JP5059469B2 - Method for treating treated water containing iron - Google Patents

Method for treating treated water containing iron Download PDF

Info

Publication number
JP5059469B2
JP5059469B2 JP2007101485A JP2007101485A JP5059469B2 JP 5059469 B2 JP5059469 B2 JP 5059469B2 JP 2007101485 A JP2007101485 A JP 2007101485A JP 2007101485 A JP2007101485 A JP 2007101485A JP 5059469 B2 JP5059469 B2 JP 5059469B2
Authority
JP
Japan
Prior art keywords
membrane
iron
water
treated
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007101485A
Other languages
Japanese (ja)
Other versions
JP2008253954A (en
Inventor
直也 官野
正和 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2007101485A priority Critical patent/JP5059469B2/en
Publication of JP2008253954A publication Critical patent/JP2008253954A/en
Application granted granted Critical
Publication of JP5059469B2 publication Critical patent/JP5059469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、分離膜が設置された膜分離処理槽により、特に、地下水、湧水、伏流水などの鉄、マンガンを含む被処理水、或いは、鉄系凝集剤が添加された活性汚泥排水、生活排水のような有機性排水を処理する方法に関するものである。   The present invention is a membrane separation treatment tank in which a separation membrane is installed, in particular, groundwater, spring water, treated water containing manganese such as underground water, or activated sludge drainage to which an iron-based flocculant is added, The present invention relates to a method for treating organic wastewater such as domestic wastewater.

従来、地下水、湧水、伏流水に含まれる鉄、マンガン、または、産業排水に含まれる鉄が問題となっている。鉄は人体に必須元素であるが、一定量を越えると有害となり、水質基準では0.3mg/L以下と基準が定められている。   Conventionally, iron contained in groundwater, spring water, underground water, manganese, or iron contained in industrial wastewater has been a problem. Iron is an essential element for the human body, but if it exceeds a certain amount, it becomes harmful, and the water quality standard is set at 0.3 mg / L or less.

このような問題を解決する方法として、被処理水を酸化し、不溶性の酸化鉄、水酸化鉄として、固液分離する方法が広く実施されている。固液分離方法としては、砂濾過や凝集沈殿法などが行われている。しかし、このような固液分離の方法では、得られる処理水のSS(浮遊物質)濃度が高くなり易いという問題や、クリプトスポリジウムなどの原虫類が除去されないという安全性の問題、また、広大な敷地を要するといった設備的な問題も存在する。   As a method for solving such a problem, a method of solid-liquid separation by oxidizing water to be treated to form insoluble iron oxide or iron hydroxide is widely practiced. As a solid-liquid separation method, sand filtration, coagulation sedimentation, or the like is performed. However, in such a solid-liquid separation method, the SS (floating matter) concentration of the treated water to be obtained tends to be high, protozoa such as Cryptosporidium are not removed, and a vast There is also a facility problem that requires a site.

そこで、精密濾過膜、限外濾過膜等の分離膜を備えた分離膜モジュール(膜分離装置)を用いて、不溶性の酸化鉄、水酸化鉄を含む被処理水を固液分離する方法が種々検討されている。このような分離膜を用いて被処理水を濾過処理すると、SS(浮遊物質)を殆ど含まず、安全な処理水が得られる。   Therefore, there are various methods for solid-liquid separation of water to be treated containing insoluble iron oxide and iron hydroxide using a separation membrane module (membrane separation device) equipped with a separation membrane such as a microfiltration membrane and an ultrafiltration membrane. It is being considered. When water to be treated is filtered using such a separation membrane, SS (floating matter) is hardly contained and safe treated water can be obtained.

ところが、分離膜を用いて被処理水を処理する際、分離膜による固液分離が困難となるケースがある。すなわち、長期間にわたって、分画孔径の小さな精密濾過膜、限外濾過膜を用いて膜分離処理を行う場合、下記のようなケースが生じる。
ケース(1):膜外表面側(被処理水側)上に、少しずつ堆積物が蓄積され、分離膜の膜間差圧が上昇する。
ケース(2):膜内表面側(処理水側)に、少しずつ鉄細菌(鉄バクテリア)などのような微生物が繁殖し、分離膜の膜間差圧が上昇する。
However, when treating the water to be treated using the separation membrane, there are cases where solid-liquid separation by the separation membrane becomes difficult. That is, the following cases occur when the membrane separation treatment is performed using a microfiltration membrane and an ultrafiltration membrane having a small fraction pore diameter over a long period of time.
Case (1): Deposits gradually accumulate on the outer membrane surface side (treated water side), and the transmembrane pressure difference of the separation membrane increases.
Case (2): Microorganisms such as iron bacteria (iron bacteria) gradually grow on the inner surface side (treated water side), and the transmembrane pressure difference of the separation membrane increases.

ケース(1)のような膜外表面側(被処理水側)の堆積物の蓄積による膜間差圧の上昇を抑制する方法としては、分離膜の下部に散気管を設け、エアーバブリングを行う方法や、処理水の逆通水による逆洗など、物理的な洗浄を定期的に行う方法が一般的であり、効果が得られている。   As a method for suppressing an increase in transmembrane pressure difference due to accumulation of deposits on the outer surface side (treated water side) as in the case (1), an air diffuser is provided at the lower part of the separation membrane and air bubbling is performed. The method and the method of performing physical washing regularly, such as the backwashing by the reverse water flow of a treated water, are common, and the effect is acquired.

さらに、ケース(1)のような膜外表面側(被処理水側)の堆積物の除去に加えて、ケース(2)のような膜内表面側(処理水側)に存在している鉄細菌(鉄バクテリア)などのような微生物の除去する方法として、浸漬型膜カートリッジを処理槽から取り出して、薬液洗浄槽に浸漬させて洗浄する洗浄方法がある。   Further, in addition to the removal of deposits on the outer surface side (treated water side) as in the case (1), iron existing on the inner surface side (treated water side) as in the case (2). As a method for removing microorganisms such as bacteria (iron bacteria), there is a cleaning method in which a submerged membrane cartridge is taken out of a processing tank and immersed in a chemical cleaning tank for cleaning.

或いは、浸漬型膜カートリッジを活性汚泥処理槽内に浸漬した状態で、始めに透過液流路を通じて浸漬型カートリッジの内部に、第1洗浄薬液として有機物の分解を行う酸化剤を注入し、第1洗浄薬液が浸漬型膜カートリッジの濾過膜を透過液側から被処理液側に微少流速で透過する状態を適当時間保持し、第1洗浄薬液を排出した後に浸漬型膜カートリッジの内部に、第2洗浄薬液として、無機物を溶解する酸を注入し、第2洗浄薬液が浸漬型膜カートリッジの濾過膜を透過液側から被処理液側に微少流速で透過する状態を適当時間保持することを特徴とする浸漬型膜カートリッジの槽内洗浄方法が記載されている(特許文献1参照)。
特開平8−266875号公報
Alternatively, in the state where the submerged membrane cartridge is immersed in the activated sludge treatment tank, first, an oxidizing agent for decomposing an organic substance as a first cleaning chemical solution is injected into the submerged cartridge through the permeate flow path. The state in which the cleaning chemical solution permeates the filtration membrane of the submerged membrane cartridge from the permeate side to the liquid to be treated at a very low flow rate is maintained for an appropriate time, and after the first cleaning chemical solution is discharged, the second The cleaning chemical solution is characterized by injecting an acid that dissolves an inorganic substance, and maintaining the state in which the second cleaning chemical solution permeates the filtration membrane of the immersion membrane cartridge from the permeate side to the liquid to be treated at a very low flow rate for an appropriate time. A method for cleaning a submerged membrane cartridge in a tank is described (see Patent Document 1).
JP-A-8-266875

しかしながら、バブリングや、逆洗のような物理的洗浄方法では、ケース(2)のような膜内表面側(処理水側)に存在している鉄細菌(鉄バクテリア)などのような微生物の繁殖を抑えることは困難であった。   However, in physical cleaning methods such as bubbling and backwashing, the propagation of microorganisms such as iron bacteria (iron bacteria) present on the inner surface of the membrane (treated water side) as in case (2) It was difficult to suppress.

また、特許文献1に記載された方法では、膜内外表面の洗浄方法としては大変効果的であり、膜間差圧をある程度初期状態まで戻すことは可能であるが、膜濾過処理槽内に酸化剤や酸洗浄薬液が透過するため、処理水が飲用水用途である場合には適さず、膜濾過処理槽内の被処理水を入れ替える必要があり、稼動時間にロスが生じる。さらに被処理水が活性汚泥の場合には、汚泥中の微生物形態に悪影響を及ぼす可能性が考えられる。   Further, the method described in Patent Document 1 is very effective as a method for cleaning the inner and outer surfaces of the membrane, and it is possible to return the transmembrane pressure difference to an initial state to some extent. Since the agent and the acid cleaning chemical solution permeate, it is not suitable when the treated water is used for drinking water, and it is necessary to replace the treated water in the membrane filtration treatment tank, resulting in a loss in operating time. Further, when the water to be treated is activated sludge, there is a possibility that the microorganisms in the sludge may be adversely affected.

本発明は、こうした状況に鑑みてなされたもので、具体的には分離膜が設置された膜濾過処理槽により、特に鉄を含む被処理水を処理する場合において、被処理水の分離性の悪化による分離膜の膜間差圧の上昇を効果的に抑制する処理方法を提供することを目的としている。   The present invention has been made in view of such a situation. Specifically, in the case of treating the treated water containing iron, in particular, by the membrane filtration treatment tank in which the separation membrane is installed, the separability of the treated water is improved. It aims at providing the processing method which suppresses effectively the raise of the transmembrane differential pressure | voltage of the separation membrane by deterioration.

本発明者らは鋭意検討の結果、分離膜が設置された膜濾過処理槽により、鉄を含む被処理水を処理する方法において、膜内表面側(処理水側)の鉄細菌(鉄バクテリア)などのような微生物の繁殖を抑えることができ、膜間差圧抑制の効果が得られることに想到して、本発明を完成するに到った。   As a result of intensive studies, the present inventors have conducted a method for treating water to be treated containing iron by a membrane filtration treatment tank in which a separation membrane is installed. In this method, iron bacteria (iron bacteria) on the inner surface side (treated water side) are used. The present invention has been completed by conceiving that the propagation of microorganisms such as the above can be suppressed and the effect of suppressing the transmembrane pressure difference can be obtained.

すなわち、本発明は、鉄を含む被処理水を精密濾過膜または限外濾過膜(以下、「分離膜」という。)が設置された膜濾過処理槽により処理する方法において、膜濾過処理槽の溶解性鉄濃度を測定し、その濃度範囲が0.1mg/Lを越えたとき、鉄濃度を下げる薬剤を投入して、前記溶解性鉄の濃度範囲が0.1mg/L以下となるよう鉄濃度を管理することを含んでなる被処理水の処理方法である。被処理水に添加する前記薬剤の添加量を、被処理水1L当たり1mmg以上、200mmg以下とすることが望ましい。 That is, the present invention relates to a method for treating water to be treated containing iron in a membrane filtration treatment tank in which a microfiltration membrane or an ultrafiltration membrane (hereinafter referred to as “separation membrane”) is installed . The concentration of soluble iron is measured, and when the concentration range exceeds 0.1 mg / L, an agent that lowers the iron concentration is added so that the concentration range of the soluble iron is 0.1 mg / L or less. It is a processing method of the to-be-processed water which comprises managing a density | concentration. The amount of the chemical added to the water to be treated is desirably 1 mmg or more and 200 mmg or less per liter of water to be treated.

本発明によれば、鉄を含む被処理水を分離膜が設置された膜濾過処理槽により、処理する場合において、上述の構成を採用することにより、膜内表面側(処理水側)に繁殖する鉄細菌(鉄バクテリア)などのような微生物による分離膜の膜間差圧の上昇を効果的に抑制することができるので、連続して安定な膜濾過処理の運転、及び膜水処理が実施できる。   According to the present invention, when water to be treated containing iron is treated by a membrane filtration treatment tank in which a separation membrane is installed, it is propagated on the inner surface side (treated water side) by adopting the above-described configuration. Since the increase in the transmembrane pressure difference of the separation membrane caused by microorganisms such as iron bacteria (iron bacteria) can be effectively suppressed, continuous and stable membrane filtration treatment and membrane water treatment are carried out. it can.

以下、本発明の好適な実施形態について図面を参照して詳細に説明する。
図1は、本発明の処理方法において好適に使用される処理装置の一例を示すものであって、地下水、湧水、伏流水などの無機性排水、或いは、鉄系凝集剤が添加された活性汚泥排水、生活排水のような有機性排水が被処理水として供給されている膜濾過処理槽1と、この膜濾過処理層1内に設置され、分離膜を具備した膜分離装置2とを備えて構成されている。この処理装置では、膜分離装置2で固液分離、すなわち膜処理されることにより、処理水が得られるようになっている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 shows an example of a treatment apparatus preferably used in the treatment method of the present invention, which is an inorganic wastewater such as groundwater, spring water, underground water, or the activity to which an iron-based flocculant is added. A membrane filtration treatment tank 1 in which organic wastewater such as sludge wastewater and domestic wastewater is supplied as treated water, and a membrane separation device 2 installed in the membrane filtration treatment layer 1 and provided with a separation membrane are provided. Configured. In this treatment apparatus, treated water is obtained by solid-liquid separation, that is, membrane treatment in the membrane separation apparatus 2.

また、この例の膜濾過処理槽1には、添加剤、吸着材、酸化剤など、分離膜の膜間差圧の上昇を抑制するための薬剤が投入されている薬剤タンク3と、薬剤を膜濾過処理槽1に供給するための送液ポンプ4と、この送液ポンプ4の動作時間を制御するための間欠タイマー5とを備えた薬剤供給装置が接続されている。また、膜分離装置2の下方には散気管6が設置され、ここから分離膜に向けて散気(エアーバブリング)できるようになっている。   In addition, in the membrane filtration treatment tank 1 of this example, a chemical tank 3 in which chemicals such as additives, adsorbents, oxidants and the like are used to suppress an increase in the transmembrane pressure difference of the separation membrane, and chemicals A chemical supply device including a liquid feed pump 4 for supplying the membrane filtration treatment tank 1 and an intermittent timer 5 for controlling the operation time of the liquid feed pump 4 is connected. Further, an air diffuser 6 is installed below the membrane separation device 2 so that air can be diffused (air bubbling) toward the separation membrane.

被処理水が地下水、湧水、伏流水や、河川水である場合、濁度濃度は、0.1〜2,000度であり、概ね100度以下の範囲とすることが好ましい。被処理水が、活性汚泥、生活排水、産業排水のような有機性排水の場合、MLSS濃度は、3,000〜20,000mg/Lであることが好ましい。   When the water to be treated is groundwater, spring water, underground water, or river water, the turbidity concentration is 0.1 to 2,000 degrees, and it is preferable to be in the range of approximately 100 degrees or less. When the water to be treated is organic wastewater such as activated sludge, domestic wastewater, and industrial wastewater, the MLSS concentration is preferably 3,000 to 20,000 mg / L.

膜分離装置2が具備する分離膜の形状としては、平膜タイプ、中空糸膜タイプ、管状膜タイプ、袋状膜タイプ等を挙げることができ、これらから必要に応じて適宜選択できるが、ユニット化した際のユニット容積当たりの膜面積を多く採れる点から、中空糸膜タイプが好ましい。   Examples of the shape of the separation membrane included in the membrane separation device 2 include a flat membrane type, a hollow fiber membrane type, a tubular membrane type, a bag-like membrane type, and the like. The hollow fiber membrane type is preferable from the viewpoint that a large membrane area per unit volume can be obtained.

分離膜の材質としては、セルロース系、ポリオレフィン系(ポリエチレン、ポリプロピレン)、ポリスルフォン系、ポリビニルアルコール系、ポリメチルメタクリレート系、ポリビニリデンフルオライド系、ポリ四フッ化エチレン、セラミック等が挙げられ、加工性、薬品耐性等の点を考慮して、必要に応じて適宜選択できる。   Examples of the material of the separation membrane include cellulose, polyolefin (polyethylene, polypropylene), polysulfone, polyvinyl alcohol, polymethyl methacrylate, polyvinylidene fluoride, polytetrafluoroethylene, ceramic, etc. In view of the properties, chemical resistance, etc., it can be selected as needed.

また、分離膜の孔径にも制限はなく、適宜設定できるが、0.001〜1μmの範囲が好ましい。孔径を0.001μm以上とすることによって、濾過時の圧力を高くしなくても十分な濾過流量が得られる傾向にある。より好ましくは0.1μm以上である。また、孔径を1μm以下とすることによって、不純物が膜を透過しにくくなり、高い水質の処理水を得ることができる傾向にある。さらには、一般に精密濾過膜と呼ばれる膜を使用することが好ましい。   Moreover, there is no restriction | limiting also in the hole diameter of a separation membrane, Although it can set suitably, the range of 0.001-1 micrometer is preferable. By setting the pore diameter to 0.001 μm or more, a sufficient filtration flow rate tends to be obtained without increasing the pressure during filtration. More preferably, it is 0.1 μm or more. In addition, by setting the pore diameter to 1 μm or less, impurities are difficult to permeate the membrane, and there is a tendency that high quality treated water can be obtained. Furthermore, it is preferable to use a membrane generally called a microfiltration membrane.

薬剤タンク3に投入される薬剤としては、膜濾過処理槽1に投入されることで、膜内表面側(処理水側)に繁殖する鉄細菌(鉄バクテリア)などのような微生物による分離膜の膜間差圧の上昇を抑制できる薬剤であればよいが、膜濾過処理槽内の溶解性鉄の濃度範囲を0.1mg/L以下に出来る添加剤、吸着材、または、酸化剤が好適である。   As a chemical | drug | medicine thrown into the chemical | medical agent tank 3, the separation membrane by microorganisms, such as an iron bacterium (iron bacteria) which propagates in the membrane inner surface side (treated water side) by throwing into the membrane filtration processing tank 1, is carried out. Any agent that can suppress an increase in transmembrane pressure difference may be used, but an additive, an adsorbent, or an oxidant that can reduce the concentration range of soluble iron in the membrane filtration tank to 0.1 mg / L or less is suitable. is there.

添加剤としては、例えば、市販のリン酸や、リン酸塩化合物(リン酸ナトリウム、リン酸水素ナトリウム、リン酸カリウム、リン酸水素カリウムなど)、及びその水溶液や、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、石灰、及びその水溶液等が挙げられる。これらのうち1種類以上を適宜選択して使用することにより、水に不溶なリン酸鉄や、水酸化鉄を生成させることができる。さらに、凝集剤(無機凝集剤、高分子凝集剤)などと併用することにより、溶解性鉄濃度を0.05mg/L以下にでき、より好ましい。   Examples of additives include commercially available phosphoric acid, phosphate compounds (sodium phosphate, sodium hydrogen phosphate, potassium phosphate, potassium hydrogen phosphate, etc.), and aqueous solutions thereof, sodium hydroxide, potassium hydroxide. , Magnesium hydroxide, calcium hydroxide, lime, and aqueous solutions thereof. By appropriately selecting and using one or more of these, it is possible to generate iron phosphate or iron hydroxide that is insoluble in water. Furthermore, the combined use with a flocculant (inorganic flocculant, polymer flocculant) or the like is more preferable because the soluble iron concentration can be 0.05 mg / L or less.

吸着材としては、例えば、一般に市販、使用されているマンガン砂や、陽イオン交換樹脂、キレート樹脂等が挙げられる。これらのうち1種類以上を適宜選択して使用できる。   Examples of the adsorbent include manganese sand, a cation exchange resin, and a chelate resin that are generally commercially available and used. One or more of these can be selected and used as appropriate.

酸化剤としては、例えば、一般に市販されている次亜塩素酸ナトリウム水溶液や、オゾン水等が挙げられる。地下水、湧水、伏流水などでは、2価の溶解性鉄が水中に溶存しており、酸化させることにより、水に不溶な酸化鉄、水酸化鉄(3価の鉄)を生成させることができる。   Examples of the oxidizing agent include a commercially available sodium hypochlorite aqueous solution and ozone water. In groundwater, spring water, underground water, etc., divalent soluble iron is dissolved in water and can be oxidized to produce water-insoluble iron oxide and iron hydroxide (trivalent iron). it can.

図1に示すような処理装置で被処理水を処理する際に、被処理水を定期的にサンプリングし、溶解性鉄濃度を測定し、測定された鉄濃度が特定の範囲内である場合に、分離膜の差圧抑制工程を行うことで、長期に亘り、効果的に実施できる。   When treating the water to be treated with the treatment apparatus as shown in FIG. 1, the water to be treated is periodically sampled, the soluble iron concentration is measured, and the measured iron concentration is within a specific range. By performing the differential pressure suppressing step of the separation membrane, it can be effectively carried out for a long time.

膜濾過処理槽1の溶解性鉄濃度が0.1mg/L以下であると、膜内表面側(処理水側)に繁殖する鉄細菌(鉄バクテリア)などのような微生物による分離膜の膜間差圧の上昇が緩やかとなり、安定した膜処理運転ができる傾向にある。   When the concentration of soluble iron in the membrane filtration treatment tank 1 is 0.1 mg / L or less, the distance between the membranes of the separation membrane by microorganisms such as iron bacteria (iron bacteria) that propagate on the membrane inner surface side (treated water side) The increase in the differential pressure becomes gradual, and there is a tendency for stable membrane treatment operation.

膜濾過処理槽内の溶解性鉄濃度が0.1mg/Lを越え、その状態が継続し続けると、鉄細菌(鉄バクテリア)などのような微生物が膜内表面側(処理水側)に発生、繁殖し始める傾向が見られる。膜内表面側(処理水側)は、溶存酸素が少ないためか、特に、分離膜の形状が中空糸膜タイプ、管状膜タイプ、袋状膜タイプの場合には、鉄細菌(鉄バクテリア)などのような微生物が増殖し易い傾向が見られる。膜濾過処理槽内の溶解性鉄濃度が0.1mg/Lを越えた時点で、添加剤、吸着材、または、酸化剤の添加を開始し、0.1mg/L以下にすることが、差圧上昇の抑制には好ましく、安定して連続的に被処理水を膜処理できる傾向にある。   When the soluble iron concentration in the membrane filtration tank exceeds 0.1 mg / L and the state continues, microorganisms such as iron bacteria (iron bacteria) are generated on the membrane surface (treated water side). There is a tendency to start breeding. The inner surface of the membrane (treated water side) is probably because there is little dissolved oxygen. Especially when the shape of the separation membrane is hollow fiber membrane type, tubular membrane type, or bag-like membrane type, iron bacteria (iron bacteria), etc. There is a tendency for such microorganisms to easily grow. When the soluble iron concentration in the membrane filtration tank exceeds 0.1 mg / L, the addition of the additive, adsorbent or oxidant is started and the difference is less than 0.1 mg / L. It is preferable for suppressing the increase in pressure, and tends to be capable of membrane treatment of water to be treated stably and continuously.

膜濾過処理槽内の溶解性鉄濃度を0.1mg/L以下に下げる方法としては、薬剤供給装置を作動させて、添加剤、吸着材、または酸化剤を被処理水に、間欠的または連続的に添加する方法が好適である。なお、薬剤を間欠的に添加する場合には、間欠タイマー5を適宜設定すればよく、連続的に添加する場合には間欠タイマー5を使用する必要はない。また、このような差圧抑制上昇の工程を実施するにあたっては、膜分離装置2による濾過運転を停止する必要はなく、被処理水を処理しながら、その分離性の改善をオンラインで行うことが出来る。   As a method for lowering the soluble iron concentration in the membrane filtration tank to 0.1 mg / L or less, the chemical supply device is operated, and the additive, adsorbent, or oxidizing agent is intermittently or continuously added to the water to be treated. It is preferable to add them automatically. In addition, what is necessary is just to set the intermittent timer 5 suitably when adding a chemical | medical agent intermittently, and it is not necessary to use the intermittent timer 5 when adding continuously. Moreover, in carrying out such a step of increasing the differential pressure suppression, it is not necessary to stop the filtration operation by the membrane separation device 2, and it is possible to improve the separability online while treating the water to be treated. I can do it.

膜濾過処理槽1内で固液分離処理が良好に機能している間は、膜分離装置2による膜処理も良好に機能し、被処理水を安定に処理できるが、ケース(2)として先に述べたように、被処理水の変化により、溶解性鉄濃度が上昇すると、膜内表面側(処理水側)に鉄細菌(鉄バクテリア)などのような微生物が繁殖する傾向があり、膜間差圧が徐々に上昇し、固液分離処理に支障が生じる。本発明者らは、このような膜間差圧と、膜濾過処理槽1内の溶解性鉄濃度との間に相関関係があり、溶解性鉄濃度の値を指標として差圧上昇の抑制を実施することにより、差圧上昇の抑制に高い効果が得られることを見出した。すなわち、このように適切なタイミングで差圧上昇抑制工程を実施することによって、被処理水の分離性を維持、改善でき、分離膜の閉塞、特に、膜内表面側(処理水側)の閉塞による差圧上昇を抑え、処理水量の低下を防ぐことができる。また、このように適切なタイミングで差圧上昇抑制工程を行うことにより、添加剤、吸着材、酸化剤などの薬剤が有効に作用し、過剰な添加を抑えるだけでなく、膜の薬品洗浄の期間を長く保つことができるだけでなく、稼動時間のロスや、洗浄薬品の使用を抑えることもできる。   While the solid-liquid separation treatment is functioning well in the membrane filtration treatment tank 1, the membrane treatment by the membrane separation device 2 also functions well and can stably treat the water to be treated. As mentioned above, when the concentration of soluble iron increases due to changes in the water to be treated, microorganisms such as iron bacteria (iron bacteria) tend to propagate on the inner surface of the membrane (treated water side). The differential pressure gradually rises and the solid-liquid separation process is hindered. The present inventors have a correlation between such a transmembrane pressure difference and the soluble iron concentration in the membrane filtration tank 1, and suppress the increase in the differential pressure using the value of the soluble iron concentration as an index. It has been found that a high effect can be obtained by suppressing the increase in the differential pressure. That is, by performing the differential pressure increase suppression process at an appropriate timing in this manner, the separability of the water to be treated can be maintained and improved, and the separation membrane is blocked, particularly the membrane inner surface (treated water side). It is possible to suppress an increase in the differential pressure due to, and prevent a decrease in the amount of treated water. In addition, by performing the differential pressure increase suppression process at an appropriate timing in this way, chemicals such as additives, adsorbents, and oxidants can effectively act, not only suppressing excessive addition, but also chemical cleaning of the membrane. Not only can the period be kept longer, but also loss of operating time and the use of cleaning chemicals can be suppressed.

本発明で言う鉄細菌(鉄バクテリア)とは、2価の鉄を3価の鉄に酸化することによりエネルギーを獲得し、増殖する一群の細菌を指し、Gallionella ferruginea、Leptothrix ochracea、Crenothrix polyspora 、Clonothrix fusca 、Toxothrix trichogenes や、Siderocapsa 属、Siderocystis属などが挙げられる(「日本の水道生物―写真と解説―」社団法人 日本水道協会著、1995、P169-176)。鉄細菌(鉄バクテリア)の確認方法としては、SEM観察などにより、綿状、或いは糸状体の形態として容易に観察することができる。   The iron bacterium (iron bacterium) referred to in the present invention refers to a group of bacteria that acquire energy by oxidizing bivalent iron to trivalent iron and proliferate. Gallionella ferruginea, Leptothrix ochracea, Crenothrix polyspora, Clonothrix Examples include fusca, Toxothrix trichogenes, and the genus Siderocapsa and Siderocystis ("Waterworks in Japan-Photos and Explanations", Japan Waterworks Association, 1995, P169-176). As a method for confirming iron bacteria (iron bacteria), it can be easily observed in a cotton-like or filamentous form by SEM observation or the like.

これらの鉄細菌(鉄バクテリア)は、一般的に、鉄濃度が高い地下水や、湧水、伏流水などに生息し、場合により、鉄系の凝集剤として、塩化第二鉄、ポリ硫酸鉄、ポリシリカ鉄などを添加して水処理を行う場合などに、凝集沈殿槽、または、膜濾過処理槽の壁面、配管などに付着、繁殖する場合などがある。鉄細菌(鉄バクテリア)による障害には、赤水、着臭(金気臭)、鉄管閉塞、スライム生成による機器の故障などが挙げられる。   These iron bacteria (iron bacteria) generally inhabit groundwater with high iron concentration, spring water, underground water, etc. In some cases, ferrous chloride, polyiron sulfate, When water treatment is performed by adding polysilica iron or the like, there are cases where it adheres to and propagates on the wall of a coagulation sedimentation tank, or a membrane filtration tank, piping, or the like. Examples of damage caused by iron bacteria (iron bacteria) include red water, odor (golden odor), iron pipe blockage, and equipment failure due to slime formation.

膜濾過処理槽内の溶解性鉄濃度の測定方法としては、まず、前処理として濁度、SS(浮遊物)など固形分を除去する必要がある。膜濾過した後の処理水中の鉄濃度、或いは、被処理水を、0.45μm(公称孔径)サイズ以下のメンブレンフィルターを用いて濾過した濾液中の鉄濃度を測定することにより、溶解しているイオン性鉄濃度を測定することができる。鉄の定量方法としては、フェナントロリン吸光光度法、フレーム原子吸光法、フレームレス原子吸光法、または、ICP発光分析法を使用することができ、JIS K 0101 工業用水試験方法(財団法人 日本規格協会発行)に記載されている方法を用いることができる。この中で鉄の定量下限が5μg/Lであるフレームレス原子吸光法や、定量下限が20μg/LであるICP発光分析法を用いることが好ましい。   As a method for measuring the concentration of soluble iron in the membrane filtration tank, it is first necessary to remove solids such as turbidity and SS (floating matter) as pretreatment. The iron concentration in the treated water after membrane filtration or the treated water is dissolved by measuring the iron concentration in the filtrate filtered using a membrane filter having a size of 0.45 μm (nominal pore size) or less. The ionic iron concentration can be measured. As a method for quantitative determination of iron, phenanthroline spectrophotometry, flame atomic absorption, flameless atomic absorption, or ICP emission spectrometry can be used. JIS K 0101 Industrial Water Test Method (published by the Japanese Standards Association) ) Can be used. Among these, it is preferable to use a flameless atomic absorption method in which the lower limit of quantification of iron is 5 μg / L or an ICP emission analysis method in which the lower limit of quantification is 20 μg / L.

膜濾過処理槽内の溶解性鉄濃度の管理方法としては、被処理水の水質が安定している場合には、週1回、或いは、1ヶ月に1回程度溶解性鉄濃度を測定すれば良いが、鉄系の凝集剤を添加している場合など、被処理水中の鉄濃度に変化がある場合には、頻繁に、例えば週2〜3回程度、溶解性鉄濃度を測定し、適切なタイミングで差圧上昇抑制工程を行うことが好ましい。   As a method for managing the concentration of soluble iron in the membrane filtration tank, if the quality of the water to be treated is stable, the soluble iron concentration can be measured once a week or once a month. Although it is good, when there is a change in the iron concentration in the water to be treated, such as when an iron-based flocculant is added, frequently measure the soluble iron concentration, for example about 2 to 3 times a week, and It is preferable to perform the differential pressure increase suppression process at a proper timing.

膜濾過処理槽内の溶解性鉄濃度を0.1mg/L以下に下げる方法としては、上述したように、薬剤供給装置を作動させて、薬剤(添加剤、吸着材、酸化剤など)を被処理水に間欠的または連続的に添加する方法が好適である。ここで添加する薬剤の量には特に制限はないが、被処理水あたりの濃度が1mg/L以上となるように添加することが好ましい。このように被処理水あたりの薬剤の濃度を1mg/L以上とすることによって、被処理水の分離性が良好に維持、改善される傾向にある。より好ましくは5mg/L以上である。また、被処理水あたりの薬剤の濃度は200mg/L以下とすることが好ましい。これは、薬剤濃度を過剰に高くしても添加による効果は変わらない傾向にあり、さらに分離膜の閉塞や劣化などに悪影響を与える可能性があるためである。   As a method for lowering the soluble iron concentration in the membrane filtration tank to 0.1 mg / L or less, as described above, the drug supply device is operated and the drug (additive, adsorbent, oxidant, etc.) is applied. A method of intermittently or continuously adding to the treated water is preferable. Although there is no restriction | limiting in particular in the quantity of the chemical | medical agent added here, It is preferable to add so that the density | concentration per to-be-processed water may be 1 mg / L or more. Thus, by making the density | concentration of the chemical | medical agent per to-be-processed water be 1 mg / L or more, it exists in the tendency for the separability of to-be-processed water to be maintained and improved favorably. More preferably, it is 5 mg / L or more. Moreover, it is preferable that the density | concentration of the chemical | medical agent per to-be-processed water shall be 200 mg / L or less. This is because even if the drug concentration is excessively increased, the effect of addition tends not to change, and there is a possibility that the separation membrane may be clogged or deteriorated.

このような薬剤の添加は、膜内表面側(処理水側)に鉄細菌(鉄バクテリア)などのような微生物が繁殖するのを抑え、分離膜の膜間差圧が長期的に安定し、被処理水中の溶解性鉄濃度が改善される時点まで行うことが好適であり、水処理条件や被処理水の種類などに応じて適宜設定できる。   Addition of such chemicals suppresses the growth of microorganisms such as iron bacteria (iron bacteria) on the inner surface of the membrane (treated water side), stabilizes the transmembrane pressure difference of the separation membrane over the long term, It is suitable to carry out until the time when the soluble iron concentration in the water to be treated is improved, and can be set as appropriate according to the water treatment conditions, the type of water to be treated, and the like.

以上の処理方法によれば、膜内表面側(処理水側)に鉄細菌(鉄バクテリア)などのような微生物の繁殖による分離膜の膜間差圧の上昇を把握でき、差圧上昇抑制の工程を適切なタイミングで効果的に実施できる。したがって、かかる方法は、膜濾過処理槽1を複数使用して被処理水を処理する処理装置や、膜濾過処理槽1として嫌気槽や無酸素槽を有する処理装置など、被処理水の性状が悪化しやすい装置で水処理を行う場合において、特に有効である。   According to the above treatment method, it is possible to grasp the increase in the transmembrane pressure difference of the separation membrane due to the propagation of microorganisms such as iron bacteria (iron bacteria) on the inner surface side (treated water side), and to suppress the increase in the differential pressure. The process can be carried out effectively at an appropriate timing. Therefore, this method has characteristics of the water to be treated, such as a treatment apparatus that treats the water to be treated using a plurality of membrane filtration treatment tanks 1 and a treatment apparatus that has an anaerobic tank or an anaerobic tank as the membrane filtration treatment tank 1. This is particularly effective when water treatment is performed using an apparatus that is easily deteriorated.

以下、実施例により更に本発明具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(試験例1)
図1に示した処理装置を用いて、以下の条件で生活系排水の処理を三菱レイヨン(株)排水試験場にて行った。
(Test Example 1)
Using the treatment apparatus shown in FIG. 1, the treatment of domestic wastewater was performed at Mitsubishi Rayon Co., Ltd. Drainage Experiment Station under the following conditions.

膜濾過処理槽1のフラックス及び水理学的滞留時間は、それぞれ0.8m3 /m2 /Day、5時間である。また、膜分離装置2の分離膜としては、公称孔径0.4μmの精密濾過用ポリビニリデンフルオライド製中空糸膜がスクリーン状に展開固定されたエレメントを用いた。 The flux and hydraulic residence time of the membrane filtration tank 1 are 0.8 m 3 / m 2 / Day and 5 hours, respectively. As the separation membrane of the membrane separation device 2, an element in which a hollow fiber membrane made of polyvinylidene fluoride for microfiltration having a nominal pore diameter of 0.4 μm was developed and fixed in a screen shape was used.

処理装置の立ち上げ時の種汚泥は、排水試験場内に設置した他の膜分離活性汚泥処理装置から採取して、活性汚泥濃度が、およそ10,000mg/Lとなるように供した。運転中は、10,000〜12,000mg/Lとなるように、汚泥の引抜を行った。   The seed sludge at the start-up of the treatment apparatus was collected from another membrane-separated activated sludge treatment apparatus installed in the drainage test station, and was provided so that the activated sludge concentration was approximately 10,000 mg / L. During operation, the sludge was drawn out so as to be 10,000 to 12,000 mg / L.

膜分離装置2の濾過運転は7分間吸引し、1分間停止する間欠運転とした。この際、膜分離装置2の下方に設置されている散気管6からの散気を常時実施した。散気量は中空糸膜部の投影面積当たり100Nm3 /m2 ・hrとした。 The filtration operation of the membrane separation device 2 was an intermittent operation in which suction was performed for 7 minutes and stopped for 1 minute. At this time, air diffused from the air diffuser 6 installed below the membrane separation device 2 was always performed. The amount of air diffused was 100 Nm 3 / m 2 · hr per projected area of the hollow fiber membrane part.

膜濾過処理槽内の溶解性鉄濃度の測定は、週1回、膜濾過した後の処理水中の鉄濃度を、ICP発光分析法にて定量した。   In the measurement of the soluble iron concentration in the membrane filtration treatment tank, the iron concentration in the treated water after membrane filtration was quantified by ICP emission spectrometry once a week.

試験開始時、処理水中の溶解性鉄濃度は0.02mg/L以下で、膜間差圧は5kPa以下であった。   At the start of the test, the soluble iron concentration in the treated water was 0.02 mg / L or less, and the transmembrane pressure difference was 5 kPa or less.

(試験例2)
試験例1において、試験開始から6ヶ月経過した時点で、膜の薬品洗浄を実施し、膜間差圧を初期状態(5kPa以下)まで戻した。その後、膜濾過処理槽1内に、塩化第二鉄を被処理水あたり1mg−Fe/Lとなるように添加し続け運転を再開した。塩化第二鉄の添加開始から、1週間後、処理水中の鉄濃度は0.2mg/Lであった。その後、処理水中の鉄濃度が0.1mg/L以下になるような濃度管理はせず、運転を継続した。
(Test Example 2)
In Test Example 1, when 6 months passed from the start of the test, chemical cleaning of the membrane was performed, and the transmembrane pressure difference was returned to the initial state (5 kPa or less). Thereafter, ferric chloride was continuously added to the membrane filtration treatment tank 1 so as to be 1 mg-Fe / L per water to be treated, and the operation was resumed. One week after the start of ferric chloride addition, the iron concentration in the treated water was 0.2 mg / L. Thereafter, the concentration was not controlled so that the iron concentration in the treated water was 0.1 mg / L or less, and the operation was continued.

(実施例)
試験開始から6ヶ月間、週1回、処理水中の鉄濃度を測定した結果、常に0.1mg/L以下であった。この間、膜間差圧は5kPaであった。膜をサンプリングし、膜内表面(処理水側)をSEM観察したところ、殆ど付着物は見られず、鉄細菌(鉄バクテリア)のような糸状体は認められなかった。
(Example)
As a result of measuring the iron concentration in the treated water once a week for 6 months from the start of the test, it was always 0.1 mg / L or less. During this time, the transmembrane pressure difference was 5 kPa. When the membrane was sampled and the surface inside the membrane (treated water side) was observed by SEM, almost no deposits were observed, and filamentous bodies such as iron bacteria (iron bacteria) were not observed.

(比較例)
試験例1に引き続き、試験例2を6ヶ月間実施した。週1回、処理水中の鉄濃度を測定した結果、ときどき0.1mg/Lを越えるときがあった。膜間差圧は12kPaであった。膜をサンプリングし、膜内表面(処理水側)をSEM観察したところ、細い糸状体の微生物のようなものが付着しており、鉄細菌(鉄バクテリア)が増殖しているのが確認された。
(Comparative example)
Subsequent to Test Example 1, Test Example 2 was conducted for 6 months. As a result of measuring the iron concentration in the treated water once a week, it sometimes exceeded 0.1 mg / L. The transmembrane pressure difference was 12 kPa. When the membrane was sampled and the inner surface (treated water side) was observed with an SEM, it was confirmed that fine filamentous microorganisms were attached and that iron bacteria (iron bacteria) were growing. .

本発明の処理方法で使用される処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the processing apparatus used with the processing method of this invention.

符号の説明Explanation of symbols

1 膜濾過処理槽
2 膜分離装置
3 薬剤タンク
4 送液ポンプ
5 間欠タイマー
6 散気管
DESCRIPTION OF SYMBOLS 1 Membrane filtration processing tank 2 Membrane separation device 3 Drug tank 4 Liquid feed pump 5 Intermittent timer 6 Air diffuser

Claims (2)

鉄を含む被処理水を精密濾過膜または限外濾過膜が設置された膜濾過処理槽により処理する方法において、膜濾過処理槽の溶解性鉄濃度を測定し、その濃度範囲が0.1mg/Lを越えたとき、鉄濃度を下げる薬剤を投入して、前記溶解性鉄の濃度範囲が0.1mg/L以下となるよう鉄濃度を管理することを含んでなる被処理水の処理方法。 In a method of treating water to be treated containing iron with a membrane filtration tank equipped with a microfiltration membrane or an ultrafiltration membrane , the concentration of soluble iron in the membrane filtration tank is measured, and the concentration range is 0.1 mg / A treatment method of water to be treated comprising, when L is exceeded, introducing an agent that lowers the iron concentration and managing the iron concentration so that the concentration range of the soluble iron is 0.1 mg / L or less. 被処理水に添加する前記薬剤の添加量を、被処理水1L当たり1mmg以上、200mmg以下とすることを含む請求項1記載の被処理水の処理方法。   The processing method of the to-be-processed water of Claim 1 including making the addition amount of the said chemical | medical agent added to to-be-processed water be 1 mmg or more and 200 mmg or less per liter of to-be-processed water.
JP2007101485A 2007-04-09 2007-04-09 Method for treating treated water containing iron Expired - Fee Related JP5059469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007101485A JP5059469B2 (en) 2007-04-09 2007-04-09 Method for treating treated water containing iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007101485A JP5059469B2 (en) 2007-04-09 2007-04-09 Method for treating treated water containing iron

Publications (2)

Publication Number Publication Date
JP2008253954A JP2008253954A (en) 2008-10-23
JP5059469B2 true JP5059469B2 (en) 2012-10-24

Family

ID=39978092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007101485A Expired - Fee Related JP5059469B2 (en) 2007-04-09 2007-04-09 Method for treating treated water containing iron

Country Status (1)

Country Link
JP (1) JP5059469B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382355B2 (en) * 2010-02-04 2014-01-08 株式会社ウェルシィ Industrial water filtration method and filtration device
CN103979742A (en) * 2014-06-03 2014-08-13 江苏羊城净水设备有限公司 Water treater
CN103979745A (en) * 2014-06-03 2014-08-13 江苏羊城净水设备有限公司 Muddy water treater
JP6874547B2 (en) * 2017-06-08 2021-05-19 住友金属鉱山株式会社 Scandium recovery method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243559A (en) * 1995-03-07 1996-09-24 Mitsubishi Rayon Eng Co Ltd Hallow fiber membrane filtration method
JPH11192482A (en) * 1997-10-16 1999-07-21 Nikkiso Co Ltd Polyvalent metal containing water purifier
JPH11253940A (en) * 1998-03-12 1999-09-21 Kurita Water Ind Ltd Purified water treatment
JP2002346562A (en) * 2001-05-25 2002-12-03 Toshiba Plant Kensetsu Co Ltd Method and apparatus for water treatment
JP2005046801A (en) * 2003-07-31 2005-02-24 Japan Organo Co Ltd Water treatment method and apparatus therefor

Also Published As

Publication number Publication date
JP2008253954A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
Laîné et al. Status after 10 years of operation—overview of UF technology today
JP2021073092A (en) System for treating water
US20060273038A1 (en) Chemical cleaning for membranes
KR20100119896A (en) Environmentally friendly hybrid microbiological control technologies for cooling towers
CN106103349A (en) Method for treating water
CN103619451A (en) Washing method for separation membrane module
JP2017087213A (en) Water treatment method, and water treatment apparatus
JP2016198742A (en) Liquid treatment system, solution processing device and solution treatment method
JP2008183510A (en) Purified water production method and apparatus
US20090050563A1 (en) Treatment method for reverse osmosis filtration systems
KR20130137004A (en) Chemical cleaning method for immersed membrane element
JP5059469B2 (en) Method for treating treated water containing iron
JP2006015236A (en) Apparatus and method for preparing regenerated water
JP2009006209A (en) Cleaning method of hollow fiber membrane module
JP5001923B2 (en) Water treatment apparatus and water treatment method
JP2010094584A (en) Method of treating ballast water and apparatus for treating ballast water
JP2011088151A (en) Apparatus and method for preparing regenerated water
JP2009247936A (en) Method of inline-cleaning immersion type membrane-separation device
JP5024158B2 (en) Membrane filtration method
JP2012086120A (en) Method for washing immersion type membrane module with chemical
JP2008086849A (en) Water treatment method and apparatus
JP2012086182A (en) Water treatment method and water treatment device
WO2013047466A1 (en) Membrane module cleaning method
CN100564285C (en) Be used for the combination process that drinking water deep is handled
WO2012057176A1 (en) Water-treatment method and desalinization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees