-liquid separation at 13 is returned to the forward osmosis membrane device 1 as aeration treated water 26. In the following description, the description of the same part as the description of the second embodiment is omitted.

図3に示した水処理システムでは、高張溶液22,23の循環ラインの第1流路6に調整タンク8を設け、第2流路7に調整タンク9を設けている。調整タンク8は、正浸透膜装置1から流出した高張溶液23を受け入れて貯留するとともに、高張溶液23を第1流路6を介して逆浸透膜装置5に供給することができる。調整タンク9は、逆浸透膜装置5から流出した高張溶液22を受け入れて貯留するとともに、高張溶液22を第2流路7を介して正浸透膜装置1に供給することができる。このように調整タンク8,9を設けることにより、正浸透膜装置1と逆浸透膜装置5の処理をそれぞれ独立して行えるようになる。   In the water treatment system shown in FIG. 3, the adjustment tank 8 is provided in the first flow path 6 of the circulation line of the hypertonic solutions 22 and 23, and the adjustment tank 9 is provided in the second flow path 7. The adjustment tank 8 can receive and store the hypertonic solution 23 flowing out from the forward osmosis membrane device 1, and can supply the hypertonic solution 23 to the reverse osmosis membrane device 5 through the first flow path 6. The adjustment tank 9 can receive and store the hypertonic solution 22 that has flowed out of the reverse osmosis membrane device 5, and can supply the hypertonic solution 22 to the forward osmosis membrane device 1 through the second flow path 7. By providing the adjustment tanks 8 and 9 in this way, the processing of the forward osmosis membrane device 1 and the reverse osmosis membrane device 5 can be performed independently.

例えば、図2に示した水処理システムでは、逆浸透膜装置5に導入される高張溶液23の量は、正浸透膜装置1の処理能力、すなわち、正浸透膜装置1に導入される高張溶液22の量と第1半透膜の水の浸透量に依存する。しかし、図3に示した水処理システムでは、正浸透膜装置1の処理能力の変動を調整タンク8によって緩和することができ、逆浸透膜装置5に導入する高張溶液23の量を、正浸透膜装置1の処理能力から独立して設定することができる。同様に、逆浸透膜装置5の処理能力の変動を調整タンク9によって緩和することができ、正浸透膜装置1に導入する高張溶液22の量を、逆浸透膜装置5の処理能力から独立して設定することができる。   For example, in the water treatment system shown in FIG. 2, the amount of the hypertonic solution 23 introduced into the reverse osmosis membrane device 5 is the treatment capacity of the forward osmosis membrane device 1, that is, the hypertonic solution introduced into the forward osmosis membrane device 1. It depends on the amount of 22 and the amount of water permeated through the first semipermeable membrane. However, in the water treatment system shown in FIG. 3, fluctuations in the treatment capacity of the forward osmosis membrane device 1 can be mitigated by the adjustment tank 8, and the amount of the hypertonic solution 23 introduced into the reverse osmosis membrane device 5 can be reduced by forward osmosis. It can be set independently from the processing capability of the membrane device 1. Similarly, fluctuations in the processing capacity of the reverse osmosis membrane device 5 can be mitigated by the adjustment tank 9, and the amount of the hypertonic solution 22 introduced into the forward osmosis membrane device 1 is independent of the processing capacity of the reverse osmosis membrane device 5. Can be set.

図3に示した水処理システムではまた、反応槽11の濃縮水25中に、固液分離のための膜ろ材13が浸漬して設けられている。反応槽11の濃縮水25に膜ろ材13を浸漬設置することにより、反応槽11の濃縮水25の微生物濃度(活性汚泥濃度)を高く保つことができ、反応槽11の容積当たりの処理負荷を高め、反応槽11のコンパクト化を図ることができる。また、膜ろ材13により濃縮水25に含まれる固形分を高度に固液分離して、固形分濃度の極めて低い曝気処理水26を得ることができる。曝気処理水26は、返送流路15を通して、正浸透膜装置1の第1半透膜の一次側に返送されている。反応槽11からは、高濃度に微生物(活性汚泥)を含む濃縮水25を汚泥28として定期的に引き抜いて、反応槽11の濃縮水25の微生物濃度(活性汚泥濃度)を所望程度に調整することが好ましい。   In the water treatment system shown in FIG. 3, a membrane filter medium 13 for solid-liquid separation is provided so as to be immersed in the concentrated water 25 of the reaction tank 11. By immersing the membrane filter medium 13 in the concentrated water 25 of the reaction tank 11, the microorganism concentration (active sludge concentration) of the concentrated water 25 in the reaction tank 11 can be kept high, and the processing load per volume of the reaction tank 11 can be increased. The reaction tank 11 can be made more compact. Moreover, the solid content contained in the concentrated water 25 can be highly solid-liquid separated by the membrane filter medium 13 to obtain the aerated treated water 26 having a very low solid content concentration. The aerated treated water 26 is returned to the primary side of the first semipermeable membrane of the forward osmosis membrane device 1 through the return flow path 15. From the reaction tank 11, concentrated water 25 containing microorganisms (activated sludge) at a high concentration is periodically extracted as sludge 28, and the microorganism concentration (active sludge concentration) in the concentrated water 25 in the reaction tank 11 is adjusted to a desired level. It is preferable.

膜ろ材13は、散気装置12の上方に設けるようにすることが好ましく、このように膜ろ材13を設けることにより、散気装置12から供給された気泡によって膜ろ材13の表面(膜面)をクロスフロー方式で洗浄して、膜ろ材13による安定した固液分離処理が実現できる。   The membrane filter medium 13 is preferably provided above the air diffuser 12. By providing the membrane filter medium 13 in this manner, the surface (membrane surface) of the membrane filter medium 13 by the bubbles supplied from the air diffuser 12. Can be washed by a cross flow method, and a stable solid-liquid separation process using the membrane filter medium 13 can be realized.

膜ろ材13としては、精密ろ過膜(MF膜)や限外ろ過膜(UF膜)を用いればよい。膜ろ材13を構成する材料や形式等は特に限定されず、膜の構成材料としては、例えば、酢酸セルロース、ポリスルホン、ポリエチレン、塩素化ポリエチレン、ポリプロピレン、ポリアクリロニトリル等の有機膜;アルミナやジルコニア等の無機膜等が挙げられ、膜の形式としては、中空糸膜、管状膜、平板状膜、モノリス膜等が挙げられる。   As the membrane filter 13, a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) may be used. There are no particular restrictions on the material or form of the membrane filter medium 13, and examples of the membrane material include organic membranes such as cellulose acetate, polysulfone, polyethylene, chlorinated polyethylene, polypropylene, and polyacrylonitrile; alumina, zirconia, and the like. Examples of the type of membrane include a hollow fiber membrane, a tubular membrane, a flat membrane, and a monolith membrane.

図4には、本発明の水処理システムの第4実施態様を示した。第4実施態様の水処理システムは、正浸透膜装置1を被処理水21中に設けている点と、反応槽11を嫌気槽11aと好気槽11bとで構成している点で、第3実施態様の水処理システムとは異なる。なお下記の説明で、第3実施態様に関する説明と重複する部分の説明を省く。   FIG. 4 shows a fourth embodiment of the water treatment system of the present invention. In the water treatment system of the fourth embodiment, the forward osmosis membrane device 1 is provided in the water to be treated 21 and the reaction tank 11 is composed of an anaerobic tank 11a and an aerobic tank 11b. Different from the water treatment system of the third embodiment. In the following description, the description of the part overlapping with the description of the third embodiment is omitted.

図4に示した水処理システムでは、水槽2内に正浸透膜装置1が設けられ、正浸透膜装置1が水槽2内の被処理水21中に浸漬設置されている。水槽2に被処理水21を供給することにより、被処理水21が正浸透膜装置1の第1半透膜の一次側に導入されることとなる。正浸透膜装置1を被処理水21中に設けることにより、正浸透膜装置1が設置される水深に対応して第1半透膜の一次側の被処理水21に水圧がかかり、第1半透膜の一次側から二次側への水の浸透が促進されて、被処理水21の濃縮を好適に行いやすくなる。   In the water treatment system shown in FIG. 4, the forward osmosis membrane device 1 is provided in the water tank 2, and the forward osmosis membrane device 1 is immersed in the water to be treated 21 in the water tank 2. By supplying the treated water 21 to the water tank 2, the treated water 21 is introduced to the primary side of the first semipermeable membrane of the forward osmosis membrane device 1. By providing the forward osmosis membrane device 1 in the treated water 21, water pressure is applied to the treated water 21 on the primary side of the first semipermeable membrane corresponding to the depth of water in which the forward osmosis membrane device 1 is installed. The permeation of water from the primary side to the secondary side of the semipermeable membrane is promoted, and the water 21 to be treated is easily concentrated.

正浸透膜装置1を被処理水21中に設ける場合、水槽2には、正浸透膜装置1の下方に散気装置3を設けることが好ましい。このように散気装置3を設けることにより、散気装置3から供給された気泡によって正浸透膜装置1の第1半透膜の膜面をクロスフロー方式で洗浄することができ、第1半透膜の目詰まりを防止して、正浸透処理を安定して行いやすくなる。水槽2に設置する散気装置3としては、反応槽11(好気槽11b)に設置可能な散気装置を用いればよい。   When the forward osmosis membrane device 1 is provided in the water 21 to be treated, it is preferable to provide the air diffuser 3 in the water tank 2 below the forward osmosis membrane device 1. By providing the air diffuser 3 as described above, the membrane surface of the first semipermeable membrane of the forward osmosis membrane device 1 can be washed by the cross-flow method with the bubbles supplied from the air diffuser 3. It prevents clogging of the permeable membrane and facilitates the forward osmosis treatment stably. As the air diffuser 3 installed in the water tank 2, an air diffuser that can be installed in the reaction tank 11 (aerobic tank 11b) may be used.

図4に示した水処理システムでは、水槽2の被処理水21の流入部と正浸透膜装置1との間に、夾雑物を除去するためのスクリーン4を設けている。スクリーン4を設けることにより、被処理水21から粗大夾雑物が除去され、正浸透膜装置1やその他の設備や機器の損傷が防止され、好適に水処理を行うことができるようになる。   In the water treatment system shown in FIG. 4, a screen 4 for removing impurities is provided between the inflow portion of the water to be treated 21 in the water tank 2 and the forward osmosis membrane device 1. By providing the screen 4, coarse impurities are removed from the water 21 to be treated, damage to the forward osmosis membrane device 1 and other facilities and equipment can be prevented, and water treatment can be suitably performed.

図4に示した水処理システムでは、反応槽11が嫌気槽(無酸素槽)11aと好気槽11bとで構成されており、好気槽11bに膜ろ材13が浸漬設置されている。正浸透膜装置1で濃縮された濃縮水25は、反応槽11の嫌気槽11aにまず導入され、その後好気槽11bに導入される。好気槽11bからは汚泥28が引き抜かれ、汚泥28の少なくとも一部が嫌気槽11aに返送される。このように濃縮水25を処理することにより、濃縮水25中の窒素を生物学的に除去することができる。すなわち、濃縮水25中の有機性窒素が好気槽11bで硝化され、これが嫌気槽11aに返送されて濃縮水25中のBODを用いて脱窒されることにより、濃縮水25中の有機性窒素を窒素ガスとして除去することができる。   In the water treatment system shown in FIG. 4, the reaction tank 11 includes an anaerobic tank (anoxic tank) 11a and an aerobic tank 11b, and a membrane filter medium 13 is immersed in the aerobic tank 11b. The concentrated water 25 concentrated in the forward osmosis membrane device 1 is first introduced into the anaerobic tank 11a of the reaction tank 11, and then introduced into the aerobic tank 11b. The sludge 28 is extracted from the aerobic tank 11b, and at least a part of the sludge 28 is returned to the anaerobic tank 11a. By treating the concentrated water 25 in this way, nitrogen in the concentrated water 25 can be biologically removed. That is, organic nitrogen in the concentrated water 25 is nitrified in the aerobic tank 11b, and this is returned to the anaerobic tank 11a and denitrified using the BOD in the concentrated water 25, whereby the organic nitrogen in the concentrated water 25 is obtained. Nitrogen can be removed as nitrogen gas.

本発明は、下水、し尿、畜産糞尿、厨房排水、工場排水、埋立浸出水等の水処理に用いることができる。   The present invention can be used for water treatment of sewage, human waste, livestock manure, kitchen wastewater, factory wastewater, landfill leachate and the like.

1: 正浸透膜装置
5: 逆浸透膜装置
6: 第1流路
7: 第2流路
11: 反応槽
12: 散気装置
15: 返送流路
21: 被処理水
22,23: 高張溶液
24: 処理水
25: 濃縮水
26,26’: 曝気処理水
1: Forward osmosis membrane device 5: Reverse osmosis membrane device 6: First flow channel 7: Second flow channel 11: Reaction tank 12: Air diffuser 15: Return flow channel 21: Water to be treated 22, 23: Hypertonic solution 24 : Treated water 25: Concentrated water 26, 26 ': Aerated treated water

Claims (8)

被処理水を正浸透膜装置に導入して、正浸透膜装置に備えられた第1半透膜の一次側に被処理水を存在させ、二次側に被処理水よりも高浸透圧の高張溶液を存在させた状態で、被処理水中の水を第1半透膜の一次側から二次側に浸透させることにより、被処理水を濃縮して濃縮水を得る工程と、
前記濃縮水を反応槽に導入して曝気処理する工程とを有することを特徴とする水処理方法。
The treated water is introduced into the forward osmosis membrane device, the treated water is present on the primary side of the first semipermeable membrane provided in the forward osmosis membrane device, and the osmotic pressure is higher on the secondary side than the treated water. A step of concentrating the water to be treated to obtain concentrated water by allowing the water in the water to be treated to permeate from the primary side to the secondary side of the first semipermeable membrane in the presence of the hypertonic solution;
A water treatment method comprising: introducing the concentrated water into a reaction tank and performing aeration treatment.
前記曝気処理を微生物存在下で行う請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the aeration treatment is performed in the presence of a microorganism. さらに、前記曝気処理により得られる曝気処理水を前記正浸透膜装置に返送する工程を有する請求項1または2に記載の水処理方法。   The water treatment method according to claim 1, further comprising a step of returning aeration-treated water obtained by the aeration treatment to the forward osmosis membrane device. さらに、前記高張溶液を逆浸透膜装置に導入して、逆浸透膜装置に備えられた第2半透膜の一次側から二次側に高張溶液中の水を浸透させることにより処理水を得る工程と、
前記高張溶液を前記逆浸透膜装置から前記正浸透膜装置に返送する工程とを有する請求項1〜3のいずれか一項に記載の水処理方法。
Further, treated water is obtained by introducing the hypertonic solution into the reverse osmosis membrane device and permeating the water in the hypertonic solution from the primary side to the secondary side of the second semipermeable membrane provided in the reverse osmosis membrane device. Process,
The water treatment method according to any one of claims 1 to 3, further comprising a step of returning the hypertonic solution from the reverse osmosis membrane device to the forward osmosis membrane device.
第1半透膜を備え、第1半透膜を挟んで被処理水が存在する一次側と被処理水よりも高浸透圧の高張溶液が存在する二次側とを有し、被処理水中の水を第1半透膜の一次側から二次側に浸透させることにより、被処理水が濃縮されて濃縮水が得られる正浸透膜装置と、
散気装置を備え、第1半透膜の一次側から排出された濃縮水を曝気処理する反応槽とを有することを特徴とする水処理システム。
A first semipermeable membrane, a primary side on which the treated water is present with the first semipermeable membrane interposed therebetween, and a secondary side on which a hypertonic solution having a higher osmotic pressure than the treated water is present; Forward osmosis membrane device in which the water to be treated is concentrated to obtain concentrated water by infiltrating the water from the primary side to the secondary side of the first semipermeable membrane,
A water treatment system comprising: a reaction vessel that includes an air diffuser and aeration treatment of the concentrated water discharged from the primary side of the first semipermeable membrane.
前記反応槽の流出部と前記正浸透膜装置の第1半透膜の一次側流入部とに連通し、前記反応槽の曝気処理水を前記正浸透膜装置の第1半透膜の一次側に移送する返送流路が設けられている請求項5に記載の水処理システム。   The primary tank side of the first semipermeable membrane of the forward osmosis membrane device communicates with the outflow portion of the reaction vessel and the primary side inflow portion of the first semipermeable membrane of the forward osmosis membrane device. The water treatment system according to claim 5, further comprising a return flow path for transferring to the water. 第2半透膜を備え、第2半透膜を挟んで高張溶液が存在する一次側と高張溶液よりも低浸透圧の処理水が存在する二次側とを有し、高張溶液中の水を第2半透膜の一次側から二次側に浸透させることにより処理水が得られる逆浸透膜装置がさらに設けられ、
第1半透膜の二次側流出部と第2半透膜の一次側流入部とに連通し、高張溶液を第1半透膜の二次側から第2半透膜の一次側に移送する第1流路と、
第2半透膜の一次側流出部と第1半透膜の二次側流入部とに連通し、高張溶液を第2半透膜の一次側から第1半透膜の二次側に移送する第2流路とが設けられている請求項5または6に記載の水処理システム。
Water in the hypertonic solution comprising a second semipermeable membrane, a primary side on which the hypertonic solution exists and a secondary side on which treated water having a lower osmotic pressure than the hypertonic solution exists, with the second semipermeable membrane interposed therebetween Is further provided with a reverse osmosis membrane device for obtaining treated water by permeating from the primary side to the secondary side of the second semipermeable membrane,
The hypertonic solution is transferred from the secondary side of the first semipermeable membrane to the primary side of the second semipermeable membrane in communication with the secondary side outflow portion of the first semipermeable membrane and the primary side inflow portion of the second semipermeable membrane. A first flow path,
A hypertonic solution is transferred from the primary side of the second semipermeable membrane to the secondary side of the first semipermeable membrane in communication with the primary side outflow portion of the second semipermeable membrane and the secondary inflow portion of the first semipermeable membrane. The water treatment system according to claim 5 or 6, wherein a second flow path is provided.
前記正浸透膜装置は、被処理水中に設けられている請求項5〜7のいずれか一項に記載の水処理システム。   The water treatment system according to any one of claims 5 to 7, wherein the forward osmosis membrane device is provided in water to be treated.
JP2012208688A 2012-09-21 2012-09-21 Water treatment method and water treatment system Pending JP2014061486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012208688A JP2014061486A (en) 2012-09-21 2012-09-21 Water treatment method and water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012208688A JP2014061486A (en) 2012-09-21 2012-09-21 Water treatment method and water treatment system

Publications (1)

Publication Number Publication Date
JP2014061486A true JP2014061486A (en) 2014-04-10

Family

ID=50617253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012208688A Pending JP2014061486A (en) 2012-09-21 2012-09-21 Water treatment method and water treatment system

Country Status (1)

Country Link
JP (1) JP2014061486A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209842A (en) * 2015-05-12 2016-12-15 栗田工業株式会社 Organic wastewater treatment method
JP2017039108A (en) * 2015-08-21 2017-02-23 株式会社神鋼環境ソリューション Wastewater treatment method and waste water treatment equipment
WO2017098990A1 (en) * 2015-12-11 2017-06-15 三菱重工環境・化学エンジニアリング株式会社 Membrane separation device
WO2018020591A1 (en) * 2016-07-26 2018-02-01 栗田工業株式会社 Method for treating organic wastewater
JP2020032315A (en) * 2018-08-27 2020-03-05 国立大学法人高知大学 Wastewater treatment apparatus
JP2020032316A (en) * 2018-08-27 2020-03-05 国立大学法人高知大学 Wastewater treatment apparatus and method
JP2020110795A (en) * 2019-01-15 2020-07-27 クウェート インスティチュート フォア サイエンティフィック リサーチKuwait Institute for Scientific Research Reduced pressure brine treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898199A (en) * 1981-12-04 1983-06-10 Nishihara Environ Sanit Res Corp Dehydration of sludge
JPH02265624A (en) * 1989-04-04 1990-10-30 Yoshihisa Ito Dehydrating process and device
JPH06142693A (en) * 1992-05-13 1994-05-24 Shokuhin Sangyo Clean Eko Syst Gijutsu Kenkyu Kumiai Treating method for low concentration drain
JP2009072766A (en) * 2007-08-30 2009-04-09 Toray Ind Inc Water treating method
JP2011173040A (en) * 2010-02-23 2011-09-08 Kurita Water Ind Ltd Waste water treatment method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898199A (en) * 1981-12-04 1983-06-10 Nishihara Environ Sanit Res Corp Dehydration of sludge
JPH02265624A (en) * 1989-04-04 1990-10-30 Yoshihisa Ito Dehydrating process and device
JPH06142693A (en) * 1992-05-13 1994-05-24 Shokuhin Sangyo Clean Eko Syst Gijutsu Kenkyu Kumiai Treating method for low concentration drain
JP2009072766A (en) * 2007-08-30 2009-04-09 Toray Ind Inc Water treating method
JP2011173040A (en) * 2010-02-23 2011-09-08 Kurita Water Ind Ltd Waste water treatment method and apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209842A (en) * 2015-05-12 2016-12-15 栗田工業株式会社 Organic wastewater treatment method
JP2017039108A (en) * 2015-08-21 2017-02-23 株式会社神鋼環境ソリューション Wastewater treatment method and waste water treatment equipment
WO2017098990A1 (en) * 2015-12-11 2017-06-15 三菱重工環境・化学エンジニアリング株式会社 Membrane separation device
WO2018020591A1 (en) * 2016-07-26 2018-02-01 栗田工業株式会社 Method for treating organic wastewater
JP2020032315A (en) * 2018-08-27 2020-03-05 国立大学法人高知大学 Wastewater treatment apparatus
JP2020032316A (en) * 2018-08-27 2020-03-05 国立大学法人高知大学 Wastewater treatment apparatus and method
JP7181731B2 (en) 2018-08-27 2022-12-01 国立大学法人高知大学 Wastewater treatment equipment
JP7181732B2 (en) 2018-08-27 2022-12-01 国立大学法人高知大学 Wastewater treatment equipment and wastewater treatment method
JP2020110795A (en) * 2019-01-15 2020-07-27 クウェート インスティチュート フォア サイエンティフィック リサーチKuwait Institute for Scientific Research Reduced pressure brine treatment system

Similar Documents

Publication Publication Date Title
JP2014061487A (en) Water treatment method and water treatment system
JP2014061486A (en) Water treatment method and water treatment system
Achilli et al. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes
US20130015131A1 (en) Method for washing separation membrane module and method for generating fresh water
JP5804228B1 (en) Water treatment method
TW201121902A (en) Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
JP2014180628A (en) Water treatment method and system
JP2014065008A (en) Water treatment method and water treatment system
JP4690265B2 (en) Wastewater treatment method
CN211311217U (en) Zero liquid discharge system
JP2015077530A (en) Water production method and water production device
JP2014180629A (en) Water treatment method and system
JP2010012434A (en) Structure of mbr+ro system and operation method for the system
JP6613323B2 (en) Water treatment apparatus and water treatment method
US20120160768A1 (en) Organic-wastewater treatment method and organic-wastewater treatment apparatus
JP2003080246A (en) Apparatus and method for treating water
JP2012086120A (en) Method for washing immersion type membrane module with chemical
JP5105608B2 (en) Waste water treatment system and operation method thereof
JP4293529B2 (en) Organic wastewater treatment method
JP2010110718A (en) Method and apparatus for treating organic drainage
JP5269331B2 (en) Waste water treatment equipment
JP2014061488A (en) Water treatment system and water treatment method
JP2013086021A (en) Seawater desalination method and seawater desalination device
JP2003112181A (en) Water treatment method and water treatment apparatus
JP7421496B2 (en) Wastewater treatment equipment and wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160802