JP2012086120A - Method for washing immersion type membrane module with chemical - Google Patents

Method for washing immersion type membrane module with chemical Download PDF

Info

Publication number
JP2012086120A
JP2012086120A JP2010233241A JP2010233241A JP2012086120A JP 2012086120 A JP2012086120 A JP 2012086120A JP 2010233241 A JP2010233241 A JP 2010233241A JP 2010233241 A JP2010233241 A JP 2010233241A JP 2012086120 A JP2012086120 A JP 2012086120A
Authority
JP
Japan
Prior art keywords
membrane
immersion
tank
membrane module
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010233241A
Other languages
Japanese (ja)
Inventor
Keiichi Ikeda
啓一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010233241A priority Critical patent/JP2012086120A/en
Publication of JP2012086120A publication Critical patent/JP2012086120A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for washing an immersion type membrane module with chemicals, without extracting the immersion type membrane module to the outside of tanks, while reducing the amount of chemicals to be used, in the method for washing the immersion type membrane module having two or more membrane immersion tanks.SOLUTION: In a water treatment method, a chlorine-based oxidizing agent is added to manganese ion-containing raw water, to be filtrated by two or more immersion type membrane modules while diffusing air from a lower part and/or from a side part. In the water treatment method, after precipitating manganese dioxide in the membrane immersion tanks 3a, 3b, water in the second membrane immersion tank is filtered with the immersion type membrane module 4b to lower a water level in the second membrane immersion tank. The manganese dioxide at a lower part in the first membrane immersion tank is transported into the second membrane immersion tank through a communication part 7 at the lower part of the membrane immersion tank, while keeping the water level in the second film immersion tank lower than the water level in the first membrane immersion tank and then the immersion type membrane module 4a in the first membrane immersion tank is brought into contact with the chemicals.

Description

本発明は複数の膜浸漬槽を有する浸漬型膜モジュールの薬品洗浄方法に関するものである。   The present invention relates to a chemical cleaning method for an immersion type membrane module having a plurality of membrane immersion tanks.

近年、上下水道や廃水処理等の水処理用途において、原水中の不純物を分離除去して清澄な水に変換する膜ろ過法の普及が進んでいる。膜の除去対象物質は、膜の種類によって異なるが、精密ろ過膜や限外ろ過膜の場合は、一般的に懸濁物質、細菌、原虫、コロイド物質等が挙げられる。ところが、地下水等に多く含まれているマンガンイオンについては強い酸化力で二酸化マンガンとして析出させない限り、精密ろ過膜や限外ろ過膜で除去できないという問題があった。マンガンは、通常の塩素系酸化剤を添加するだけでは析出しないことから、過マンガン酸カリウムやオゾンのような強力な酸化剤を添加する方法もある。この方法によれば、容易に酸化析出し、マンガンを膜ろ過で除去できるものの、過マンガン酸カリウムを必要量以上添加した場合、マンガンイオンと未反応の過マンガン酸イオンが膜を通過することで膜ろ過水のマンガン濃度が高くなる問題を有していた。またオゾンを必要量以上添加した場合、酸化された二酸化マンガンが更に酸化されて過マンガン酸イオンとなり、膜を通過することで膜ろ過水のマンガン濃度が高くなる問題を有していた。   In recent years, in water treatment applications such as water and sewage and wastewater treatment, membrane filtration methods that separate and remove impurities in raw water and convert them into clear water have become widespread. The substance to be removed varies depending on the type of the membrane, but in the case of a microfiltration membrane or an ultrafiltration membrane, generally suspended materials, bacteria, protozoa, colloidal materials, and the like are included. However, manganese ions contained in a large amount of groundwater and the like have a problem that they cannot be removed with a microfiltration membrane or an ultrafiltration membrane unless they are precipitated as manganese dioxide with a strong oxidizing power. Manganese does not precipitate by adding a normal chlorinated oxidizer, so there is a method of adding a strong oxidizer such as potassium permanganate or ozone. According to this method, it is possible to easily oxidize and precipitate and remove manganese by membrane filtration, but when potassium permanganate is added more than necessary, manganese ions and unreacted permanganate ions pass through the membrane. It had the problem that the manganese concentration of membrane filtration water became high. Further, when ozone is added more than the necessary amount, the oxidized manganese dioxide is further oxidized to become permanganate ions and has a problem that the manganese concentration of the membrane filtrate becomes high by passing through the membrane.

そこで、浸漬型膜分離装置の前段に接触槽を設け、浸漬型膜モジュールで固液分離された二酸化マンガン粒子を接触槽に返送する、あるいは浸漬槽内を散気することで、浮遊した二酸化マンガンの自触媒作用によって原水中のマンガンイオンを酸化する技術が知られていた(特許文献1)。   Therefore, a contact tank is provided in the previous stage of the submerged membrane separation device, and manganese dioxide particles solid-liquid separated by the submerged membrane module are returned to the contact tank, or the suspended manganese dioxide is diffused in the immersion tank. A technique for oxidizing manganese ions in raw water by the autocatalytic action of is known (Patent Document 1).

まず、式(1)に示す反応により、マンガンイオンは二酸化マンガンに交換吸着される。マンガンイオンと接触した二酸化マンガンはMnO・MnOとなって、接触酸化力を失うが、式(2)の塩素系酸化剤による酸化反応で、再活性化する。よってマンガンイオンを酸化するためには、交換吸着するための二酸化マンガンおよび二酸化マンガンを再活性化するための塩素系酸化剤の両方が必要となる。 First, manganese ions are exchanged and adsorbed on manganese dioxide by the reaction shown in the formula (1). Manganese dioxide that has come into contact with manganese ions becomes MnO 2 .MnO and loses the contact oxidizing power, but is reactivated by the oxidation reaction with the chlorine-based oxidizing agent of formula (2). Therefore, in order to oxidize manganese ions, both manganese dioxide for exchange adsorption and a chlorine-based oxidant for reactivating manganese dioxide are required.

Mn2++MnO・HO→MnO・MnO+2H (1)
MnO・MnO+HOCl+2HO→2(MnO・HO)+H+Cl (2)
一方、精密ろ過膜や限外ろ過膜のろ過運転を行う場合、膜ろ過水量に伴って、膜表面や膜細孔内にフミン質や微生物由来のタンパク質、酸化鉄、酸化マンガン等の付着量が増大していき、ろ過水量の低下あるいは膜差圧の上昇が問題となってくる。
Mn 2+ + MnO 2 · H 2 O → MnO 2 · MnO + 2H + (1)
MnO 2 · MnO + HOCl + 2H 2 O → 2 (MnO 2 · H 2 O) + H + + Cl (2)
On the other hand, when performing filtration operation of microfiltration membranes or ultrafiltration membranes, the attached amount of humic substances, microorganism-derived proteins, iron oxide, manganese oxide, etc. on the membrane surface and pores with the amount of membrane filtration water Increasing, a decrease in the amount of filtered water or an increase in membrane differential pressure becomes a problem.

そこで、膜の原水側に気泡を導入し、膜を揺動させ、膜同士を触れ合わせることにより膜表面のファウリング物質を掻き落とす空気洗浄や、膜のろ過方法とは逆方向に膜ろ過水あるいは清澄水を圧力で押し込み、膜表面や膜細孔内に付着していたファウリング物質を排除する逆圧洗浄等の物理洗浄が実用化されている。   Therefore, air is introduced into the raw water side of the membrane, the membranes are shaken, and the membranes are brought into contact with each other, so that the membrane filtration water is removed in the opposite direction to the membrane cleaning method. Alternatively, physical cleaning such as back-pressure cleaning that pushes clear water with pressure to eliminate fouling substances adhering to the membrane surface and membrane pores has been put into practical use.

さらに、物理洗浄を実施してもろ過能力が低下する場合には、物理洗浄で排除しきれなかったファウリング物質を化学的に分解し、溶解除去する薬品洗浄が実用化されている(特許文献2、3)。   Furthermore, if the filtration capacity is reduced even after performing physical cleaning, chemical cleaning has been put into practical use that chemically decomposes and dissolves and removes fouling substances that could not be eliminated by physical cleaning (Patent Document). 2, 3).

従来の浸漬型膜分離装置の薬品洗浄方法としては、重機を使用するなどして浸漬型膜モジュールを膜浸漬槽外に取り出し、別の小型の槽内で薬品洗浄するものである。しかしながらこの方法では洗浄操作が煩雑で作業性が非常に悪い。   As a chemical cleaning method for a conventional immersion type membrane separation apparatus, the immersion type membrane module is taken out of the membrane immersion tank by using a heavy machine, and the chemical cleaning is performed in another small tank. However, in this method, the cleaning operation is complicated and workability is very poor.

また、膜浸漬槽を複数に分割し、分割した槽内に各々浸漬型膜モジュールを浸漬配置し、薬品洗浄を行う膜浸漬槽を順次切り換えることにより、浸漬型膜モジュールを膜浸漬槽内に設置した状態のまま薬品洗浄する方法も提案されている(特許文献4)。この方法は浸漬型膜モジュールを槽外に取り出す必要がないため洗浄操作性に優れるが、膜浸漬槽自体を洗浄用の槽として代用するため、洗浄薬剤の使用量が膨大となる。また上述した通り、マンガンイオンの酸化には二酸化マンガンが必要であるが、膜浸漬槽内の液を排出するので、二酸化マンガン粒子を廃棄することとなり、運転再開後、時間をかけて二酸化マンガン粒子を生成させなければならない問題があった。   Also, divide the membrane immersion tank into multiple parts, place each immersion type membrane module in the divided tank, and install the immersion type membrane module in the membrane immersion tank by sequentially switching the membrane immersion tank for chemical cleaning There has also been proposed a method of cleaning chemicals in the state (Patent Document 4). This method is excellent in cleaning operability because it is not necessary to take out the submerged membrane module out of the tank. However, since the membrane immersion tank itself is used as a tank for cleaning, the amount of cleaning chemical used becomes enormous. In addition, as described above, manganese dioxide is required for the oxidation of manganese ions, but since the liquid in the membrane immersion tank is discharged, the manganese dioxide particles are discarded, and after restarting the operation, the manganese dioxide particles take time. There was a problem that had to be generated.

膜浸漬槽内を活性汚泥で満たすことで一般都市下水、合併浄化槽、各種有機性廃水等の有機物を生物化学的に分解するとともに、浸漬型膜モジュールで懸濁成分のない清澄水を得ることのできる膜分離活性汚泥法(MBR法)においても、この薬品洗浄方法を実施した場合、活性汚泥を廃棄することとなるため、再度時間をかけて活性汚泥を馴養しなければならない問題があった。   By filling the inside of the membrane soaking tank with activated sludge, it is possible to biodegrade organic matter such as general municipal sewage, merged septic tanks, and various organic wastewater, and to obtain clarified water without suspended components with the soaking membrane module. Even in the membrane separation activated sludge method (MBR method) that can be performed, when this chemical cleaning method is carried out, the activated sludge is discarded, and there is a problem that the activated sludge must be acclimatized over time.

そこで、膜浸漬槽内の液の一部または全量を他の膜浸漬槽に移送する方法も提案されている(特許文献5)。この方法は二酸化マンガン粒子あるいは活性汚泥を廃棄することなく、薬品洗浄することが可能であるが、それぞれの膜浸漬槽に移送するためのポンプを設置しなければならず、さらに移送先の膜浸漬槽の容積を過大設計しなければならなかった。   Then, the method of transferring a part or all of the liquid in a film | membrane immersion tank to another film | membrane immersion tank is also proposed (patent document 5). Although this method can clean chemicals without discarding manganese dioxide particles or activated sludge, it is necessary to install a pump to transfer to each membrane immersion tank, and further to the membrane immersion of the transfer destination The tank volume had to be overdesigned.

特許第3467713号公報Japanese Patent No. 3467713 特開2005−193119号公報JP 2005-193119 A 特開2006−305444号公報JP 2006-305444 A 特開平8−131785号公報JP-A-8-131785 特許第3384281号公報Japanese Patent No. 3384281

本発明は、複数の膜浸漬槽を有する浸漬型膜モジュールの薬品洗浄方法において、浸漬型膜モジュールを槽外に取り出す必要がなく、原水中のマンガンイオンの酸化に必要な膜浸漬槽内の二酸化マンガンあるいは原水中の有機物の分解に必要な膜浸漬槽内の活性汚泥を既存の設備を用いて容易に他方の膜浸漬槽内に移送して一時保管することができ、薬品使用量も低減できる浸漬型膜モジュールの薬品洗浄方法を提供することを課題とする。   The present invention provides a chemical cleaning method for an immersion membrane module having a plurality of membrane immersion tanks, and does not require the immersion membrane module to be taken out of the tank. Activated sludge in the membrane dip tank required for decomposition of manganese or organic matter in raw water can be easily transferred to the other film dip tank using existing equipment for temporary storage, and the amount of chemicals used can be reduced. It is an object to provide a chemical cleaning method for a submerged membrane module.

上記課題を解決するため、本発明の浸漬型膜モジュールの薬品洗浄方法は、次の特徴を有するものである。   In order to solve the above problems, the chemical cleaning method for a submerged membrane module of the present invention has the following characteristics.

(1)0.05mg/L以上のマンガンイオンを含有する原水に塩素系酸化剤を添加して、浸漬型の精密ろ過膜/限外ろ過膜モジュールの下方および/または側方から散気しながら、複数の浸漬型膜モジュールでろ過する水処理方法において、複数の膜浸漬槽内の浸漬型膜モジュールを順次薬品に接触させる浸漬型膜モジュールの薬品洗浄方法であって、原水と塩素系酸化剤の膜浸漬槽内への導入と散気を停止して、膜浸漬槽内の二酸化マンガンを沈殿させた後、第2の膜浸漬槽内の水を浸漬型膜モジュールでろ過して、第2の膜浸漬槽内の水位を低下させ、さらに第2の膜浸漬槽内の水位が第1の膜浸漬槽内の水位よりも低くなるように維持しながら第1の膜浸漬槽内下部の二酸化マンガンを膜浸漬槽下部の連通部分を通じて第2の膜浸漬槽内に移送し、その後第1の膜浸漬槽内の浸漬型膜モジュールを薬品に接触させる浸漬型膜モジュールの薬品洗浄方法。   (1) While adding a chlorine-based oxidizing agent to raw water containing 0.05 mg / L or more of manganese ions, and diffusing from below and / or from the side of the submerged microfiltration membrane / ultrafiltration membrane module In the water treatment method of filtering with a plurality of submerged membrane modules, the submerged membrane module in the plurality of membrane submerging tanks is sequentially contacted with the chemical by the chemical cleaning method of the raw water and the chlorine-based oxidizing agent After stopping the introduction and aeration of the liquid into the membrane immersion tank and precipitating manganese dioxide in the film immersion tank, the water in the second film immersion tank is filtered through the immersion membrane module, and the second Lowering the water level in the film immersing tank and maintaining the water level in the second film immersing tank lower than the water level in the first film immersing tank. Manganese is immersed in the second film through the communicating part at the bottom of the film immersion tank Transferring within, then chemical cleaning method of the submerged membrane module contacting the submerged membrane module of the first film immersion bath medicines.

(2)浸漬型膜モジュールと活性汚泥を浸漬させた膜浸漬槽内に原水を供給し、該浸漬型膜モジュールの下方および/または側方から散気しながら、複数の浸漬型膜モジュールでろ過する水処理方法において、複数の膜浸漬槽内の浸漬型膜モジュールを順次薬品に接触させる浸漬型膜モジュールの薬品洗浄方法であって、原水の膜浸漬槽内への導入と散気を停止して、膜浸漬槽内の活性汚泥を沈殿させた後、第2の膜浸漬槽内の水を浸漬型膜モジュールでろ過して、第2の膜浸漬槽内の水位を低下させ、さらに第2の膜浸漬槽内の水位が第1の膜浸漬槽内の水位よりも低くなるように維持しながら第1の膜浸漬槽内下部の活性汚泥を膜浸漬槽下部の連通部分を通じて第2の膜浸漬槽内に移送し、その後第1の膜浸漬槽内の浸漬型膜モジュールを薬品に接触させる浸漬型膜モジュールの薬品洗浄方法。   (2) Supplying raw water into a membrane immersion tank in which an immersion membrane module and activated sludge are immersed, and filtering with a plurality of immersion membrane modules while diffusing from below and / or from the side of the immersion membrane module In the water treatment method, the submerged membrane module in a plurality of membrane immersing tanks is in contact with chemicals in order, and the introduction and diffusion of raw water into the membrane immersing tank is stopped. Then, after the activated sludge in the membrane immersion tank is precipitated, the water in the second membrane immersion tank is filtered through the immersion membrane module to lower the water level in the second membrane immersion tank, and the second While maintaining the water level in the membrane dip bath lower than the water level in the first membrane dip bath, the activated sludge in the lower portion of the first membrane dip bath is passed through the communicating portion at the lower portion of the membrane dip bath. Immersion type membrane module transferred into the immersion tank and then in the first membrane immersion tank Chemical cleaning method of the immersion type membrane module is brought into contact with chemicals.

(3)第1の膜浸漬槽内の浸漬型膜モジュールを薬品に接触させた後、さらに、第1の膜浸漬槽内の水位を低下させ、さらに第1の膜浸漬槽内の水位が第2の膜浸漬槽内の水位よりも低くなるように維持しながら第2の膜浸漬槽内下部の二酸化マンガンあるいは活性汚泥を膜浸漬槽下部の連通部分を通じて第1の膜浸漬槽内に移送し、その後第2の膜浸漬槽内の浸漬型膜モジュールを薬品に接触させる、(1)または(2)に記載の浸漬型膜モジュールの薬品洗浄方法。   (3) After the immersion membrane module in the first membrane immersion tank is brought into contact with the chemical, the water level in the first membrane immersion tank is further lowered, and the water level in the first membrane immersion tank is The manganese dioxide or activated sludge in the lower part of the second film dip tank is transferred into the first film dip tank through the communicating part in the lower part of the film dip tank while maintaining the water level lower than the water level in the film dip tank. Then, the chemical cleaning method for the immersion type membrane module according to (1) or (2), wherein the immersion type membrane module in the second membrane immersion tank is then brought into contact with the chemical.

(4)薬品がクエン酸、シュウ酸、亜硫酸イオン、亜硫酸水素イオン、チオ硫酸イオンからなる群から選ばれる少なくとも1種類を含む、(1)〜(3)のいずれかに記載の浸漬型膜モジュールの薬品洗浄方法。   (4) The immersion membrane module according to any one of (1) to (3), wherein the chemical includes at least one selected from the group consisting of citric acid, oxalic acid, sulfite ion, hydrogen sulfite ion, and thiosulfate ion. Chemical cleaning method.

(5)凝集剤および/またはpH調整剤を添加して、膜浸漬槽内の二酸化マンガンあるいは活性汚泥を沈殿させる、(1)〜(4)のいずれかに記載の浸漬型膜モジュールの薬品洗浄方法。   (5) Chemical cleaning of the submerged membrane module according to any one of (1) to (4), wherein a flocculant and / or a pH adjuster is added to precipitate manganese dioxide or activated sludge in the membrane soaking tank. Method.

(6)薬品で逆圧洗浄することにより浸漬型膜モジュールを薬品に接触させる、(1)〜(5)のいずれかに記載の浸漬型膜モジュールの薬品洗浄方法。   (6) The chemical cleaning method for a submerged membrane module according to any one of (1) to (5), wherein the submerged membrane module is brought into contact with the chemical by back pressure cleaning with the chemical.

(7)薬品で逆圧洗浄後に一定時間放置し、さらに清澄水で逆圧洗浄する、(6)に記載の浸漬型膜モジュールの薬品洗浄方法。   (7) The chemical cleaning method for a submerged membrane module according to (6), which is left for a certain period of time after being backwashed with a chemical, and further backwashed with clear water.

本発明の薬品洗浄方法によれば、浸漬型膜モジュールを膜浸漬槽外へ取り出す必要がなく、新たなポンプを具備せずにマンガンイオンの酸化に必要な膜浸漬槽内の二酸化マンガンあるいは有機物の生物化学的分解に必要な膜浸漬槽内の活性汚泥を既存の設備を用いて容易に他方の膜浸漬槽内に移送して一時保管することができ、移送先の膜浸漬槽の容積を過大にすることもないので薬品使用量を低減することが可能である。   According to the chemical cleaning method of the present invention, it is not necessary to take out the submerged membrane module out of the membrane soaking tank, and the manganese dioxide or organic matter in the membrane soaking tank required for oxidation of manganese ions without a new pump is provided. Activated sludge in the membrane immersion tank required for biochemical decomposition can be easily transferred to the other membrane immersion tank using existing equipment for temporary storage, and the volume of the destination film immersion tank is excessive. Therefore, the amount of chemicals used can be reduced.

本発明の浸漬型膜モジュール4a、4bの薬品洗浄前における、通常のろ過工程の状態を示す概略図である。It is the schematic which shows the state of the normal filtration process before chemical | medical agent washing | cleaning of the immersion type membrane modules 4a and 4b of this invention. 本発明の浸漬型膜モジュール4a、4bの薬品洗浄前における、通常の逆圧洗浄工程の状態を示す概略図である。It is the schematic which shows the state of the normal back pressure washing | cleaning process before chemical | medical agent washing | cleaning of the immersion type membrane modules 4a and 4b of this invention. 本発明の浸漬型膜モジュール4a、4bの薬品洗浄前における、通常の排水工程の状態を示す概略図である。It is the schematic which shows the state of the normal drainage process before chemical | medical agent washing | cleaning of the immersion type membrane modules 4a and 4b of this invention. 本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、沈殿工程(STEP1)を実施する状態を示す概略図である。It is the schematic which shows the state which implements a precipitation process (STEP1) in the chemical | medical agent cleaning method of the immersion type membrane modules 4a and 4b of this invention. 本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第2の膜浸漬槽3bの水位低下工程(STEP2)を実施する状態を示す概略図である。It is the schematic which shows the state which implements the water level fall process (STEP2) of the 2nd film | membrane immersion tank 3b in the chemical | medical agent cleaning method of the immersion type membrane modules 4a and 4b of this invention. 本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第1の膜浸漬槽3aから第2の膜浸漬槽3bへの二酸化マンガン/活性汚泥移送工程(STEP3)を実施する状態を示す概略図である。In the chemical cleaning method for the submerged membrane modules 4a and 4b of the present invention, an outline showing a state in which the manganese dioxide / activated sludge transfer step (STEP 3) is performed from the first membrane immersion tank 3a to the second membrane immersion tank 3b. FIG. 本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第1の膜浸漬槽3a内の浸漬型膜モジュール4aの薬品洗浄工程(STEP4)を実施する状態を示す概略図である。It is the schematic which shows the state which implements the chemical cleaning process (STEP4) of the immersion type membrane module 4a in the 1st membrane immersion tank 3a in the chemical cleaning method of the immersion type membrane modules 4a and 4b of this invention. 本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第1の膜浸漬槽3a内の浸漬型膜モジュール4aのリンス工程(STEP5)を実施する状態を示す概略図である。It is the schematic which shows the state which implements the rinse process (STEP5) of the immersion type membrane module 4a in the 1st membrane immersion tank 3a in the chemical | medical agent cleaning method of the immersion type membrane modules 4a and 4b of this invention. 本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第2の膜浸漬槽3bから第1の膜浸漬槽3aへの二酸化マンガン/活性汚泥移送工程(STEP6)を実施する状態を示す概略図である。In the chemical cleaning method for the submerged membrane modules 4a and 4b of the present invention, an outline showing a state in which the manganese dioxide / activated sludge transfer step (STEP 6) from the second membrane soaking tank 3b to the first membrane soaking tank 3a is performed. FIG. 本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第2の膜浸漬槽3b内の浸漬型膜モジュール4bの薬品洗浄工程(STEP7)を実施する状態を示す概略図である。It is the schematic which shows the state which implements the chemical cleaning process (STEP7) of the immersion type membrane module 4b in the 2nd membrane immersion tank 3b in the chemical cleaning method of the immersion type membrane module 4a, 4b of this invention. 本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第2の膜浸漬槽3b内の浸漬型膜モジュール4bのリンス工程(STEP8)を実施する状態を示す概略図である。It is the schematic which shows the state which implements the rinse process (STEP8) of the immersion type membrane module 4b in the 2nd membrane immersion tank 3b in the chemical | medical agent cleaning method of the immersion type membrane modules 4a and 4b of this invention. 本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第1の膜浸漬槽3aから第2の膜浸漬槽3bへの二酸化マンガン/活性汚泥移送工程(STEP9)を実施する状態を示す概略図である。In the chemical cleaning method for the submerged membrane modules 4a and 4b of the present invention, an outline showing a state in which the manganese dioxide / activated sludge transfer step (STEP 9) from the first membrane immersion tank 3a to the second membrane immersion tank 3b is performed. FIG.

以下、図面に示す実施態様に基づいて本発明をさらに詳細に説明する。なお、本発明は以下の実施態様に限定されるものではない。図1〜図12は、本発明による薬品洗浄を行うことが可能な水処理装置・工程の一実施態様を示す概略フロー図である。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. In addition, this invention is not limited to the following embodiments. FIGS. 1-12 is a schematic flowchart which shows one embodiment of the water treatment apparatus and process which can perform chemical | medical agent washing | cleaning by this invention.

本発明において使用する水処理装置には、例えば図1に示すように、原水供給時に開とする原水供給弁1a、1bと、薬品洗浄する浸漬型膜モジュールのみ開となる膜モジュール選択弁2a、2bと、原水を貯留する膜浸漬槽3a、3bと、膜浸漬槽3a、3b内に浸漬している浸漬型膜モジュール4a、4bと、浸漬型膜モジュール4a、4bの下方および/または側方に具備される散気管5a、5bと、膜浸漬槽3a、3b内の水を排出するときに開となる排水弁6a、6bと、膜浸漬槽3a、3b底部に沈殿した二酸化マンガン/活性汚泥を移送するときに開となる連通弁7と、散気用の空気を送り込むためのブロワー8と、塩素系酸化剤を膜浸漬槽3a、3b内に注入するための酸化剤ポンプ9と、塩素系酸化剤を貯留する酸化剤貯留槽10と、ろ過工程時に開とするろ過弁11と、ろ過工程時に稼働するろ過ポンプ12と、浸漬型膜モジュール4a、4bの膜ろ過水を貯留するろ過水貯留槽13と、薬品で逆圧洗浄する場合に閉とする逆洗選択弁14と、逆洗工程時に開とする逆洗弁15と、逆洗工程時に稼働する逆洗ポンプ16と、薬品洗浄で使用する薬品を貯留する薬品貯留槽17と、薬品で逆圧洗浄する場合に開とする薬品選択弁18が設けられている。   For example, as shown in FIG. 1, the water treatment apparatus used in the present invention includes raw water supply valves 1a and 1b that are opened when raw water is supplied, and a membrane module selection valve 2a that is opened only for a submerged membrane module for chemical cleaning. 2b, membrane immersion tanks 3a and 3b for storing raw water, immersion type membrane modules 4a and 4b immersed in the film immersion tanks 3a and 3b, and below and / or laterally of the immersion type membrane modules 4a and 4b Diffuser pipes 5a and 5b, drainage valves 6a and 6b which are opened when the water in the membrane immersion tanks 3a and 3b is discharged, and manganese dioxide / activated sludge precipitated on the bottom of the membrane immersion tanks 3a and 3b. A communication valve 7 which is opened when transferring the air, a blower 8 for sending air for aeration, an oxidant pump 9 for injecting a chlorine-based oxidant into the film immersion tanks 3a and 3b, chlorine Oxidant storage for storing oxidants Tank 10, Filtration valve 11 that is opened during the filtration process, Filtration pump 12 that operates during the filtration process, Filtration water storage tank 13 that stores the membrane filtrate of the submerged membrane modules 4a and 4b, and back pressure with chemicals A backwash selection valve 14 that is closed when cleaning, a backwash valve 15 that is opened during the backwash process, a backwash pump 16 that operates during the backwash process, and a chemical reservoir that stores chemicals used in chemical cleaning. A tank 17 and a chemical selection valve 18 that is opened when backwashing with chemicals is provided.

第1の発明において、処理対象とされる原水としては、0.05mg/L以上のマンガンイオンを含有するものであれば特に制限されず、地下水、河川水、湖沼水などが使用できる。   In the first invention, the raw water to be treated is not particularly limited as long as it contains 0.05 mg / L or more of manganese ions, and ground water, river water, lake water, and the like can be used.

ここで、マンガンイオンの濃度を測定する方法としては、サンプルを孔径0.45μm以下の精密ろ過膜あるいは限外ろ過膜でろ過し、そのろ過水をフレームレス−原子吸光法やICP発光分光分析法(測定波長257.610nm)やICP質量分析法で測定する方法が挙げられる。   Here, as a method of measuring the concentration of manganese ions, the sample is filtered through a microfiltration membrane or an ultrafiltration membrane having a pore size of 0.45 μm or less, and the filtered water is subjected to flameless-atomic absorption spectroscopy or ICP emission spectrometry. (Measurement wavelength 257.610 nm) and a method of measuring by ICP mass spectrometry.

また、第2の発明において、膜分離活性汚泥法(MBR法)の処理対象とされる原水としては、マンガンイオンの有無に関わらず、生物化学的に分解される有機物を含有するものであれば特に制限されず、下水や各種有機性廃水等などが挙げられる。   In the second invention, the raw water to be treated by the membrane separation activated sludge method (MBR method) may be any material that contains biochemically decomposed organic matter regardless of the presence or absence of manganese ions. It does not restrict | limit in particular, Sewage, various organic wastewaters, etc. are mentioned.

ここで本発明における浸漬型膜モジュール4a、4bを構成する分離膜としては、多孔質であればその孔径は特に限定しないが、所望の処理水の水質や水量によって、精密ろ過膜を用いたり、限外ろ過膜を用いたり、あるいは両者を併用したりする。例えば、濁質成分、大腸菌、クリプトスポリジウム等を除去したい場合は精密ろ過膜でも限外ろ過膜のどちらを用いても構わないが、ウィルスや高分子有機物等も除去したい場合は、限外ろ過膜を用いるのが好ましい。   Here, as the separation membrane constituting the submerged membrane modules 4a and 4b in the present invention, the pore diameter is not particularly limited as long as it is porous, but depending on the desired quality and amount of treated water, a microfiltration membrane may be used, An ultrafiltration membrane is used, or both are used together. For example, if you want to remove turbid components, Escherichia coli, Cryptosporidium, etc., you can use either a microfiltration membrane or an ultrafiltration membrane. Is preferably used.

分離膜の形状としては、中空糸膜、平膜、管状膜等があるが、いずれでも構わない。   Examples of the shape of the separation membrane include a hollow fiber membrane, a flat membrane, and a tubular membrane, and any of them may be used.

分離膜の材質としても、特に限定しないが、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体およびクロロトリフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコールおよびポリエーテルスルホンからなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。   The material of the separation membrane is not particularly limited, but polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene At least one selected from the group consisting of copolymers, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers and chlorotrifluoroethylene-ethylene copolymers, polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol and polyethersulfone In view of film strength and chemical resistance, polyvinylidene fluoride (PVDF) is more preferable, and hydrophilicity is high and stain resistance is strong. From polyacrylonitrile it is more preferable.

本発明における膜浸漬槽下部の連通部分としては、連通弁7で容易に水流を制御できる連通管が好ましいが、膜浸漬槽3aと膜浸漬槽3bの仕切壁の下部に開閉ゲートを設けてもよい。   As the communicating part at the lower part of the membrane immersion tank in the present invention, a communication pipe that can easily control the water flow with the communication valve 7 is preferable, but an open / close gate may be provided below the partition walls of the membrane immersion tank 3a and the membrane immersion tank 3b. Good.

上述の水処理装置において、本発明の薬品洗浄は次のように実施される。   In the above water treatment apparatus, the chemical cleaning of the present invention is performed as follows.

図1は、本発明の浸漬型膜モジュール4a、4bの薬品洗浄前における、通常のろ過工程の状態を示している。   FIG. 1 shows a state of a normal filtration step before chemical cleaning of the immersion type membrane modules 4a and 4b of the present invention.

まず、原水供給弁1a、1bを開にすると、原水が膜浸漬槽3a、3b内に供給される。また酸化剤貯留槽10内に貯留されている塩素系酸化剤が酸化剤ポンプ9の動力で膜浸漬槽3a、3b内に供給される。さらに、ブロワー8を稼働して空気を送り込むことで浸漬型膜モジュール4a、4bの下方および/または側方に具備される散気管5a、5bから気泡が発生し、散気が行われ、膜モジュール選択弁2a、2b、ろ過弁11が開の状態でろ過ポンプ12を稼働することで浸漬型膜モジュール4a、4bの吸引ろ過が行われる。   First, when the raw water supply valves 1a and 1b are opened, the raw water is supplied into the membrane immersion tanks 3a and 3b. Further, the chlorine-based oxidant stored in the oxidant storage tank 10 is supplied into the film immersion tanks 3 a and 3 b by the power of the oxidant pump 9. Further, by operating the blower 8 and feeding air, bubbles are generated from the diffuser tubes 5a and 5b provided below and / or on the side of the submerged membrane modules 4a and 4b, and the air is diffused. Suction filtration of the submerged membrane modules 4a and 4b is performed by operating the filtration pump 12 with the selection valves 2a and 2b and the filtration valve 11 open.

第1の発明における塩素系酸化剤としては、次亜塩素酸、二酸化塩素等、接触酸化力を失った二酸化マンガンを再活性化できれば、いずれでも構わなく、原水中の第一鉄イオンやマンガンイオンの濃度に応じて適宜注入量を制御するのが好ましい。しかし、膜分離活性汚泥法(MBR法)では活性汚泥中の微生物が死滅し、有機物の分解能力が低下してしまう恐れがあるので、第2の発明においては塩素系酸化剤を注入しないほうが好ましい。   The chlorine-based oxidizing agent in the first invention may be any one as long as it can reactivate manganese dioxide that has lost contact oxidizing power, such as hypochlorous acid and chlorine dioxide, and ferrous ions and manganese ions in raw water. It is preferable to control the injection amount as appropriate according to the concentration of the liquid. However, in the membrane separation activated sludge method (MBR method), microorganisms in the activated sludge may be killed, and the decomposition ability of organic substances may be reduced. Therefore, in the second invention, it is preferable not to inject a chlorine-based oxidizing agent. .

第1の発明において、散気管5a、5bから散気される散気の時間やエア流量は原水中のマンガンイオン濃度や膜浸漬槽3a、3b内の二酸化マンガン濃度、ろ過時間などに応じて適宜設定すればよい。気泡はろ過工程中常時発生させても良いし、マンガンイオンの酸化に十分な二酸化マンガン粒子を浮遊できれば、間欠の発生でもよい。ろ過工程中常時気泡を発生させる場合には、極力膜の擦過を抑制するため、浸漬型膜モジュール4a、4bに直接気泡が接触する下方からの散気はせずに、側方のみから散気させてもよい。   In the first invention, the time and the air flow rate of air diffused from the air diffusers 5a and 5b are appropriately determined according to the manganese ion concentration in the raw water, the manganese dioxide concentration in the membrane immersion tanks 3a and 3b, the filtration time, and the like. You only have to set it. Air bubbles may be generated at all times during the filtration step, or may be generated intermittently as long as manganese dioxide particles sufficient for oxidation of manganese ions can be suspended. When bubbles are constantly generated during the filtration process, in order to suppress the abrasion of the membrane as much as possible, air is not diffused from the lower side where the bubbles are in direct contact with the submerged membrane modules 4a and 4b, but is diffused only from the side. You may let them.

第2の発明において、膜分離活性汚泥法(MBR法)における散気管5a、5bから散気される散気の時間やエア流量は、浸漬型膜モジュール4a、4bの膜面を洗浄することが可能で、膜浸漬槽3a、3b内の活性汚泥処理に必要な酸素を供給できればよく、原水中の有機物濃度や膜浸漬槽3a、3b内の活性汚泥濃度、膜ろ過流束などに応じて適宜設定すればよい。   In the second invention, the time and the air flow rate of air diffused from the air diffusers 5a and 5b in the membrane separation activated sludge method (MBR method) can clean the membrane surface of the submerged membrane modules 4a and 4b. It is possible to supply oxygen necessary for the activated sludge treatment in the membrane immersing tanks 3a and 3b, and depending on the concentration of organic matter in the raw water, the activated sludge concentration in the membrane immersing tanks 3a and 3b, the membrane filtration flux, etc. You only have to set it.

浸漬型膜モジュール4a、4bのろ過時間は原水水質や膜透過流束に応じて適宜設定するのが好ましいが、所定の膜ろ過差圧に到達するまでろ過時間を継続させてもよい。第1の発明においては、膜浸漬槽3a、3b内での気泡の発生により、浸漬型膜モジュール4a、4bで固液分離された二酸化マンガン粒子は膜浸漬槽3a、3bの底部に沈降することなく、浮遊した状態で原水中のマンガンイオンを酸化することができ、第2の発明においては、膜分離活性汚泥法(MBR法)では活性汚泥が膜浸漬槽3a、3bの底部に沈降することなく、浮遊した状態で原水中の有機物を分解することができる。   The filtration time of the submerged membrane modules 4a and 4b is preferably set as appropriate according to the raw water quality and the membrane permeation flux. However, the filtration time may be continued until a predetermined membrane filtration differential pressure is reached. In the first invention, the generation of bubbles in the membrane immersion tanks 3a and 3b causes the manganese dioxide particles solid-liquid separated in the immersion membrane modules 4a and 4b to settle to the bottoms of the membrane immersion tanks 3a and 3b. In the second invention, the activated sludge settles at the bottom of the membrane immersion tanks 3a and 3b in the membrane separation activated sludge method (MBR method). The organic matter in the raw water can be decomposed in a floating state.

浸漬型膜モジュール4a、4bのろ過制御方法としては、定流束ろ過であっても定圧ろ過であってもよいが、一定の膜ろ過水量が得られ、また、全体の制御が容易であるという点から定流束ろ過である方が好ましい。   The filtration control method of the submerged membrane modules 4a and 4b may be constant flux filtration or constant pressure filtration, but a constant amount of membrane filtration water can be obtained, and the overall control is easy. From the point of view, constant flux filtration is preferred.

また、浸漬型膜モジュール4a、4bのろ過動力としては、図1のようにろ過ポンプ12で吸引ろ過する以外にも、膜浸漬槽3a、3bとろ過水貯留槽13の水位差を利用したサイフォンの原理で吸引ろ過しても構わない。   Moreover, as filtration power of the submerged membrane modules 4a and 4b, a siphon using the water level difference between the membrane submerged tanks 3a and 3b and the filtrate storage tank 13 as well as suction filtration with the filtration pump 12 as shown in FIG. The suction filtration may be performed according to the principle described above.

上記のろ過工程を継続すると、浸漬型膜モジュール4a、4bの膜表面や膜細孔内に鉄やマンガンの酸化物やフミン酸などの有機物などが付着していき、ろ過水量の低下あるいは膜間差圧の上昇を引き起こすため、ろ過工程終了後に逆圧洗浄工程を開始する。図2は、本発明の浸漬型膜モジュール4a、4bの薬品洗浄前における、通常の逆圧洗浄工程の状態を示している。まず、ブロワー8、酸化剤ポンプ9、ろ過ポンプ12を停止して、原水供給弁1a、1b、ろ過弁11を閉にした後、逆洗選択弁14が開、薬品選択弁18が閉であることを確認後、逆洗弁15を開にして、逆洗ポンプ16を稼動させることでろ過水貯留槽13の膜ろ過水を用いた逆圧洗浄が行われる。こうすることで、鉄やマンガンの酸化物や有機物は膜表面や膜細孔内から剥離するので、ろ過水量の回復あるいは膜間差圧の抑制が可能となる。   If the above filtration process is continued, organic substances such as iron and manganese oxides and humic acid adhere to the membrane surfaces and pores of the submerged membrane modules 4a and 4b, resulting in a decrease in the amount of filtered water or between the membranes. In order to cause an increase in the differential pressure, the back pressure washing process is started after the filtration process. FIG. 2 shows a state of a normal back pressure cleaning step before chemical cleaning of the immersion type membrane modules 4a and 4b of the present invention. First, after the blower 8, the oxidant pump 9, and the filtration pump 12 are stopped and the raw water supply valves 1a and 1b and the filtration valve 11 are closed, the backwash selection valve 14 is opened and the chemical selection valve 18 is closed. After confirming this, the backwash valve 15 is opened and the backwash pump 16 is operated to perform back pressure washing using the membrane filtrate of the filtrate storage tank 13. By doing so, iron and manganese oxides and organic substances are peeled off from the membrane surface and inside the membrane pores, so that it is possible to recover the amount of filtered water or suppress the transmembrane pressure difference.

通常の逆圧洗浄の時間は、特に制限するものではないが、5秒以上120秒以下の範囲内とするのが好ましい。1回の逆圧洗浄時間が5秒未満では、十分な洗浄効果が得られず、120秒を超えると浸漬型膜モジュール4a、4bの稼働効率が低くなったり、水回収率が低下したりする。   The normal back pressure cleaning time is not particularly limited, but is preferably in the range of 5 seconds to 120 seconds. If the back pressure cleaning time for one time is less than 5 seconds, a sufficient cleaning effect cannot be obtained, and if it exceeds 120 seconds, the operation efficiency of the submerged membrane modules 4a and 4b is lowered and the water recovery rate is lowered. .

通常の逆圧洗浄の流束は、特に制限するものではないが、ろ過流束の0.5倍以上2倍以下であることが好ましい。逆圧洗浄の流束がろ過流束の0.5倍未満では、膜面に付着、堆積したファウリング物質を十分に除去することが難しい。逆圧洗浄の流束は高いほうが膜の洗浄効果が高くなるので好ましいが、高すぎると水回収率が低下すること、浸漬型膜モジュール容器の破壊や膜の亀裂等の損傷が起こる問題が発生することから、そうならない範囲内に適宜設定する。   The normal backwashing flux is not particularly limited, but is preferably 0.5 times or more and 2 times or less the filtration flux. If the backwashing flux is less than 0.5 times the filtration flux, it is difficult to sufficiently remove the fouling material adhering to and depositing on the membrane surface. A higher back-pressure cleaning flux is preferable because the membrane cleaning effect is higher, but if it is too high, the water recovery rate will decrease, and there will be problems such as damage to the submerged membrane module container and membrane cracking. Therefore, it is set appropriately within the range where this is not the case.

通常の逆圧洗浄の頻度は、ろ過流束やろ過時間、原水水質に応じて適宜設定すればよく、特に制限するものではないが、数十分〜数時間に1回程度であることが好ましい。   The frequency of normal back pressure washing may be appropriately set according to the filtration flux, filtration time, and raw water quality, and is not particularly limited, but is preferably about several tens of minutes to once every few hours. .

なお、通常の逆圧洗浄に用いる水は清澄水であれば何でもよく、膜ろ過水に限定されない。また、第1の発明においては、通常の逆圧洗浄に用いる水に、逆圧洗浄配管途中に次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾン等の酸化剤を添加したほうが、膜面に付着した有機物を分解でき、洗浄効果が高くなるので好ましい。例えば薬品貯留槽17に酸化剤を投入し、薬品選択弁18を開にする。ただし、膜浸漬槽3a、3b内の酸化剤が高濃度で残留せず、膜が劣化することのないよう、適宜濃度を制御することが好ましい。酸化剤の濃度が高い場合には、ろ過再開時に二次配管内に残留していた酸化剤がろ過水貯留槽13に流入するので、逆圧洗浄終了前に酸化剤の添加を止めることも好ましい。一方、第2の発明において、膜分離活性汚泥法(MBR法)では活性汚泥中の微生物が酸化剤によって死滅し、有機物の分解能力が低下してしまう恐れがあるので、逆圧洗浄に用いる水には酸化剤を注入しないほうが好ましい。   In addition, the water used for normal back pressure washing | cleaning may be anything if it is clarified water, and is not limited to membrane filtration water. In the first aspect of the invention, it is more effective to add an oxidizing agent such as sodium hypochlorite, chlorine dioxide, hydrogen peroxide, ozone or the like to the water used for normal back pressure cleaning in the back pressure cleaning pipe. It is preferable because organic substances adhering to can be decomposed and cleaning effect is enhanced. For example, an oxidant is introduced into the chemical reservoir 17 and the chemical selection valve 18 is opened. However, it is preferable to appropriately control the concentration so that the oxidizing agent in the film immersion tanks 3a and 3b does not remain at a high concentration and the film does not deteriorate. When the concentration of the oxidant is high, the oxidant remaining in the secondary pipe at the time of resumption of filtration flows into the filtrate storage tank 13, so it is also preferable to stop the addition of the oxidant before the end of the backwashing. . On the other hand, in the second invention, in the membrane separation activated sludge method (MBR method), microorganisms in the activated sludge may be killed by the oxidizing agent, and the decomposition ability of organic substances may be reduced. It is preferable not to inject an oxidizing agent.

さらに、ブロワー8を稼働して空気を送り込むことで浸漬型膜モジュール4a、4bの下方および/または側方に具備される散気管5a、5bから気泡を発生させ、浸漬型膜モジュール4a、4bの膜面を振動させる空気洗浄を、上述した通常の逆圧洗浄の実施中や実施前後の少なくとも一部に実施することも好ましい。逆圧洗浄と空気洗浄の併用により膜面や膜細孔内に蓄積していたファウリング物質が剥離される。散気管5a、5bからの気泡の供給時間やエア流量は浸漬型膜モジュール4a、4bの形状や膜の性能や汚染状況に応じて適宜設定すればよいが、膜の擦過を低減させるため、供給時間はできるだけ短いほうが好ましく、60秒以内に設定することが好ましい。   Furthermore, by operating the blower 8 and feeding air, bubbles are generated from the diffuser tubes 5a and 5b provided below and / or on the side of the submerged membrane modules 4a and 4b, and the submerged membrane modules 4a and 4b It is also preferable to perform air cleaning that vibrates the membrane surface during at least a part of the above-described normal back-pressure cleaning and before and after the execution. The fouling material accumulated on the membrane surface and membrane pores is peeled off by the combined use of back pressure washing and air washing. The supply time and air flow rate of the bubbles from the diffuser tubes 5a and 5b may be set as appropriate according to the shape of the submerged membrane modules 4a and 4b, the performance of the membrane, and the contamination status. The time is preferably as short as possible, and is preferably set within 60 seconds.

通常の逆圧洗浄工程が終了した後に排水工程を開始する。図3は、本発明の浸漬型膜モジュール4a、4bの薬品洗浄前における、通常の排水工程の状態を示している。逆洗ポンプ16を停止して、逆洗弁15を閉にした後、排水弁6a、6bを開くことで、膜面や膜細孔内から剥離して、膜浸漬槽3a、3b内で浮遊しているファウリング物質が系外に排出される。上述した通り、第1の発明においてはマンガンイオンの酸化のために、膜浸漬槽3a、3b内に二酸化マンガンを浮遊させる必要がある。排水工程で膜浸漬槽3a、3b内の水を全量排水した場合、再度時間をかけて二酸化マンガン粒子を生成させなければならないことから、マンガンイオンの酸化に支障をきたさない程度に一部を排水したほうが好ましい。また、第2の発明である膜分離活性汚泥法(MBR法)の場合においても、排水工程で膜浸漬槽3a、3b内の水を全量排水した場合、再度時間をかけて活性汚泥を馴養しなければならないことから、有機物の分解に支障をきたさない程度に一部を排水したほうが好ましい。なお排水工程は逆圧洗浄前や逆圧洗浄中に実施しても構わない。排水して膜1次側を空気にさらした後に逆圧洗浄を実施した場合、膜1次側に水圧がかからないため、ファウリング物質が膜表面から剥離しやすい利点がある。   The drainage process is started after the normal back pressure washing process is completed. FIG. 3 shows a state of a normal drainage process before chemical cleaning of the submerged membrane modules 4a and 4b of the present invention. After the backwash pump 16 is stopped and the backwash valve 15 is closed, the drainage valves 6a and 6b are opened to peel off the membrane surface and membrane pores and float in the membrane immersion tanks 3a and 3b. The fouling substances that are being discharged are discharged out of the system. As described above, in the first invention, it is necessary to float manganese dioxide in the film immersion tanks 3a and 3b in order to oxidize manganese ions. When all the water in the membrane immersion tanks 3a, 3b is drained in the drainage process, it is necessary to generate manganese dioxide particles again over time, so that part of the water is drained to the extent that it does not hinder the oxidation of manganese ions. Is preferable. In the case of the membrane separation activated sludge method (MBR method) according to the second aspect of the invention, when all the water in the membrane immersion tanks 3a and 3b is drained in the drainage process, the activated sludge is acclimatized over time. Therefore, it is preferable to drain part of the organic matter so as not to hinder the decomposition of the organic matter. The draining process may be performed before back pressure cleaning or during back pressure cleaning. When back pressure cleaning is performed after draining and exposing the primary side of the membrane to air, there is an advantage that the fouling substance is easily peeled off from the membrane surface because no water pressure is applied to the primary side of the membrane.

排水弁6a、6bを閉とすることで排水工程を終了した後、原水供給弁1a、1bが開となり、酸化剤ポンプ9が稼動して給水工程が行われ、浸漬型膜モジュール4a、4bを水中に浸漬した後、ろ過弁11を開にし、ろ過ポンプ12とブロワー8を稼働することで、ろ過工程に戻り、上記工程を繰り返すが、上述した通常の逆圧洗浄を実施してもファウリング物質は完全には除去できないことから、やがて膜ろ過吸引圧がろ過ポンプ12の吸引全揚程に到達したり、キャビテーションを引き起こしたりする限界まで到達してしまう。この場合には、本発明の浸漬型膜モジュール4a、4bの薬品洗浄(STEP1〜STEP9)を実施する。   After the drainage process is completed by closing the drainage valves 6a and 6b, the raw water supply valves 1a and 1b are opened, the oxidant pump 9 is operated, the water supply process is performed, and the submerged membrane modules 4a and 4b are connected. After being immersed in water, the filtration valve 11 is opened and the filtration pump 12 and the blower 8 are operated to return to the filtration step and repeat the above steps. Since the substance cannot be completely removed, the membrane filtration suction pressure will eventually reach the limit of reaching the total suction head of the filtration pump 12 or causing cavitation. In this case, chemical cleaning (STEP 1 to STEP 9) of the immersion type membrane modules 4a and 4b of the present invention is performed.

なお、本発明は、STEP1〜STEP5を行うことを必須の要件とするものであり、必ずしもSTEP6以降を実施することを要しない。ただし、薬品洗浄の効率化の観点からは、STEP1〜STEP9を一連の工程として行うことが好ましく、薬品洗浄を1つの浸漬型膜モジュールについて実施するか、2つ以上の浸漬型膜モジュールについて実施するかは、各浸漬型膜モジュールのファウリングの程度や、原水中のマンガンイオン濃度や有機物濃度、膜浸漬槽3a、3b内の二酸化マンガン濃度や活性汚泥濃度、ろ過時間などに応じて適宜設定することができる。また、STEP9は本発明を構成するものではないが、本発明の浸漬型膜モジュールの薬品洗浄方法を実施後に続けて膜ろ過運転を実施する場合に好ましく行うことができるものである。すなわち、本発明においては、STEP1〜STEP5を行った後にSTEP9を実施して膜ろ過運転を継続しても良いし、STEP1〜STEP9を一連の工程として行って膜ろ過運転を継続しても良い。   In addition, this invention makes it essential requirements to perform STEP1-STEP5, and it does not necessarily need to implement STEP6 and after. However, from the viewpoint of improving the efficiency of chemical cleaning, STEP 1 to STEP 9 are preferably performed as a series of steps, and chemical cleaning is performed on one submerged membrane module or on two or more submerged membrane modules. Is appropriately set according to the degree of fouling of each submerged membrane module, the concentration of manganese ions and organic matter in the raw water, the concentration of manganese dioxide and activated sludge in the membrane immersion tanks 3a and 3b, the filtration time, etc. be able to. Further, STEP 9 does not constitute the present invention, but can be preferably performed when the membrane filtration operation is carried out after the chemical cleaning method for the submerged membrane module of the present invention. That is, in this invention, after performing STEP1-STEP5, STEP9 may be implemented and a membrane filtration operation may be continued, or STEP1-STEP9 may be performed as a series of processes, and a membrane filtration operation may be continued.

まず、沈殿工程(STEP1)を実施する。図4は本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、沈殿工程(STEP1)を実施する状態を示す概略図である。ろ過工程の状態からブロワー8、酸化剤ポンプ9、ろ過ポンプ12を停止して、原水供給弁1a、1b、ろ過弁11を閉にすると、膜浸漬槽3a、3b内で浮遊していた二酸化マンガン粒子/活性汚泥は槽底部に沈殿する。二酸化マンガンの粒子径が小さく、沈降速度が遅い場合には、膜浸漬槽3a、3b内に凝集剤および/またはpH調整剤を添加して、沈降速度を上げたほうが好ましい。膜分離活性汚泥法(MBR法)においても、活性汚泥の沈降速度が遅い場合には、凝集剤および/またはpH調整剤を添加することが好ましい。使用する凝集剤としては、鉄系やアルミ系の無機凝集剤、ジメチルアミン系やポリアクリルアミド系のカチオン高分子凝集剤などいずれでも構わない。使用するpH調整剤としては、硫酸、塩酸、水酸化ナトリウム、炭酸ナトリウム等の無機調整剤が好ましい。適用pHとしては凝集フロックが形成しやすい6.5〜8.5が好ましい。凝集剤またはpH調整剤を添加する場合には、ブロワー8を稼働して、一定時間散気したほうが、攪拌による凝集フロック形成効果があるため、好ましい。なお、沈殿工程(STEP1)を実施せずに下述の第2の膜浸漬槽3bの水位低下工程(STEP2)を実施した場合、浸漬型膜モジュール4bの膜表面に二酸化マンガン粒子/活性汚泥が多く付着してしまい、薬品洗浄効果が下がってしまうことから重要な工程である。   First, a precipitation step (STEP 1) is performed. FIG. 4 is a schematic view showing a state in which the precipitation step (STEP 1) is performed in the chemical cleaning method for the submerged membrane modules 4a and 4b of the present invention. When the blower 8, the oxidant pump 9, and the filtration pump 12 are stopped from the state of the filtration process and the raw water supply valves 1a and 1b and the filtration valve 11 are closed, the manganese dioxide floating in the membrane immersion tanks 3a and 3b Particles / activated sludge settles to the bottom of the tank. When the particle diameter of manganese dioxide is small and the sedimentation rate is slow, it is preferable to increase the sedimentation rate by adding a flocculant and / or a pH adjuster into the film immersion tanks 3a and 3b. Also in the membrane separation activated sludge method (MBR method), it is preferable to add a flocculant and / or a pH adjuster when the sedimentation rate of activated sludge is slow. As the flocculant to be used, any of iron-based and aluminum-based inorganic flocculants, dimethylamine-based and polyacrylamide-based cationic polymer flocculants may be used. As the pH adjuster to be used, inorganic adjusters such as sulfuric acid, hydrochloric acid, sodium hydroxide, sodium carbonate and the like are preferable. The applied pH is preferably from 6.5 to 8.5, where aggregated flocs are easily formed. In the case of adding a flocculant or a pH adjuster, it is preferable that the blower 8 is operated and diffused for a certain period of time because there is an effect of forming a floc floc by stirring. In addition, when the water level lowering step (STEP 2) of the second membrane immersion tank 3b described below is performed without performing the precipitation step (STEP 1), manganese dioxide particles / activated sludge is formed on the membrane surface of the immersion membrane module 4b. This is an important process because it attaches a lot and reduces the chemical cleaning effect.

沈殿工程(STEP1)で二酸化マンガン粒子/活性汚泥を槽底部に沈殿させた後、第2の膜浸漬槽3bの水位低下工程(STEP2)を実施する。図5は本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、右側の膜浸漬槽3bの水位低下工程(STEP2)を実施する状態を示す概略図である。膜モジュール選択弁2aを閉にし、ろ過弁11を開にして、ろ過ポンプ12を稼働すると、浸漬型膜モジュール4bのみが吸引ろ過することとなり、膜浸漬槽3bの水位のみが低下する。   After the manganese dioxide particles / activated sludge is precipitated at the bottom of the tank in the precipitation step (STEP 1), the water level lowering step (STEP 2) of the second membrane immersion tank 3b is performed. FIG. 5 is a schematic view showing a state in which the water level lowering step (STEP 2) of the right membrane immersion tank 3b is performed in the chemical cleaning method for the immersion type membrane modules 4a and 4b of the present invention. When the membrane module selection valve 2a is closed, the filtration valve 11 is opened, and the filtration pump 12 is operated, only the submerged membrane module 4b performs suction filtration, and only the water level of the membrane immersion tank 3b decreases.

第2の膜浸漬槽3bの水位が低下した後、第1の膜浸漬槽3aから第2の膜浸漬槽3bへの二酸化マンガン/活性汚泥移送工程(STEP3)を実施する。図6は本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第1の膜浸漬槽3aから第2の膜浸漬槽3bへの二酸化マンガン/活性汚泥移送工程(STEP3)を実施する状態を示す概略図である。膜モジュール選択弁2bとろ過弁11と逆洗選択弁14を閉にして、ろ過ポンプ12を停止し、連通弁7を開にすると、水位差を利用して、第1の膜浸漬槽3aの底部に沈殿していた二酸化マンガン粒子/活性汚泥は第2の膜浸漬槽3bへと移送される。この間、第2の膜浸漬槽3bの水位が第1の膜浸漬槽3aの水位よりも低くなるように維持しながら二酸化マンガン粒子/活性汚泥の移送が行われる。次第に水位差がなくなっていくと、連通弁7を通過する水流が低下し、二酸化マンガン粒子/活性汚泥の移送効果が低下することから、原水供給弁1aを開いて、原水を第1の膜浸漬槽3a内に供給するほうが水位差を確保できるので好ましい。   After the water level of the second membrane immersion tank 3b is lowered, a manganese dioxide / activated sludge transfer step (STEP 3) from the first membrane immersion tank 3a to the second membrane immersion tank 3b is performed. FIG. 6 shows a state in which a manganese dioxide / activated sludge transfer step (STEP 3) from the first membrane immersion tank 3a to the second membrane immersion tank 3b is performed in the chemical cleaning method for the immersion type membrane modules 4a and 4b of the present invention. FIG. When the membrane module selection valve 2b, the filtration valve 11 and the backwash selection valve 14 are closed, the filtration pump 12 is stopped, and the communication valve 7 is opened, the difference in the water level is utilized for the first membrane immersion tank 3a. Manganese dioxide particles / activated sludge precipitated at the bottom is transferred to the second membrane immersion tank 3b. During this time, the transfer of manganese dioxide particles / activated sludge is performed while maintaining the water level of the second membrane immersion tank 3b to be lower than the water level of the first film immersion tank 3a. As the water level difference gradually disappears, the flow of water passing through the communication valve 7 decreases and the transfer effect of manganese dioxide particles / activated sludge decreases, so the raw water supply valve 1a is opened and the raw water is immersed in the first membrane. Supplying into the tank 3a is preferable because a difference in water level can be secured.

第1の膜浸漬槽3aの底部に沈殿していた二酸化マンガン粒子/活性汚泥を第2の膜浸漬槽3bへと移送した後、第1の膜浸漬槽3a内の浸漬型膜モジュール4aの薬品洗浄工程(STEP4)を実施する。図7は本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第1の膜浸漬槽3a内の浸漬型膜モジュール4aの薬品洗浄工程(STEP4)を実施する状態を示す概略図である。原水供給弁1aと連通弁7を閉じて、膜モジュール選択弁2a、逆洗弁15、薬品選択弁18を開いて、逆洗ポンプ16を稼働すると、薬品貯留槽17内の薬品で浸漬型膜モジュール4aの逆圧洗浄を実施する。   After transferring the manganese dioxide particles / activated sludge precipitated at the bottom of the first membrane immersion tank 3a to the second membrane immersion tank 3b, the chemicals of the immersion membrane module 4a in the first membrane immersion tank 3a A cleaning step (STEP 4) is performed. FIG. 7 is a schematic view showing a state in which the chemical cleaning step (STEP 4) of the immersion membrane module 4a in the first membrane immersion tank 3a is performed in the chemical cleaning method for the immersion membrane modules 4a and 4b of the present invention. . When the raw water supply valve 1a and the communication valve 7 are closed, the membrane module selection valve 2a, the backwash valve 15 and the chemical selection valve 18 are opened, and the backwash pump 16 is operated, the chemical in the chemical reservoir 17 is immersed in the membrane. Back pressure washing of the module 4a is performed.

薬品洗浄を行うための薬品としては、膜が劣化しない程度の濃度および保持時間を適宜設定した上で選択することができるが、クエン酸、シュウ酸、亜硫酸イオン、亜硫酸水素イオン、チオ硫酸イオンからなる群から選ばれる少なくとも1種類を含有したほうが、鉄やマンガンの酸化物に対して洗浄効果が高くなるので好ましい。上記薬品で膜の透水性能が回復しない場合には、有機物由来のファウリング物質が膜面や膜細孔内に付着している可能性があるので、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾン等からなる群から選ばれる少なくとも1種類を含有した薬品で洗浄したほうが、有機物に対して洗浄効果が高くなるので好ましい。   The chemical for cleaning the chemical can be selected after setting the concentration and holding time to such an extent that the membrane does not deteriorate, but it can be selected from citric acid, oxalic acid, sulfite ion, bisulfite ion, and thiosulfate ion. It is preferable to contain at least one selected from the group because the cleaning effect on iron and manganese oxides is increased. If the water permeability of the membrane does not recover with the above chemicals, organic fouling substances may adhere to the membrane surface or pores, so sodium hypochlorite, chlorine dioxide, peroxidation Washing with a chemical containing at least one selected from the group consisting of hydrogen, ozone and the like is preferable because the cleaning effect on the organic matter is enhanced.

また、薬品で逆圧洗浄し続けた場合、薬品の使用量が多くなることから、必要最低限の薬品で効率的にファウリング物質を溶解・分解できるよう、逆洗ポンプ16を停止して、所定時間浸漬型膜モジュール4aの2次側を薬品で保持するほうが好ましい。浸漬型膜モジュール4aの2次側を薬品で保持する時間は、膜面や膜細孔内に付着したファウリング物質を十分に溶解することが可能である5分間以上であることが好ましい。   Also, if backwashing with chemicals is continued, the amount of chemicals used increases, so the backwash pump 16 is stopped so that fouling substances can be efficiently dissolved and decomposed with the minimum necessary chemicals. It is preferable to hold the secondary side of the submerged membrane module 4a with a chemical for a predetermined time. The time for holding the secondary side of the submerged membrane module 4a with the chemical is preferably 5 minutes or longer so that the fouling substance adhering to the membrane surface and the membrane pores can be sufficiently dissolved.

第1の膜浸漬槽3a内の浸漬型膜モジュール4aの薬品洗浄を実施した後、続けて第1の膜浸漬槽3a内の浸漬型膜モジュール4aのリンス工程を実施する。図8は本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第1の膜浸漬槽3a内の浸漬型膜モジュール4aのリンス工程(STEP5)を実施する状態を示す概略図である。薬品選択弁18を閉じて、逆洗選択弁14と排水弁6aを開いて、逆洗ポンプ16を稼働すると、ろ過水貯留槽13内の膜ろ過水を用いた浸漬型膜モジュール4aの逆圧洗浄を実施する。これにより浸漬型膜モジュール4aの二次側および膜面や膜細孔内に残留していた薬品が洗い落とされ、系外に排出される。   After the chemical cleaning of the immersion type membrane module 4a in the first membrane immersion tank 3a is performed, the rinsing process of the immersion type membrane module 4a in the first film immersion tank 3a is subsequently performed. FIG. 8 is a schematic view showing a state in which the rinsing step (STEP 5) of the immersion membrane module 4a in the first membrane immersion tank 3a is performed in the chemical cleaning method for the immersion membrane modules 4a and 4b of the present invention. When the chemical selection valve 18 is closed, the backwash selection valve 14 and the drain valve 6a are opened, and the backwash pump 16 is operated, the reverse pressure of the submerged membrane module 4a using the membrane filtrate in the filtrate storage tank 13 Perform cleaning. As a result, the chemicals remaining on the secondary side, the membrane surface, and the membrane pores of the submerged membrane module 4a are washed away and discharged out of the system.

リンス工程(STEP5)の逆圧洗浄に用いる水は清澄水であれば何でもよく、膜ろ過水に限定されない。リンス工程(STEP5)の逆圧洗浄の時間は、特に制限するものではないが、排水弁6aから系外に排出される排水のpHが中性になるまで実施するのが好ましい。リンス工程(STEP5)の逆圧洗浄の流束は、特に制限するものではないが、ろ過流束の0.5倍以上2倍以下であることが好ましい。逆圧洗浄の流束がろ過流束の0.5倍未満では、膜面や膜細孔内に残留していた薬液を十分に洗い落とすことが難しい。逆圧洗浄の流束は高いほうが膜の洗浄効果が高くなるので好ましいが、高すぎると無駄に膜ろ過水を使用してしまうこと、浸漬型膜モジュール容器の破壊や膜の亀裂等の損傷が起こる問題が発生することから、そうならない範囲内に適宜設定する。   The water used for the back pressure washing in the rinsing step (STEP 5) may be any clarified water, and is not limited to membrane filtered water. The time for the back pressure washing in the rinsing step (STEP 5) is not particularly limited, but it is preferably carried out until the pH of the waste water discharged from the drain valve 6a becomes neutral. The flux of the back pressure washing in the rinsing step (STEP 5) is not particularly limited, but is preferably 0.5 to 2 times the filtration flux. When the back pressure washing flux is less than 0.5 times the filtration flux, it is difficult to sufficiently wash away the chemical remaining on the membrane surface and membrane pores. A higher back-pressure cleaning flux is preferable because the membrane cleaning effect is higher, but if it is too high, membrane filtration water is wasted, damage to submerged membrane module containers, membrane cracks, etc. Since problems that occur will occur, it is set as appropriate within the range that does not.

第1の膜浸漬槽3a内の浸漬型膜モジュール4aのリンス工程を実施した後、続けて浸漬型膜モジュール4bの薬品洗浄を行う場合は、第2の膜浸漬槽3bから第1の膜浸漬槽3aへの二酸化マンガン/活性汚泥移送工程(STEP6)を実施する。図9は本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第2の膜浸漬槽3bから第1の膜浸漬槽3aへの二酸化マンガン/活性汚泥移送工程(STEP6)を実施する状態を示す概略図である。ろ過選択弁2a、排水弁6a、逆洗選択弁14、逆洗弁15を閉じ、逆洗ポンプ16を停止して、連通弁7を開にすると、水位差を利用して、第2の膜浸漬槽3bの底部に沈殿していた二酸化マンガン粒子/活性汚泥は第1の膜浸漬槽3aへと移送される。この間、第1の膜浸漬槽3aの水位が第2の膜浸漬槽3bの水位よりも低くなるように維持しながら二酸化マンガン粒子/活性汚泥の移送が行われる。次第に水位差がなくなっていくと、連通弁7を通過する水流が落ち、二酸化マンガン粒子/活性汚泥の移送効果も落ちることから、原水供給弁1bを開いて、原水を第2の膜浸漬槽3b内に供給するほうが水位差を確保できるので好ましい。   After performing the rinse process of the immersion type membrane module 4a in the 1st membrane immersion tank 3a, when performing chemical | medical cleaning of the immersion type membrane module 4b continuously, it is 1st film immersion from the 2nd film immersion tank 3b. A manganese dioxide / activated sludge transfer step (STEP 6) to the tank 3a is performed. FIG. 9 shows a state in which a manganese dioxide / activated sludge transfer step (STEP 6) is performed from the second membrane immersion tank 3b to the first membrane immersion tank 3a in the chemical cleaning method for the immersion type membrane modules 4a and 4b of the present invention. FIG. When the filtration selection valve 2a, the drain valve 6a, the backwash selection valve 14, and the backwash valve 15 are closed, the backwash pump 16 is stopped, and the communication valve 7 is opened, the second membrane is utilized by utilizing the water level difference. Manganese dioxide particles / activated sludge that has settled at the bottom of the immersion tank 3b is transferred to the first membrane immersion tank 3a. During this time, the transfer of manganese dioxide particles / activated sludge is performed while maintaining the water level of the first membrane immersion tank 3a to be lower than the water level of the second film immersion tank 3b. As the water level difference gradually disappears, the flow of water passing through the communication valve 7 falls and the transfer effect of manganese dioxide particles / activated sludge also falls, so the raw water supply valve 1b is opened and the raw water is fed into the second membrane immersion tank 3b. It is preferable to supply the inside because a difference in water level can be secured.

第2の膜浸漬槽3bの底部に沈殿していた二酸化マンガン粒子/活性汚泥を第1の膜浸漬槽3aへと移送した後、第2の膜浸漬槽3b内の浸漬型膜モジュール4bの薬品洗浄工程(STEP7)を実施する。図10は本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第2の膜浸漬槽3b内の浸漬型膜モジュール4bの薬品洗浄工程(STEP7)を実施する状態を示す概略図である。原水供給弁1bと連通弁7を閉じて、膜モジュール選択弁2b、逆洗弁15、薬品選択弁18を開いて、逆洗ポンプ16を稼働すると、薬品貯留槽17内の薬品で浸漬型膜モジュール4bの逆圧洗浄を実施する。第2の膜浸漬槽3b内の浸漬型膜モジュール4bの薬品洗浄工程(STEP7)の条件は第1の膜浸漬槽3a内の浸漬型膜モジュール4aの薬品洗浄工程(STEP4)と同等で構わない。   After the manganese dioxide particles / activated sludge precipitated at the bottom of the second membrane immersion tank 3b are transferred to the first membrane immersion tank 3a, the chemicals of the immersion membrane module 4b in the second membrane immersion tank 3b A cleaning step (STEP 7) is performed. FIG. 10 is a schematic view showing a state in which the chemical cleaning step (STEP 7) of the immersion type membrane module 4b in the second membrane immersion tank 3b is performed in the chemical cleaning method for the immersion type membrane modules 4a and 4b of the present invention. . When the raw water supply valve 1b and the communication valve 7 are closed, the membrane module selection valve 2b, the backwash valve 15 and the chemical selection valve 18 are opened, and the backwash pump 16 is operated, the chemical in the chemical reservoir 17 is immersed in the membrane. Back pressure cleaning of the module 4b is performed. The conditions of the chemical cleaning step (STEP 7) of the immersion type membrane module 4b in the second membrane immersion tank 3b may be the same as the chemical cleaning step (STEP 4) of the immersion type membrane module 4a in the first membrane immersion tank 3a. .

第2の膜浸漬槽3b内の浸漬型膜モジュール4bの薬品洗浄を実施した後、続けて第2の膜浸漬槽3b内の浸漬型膜モジュール4bのリンス工程を実施する。図11は本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第2の膜浸漬槽3b内の浸漬型膜モジュール4bのリンス工程(STEP8)を実施する状態を示す概略図である。薬品選択弁18を閉じて、逆洗選択弁14と排水弁6bを開いて、逆洗ポンプ16を稼働すると、ろ過水貯留槽13内の膜ろ過水を用いた浸漬型膜モジュール4bの逆圧洗浄を実施する。これにより浸漬型膜モジュール4bの二次側および膜面や膜細孔内に残留していた薬品が洗い落とされ、系外に排出される。第2の膜浸漬槽3b内の浸漬型膜モジュール4bのリンス工程(STEP8)の条件は第1の膜浸漬槽3a内の浸漬型膜モジュール4aの薬品洗浄工程(STEP5)と同等で構わない。   After the chemical cleaning of the immersion type membrane module 4b in the second membrane immersion tank 3b is performed, the rinsing process of the immersion type membrane module 4b in the second film immersion tank 3b is subsequently performed. FIG. 11 is a schematic view showing a state in which the rinsing step (STEP 8) of the immersion type membrane module 4b in the second membrane immersion tank 3b is performed in the chemical cleaning method for the immersion type membrane modules 4a and 4b of the present invention. When the chemical selection valve 18 is closed, the backwash selection valve 14 and the drain valve 6b are opened, and the backwash pump 16 is operated, the back pressure of the submerged membrane module 4b using the membrane filtrate in the filtrate storage tank 13 is increased. Perform cleaning. As a result, the chemicals remaining on the secondary side, the membrane surface, and the membrane pores of the submerged membrane module 4b are washed away and discharged out of the system. The condition of the rinsing step (STEP 8) of the immersion type membrane module 4b in the second membrane immersion tank 3b may be the same as the chemical cleaning step (STEP 5) of the immersion type membrane module 4a in the first membrane immersion tank 3a.

第2の膜浸漬槽3b内の浸漬型膜モジュール4bのリンス工程を実施した後、第1の膜浸漬槽3aから第2の膜浸漬槽3bへの二酸化マンガン/活性汚泥移送工程(STEP9)を実施する。図12は本発明の浸漬型膜モジュール4a、4bの薬品洗浄方法において、第1の膜浸漬槽3aから第2の膜浸漬槽3bへの二酸化マンガン/活性汚泥移送工程(STEP9)を実施する状態を示す概略図である。排水弁6bと逆洗弁15を閉じて、逆洗ポンプ16を停止した後、連通弁7を開にすると、水位差を利用して、第1の膜浸漬槽3aの底部に沈殿していた二酸化マンガン粒子/活性汚泥は第2の膜浸漬槽3bへと移送される。水位差がなくなった時点で連通弁7を閉じて終了する。   After carrying out the rinsing step of the submerged membrane module 4b in the second membrane dip bath 3b, the manganese dioxide / activated sludge transfer step (STEP 9) from the first membrane dip bath 3a to the second membrane dip bath 3b carry out. FIG. 12 shows a state in which the manganese dioxide / activated sludge transfer step (STEP 9) is performed from the first membrane immersion tank 3a to the second membrane immersion tank 3b in the chemical cleaning method for the immersion type membrane modules 4a and 4b of the present invention. FIG. When the drain valve 6b and the backwash valve 15 were closed and the backwash pump 16 was stopped, and the communication valve 7 was opened, it was precipitated at the bottom of the first membrane immersion tank 3a using the water level difference. Manganese dioxide particles / activated sludge is transferred to the second membrane immersion tank 3b. When the water level difference disappears, the communication valve 7 is closed and the process ends.

その後、原水が開状態の原水供給弁1a、1bを経て、膜浸漬槽3a、3b内に供給される。また酸化剤貯留槽10内に貯留されている塩素系酸化剤が酸化剤ポンプ9の動力で膜浸漬槽3a、3b内に供給される。さらに、ブロワー8を稼働して空気を送り込むことで浸漬型膜モジュール4a、4bの下方および/または側方に具備している散気管5a、5bから気泡が発生し、膜モジュール選択弁2a、2b、ろ過弁11が開の状態でろ過ポンプ12を稼働することで浸漬型膜モジュール4a、4bの吸引ろ過が再開される。   Then, raw | natural water is supplied in the film | membrane immersion tanks 3a and 3b through the raw | natural water supply valves 1a and 1b of an open state. Further, the chlorine-based oxidant stored in the oxidant storage tank 10 is supplied into the film immersion tanks 3 a and 3 b by the power of the oxidant pump 9. Further, by operating the blower 8 and feeding air, bubbles are generated from the diffuser tubes 5a and 5b provided below and / or on the side of the submerged membrane modules 4a and 4b, and the membrane module selection valves 2a and 2b. The suction filtration of the submerged membrane modules 4a and 4b is resumed by operating the filtration pump 12 with the filtration valve 11 open.

(実施例1)
図1に示すように、浸漬型膜モジュール4a、4bには東レ(株)製の分画分子量15万Daのポリフッ化ビニリデン製中空糸UF膜で膜面積が25mの浸漬型膜モジュール1本を用い、原水供給弁1a、1bと膜モジュール選択弁2a、2bとろ過弁11を開にして、ブロワー8と酸化剤ポンプ9とろ過ポンプ12を稼動して、浸漬型膜モジュール4a、4bの下方からエア流量20L/minの散気をしながら濁度0.3度、TOC1mg/l、マンガンイオン濃度0.13mg/lの地下水を膜ろ過流束1.5m/m/dで定流量ろ過した。酸化剤は次亜塩素酸ナトリウムを使用し、膜浸漬槽3a、3b内の塩素濃度が0.5mg/lになるように注入した。
Example 1
As shown in FIG. 1, the immersion membrane modules 4a and 4b include one immersion membrane module made of polyvinylidene fluoride hollow fiber UF membrane having a molecular weight cut off of 150,000 Da made by Toray Industries, Inc. and having a membrane area of 25 m 2. , The raw water supply valves 1a and 1b, the membrane module selection valves 2a and 2b and the filtration valve 11 are opened, the blower 8, the oxidant pump 9 and the filtration pump 12 are operated, and the submerged membrane modules 4a and 4b are operated. From below, groundwater with a turbidity of 0.3 degrees, TOC of 1 mg / l, manganese ion concentration of 0.13 mg / l was determined at a membrane filtration flux of 1.5 m 3 / m 2 / d while aeration at an air flow rate of 20 L / min. The flow rate was filtered. As the oxidizing agent, sodium hypochlorite was used and injected so that the chlorine concentration in the film immersion tanks 3a and 3b was 0.5 mg / l.

浸漬型膜モジュール4a、4bは30minろ過した後、酸化剤ポンプ9、ろ過ポンプ12を停止して、原水供給弁1a、1b、ろ過弁11を閉にした後、逆洗選択弁14が開、薬品選択弁18が閉であることを確認後、逆洗弁15を開にして、逆洗ポンプ16を稼動させることで、流束1.5m/m/dの逆圧洗浄と浸漬型膜モジュール4a、4bの下方からエア流量60L/minの空気洗浄を同時に1min実施した。ブロワー8と逆洗ポンプ16を停止して、逆洗弁15を閉にした後、排水弁6a、6bを開き、排水工程を実施した。排水量は逆洗水量の2倍の52Lとした。 After the immersion type membrane modules 4a and 4b are filtered for 30 minutes, the oxidant pump 9 and the filtration pump 12 are stopped, the raw water supply valves 1a and 1b and the filtration valve 11 are closed, and the backwash selection valve 14 is opened. After confirming that the medicine selection valve 18 is closed, the backwash valve 15 is opened and the backwash pump 16 is operated, so that the back pressure washing with a flux of 1.5 m 3 / m 2 / d and the immersion type are performed. Air cleaning at an air flow rate of 60 L / min was simultaneously performed for 1 min from below the membrane modules 4a and 4b. After the blower 8 and the backwash pump 16 were stopped and the backwash valve 15 was closed, the drainage valves 6a and 6b were opened, and the drainage process was performed. The amount of drainage was 52 L, twice the amount of backwash water.

排水弁6a、6bを閉とすることで排水工程を終了した後、原水供給弁1a、1bが開となり、酸化剤ポンプ9が稼動して給水工程が行われ、浸漬型膜モジュール4a、4bを水中に浸漬した後、ろ過弁11を開にし、ろ過ポンプ12とブロワー8を稼働することで、ろ過工程に戻り、上記工程を繰り返した。運転開始時の膜ろ過差圧は20kPaであったが3ヶ月後には65kPaに到達したため、STEP1〜9の薬品洗浄を実施した。   After the drainage process is completed by closing the drainage valves 6a and 6b, the raw water supply valves 1a and 1b are opened, the oxidant pump 9 is operated, the water supply process is performed, and the submerged membrane modules 4a and 4b are connected. After being immersed in water, the filtration valve 11 was opened, and the filtration pump 12 and the blower 8 were operated to return to the filtration step, and the above steps were repeated. Although the membrane filtration differential pressure at the start of operation was 20 kPa, it reached 65 kPa after 3 months, so chemical cleaning of STEP 1 to 9 was performed.

STEP1では、ろ過工程から酸化剤ポンプ9、ろ過ポンプ12を停止して、原水供給弁1a、1b、ろ過弁11を閉にした。その後、膜浸漬槽3a、3b内には凝集剤の塩化第二鉄を1mg−Fe/l注入し、膜浸漬槽3a、3b内のpHが8になるよう水酸化ナトリウムを注入し、ブロワー8を稼働して、浸漬型膜モジュール4a、4bの下方からエア量60Lの曝気攪拌を2min実施した。その後、ブロワー8を停止し、5min放置した。   In STEP1, the oxidant pump 9 and the filtration pump 12 were stopped from the filtration step, and the raw water supply valves 1a and 1b and the filtration valve 11 were closed. Thereafter, 1 mg-Fe / l of a coagulant ferric chloride is injected into the film immersion tanks 3a and 3b, sodium hydroxide is injected so that the pH in the film immersion tanks 3a and 3b is 8, and the blower 8 Was operated, and aeration and stirring with an air amount of 60 L were performed for 2 min from below the submerged membrane modules 4a and 4b. Thereafter, the blower 8 was stopped and left for 5 minutes.

STEP2では、膜モジュール選択弁2aを閉にし、ろ過弁11を開にして、ろ過ポンプ12を稼働して、膜浸漬槽3aと3bの水位差が1mになるまで浸漬型膜モジュール4bで吸引ろ過した。   In STEP2, the membrane module selection valve 2a is closed, the filtration valve 11 is opened, the filtration pump 12 is operated, and suction filtration is performed with the immersion type membrane module 4b until the water level difference between the membrane immersion tanks 3a and 3b becomes 1 m. did.

STEP3では、膜モジュール選択弁2bとろ過弁11と逆洗選択弁14を閉にして、ろ過ポンプ12を停止し、連通弁7を開にした。また、原水供給弁1aを開いて、膜浸漬槽3aの水位を維持させ、水位差が0.3mになった時点で連通弁7を閉じた。   In STEP 3, the membrane module selection valve 2b, the filtration valve 11, and the backwash selection valve 14 were closed, the filtration pump 12 was stopped, and the communication valve 7 was opened. Moreover, the raw water supply valve 1a was opened, the water level of the membrane immersion tank 3a was maintained, and the communication valve 7 was closed when the water level difference became 0.3 m.

STEP4では、原水供給弁1aを閉じて、膜モジュール選択弁2a、逆洗弁15、薬品選択弁18を開いて、逆洗ポンプ16を稼働し、薬品貯留槽17内の薬品で浸漬型膜モジュール4aの逆圧洗浄を流束1.5m/m/dで2min実施した。薬品貯留槽17内の薬品としてはクエン酸1%を使用した。その後、逆洗ポンプ16を停止して、10min放置した。 In STEP 4, the raw water supply valve 1 a is closed, the membrane module selection valve 2 a, the backwash valve 15, and the chemical selection valve 18 are opened, the backwash pump 16 is operated, and the submerged membrane module is operated with the chemical in the chemical reservoir 17. The back pressure washing of 4a was performed at a flux of 1.5 m 3 / m 2 / d for 2 min. As the chemical in the chemical storage tank 17, 1% citric acid was used. Thereafter, the backwash pump 16 was stopped and left for 10 minutes.

STEP5では、薬品選択弁18を閉じて、逆洗選択弁14と排水弁6aを開いて、逆洗ポンプ16を稼働し、ろ過水貯留槽13内の膜ろ過水を用いた浸漬型膜モジュール4aの逆圧洗浄を流束1.5m/m/dで10min実施した。 In STEP5, the chemical selection valve 18 is closed, the backwash selection valve 14 and the drain valve 6a are opened, the backwash pump 16 is operated, and the submerged membrane module 4a using the membrane filtrate in the filtrate storage tank 13 is used. Was carried out at a flux of 1.5 m 3 / m 2 / d for 10 min.

STEP6では、ろ過選択弁2a、排水弁6a、逆洗選択弁14、逆洗弁15を閉じ、逆洗ポンプ16を停止して、連通弁7を開にした。また、原水供給弁1bを開いて、膜浸漬槽3aの水位を維持させ、水位差が0.3mになった時点で連通弁7を閉じた。   In STEP 6, the filtration selection valve 2a, the drain valve 6a, the backwash selection valve 14, and the backwash valve 15 were closed, the backwash pump 16 was stopped, and the communication valve 7 was opened. Further, the raw water supply valve 1b was opened to maintain the water level in the membrane immersion tank 3a, and the communication valve 7 was closed when the water level difference became 0.3 m.

STEP7では、原水供給弁1bを閉じて、膜モジュール選択弁2b、逆洗弁15、薬品選択弁18を開いて、逆洗ポンプ16を稼働し、薬品貯留槽17内の薬品で浸漬型膜モジュール4aの逆圧洗浄を流束1.5m/m/dで2min実施した。薬品貯留槽17内の薬品としてはクエン酸1%を使用した。その後、逆洗ポンプ16を停止して、10min放置した。 In STEP 7, the raw water supply valve 1 b is closed, the membrane module selection valve 2 b, the backwash valve 15, and the chemical selection valve 18 are opened, the backwash pump 16 is operated, and the submerged membrane module is operated with the chemical in the chemical reservoir 17. The back pressure washing of 4a was performed at a flux of 1.5 m 3 / m 2 / d for 2 min. As the chemical in the chemical storage tank 17, 1% citric acid was used. Thereafter, the backwash pump 16 was stopped and left for 10 minutes.

STEP8では、薬品選択弁18を閉じて、逆洗選択弁14と排水弁6bを開いて、逆洗ポンプ16を稼働し、ろ過水貯留槽13内の膜ろ過水を用いた浸漬型膜モジュール4bの逆圧洗浄を流束1.5m/m/dで10min実施した。 In STEP8, the chemical selection valve 18 is closed, the backwash selection valve 14 and the drain valve 6b are opened, the backwash pump 16 is operated, and the submerged membrane module 4b using the membrane filtrate in the filtrate storage tank 13 is used. Was carried out at a flux of 1.5 m 3 / m 2 / d for 10 min.

STEP9では、排水弁6bと逆洗弁15を閉じて、逆洗ポンプ16を停止した後、連通弁7を開にした。その後、水位差がなくなった時点で連通弁7を閉じて終了した。   In STEP 9, the drain valve 6b and the backwash valve 15 were closed, the backwash pump 16 was stopped, and then the communication valve 7 was opened. Thereafter, when the water level difference disappeared, the communication valve 7 was closed and the process was terminated.

その後、原水が開状態の原水供給弁1a、1bを経て、膜浸漬槽3a、3b内に供給し、また酸化剤貯留槽10内に貯留されている塩素系酸化剤が酸化剤ポンプ9の動力で膜浸漬槽3a、3b内に供給し、さらに、ブロワー8を稼働して、浸漬型膜モジュール4a、4bの下方からエア流量20L/minの散気をし、膜モジュール選択弁2a、2b、ろ過弁11が開の状態でろ過ポンプ12を稼働することで、膜ろ過流束1.5m/m/dの定流量ろ過を再開した。 Thereafter, the raw water is supplied into the membrane immersion tanks 3 a and 3 b through the raw water supply valves 1 a and 1 b in the open state, and the chlorine-based oxidant stored in the oxidant storage tank 10 is used as the power of the oxidant pump 9. In the membrane immersion tanks 3a and 3b, the blower 8 is further operated to diffuse air at a flow rate of 20 L / min from below the immersion membrane modules 4a and 4b, and the membrane module selection valves 2a, 2b, By operating the filtration pump 12 with the filtration valve 11 open, the constant flow filtration of the membrane filtration flux 1.5 m 3 / m 2 / d was resumed.

その結果、浸漬型膜モジュール4a、4bの膜ろ過差圧は薬品洗浄前の65kPaから22kPaに回復した。また、その後のろ過工程における膜ろ過水のマンガン濃度は0.02mg/lとなり、水道水質基準を満たしていた。   As a result, the membrane filtration differential pressure of the submerged membrane modules 4a and 4b recovered from 65 kPa before chemical cleaning to 22 kPa. Further, the manganese concentration of the membrane filtrate in the subsequent filtration step was 0.02 mg / l, which satisfied the tap water quality standard.

(実施例2)
図1に示すように、浸漬型膜モジュール4a、4bには東レ(株)製の公称孔径0.08μmのポリフッ化ビニリデン製MF膜で膜面積が1.4mの浸漬型平膜モジュール200枚を用い、原水供給弁1a、1bと膜モジュール選択弁2a、2bとろ過弁11を開にして、ブロワー8を稼動して、浸漬型膜モジュール4a、4bの下方からエア流量3m/minの散気をしながらBOD230mg/lの下水を膜ろ過流束0.6m/m/dで定流量ろ過した。ろ過動力としては実施例1のようなろ過ポンプ12を用いず、膜浸漬槽3a、3bとろ過水貯留槽13の水位差を利用したサイフォンの原理で吸引ろ過した。酸化剤ポンプ9による酸化剤の注入はしなかった。
(Example 2)
As shown in FIG. 1, the immersion membrane modules 4a and 4b include 200 immersion flat membrane modules made of polyvinylidene fluoride having a nominal pore size of 0.08 μm and a membrane area of 1.4 m 2 made by Toray Industries, Inc. , The raw water supply valves 1a, 1b, the membrane module selection valves 2a, 2b, and the filtration valve 11 are opened, the blower 8 is operated, and an air flow rate of 3 m 3 / min from below the submerged membrane modules 4a, 4b. The sewage of 230 mg / l BOD was filtered at a constant flow rate with a membrane filtration flux of 0.6 m 3 / m 2 / d with aeration. As filtration power, the filtration pump 12 as in Example 1 was not used, and suction filtration was performed based on the siphon principle using the water level difference between the membrane immersion tanks 3a and 3b and the filtrate storage tank 13. The oxidant was not injected by the oxidant pump 9.

実施例1のように定期的にろ過工程を停止して逆圧洗浄を実施せず、ろ過を継続した。また、膜浸漬槽3a、3b内のMLSS濃度が常時8,000〜12,000mg/lを維持するよう、定期的にろ過工程中に排水弁6a、6bを開き、一部の活性汚泥を系外に排出した。   The filtration process was periodically stopped as in Example 1 and back-pressure washing was not performed, and filtration was continued. In addition, the drain valves 6a and 6b are periodically opened during the filtration process so that the MLSS concentration in the membrane immersion tanks 3a and 3b is constantly maintained at 8,000 to 12,000 mg / l, and some activated sludge is used as a system. Discharged outside.

運転開始時の膜ろ過差圧は5kPaであったが、1年後には浸漬型膜モジュール4aのみ差圧上限の20kPaに到達したため、STEP1〜5の薬品洗浄を実施した。   Although the membrane filtration differential pressure at the start of operation was 5 kPa, only the submerged membrane module 4a reached 20 kPa, which is the upper limit of the differential pressure after one year.

STEP1では、ろ過工程から原水供給弁1a、1b、ろ過弁11を閉にした。その後、膜浸漬槽3a、3b内には凝集剤のMBR用汚泥改質剤MPE―50(ナルコ社製カチオン系凝集剤)をMLSS単位あたり2.0重量%の濃度になるように注入し、ブロワー8を稼働して、浸漬型膜モジュール4a、4bの下方からエア量60Lの曝気攪拌を2min実施した。その後、ブロワー8を停止し、10min放置した。   In STEP1, the raw water supply valves 1a and 1b and the filtration valve 11 were closed from the filtration step. Thereafter, flocculant MBR sludge modifier MPE-50 (Nalco's cationic flocculant) is injected into the membrane immersing tanks 3a and 3b to a concentration of 2.0% by weight per MLSS unit. The blower 8 was operated, and aeration and stirring with an air amount of 60 L were performed for 2 min from below the submerged membrane modules 4a and 4b. Thereafter, the blower 8 was stopped and left for 10 minutes.

STEP2では、膜モジュール選択弁2aを閉にし、ろ過弁11を開にして、膜浸漬槽3aと3bの水位差が0.6mになるまで浸漬型膜モジュール4bで吸引ろ過した。   In STEP 2, the membrane module selection valve 2a was closed, the filtration valve 11 was opened, and suction filtration was performed with the submerged membrane module 4b until the water level difference between the membrane immersion tanks 3a and 3b became 0.6 m.

STEP3では、膜モジュール選択弁2bとろ過弁11と逆洗選択弁14を閉にして、連通弁7を開にした。また、原水供給弁1aを開いて、膜浸漬槽3aの水位を維持させ、水位差が0.3mになった時点で連通弁7を閉じた。   In STEP 3, the membrane module selection valve 2b, the filtration valve 11, and the backwash selection valve 14 are closed, and the communication valve 7 is opened. Moreover, the raw water supply valve 1a was opened, the water level of the membrane immersion tank 3a was maintained, and the communication valve 7 was closed when the water level difference became 0.3 m.

STEP4では、原水供給弁1aを閉じて、膜モジュール選択弁2a、逆洗弁15、薬品選択弁18を開いて、逆洗ポンプ16を稼働し、薬品貯留槽17内の薬品で浸漬型膜モジュール4aの逆圧洗浄を流束0.3m/m/dで10min実施した。薬品貯留槽17内の薬品として次亜塩素酸ナトリウム5,000mg/lを使用した。その後、逆洗ポンプ16を停止して、30min放置した。 In STEP 4, the raw water supply valve 1 a is closed, the membrane module selection valve 2 a, the backwash valve 15, and the chemical selection valve 18 are opened, the backwash pump 16 is operated, and the submerged membrane module is operated with the chemical in the chemical reservoir 17. The back pressure washing of 4a was performed at a flux of 0.3 m 3 / m 2 / d for 10 min. Sodium hypochlorite 5,000 mg / l was used as the chemical in the chemical reservoir 17. Thereafter, the backwash pump 16 was stopped and left for 30 minutes.

STEP5では、薬品選択弁18を閉じて、逆洗選択弁14と排水弁6aを開いて、逆洗ポンプ16を稼働し、ろ過水貯留槽13内の膜ろ過水を用いた浸漬型膜モジュール4aの逆圧洗浄を流束0.3m/m/dで10min実施した。 In STEP5, the chemical selection valve 18 is closed, the backwash selection valve 14 and the drain valve 6a are opened, the backwash pump 16 is operated, and the submerged membrane module 4a using the membrane filtrate in the filtrate storage tank 13 is used. Was carried out at a flux of 0.3 m 3 / m 2 / d for 10 min.

その後、排水弁6aと逆洗弁15を閉じて、逆洗ポンプ16を停止した後、ブロワー8を稼働して散気し、膜浸漬槽3b内の活性汚泥が均一濃度になるよう攪拌し、連通弁7を開にした。水位差がなくなった時点で連通弁7を閉じた。   Then, after closing the drain valve 6a and the backwash valve 15 and stopping the backwash pump 16, the blower 8 is operated and diffused, and the activated sludge in the membrane immersion tank 3b is stirred so as to have a uniform concentration. The communication valve 7 was opened. When the water level difference disappeared, the communication valve 7 was closed.

さらに、原水が開状態の原水供給弁1a、1bを経て、膜浸漬槽3a、3b内に供給し、ブロワー8を稼働した状態で、浸漬型膜モジュール4a、4bの下方からエア流量3m/minの散気をし、膜モジュール選択弁2a、2b、ろ過弁11を開とすることで、膜ろ過流束0.6m/m/dの定流量ろ過を再開した。 Further, the raw water is supplied into the membrane immersion tanks 3a and 3b through the raw water supply valves 1a and 1b in the open state, and the blower 8 is operated, and the air flow rate is 3 m 3 / from below the immersion type membrane modules 4a and 4b. A constant flow rate filtration with a membrane filtration flux of 0.6 m 3 / m 2 / d was resumed by aeration of min and opening the membrane module selection valves 2 a and 2 b and the filtration valve 11.

その結果、浸漬型膜モジュール4aの膜ろ過差圧は薬品洗浄前の20kPaから5kPaに回復した。また、その後のろ過工程における膜ろ過水のBODは5mg/lとなり、下水道水質基準を満たしていた。   As a result, the membrane filtration differential pressure of the submerged membrane module 4a recovered from 20 kPa before chemical cleaning to 5 kPa. In addition, the BOD of the membrane filtrate in the subsequent filtration step was 5 mg / l, which met the sewer water quality standard.

(比較例1)
薬品洗浄においてSTEP1を実施しなかった以外は、実施例1と全く同じにした。
(Comparative Example 1)
Except for not carrying out STEP 1 in chemical cleaning, it was exactly the same as Example 1.

その結果、浸漬型膜モジュール4aの膜ろ過差圧は薬品洗浄前の65kPaから22kPaに回復したものの、浸漬型膜モジュール4bの膜ろ過差圧は薬品洗浄前の65kPaから48kPa程度にしか回復しなかった。その後のろ過工程における膜ろ過水のマンガン濃度は0.04mg/lとなり、水道水質基準を満たしていた。   As a result, the membrane filtration differential pressure of the submerged membrane module 4a recovered from 65 kPa before chemical cleaning to 22 kPa, but the membrane filtration differential pressure of the submerged membrane module 4b recovered only from 65 kPa before chemical cleaning to about 48 kPa. It was. The manganese concentration of the membrane filtrate in the subsequent filtration step was 0.04 mg / l, which satisfied the tap water quality standard.

(比較例2)
薬品洗浄において連通弁を常時閉じ、STEP1、STEP2、STEP3、STEP6、STEP9を実施しなかった以外は、実施例1と全く同じにした。
(Comparative Example 2)
In chemical cleaning, the communication valve was always closed, and STEP 1, STEP 2, STEP 3, STEP 6, and STEP 9 were not carried out.

その結果、浸漬型膜モジュール4a、4bの膜ろ過差圧は薬品洗浄前の65kPaから35kPaに回復したものの、その後のろ過工程における膜ろ過水のマンガン濃度は0.09mg/lとなり、水道水質基準を満たすことはできなかった。   As a result, although the membrane filtration differential pressure of the submerged membrane modules 4a and 4b recovered from 65 kPa before chemical cleaning to 35 kPa, the manganese concentration of membrane filtration water in the subsequent filtration step was 0.09 mg / l, which is the standard for tap water quality Could not meet.

(比較例3)
薬品洗浄においてSTEP1を実施しなかった以外は、実施例2と全く同じにした。
(Comparative Example 3)
Except that STEP 1 was not performed in chemical cleaning, it was exactly the same as Example 2.

その結果、浸漬型膜モジュール4aの膜ろ過差圧は薬品洗浄前の20kPaから6kPaに回復したものの、浸漬型膜モジュール4bの膜ろ過差圧は薬品洗浄前の15kPaから22kPaに上昇しており、すぐに薬品洗浄せざるをえなかった。その後のろ過工程における膜ろ過水のBODは5mg/lとなり、下水道水質基準を満たしていた。   As a result, the membrane filtration differential pressure of the submerged membrane module 4a recovered from 20 kPa before chemical cleaning to 6 kPa, but the membrane filtration differential pressure of the submerged membrane module 4b increased from 15 kPa before chemical cleaning to 22 kPa. I had to wash the chemicals immediately. The BOD of membrane filtrate in the subsequent filtration step was 5 mg / l, which met the sewer water quality standard.

(比較例4)
薬品洗浄において連通弁を常時閉じ、STEP1、STEP2、STEP3を実施しなかった以外は、実施例2と全く同じにした。
(Comparative Example 4)
In the chemical cleaning, the communication valve was always closed and STEP1, STEP2, and STEP3 were not performed, and the procedure was exactly the same as in Example 2.

その結果、浸漬型膜モジュール4aの膜ろ過差圧は薬品洗浄前の20kPaから6kPaに回復したものの、その後のろ過工程における膜ろ過水のBODは120mg/lとなり、下水道水質基準を満たすことはできなかった。
As a result, although the membrane filtration differential pressure of the submerged membrane module 4a recovered from 20 kPa before chemical cleaning to 6 kPa, the BOD of membrane filtration water in the subsequent filtration step was 120 mg / l, which cannot meet the sewer water quality standard. There wasn't.

1a、1b:原水供給弁
2a、2b:膜モジュール選択弁
3a、3b:膜浸漬槽
4a、4b:浸漬型膜モジュール
5a、5b:散気管
6a、6b:排水弁
7 :連通弁
8 :ブロワー
9 :酸化剤ポンプ
10 :酸化剤貯留槽
11 :ろ過弁
12 :ろ過ポンプ
13 :ろ過水貯留槽
14 :逆洗選択弁
15 :逆洗弁
16 :逆洗ポンプ
17 :薬品貯留槽
18 :薬品選択弁
1a, 1b: Raw water supply valve 2a, 2b: Membrane module selection valve 3a, 3b: Membrane immersion tank 4a, 4b: Immersion membrane module 5a, 5b: Air diffuser 6a, 6b: Drain valve 7: Communication valve 8: Blower 9 : Oxidant pump 10: Oxidant reservoir 11: Filtration valve 12: Filtration pump 13: Filtrated water reservoir 14: Backwash selection valve 15: Backwash valve 16: Backwash pump 17: Chemical reservoir 18: Chemical selection valve

Claims (7)

0.05mg/L以上のマンガンイオンを含有する原水に塩素系酸化剤を添加して、浸漬型膜モジュールの下方および/または側方から散気しながら、複数の浸漬型膜モジュールでろ過する水処理方法において、複数の膜浸漬槽内の浸漬型膜モジュールを順次薬品に接触させる浸漬型膜モジュールの薬品洗浄方法であって、原水と塩素系酸化剤の膜浸漬槽内への導入と散気を停止して、膜浸漬槽内の二酸化マンガンを沈殿させた後、第2の膜浸漬槽内の水を浸漬型膜モジュールでろ過して、第2の膜浸漬槽内の水位を低下させ、さらに第2の膜浸漬槽内の水位が第1の膜浸漬槽内の水位よりも低くなるように維持しながら第1の膜浸漬槽内下部の二酸化マンガンを膜浸漬槽下部の連通部分を通じて第2の膜浸漬槽内に移送し、その後第1の膜浸漬槽内の浸漬型膜モジュールを薬品に接触させる浸漬型膜モジュールの薬品洗浄方法。   Water filtered through a plurality of submerged membrane modules while adding a chlorinated oxidant to raw water containing 0.05 mg / L or more manganese ions and diffusing from below and / or from the side of the submerged membrane module In the treatment method, the submerged membrane module in a plurality of submerged baths is sequentially contacted with the chemical by a chemical cleaning method, wherein raw water and a chlorine-based oxidizing agent are introduced into the membrane submerged bath and diffused. , And after precipitating manganese dioxide in the membrane immersion tank, the water in the second membrane immersion tank is filtered through an immersion membrane module to reduce the water level in the second membrane immersion tank, Further, while maintaining the water level in the second film immersion tank to be lower than the water level in the first film immersion tank, the manganese dioxide in the lower part of the first film immersion tank is passed through the communicating part at the lower part of the film immersion tank. 2 is transferred into the film immersion tank, and then the first film Chemical cleaning method of the submerged membrane module contacting the submerged membrane module in 漬槽 medicals. 浸漬型膜モジュールと活性汚泥を浸漬させた膜浸漬槽内に原水を供給し、該浸漬型膜モジュールの下方および/または側方から散気しながら、複数の浸漬型膜モジュールでろ過する水処理方法において、複数の膜浸漬槽内の浸漬型膜モジュールを順次薬品に接触させる浸漬型膜モジュールの薬品洗浄方法であって、原水の膜浸漬槽内への導入と散気を停止して、膜浸漬槽内の活性汚泥を沈殿させた後、第2の膜浸漬槽内の水を浸漬型膜モジュールでろ過して、第2の膜浸漬槽内の水位を低下させ、さらに第2の膜浸漬槽内の水位が第1の膜浸漬槽内の水位よりも低くなるように維持しながら第1の膜浸漬槽内下部の活性汚泥を膜浸漬槽下部の連通部分を通じて第2の膜浸漬槽内に移送し、その後第1の膜浸漬槽内の浸漬型膜モジュールを薬品に接触させる浸漬型膜モジュールの薬品洗浄方法。   Water treatment in which raw water is supplied into a membrane immersion tank in which an immersion membrane module and activated sludge are immersed, and filtered through a plurality of immersion membrane modules while being diffused from below and / or from the side of the immersion membrane module In the method, the submerged membrane module in the plurality of membrane immersing tanks is sequentially contacted with the chemical by the chemical cleaning method of the submerged membrane module, and the introduction and diffusion of the raw water into the membrane immersing tank is stopped and the membrane is stopped. After precipitating the activated sludge in the immersion tank, the water in the second membrane immersion tank is filtered through an immersion membrane module to lower the water level in the second membrane immersion tank, and the second membrane immersion While maintaining the water level in the tank to be lower than the water level in the first membrane immersion tank, the activated sludge in the lower part of the first film immersion tank is passed through the communicating part in the lower part of the film immersion tank and in the second film immersion tank. And then the immersion membrane module in the first membrane immersion tank Chemical cleaning method of the immersion type membrane module of contacting. 第1の膜浸漬槽内の浸漬型膜モジュールを薬品に接触させた後、さらに、第1の膜浸漬槽内の水位を低下させ、さらに第1の膜浸漬槽内の水位が第2の膜浸漬槽内の水位よりも低くなるように維持しながら第2の膜浸漬槽内下部の二酸化マンガンあるいは活性汚泥を膜浸漬槽下部の連通部分を通じて第1の膜浸漬槽内に移送し、その後第2の膜浸漬槽内の浸漬型膜モジュールを薬品に接触させる、請求項1または2に記載の浸漬型膜モジュールの薬品洗浄方法。   After the immersion membrane module in the first membrane immersion tank is brought into contact with the chemical, the water level in the first membrane immersion tank is further lowered, and the water level in the first membrane immersion tank is further reduced to the second membrane. The manganese dioxide or activated sludge in the lower part of the second membrane soaking tank is transferred to the first membrane soaking tank through the communicating part at the lower part of the membrane soaking tank while maintaining the water level lower than the water level in the soaking tank. The chemical | medical agent washing | cleaning method of the immersion type membrane module of Claim 1 or 2 which makes a chemical | medical agent contact the immersion type membrane module in 2 membrane immersion tanks. 薬品がクエン酸、シュウ酸、亜硫酸イオン、亜硫酸水素イオン、チオ硫酸イオンからなる群から選ばれる少なくとも1種類を含む、請求項1〜3のいずれかに記載の浸漬型膜モジュールの薬品洗浄方法。   The chemical cleaning method for a submerged membrane module according to any one of claims 1 to 3, wherein the chemical includes at least one selected from the group consisting of citric acid, oxalic acid, sulfite ions, hydrogen sulfite ions, and thiosulfate ions. 凝集剤および/またはpH調整剤を添加して、膜浸漬槽内の二酸化マンガンあるいは活性汚泥を沈殿させる、請求項1〜4のいずれかに記載の浸漬型膜モジュールの薬品洗浄方法。   The chemical cleaning method for an immersion type membrane module according to any one of claims 1 to 4, wherein a flocculant and / or a pH adjusting agent is added to precipitate manganese dioxide or activated sludge in the membrane immersion tank. 薬品で逆圧洗浄することにより浸漬型膜モジュールを薬品に接触させる、請求項1〜5のいずれかに記載の浸漬型膜モジュールの薬品洗浄方法。   The chemical cleaning method for a submerged membrane module according to any one of claims 1 to 5, wherein the submerged membrane module is brought into contact with the chemical by reverse pressure cleaning with the chemical. 薬品で逆圧洗浄後に一定時間放置し、さらに清澄水で逆圧洗浄する、請求項6に記載の浸漬型膜モジュールの薬品洗浄方法。   The method for cleaning a submerged membrane module according to claim 6, wherein the submerged membrane module is left to stand for a certain period of time after backwashing with a chemical, and further backwashed with clear water.
JP2010233241A 2010-10-18 2010-10-18 Method for washing immersion type membrane module with chemical Pending JP2012086120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233241A JP2012086120A (en) 2010-10-18 2010-10-18 Method for washing immersion type membrane module with chemical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233241A JP2012086120A (en) 2010-10-18 2010-10-18 Method for washing immersion type membrane module with chemical

Publications (1)

Publication Number Publication Date
JP2012086120A true JP2012086120A (en) 2012-05-10

Family

ID=46258355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233241A Pending JP2012086120A (en) 2010-10-18 2010-10-18 Method for washing immersion type membrane module with chemical

Country Status (1)

Country Link
JP (1) JP2012086120A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332784A (en) * 2013-07-30 2013-10-02 许中华 Three-stage circulation aerobic reactor
CN105417616A (en) * 2015-11-26 2016-03-23 湖北工业大学 Method for using industrial residue manganese dioxide for treating organic waste water
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
JP6644211B1 (en) * 2019-06-18 2020-02-12 三菱電機株式会社 Water treatment device and water treatment method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332784A (en) * 2013-07-30 2013-10-02 许中华 Three-stage circulation aerobic reactor
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
CN105417616A (en) * 2015-11-26 2016-03-23 湖北工业大学 Method for using industrial residue manganese dioxide for treating organic waste water
JP6644211B1 (en) * 2019-06-18 2020-02-12 三菱電機株式会社 Water treatment device and water treatment method
WO2020255251A1 (en) * 2019-06-18 2020-12-24 三菱電機株式会社 Water treatment device and water treatment method
CN113993611A (en) * 2019-06-18 2022-01-28 三菱电机株式会社 Water treatment device and water treatment method
CN113993611B (en) * 2019-06-18 2024-09-13 三菱电机株式会社 Water treatment device and water treatment method

Similar Documents

Publication Publication Date Title
TWI494281B (en) Apparatus for treating organic waste water
AU2011233096B2 (en) Method for cleaning separation membrane module, and method for fresh water generation
JP5933854B1 (en) Method and apparatus for cleaning filtration membrane of water to be treated, and water treatment system
US20020003116A1 (en) System and method for removal of arsenic from aqueous solutions
JP5453711B2 (en) Cleaning method for external pressure hollow fiber membrane module
CN106103349A (en) Method for treating water
JPH1015365A (en) Method for cleaning membrane
WO2015156242A1 (en) Water treatment method and water treatment apparatus each using membrane
CN107253798A (en) A kind of advanced treatment and reclamation group technology of wastewater of steel industry
JP2015077530A (en) Water production method and water production device
JP2012239947A (en) Water treatment method and water treatment apparatus
JP2014057931A (en) Water production method
JP2010227836A (en) Method for operating film module
JP2009006209A (en) Cleaning method of hollow fiber membrane module
JP2012086120A (en) Method for washing immersion type membrane module with chemical
JP5181987B2 (en) Cleaning method for submerged membrane module
JP2014061486A (en) Water treatment method and water treatment system
JP2013202481A (en) Cleaning method of separation membrane module
JP2014065008A (en) Water treatment method and water treatment system
JP5001923B2 (en) Water treatment apparatus and water treatment method
JP2012086182A (en) Water treatment method and water treatment device
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2015085206A (en) Separation membrane module cleaning method
JP2009160512A (en) Wastewater treatment method of membrane filtration apparatus
JP5059469B2 (en) Method for treating treated water containing iron