WO2020255251A1 - Water treatment device and water treatment method - Google Patents

Water treatment device and water treatment method Download PDF

Info

Publication number
WO2020255251A1
WO2020255251A1 PCT/JP2019/024091 JP2019024091W WO2020255251A1 WO 2020255251 A1 WO2020255251 A1 WO 2020255251A1 JP 2019024091 W JP2019024091 W JP 2019024091W WO 2020255251 A1 WO2020255251 A1 WO 2020255251A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
unit
filtration membrane
gas
backwash
Prior art date
Application number
PCT/JP2019/024091
Other languages
French (fr)
Japanese (ja)
Inventor
英二 今村
佳史 林
航 吉田
祐樹 佐藤
野田 清治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980097403.3A priority Critical patent/CN113993611A/en
Priority to PCT/JP2019/024091 priority patent/WO2020255251A1/en
Priority to JP2019560788A priority patent/JP6644211B1/en
Publication of WO2020255251A1 publication Critical patent/WO2020255251A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a water treatment apparatus and a water treatment method using a filtration membrane.
  • a membrane filtration method for producing industrial water or tap water by filtering treated water such as river water, groundwater or treated sewage water with a filtration membrane is widely adopted.
  • the filtration method using a filtration membrane can remove suspended substances and the like in the water to be treated.
  • backwash water can permeate the membrane from the inside to the outside of the filtration membrane, but stays in the pipe.
  • the gas that had been used cannot penetrate the membrane. Therefore, gas lock occurs in which the pores of the filtration membrane are blocked by the gas, the supply of the backwash water to the filtration membrane is hindered, and the cleaning effect of the backwash water is reduced.
  • the water treatment apparatus described in Patent Document 1 can remove the gas staying in the pipe before the start of backwashing, but is newly added between the exhaust means to the filtration membrane or inside the filtration membrane during the backwashing treatment. Since the generated gas is pushed back by the water stream and cannot float, it is not possible to remove the newly generated gas from the exhaust means between the filtration membranes or inside the filtration membrane during the backwash treatment. Therefore, in the prior art, a gas lock is generated in the filtration membrane by the gas newly generated between the exhaust means and the filtration membrane or inside the filtration membrane during the backwash treatment, and the backwash water is supplied to the filtration membrane. Since the backwashing treatment is performed in a hindered state, the cleaning effect of the filtration membrane by the backwashing water is reduced.
  • An object of the present invention is to provide a water treatment device and a water treatment method that suppress a decrease in the cleaning effect of the filtration membrane due to washing water.
  • the water treatment apparatus has a filtration treatment in which the water to be treated is passed from the primary side to the secondary side of the filtration membrane and a backwash in which the filtration membrane is washed by passing backwash water from the secondary side to the primary side of the filtration membrane.
  • a backwash water supply unit that supplies backwash water to the filtration membrane
  • a detection unit that detects gas lock due to air bubbles inside the filtration membrane
  • a detection unit are gas locks of the filtration membrane.
  • the control unit includes a gas discharge unit that discharges air bubbles inside the filtration membrane induced by stopping the supply of backwash water by the backwash water supply unit.
  • the water treatment method according to the present invention includes a filtration treatment in which the water to be treated is passed from the primary side to the secondary side of the filter membrane and a backwash in which the filter membrane is washed by passing backwash water from the secondary side to the primary side of the filter membrane.
  • a step of restarting the backwash water supply after a predetermined time has elapsed from the stoppage is provided.
  • the gas generated between the filtration membranes or inside the filtration membrane is efficiently removed from the gas discharge unit during the backwashing treatment, and the cleaning effect of the filtration membrane by the backwashing water is performed. Suppress the decrease in.
  • the gas generated between the filtration membranes or inside the filtration membrane is efficiently removed from the gas discharge unit during the backwashing treatment, and the cleaning effect of the filtration membrane by the backwashing water is performed. Suppress the decrease in.
  • FIG. 1 is a diagram showing an example of the configuration of the water treatment device 100 according to the first embodiment.
  • the water treatment apparatus 100 is immersed in the water to be treated water storage tank 2 for storing the water to be treated 1 and the water to be treated 1 in the water to be treated water storage tank 2, and the water to be treated water storage tank 2 is arranged.
  • a detection unit 8 that detects a gas lock of the filter membrane 3, and a water treatment device 100.
  • a control unit 9 for controlling operation is provided.
  • the backwash water is, for example, filtered water, a chemical solution containing ozone or hypochlorous acid, but when ozone water is used as the backwash water, the wash water containing hypochlorous acid or the like is used. Since bubbles are more likely to be generated as compared with the above, the backwash water will be described below as ozone water.
  • the inflow side of the water 1 to be treated of the filtration membrane 3 is set as the primary side.
  • the outflow side of the filtered water 4 of the filtration film 3 is the secondary side.
  • the backwash water inflow side of the filtration membrane 3 is set as the secondary side, and the backwash water outflow side of the filtration membrane 3 is set. Is the primary side.
  • a water to be treated water introduction pipe 11 for introducing the water to be treated 1 into the water to be treated water storage tank 2 is connected to the water to be treated water storage tank 2.
  • One end of the connecting pipe 12 is connected to the secondary side of the filtration membrane 3, and the other end of the connecting pipe 12 is connected to the gas discharge unit 7.
  • a filtration pipe 13 is connected to the gas discharge unit 7.
  • a first valve 14 is arranged in the filtration pipe 13, and the filtration pipe 13 is connected to the filtration water tank 5.
  • a filtration pump 15 is installed in the filtration pipe 13 between the first valve 14 and the filtration water tank 5.
  • a backwash pipe 16 is connected to the filtration pipe 13 between the gas discharge unit 7 and the first valve 14.
  • a second valve 17 is installed in the backwash pipe 16, and the backwash pipe 16 is connected to the backwash water supply unit 6.
  • a backwash pump 18 is installed in the backwash pipe 16 between the second valve 17 and the backwash water supply unit 6.
  • the water to be treated 1 may be, for example, natural water collected from a river, lake, swamp, ocean, or the like, or sewage, industrial wastewater, or the like.
  • the activated sludge may be stored in the water to be treated storage tank 2, the water to be treated 1 may be introduced, and the water to be treated 1 mixed with the activated sludge may be filtered by the filtration membrane 3.
  • the shape of the filtration membrane 3 is, for example, a hollow fiber type or a flat membrane type.
  • the material of the filtration membrane 3 is, for example, an inorganic material such as ceramics, or a fluororesin-based organic material such as polyvinylidene fluoride (PVDF: Polyvinylidene DiFluoride) or polytetrafluoroethylene (PTFE: Poly Terra Fluoro Ethylene).
  • PVDF Polyvinylidene fluoride
  • PTFE Poly Terra Fluoro Ethylene
  • the backwash water supply unit 6 generates ozone water by bringing the ozone gas generator 61 that generates ozone gas, the ozone gas supplied from the ozone gas generator 61, and the liquid stored inside into contact with each other.
  • a backwash water tank 62 is provided.
  • the ozone gas generator 61 supplies ozone gas to the backwash water tank 62 so that the liquid stored in the backwash water tank 62 has a predetermined ozone concentration.
  • the detection unit 8 is provided in the filtration pipe 13 between the connection point of the backwash pipe 16 connected to the filtration pipe 13 and the gas discharge unit 7, and is provided with the pressure measuring unit 81 for measuring the intermembrane differential pressure of the filtration membrane 3.
  • a gas lock generation determination unit 82 for determining the occurrence of gas lock in the filtration membrane 3 based on the intermembrane differential pressure measured by the pressure measurement unit 81 is provided.
  • the intermembrane differential pressure is the difference in pressure between the primary side and the secondary side of the filtration membrane 3. Unless otherwise specified, the differential pressure between membranes is shown as an absolute value in the present application.
  • the control unit 9 temporarily stops the supply of ozone water by the backwash water supply unit 6.
  • the installation position of the pressure measuring unit 81 is not limited to the position shown in FIG. 1 as long as the intermembrane differential pressure of the filtration membrane 3 can be measured.
  • FIG. 2 is a diagram illustrating the configuration of the gas lock generation determination unit 82 and the control unit 9.
  • FIG. 2A illustrates the configuration of the gas lock generation determination unit 82
  • FIG. 2B illustrates the configuration of the control unit 9.
  • the gas lock generation determination unit 82 can be realized by software control in which the CPU 1001a as shown in FIG. 2A executes a program stored in the memory 1002a.
  • the control unit 9 can be realized by software control in which the CPU 1001b as shown in FIG. 2B executes a program stored in the memory 1002b.
  • the gas lock generation determination unit 82 and the control unit 9 may be configured to be realized by using the same CPU and memory.
  • the pressure measuring unit 81 may be configured to calculate the intermembrane differential pressure by the gas lock generation determining unit 82 using an instrument that measures the pressure in the filtration pipe 13.
  • the gas lock generation determining unit 82 performs the correction calculation in consideration of the head difference from the pressure measuring unit 81 to the water surface of the water storage tank 2 to be treated. As a result, the measured value of the pressure measuring unit 81 is converted into the intermembrane differential pressure.
  • the water treatment device 100 according to the first embodiment has a "filtration treatment” in which the water to be treated 1 is filtered using the filtration membrane 3 and a “filter treatment” in which the filtration treatment is interrupted and the backwash water is supplied to the filtration membrane 3. It is a water treatment device that performs "backwashing treatment”.
  • fouling of the filtration membrane 3 that is, blockage of pores progresses with the filtration of the water 1 to be treated by the filtration treatment.
  • the intermembrane differential pressure of the filtration membrane 3 increases.
  • the intermembrane differential pressure is within the limit, if the filtration is continued while maintaining a high intermembrane differential pressure, fouling progresses, and it may be difficult to remove the blockage of the pores of the filtration membrane by backwashing. There is. Therefore, it is desirable to carry out the backwash treatment when a predetermined time Ta has elapsed from the start of the filtration treatment or when the predetermined intermembrane differential pressure is exceeded.
  • the predetermined time Ta it is desirable to set the predetermined time Ta to, for example, 1 hour or more and 1 month or less. If the time interval is shorter than 1 hour, cleaning is performed in a state where fouling has not progressed so much, which is inefficient. In addition, since the backwashing treatment is frequently performed, the maintenance cost may increase. On the other hand, if washing is not performed for one month or more, irreversible fouling that cannot be removed by washing may progress.
  • the predetermined intermembrane differential pressure it is desirable to set the predetermined intermembrane differential pressure to, for example, 5 kPa or more and 50 kPa or less. If the differential pressure between the membranes is lower than 5 kPa, the washing is inefficient because the washing is performed in a state where the fouling has not progressed so much. In addition, since the backwashing treatment is frequently performed, the maintenance cost may increase. On the other hand, at 50 kPa or more, irreversible fouling that cannot be removed by washing may proceed.
  • the backwash treatment is carried out until a predetermined time Tb elapses from the start of the backwash treatment or until a predetermined water permeability M is exceeded.
  • the water permeability M is a value calculated by the following formula (2) using the flux F, which is the amount of membrane filtration water per hour, and the intermembrane differential pressure ⁇ P.
  • the filtration process and the backwash process may be manually and repeatedly performed by the operation manager by operating the device each time. Further, for example, it is possible to automatically and repeatedly perform each operation by using a sensor, a timer, a measuring instrument, or the like, and in this case, labor saving is possible.
  • the effects of the present invention can be obtained unchanged by either manual or automatic methods.
  • the execution time of the filtration process and the backwash process may be manually adjusted by the operation manager by operating the device each time.
  • a timer may be provided so that the operation is performed only for a preset time, a counter or the like is provided, and the filtration operation and the backwash operation are terminated when the number of executions reaches the preset number of times. You may.
  • the water treatment device 100 filters the water to be treated 1 stored in the water storage tank 2 to be treated.
  • the water to be treated 1 introduced from the water to be treated water introduction pipe 11 is stored in the water to be treated water storage tank 2.
  • the water treatment device 100 opens the first valve 14 with the second valve 17 closed, operates the filtration pump 15, sucks the water 1 to be treated stored in the water storage tank 2 to be treated, and filters the membrane.
  • the water to be treated 1 is filtered.
  • the filtered water filtered by the filtration membrane 3 is transferred to the filtered water tank 5.
  • the backwashing treatment includes a "backwashing water generation step” and a “backwashing water backwashing step”. In the following, each of the "backwash water generation step” and the “backwash water backwash step” will be described in detail.
  • the water treatment device 100 stops the filtration pump 15, closes the first valve 14, while operating the ozone gas generator 61, and starts supplying ozone gas to the backwash water tank 62.
  • a liquid that can be a solvent for ozone is stored in the backwash water tank 62 in advance, and ozone water is generated by bringing the liquid into contact with ozone gas.
  • the liquid that can be a solvent for ozone for example, tap water, industrial water, pure water or ultrapure water, or a part of the filtered water 4 stored in the filtered water tank 5 may be transferred and used.
  • an acidic chemical such as hydrochloric acid or sulfuric acid or a radical scavenger (for example, carbon dioxide gas) is supplied to the liquid in the backwash water tank 62 by the ozone gas generator 61. It may be supplied at the same time as or prior to the supply of ozone gas by the ozone gas generator 61.
  • an acidic chemical or a radical scavenger By adding an acidic chemical or a radical scavenger to the liquid in the backwash water tank 62, it is possible to suppress the decomposition of ozone, and the effect of suppressing the generation of bubbles in ozone water can be obtained.
  • Oxygen gas generated by decomposition of ozone or bubbles derived from ozone itself are mixed in the connection pipe 12, the filtration pipe 13, and the backwash pipe 16 that connect the filtration membrane 3 and the backwash water supply unit 6. In some cases. Further, even when ozone water is not used as the backwash water, air bubbles may be mixed due to some other cause.
  • MF Microfiltration Membrane
  • a microfiltration membrane having a pore diameter of about 0.1 micrometer
  • FIG. 3 is a diagram illustrating a cross section of the filtration membrane 3 in which gas lock occurred during the backwashing process.
  • region A is the primary side and region B is the secondary side.
  • region B is the inside 3a of the filtration membrane 3.
  • the bubbles inside the filtration membrane 3 3a are referred to as bubbles X.
  • the bubbles X that cause the gas lock of the filtration membrane 3 cannot float because they are pushed back by the water flow, and continue to block the filtration membrane 3.
  • the pores of the filtration membrane 3 may be blocked, which may hinder the flow of ozone water and impair the cleaning effect. is there.
  • the control unit 9 of the water treatment apparatus 100 supplies ozone water by the backwash water supply unit 6. It is temporarily stopped, and after a predetermined time Tc has elapsed, the supply of ozone water by the backwash water supply unit 6 is restarted. Since the supply of ozone water by the backwash water supply unit 6 is temporarily stopped by the control unit 9, the bubbles that have reached the inside 3a of the filtration membrane 3 are guided to the gas discharge unit 7 via the connection pipe 12 and gas. It is discharged from the discharge unit 7 to the outside of the pipe.
  • the predetermined time Tc for temporarily stopping the supply of ozone water by the backwash water supply unit 6 by the control unit 9 is set to, for example, 5 seconds or more and 600 seconds or less. The detailed configuration of the gas discharge unit 7 will be described later.
  • the gas lock generation determination unit 82 of the detection unit 8 takes in the measurement result of the pressure measurement unit 81 every T 1 for a predetermined time, and sets the first intermembrane differential pressure ⁇ P n which is the measurement result of this time (nth time) and the previous time (nth time). The magnitude relationship is determined by comparing with the second intermembrane differential pressure ⁇ P n-1 , which is the measurement result of the n- 1th measurement). The gas lock generation determination unit 82 determines that gas lock has occurred when the differential pressure ⁇ P n between the first membranes is larger than the differential pressure ⁇ P n-1 between the second membranes.
  • the gas lock generation determination unit 82 changes the predetermined time T 1 and the change of the first intermembrane differential pressure ⁇ P n and the second intermembrane differential pressure ⁇ P n-1 . From the amount, the pressure change amount Q per unit time of the first intermembrane differential pressure ⁇ P n with respect to the second intermembrane differential pressure ⁇ P n-1 is calculated from the following equation (3). Unless otherwise specified, the pressure change amount Q is shown as an absolute value in the present application.
  • the pressure tends to increase when the differential pressure ⁇ P n between the first membranes is larger than the differential pressure ⁇ P n-1 between the second membranes and the pressure change amount Q is equal to or more than the threshold value Th.
  • sampling intervals of T 1 of the measurement result of the pressure measuring section 81 according to the gas lock occurrence determination unit 82 may, for example, the following 600 seconds 1 seconds, more preferably less 600 seconds 30 seconds.
  • the threshold value Th is preferably set to 0.5 (kPa / min) or more and 5.0 (kPa / min) or less.
  • the gas lock generation determination unit 82 can also determine the occurrence of gas lock by calculating the moving average value Z of the measurement result as the second intermembrane differential pressure ⁇ P n-1 .
  • the moving average value Z is a value calculated by the following formula (4) using m measurement results before the second intermembrane differential pressure ⁇ P n-1 , which is the previous measurement result.
  • the number of data m used to obtain the moving average value Z is, for example, 2 or more and 10 or less.
  • Z ⁇ (P n-1 + ⁇ ⁇ ⁇ + P nm ) / m ⁇ ⁇ ⁇ (4)
  • FIG. 4 is a diagram illustrating the configuration of the gas discharge unit 7.
  • the gas discharge unit 7 is connected to the connection pipe 12 and discharges the gas-liquid separation unit 71 provided vertically above the filtration membrane 3 and the air bubbles induced in the gas-liquid separation unit 71. It has an exhaust valve 72 and an exhaust pipe 73 connected to the exhaust valve 72.
  • the exhaust valve 72 is only from the primary side to the secondary side. Moreover, it is desirable that the structure allows only gas to pass through.
  • the exhaust pipe 73 dissipates the gas that has passed through the exhaust valve 72 into the atmosphere.
  • the exhaust pipe 73 may include an ozone removing unit for removing ozone filled with an ozone decomposition catalyst.
  • the exhaust pipe 73 is connected to the backwash water tank 62.
  • the gas that has passed through the exhaust valve 72 may be dissipated into the backwash water tank 62, or may be dissipated into the water to be treated 1 stored in the water to be treated water storage tank 2.
  • the shape of the connecting pipe 12 is not limited to the shape shown in FIG. 4, but when the supply of ozone water to the filtration membrane 3 by the backwash water supply unit 6 is stopped, the filtration membrane 3-2 The shape is such that the bubbles that reach the next side can float to the gas-liquid separation unit 71.
  • the connection pipe 12 is, for example, a linear pipe that connects the filtration membrane 3 and the gas-liquid separation unit 71.
  • the connecting pipe 12 is made of a hydrophilic material having a low affinity for the bubbles.
  • the inner surface of the connecting pipe 12 may be treated with a hydrophilic material having a low affinity for air bubbles to impart hydrophilicity, or the inner surface of the connecting pipe 12 may be treated with oxygen plasma to impart hydrophilicity. ..
  • the inner surface of the connecting pipe 12 is treated with oxygen plasma
  • the inner surface of the metal pipe such as stainless steel or iron may be treated directly, or the inner surface of the metal pipe or vinyl chloride pipe may be treated with PTFE or PFA (Perfluoroalkoxy alkane) or the like.
  • the coated surface may be treated by applying the fluororesin of.
  • the gas discharge unit 7 is configured to discharge air bubbles inside 3a of the filtration membrane 3 when the supply of ozone water from the backwash water supply unit 6 is stopped.
  • the backwash water supply unit 6 discharges the filtration membrane. It is preferable that the configuration is such that bubbles contained in the ozone water when the ozone water is supplied to No. 3 are also discharged.
  • the diameter of the gas-liquid separation unit 71 is the diameter L1
  • the diameter of the connecting pipe 12 is the diameter L2
  • the diameter of the filtration pipe 13 connected to the gas-liquid separation unit 71 is the diameter L3.
  • the diameter L1 of the gas-liquid separation unit 71 is connected to the connection pipe 12. It may be larger than the diameter L2 of the above and the diameter L3 of the filtration pipe 13 connected to the gas-liquid separation unit 71.
  • the diameter L1 of the gas-liquid separation unit 71 is supplied by the backwash water supply unit 6 by setting the diameter L1 of the gas-liquid separation unit 71 to be larger than the diameter L2 of the connecting pipe 12 and the diameter L3 of the filtration pipe 13 connected to the gas-liquid separation unit 71.
  • the bubbles contained in the ozone water supplied by the backwash water supply unit 6 can be discharged from the exhaust valve 72.
  • the diameter L1 of the gas-liquid separation unit 71, the diameter L2 of the connecting pipe 12, and the diameter L3 of the over-pipe 13 have, for example, 0.1 times the flow velocity of the gas-liquid separation unit 71 with respect to the flow velocity in the filtration pipe 13. It is preferable to set it to be 0.9 times or more and 0.9 times or less.
  • FIG. 5 is a diagram showing an example in which a swing portion 19 and a jet portion 20 are provided in the water treatment device 100 according to the first embodiment.
  • a swinging portion 19 is installed so that air can be exposed from the lower part of the filtration membrane 3, and air is exposed in the water 1 to be treated toward the filtration membrane 3.
  • the gas-liquid mixed phase flow is blown to the outside of the filtration membrane 3, and the filtration membrane 3 can be shaken.
  • the same effect can be obtained by providing a jet portion 20 capable of sending a liquid such as water toward the filtration membrane 3 and spraying the liquid toward the filtration membrane 3.
  • the rocking portion 19 shown in FIG. 5 is, for example, an aeration device, and the jet portion 20 is, for example, a pump capable of sending a liquid such as water.
  • the control unit 9 when the supply of ozone water by the backwash water supply unit 6 is temporarily stopped by the control unit 9, the water to be treated 1 is passed from the primary side to the secondary side of the perfiltration membrane 3 so that the filtration membrane 3 It is also possible to adopt a method of positively guiding the air bubbles existing in the internal 3a to the gas discharge unit 7.
  • the second valve 17 When passing the water to be treated 1 from the primary side to the secondary side of the filtration membrane 3, the second valve 17 is closed, the first valve 14 is opened, and the filtration pump 15 is temporarily restarted. When the restart of the filtration pump 15 is completed, the first valve 14 is closed and the second valve 17 is opened. Since restarting the filtration pump 15 for a long time causes fouling of the filtration membrane 3 due to the suspended substance in the water to be treated 1, the time for temporarily restarting the filtration pump 15 is, for example, 5 seconds or more and 300. It is desirable to set it to seconds or less.
  • FIG. 6 is a diagram showing a modified example of the installation position of the gas discharge unit 7.
  • the treatment step of passing the water to be treated 1 from the primary side to the secondary side of the filtration membrane 3 is called filtration treatment.
  • This is a process in which the backwashing process is alternately and repeatedly executed.
  • the filtration treatment and the backwash treatment are usually automatically and repeatedly performed. Therefore, when the supply of ozone water by the backwash water supply unit 6 is temporarily stopped by the control unit 9, the treatment step of passing the water to be treated 1 from the primary side to the secondary side of the filtration membrane 3 is usually performed. It may be considered to be the same as the processing process of.
  • the treatment step of passing the water to be treated 1 from the primary side to the secondary side of the filtration membrane 3 is detected.
  • This is a process to be executed when it is determined by the part 8 that gas lock has occurred in the filtration membrane 3, so that the process is different from the normal process.
  • the space between the gas discharge unit 7 and the filtration membrane 3 or the filtration membrane 3 during the backwash treatment The gas generated in the inner portion 3a is efficiently removed, and the deterioration of the cleaning effect of the filtration membrane 3 due to the backwashing water is suppressed.
  • FIG. 7 is an operation flow chart of the water treatment device 100 according to the first embodiment.
  • FIG. 7 is an operation flow chart of the water treatment device 100 according to the first embodiment.
  • step S2 the filtration pump 15 is operated to suck the water 1 to be treated stored in the water storage tank 2 to be treated, and the filtration membrane 3 filters the water 1 to be treated.
  • step S3 the start of the backwash treatment is determined when a predetermined time Ta elapses from the start of the filtration treatment or when the intermembrane differential pressure of the filtration membrane 3 exceeds the predetermined intermembrane differential pressure. If it is determined that the backwashing process has started, the process proceeds to step S4 and step S6.
  • step S4 the filtration pump 15 is stopped.
  • step S5 the first valve 14 is closed.
  • step S6 the ozone gas generator 61 starts operation.
  • step S7 it is determined whether the dissolved ozone concentration of the liquid in the backwash water tank 62 is a predetermined concentration. If the concentration is equal to or higher than the predetermined concentration, the process proceeds to step S8.
  • step S9 the backwash pump 18 is operated, ozone water is supplied to the filtration membrane 3, and the backwash treatment of the filtration membrane 3 is performed.
  • step S10 the end of the backwash treatment is determined when the predetermined time Tb has elapsed or when the predetermined water permeability is exceeded. If it is determined that the backwashing process is completed, the process proceeds to step S11, and if it is not determined that the backwashing process is completed, the process proceeds to step S101.
  • step S101 the detection unit 8 determines whether gas lock has occurred in the filtration membrane 3. If it is determined that the gas lock has occurred, the process proceeds to step S102, and if it is determined that the gas lock has not occurred, the process proceeds to step S10.
  • step S102 the backwash pump 18 is temporarily stopped.
  • step S103 it is determined whether a predetermined time Tc has elapsed since the backwash pump 18 was stopped. If it is determined that the predetermined time Tc has elapsed, the process proceeds to step S104.
  • step S104 the exhaust valve 72 of the gas discharge unit 7 discharges the air bubbles induced to the gas-liquid separation unit 71.
  • step S105 the backwash pump 18 is operated to restart the supply of ozone water to the filtration membrane 3.
  • step S11 the backwash pump 18 is stopped.
  • step S12 the second valve 17 is closed.
  • step S13 the operation of the ozone gas generator 61 is stopped.
  • the water treatment apparatus 100 has a filtration treatment in which the water to be treated is passed from the primary side to the secondary side of the filtration membrane and a backwash water is passed from the secondary side to the primary side of the filtration membrane to wash the filtration membrane.
  • the backwash water supply unit that supplies the backwash water to the filtration membrane
  • the detection unit that detects gas lock due to air bubbles inside the filtration membrane
  • the detection unit are the filtration membranes.
  • the backwash water supply by the backwash water supply unit is temporarily stopped, and after a predetermined time has elapsed, the backwash water supply by the backwash water supply unit is restarted. It includes a control unit and a gas discharge unit that discharges air bubbles inside the filtration membrane induced by the control unit stopping the supply of backwash water by the backwash water supply unit.
  • the detection unit of the water treatment apparatus 100 includes a pressure measurement unit that measures the intermembrane differential pressure of the filtration membrane when the backwash water is supplied to the filtration membrane by the backwash water supply unit, and a pressure.
  • the first intermembrane differential pressure measured by the measuring unit is compared with the second intermembrane differential pressure measured by the pressure measuring unit before the measurement of the first intermembrane differential pressure, and the first is higher than the second intermembrane differential pressure. It has a gas lock determination unit for determining that gas lock has occurred in the filtration membrane when the differential pressure between the membranes is large.
  • the detection unit of the water treatment apparatus 100 includes a pressure measurement unit that measures the intermembrane differential pressure of the filtration membrane when the backwash water is supplied to the filtration membrane by the backwash water supply unit, and a pressure.
  • the first intermembrane differential pressure measured by the measuring unit is compared with the second intermembrane differential pressure measured by the pressure measuring unit before the measurement of the first intermembrane differential pressure, and the first is higher than the second intermembrane differential pressure.
  • gas lock has occurred in the filtration membrane when the intermembrane differential pressure is large and the amount of pressure change of the first intermembrane differential pressure with respect to the second intermembrane differential pressure per unit time is equal to or greater than a predetermined threshold value. It has a gas lock determination unit and a gas lock determination unit.
  • the water treatment apparatus 100 efficiently removes the gas generated between the filtration membranes or inside the filtration membrane from the gas discharge unit during the backwashing treatment, and uses backwashing water. Suppresses the deterioration of the cleaning effect of the filtration membrane.
  • the water treatment device 100 includes a swinging portion that swings the filtration membrane when the backwashing water supply by the backwashing water supply unit is temporarily stopped by the control unit.
  • the control unit when the supply of backwash water by the backwash water supply unit is temporarily stopped by the control unit, the water flow from the primary side of the filtration membrane toward the filtration membrane.
  • it is provided with a jet section for jetting a gas-liquid mixed flow.
  • the water treatment device 100 when the supply of backwash water by the backwash water supply unit is temporarily stopped by the control unit, the water treatment device 100 is treated from the primary side to the secondary side of the filtration membrane. It is characterized by allowing water to pass through.
  • the water treatment device 100 positively guides the bubbles existing in the inside 3a of the filtration membrane 3 to the gas discharge unit 7.
  • the water treatment method according to the first embodiment is a filtration treatment in which the water to be treated is passed from the primary side to the secondary side of the filter membrane, and a backwash water is passed from the secondary side to the primary side of the filter membrane to wash the filter membrane.
  • the step of supplying the backwash water to the filter membrane, the step of detecting the gas lock due to the bubbles inside the filter membrane, and the backwash water when the gas lock is detected.
  • the water treatment method according to the first embodiment efficiently removes the gas generated between the gas discharge unit and the filtration membrane or inside the filtration membrane during the backwash treatment, and filters by the backwash water. Suppresses the decrease in the cleaning effect of the membrane.
  • Embodiment 2 The configuration of the water treatment apparatus 200 according to the second embodiment of the present invention will be described. The same or corresponding configurations as those in the first embodiment will be omitted, and only the parts having different configurations will be described.
  • the water treatment device 200 has a configuration having a plurality of filtration membranes 3.
  • a plurality of filtration membranes 3 When a plurality of filtration membranes 3 are installed, the same number of gas discharge units 7 as the filtration membranes 3 are provided, and each gas discharge unit 7 and each filtration membrane 3 are connected via a connection pipe 12, and the first embodiment
  • the effect of the present invention can be obtained by performing the operation by the method shown in 1.
  • the same number of gas discharge units 7 as the plurality of filtration membranes 3 are provided, the number of parts increases, so that the production cost and the maintenance cost increase.
  • FIG. 8 is a diagram showing an example of the configuration of the water treatment device 200 according to the second embodiment.
  • the water treatment device 200 includes a plurality of filtration membranes 3 and a header pipe 21 having one end connected to the gas-liquid separation portion 71 of the gas discharge unit 7 and the other end connected to the filtration pipe 13.
  • One end is connected to the secondary side of each filtration membrane 3, and the other end is provided with a plurality of connecting pipes 12 connected to a gas-liquid separation unit 71 or a header pipe 21.
  • the other end of at least one of the connection pipes 12 is connected to the gas-liquid separation unit 71 of the gas discharge unit 7.
  • the pressure measuring unit 81 of the detection unit 8 is provided in the filtration pipe 13 between the connection point between the filtration pipe 13 and the backwash pipe 16 and the header pipe 21, and measures the intermembrane differential pressure of the entire plurality of filtration membranes 3. ..
  • the same method as the specific example described in the first embodiment can be used.
  • the installation position of the pressure measuring unit 81 is not limited to the position shown in FIG. 8 as long as the total intermembrane differential pressure of the plurality of filtration membranes 3 can be measured.
  • FIG. 9 is a partially enlarged view of the water treatment apparatus 200 according to the second embodiment.
  • the diameter of the gas-liquid separation portion 71 is the diameter L1
  • the diameter of the connecting pipe 12 is the diameter L2
  • the diameter of the header pipe 21 is the diameter L4
  • the diameter L1 of the gas-liquid separation portion 71 is connected. It is larger than the diameter L2 of the pipe 12 and the diameter L4 of the header pipe 21.
  • the diameter L1 of the gas-liquid separation unit 71, the diameter L2 of the connecting pipe 12, and the diameter L4 of the header pipe 21 have, for example, 0.1 times the flow velocity of the gas-liquid separation unit 71 with respect to the flow velocity in the header pipe 21. It is preferable to set it to be 0.9 times or more and 0.9 times or less.
  • the control unit 9 temporarily stops the supply of ozone water by the backwash water supply unit 6, as in the water treatment device 100.
  • the supply of ozone water is temporarily stopped, air bubbles inside the filtration membrane 3A are guided to the gas-liquid separation unit 71 and discharged from the exhaust valve 72.
  • Bubbles inside the filtration membranes 3B, 3C, and 3D may be guided to the header tube 21 and stay in the header tube 21 as bubbles Y. Therefore, the header tube 21 may be made of a hydrophilic material having a low affinity for bubbles, and the header tube 21 may be formed so that the bubbles induced in the header tube 21 are guided to the gas-liquid separation portion 71. preferable.
  • the diameter L1 of the gas-liquid separation portion 71 may be made larger than the diameter L2 of the connecting pipe 12 and the diameter L4 of the header pipe 21.
  • the air bubbles Y induced in the header pipe 21 are generated by the control unit 9 in the backwash water supply unit 6.
  • the bubbles Y guided to the gas-liquid separation unit 71 by resuming the supply of ozone water and induced to the gas-liquid separation unit 71 are discharged from the exhaust valve 72 by levitation separation.
  • the water treatment device 200 according to the second embodiment is the same as the water treatment device 100 of the first embodiment by performing the same operation as the water treatment device 100 of the first embodiment in both the filtration step and the backwashing step. Play the effect of.
  • FIG. 10 is a diagram showing a modified example of the water treatment device 200 according to the second embodiment.
  • a plurality of header pipes 21 to which a plurality of connecting pipes 12 are connected are provided, a gas discharge unit 7 is connected to one end of each of the plurality of header pipes 21, and the other end of each is a collecting pipe. It is connected to 22.
  • the collecting pipe 22 is connected to the filtration pipe 13, and other configurations are the same as those of the water treatment device 200 according to the second embodiment.
  • the example shown in FIG. 10 is the same as the water treatment apparatus 200 according to the second embodiment except that a plurality of header pipes 21 are provided and the plurality of header pipes 21 are connected to the collecting pipe 22.
  • a plurality of header pipes 21 are provided and the plurality of header pipes 21 are connected to the collecting pipe 22.
  • the water treatment device 200 is provided with a plurality of filtration membranes, and the gas discharge unit has a gas-liquid separation unit in which air bubbles inside the filtration membrane are induced and a gas-liquid separation unit in which air bubbles are induced in the gas-liquid separation unit.
  • the water treatment device has an exhaust valve for discharging, and one end is connected to a gas-liquid separation part and the other end is connected to a pipe connected to a backwash water supply part.
  • a plurality of connecting pipes connected to the secondary side of the filtration membrane and the other end connected to the gas-liquid separation part or the gas discharge part, and at least one of the connection pipes has the other end of the gas-liquid separation part.
  • the air bubbles inside the filtration membrane are guided to the header tube or the gas-liquid separation part, and are guided to the header tube.
  • the generated bubbles are characterized in that they are guided to the gas-liquid separation unit by the control unit restarting the supply of the backwash water by the backwash water supply unit.
  • the diameter of the gas-liquid separation portion of the water treatment apparatus 200 according to the second embodiment is larger than the diameter of the connecting pipe and the header pipe.
  • the water treatment apparatus 200 efficiently removes the gas generated between the filtration membranes or inside the filtration membrane from the gas discharge unit during the backwashing treatment, and uses backwashing water. Suppresses the deterioration of the cleaning effect of the filtration membrane.
  • the backwash water is described as ozone water, but the backwash water is not limited to ozone water.
  • the backwash water for example, filtered water or a chemical solution containing hypochlorous acid may be used.
  • a chemical solution containing hypochlorous acid is used as the backwash water, the cost of the backwash water can be reduced as compared with the case where ozone water is used as the backwash water.
  • each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The objective of the invention is to provide a water treatment device and a water treatment method for effectively eliminating gas that has been generated while backwashing within the filter membrane or in the space between a gas exhaust unit and the filter membrane, to suppress a decrease in the filter membrane washing effect by the backwashed water. This water treatment device performs filtering whereby water to be treated is passed from a primary side to a secondary side of a membrane filter so as to be filtered, and backwashing whereby backwashing water is passed from the secondary side to the primary side of the membrane filter to wash the filter membrane, the water treatment device comprising: a backwashing water supply unit for supplying the backwashing water to the filter membrane; a detection unit for detecting gas lock due to an air bubble within the filter membrane; a control unit that causes the supply of backwashing water by the backwashing water supply unit to stop temporarily if the detection unit has detected gas lock of the filter membrane, and after a pre-determined time has elapsed causes the supply of the backwashing water by the backwashing water supply unit to resume; and a gas release unit for releasing the air bubble within the membrane filter which is induced by the control unit having caused the supply of the backwashing water by the backwashing water supply unit to stop.

Description

水処理装置及び水処理方法Water treatment equipment and water treatment method
 この発明は、ろ過膜を用いた水処理装置および水処理方法に関する。 The present invention relates to a water treatment apparatus and a water treatment method using a filtration membrane.
 河川水、地下水又は下水処理水等の被処理水をろ過膜でろ過し、工業用水又は水道水を製造する膜ろ過方法が広く採用されている。ろ過膜を用いたろ過方法は、被処理水中の懸濁物質等を除去することができる。 A membrane filtration method for producing industrial water or tap water by filtering treated water such as river water, groundwater or treated sewage water with a filtration membrane is widely adopted. The filtration method using a filtration membrane can remove suspended substances and the like in the water to be treated.
 ろ過膜を用いたろ過方法では、被処理水中に含まれる濁質又は有機物等の除去対象物が膜面に蓄積し、ろ過膜の閉塞現象が起こるため、ろ過膜のろ過抵抗が上昇し、やがてろ過を行うことができなくなる。そこで、膜ろ過性能を維持するため、被処理水のろ過方向とは逆向きにろ過水等の水である逆洗水を圧力で押し込み、膜などに付着した汚染物質を排除する逆圧水洗浄(逆洗)が行われる。 In the filtration method using a filtration membrane, objects to be removed such as turbid substances or organic substances contained in the water to be treated accumulate on the membrane surface, causing a clogging phenomenon of the filtration membrane, so that the filtration resistance of the filtration membrane increases, and eventually. Filtration cannot be performed. Therefore, in order to maintain the membrane filtration performance, back-pressure water washing that removes contaminants adhering to the membrane by pushing back-wash water, which is water such as filtered water, in the direction opposite to the filtration direction of the water to be treated. (Backwash) is performed.
 一般的な逆洗の圧力水準では、配管内にガスが滞留している場合、ろ過膜の膜面にて逆洗水は膜の内側から外側に向かって膜を透過できるが、配管内に滞留していたガスは膜を透過できない。よって、ろ過膜の細孔がガスによって閉塞するガスロックが発生し、逆洗水のろ過膜への供給が妨げられ、逆洗水による洗浄効果が低下する。 At a general backwash pressure level, when gas stays in the pipe, backwash water can permeate the membrane from the inside to the outside of the filtration membrane, but stays in the pipe. The gas that had been used cannot penetrate the membrane. Therefore, gas lock occurs in which the pores of the filtration membrane are blocked by the gas, the supply of the backwash water to the filtration membrane is hindered, and the cleaning effect of the backwash water is reduced.
 従来技術では、逆洗水送水手段からろ過膜までの配管に排気手段を設けることで、逆洗開始前に配管内に滞留するガスを排出している。(引用文献1) In the conventional technology, by providing an exhaust means in the pipe from the backwash water supply means to the filtration membrane, the gas staying in the pipe is discharged before the start of the backwash. (Citation 1)
国際公開第2009/008463号公報International Publication No. 2009/008463
 特許文献1に記載の水処理装置は、逆洗開始前に配管内に滞留するガスを除去することはできるが、逆洗処理中に排気手段からろ過膜の間又はろ過膜の内部で新たに発生したガスは、水流に押し戻され浮上できないため、逆洗処理中に排気手段からろ過膜の間又はろ過膜の内部で新たに発生したガスを除去することはできない。したがって、従来技術では、逆洗処理中に排気手段からろ過膜の間又はろ過膜の内部で新たに発生したガスによって、ろ過膜にガスロックが発生し、逆洗水のろ過膜への供給を妨げられた状態での逆洗処理を実行するため、逆洗水によるろ過膜の洗浄効果が低下する。 The water treatment apparatus described in Patent Document 1 can remove the gas staying in the pipe before the start of backwashing, but is newly added between the exhaust means to the filtration membrane or inside the filtration membrane during the backwashing treatment. Since the generated gas is pushed back by the water stream and cannot float, it is not possible to remove the newly generated gas from the exhaust means between the filtration membranes or inside the filtration membrane during the backwash treatment. Therefore, in the prior art, a gas lock is generated in the filtration membrane by the gas newly generated between the exhaust means and the filtration membrane or inside the filtration membrane during the backwash treatment, and the backwash water is supplied to the filtration membrane. Since the backwashing treatment is performed in a hindered state, the cleaning effect of the filtration membrane by the backwashing water is reduced.
 本発明は、上記のような課題を解決するためになされたもので、逆洗処理中にガス排出ユニットからろ過膜まで間又はろ過膜の内部で発生したガスの除去を効率的に行い、逆洗水によるろ過膜の洗浄効果の低下を抑制する水処理装置及び水処理方法の提供を目的とする。 The present invention has been made to solve the above problems, and efficiently removes the gas generated between the gas discharge unit and the filtration membrane or inside the filtration membrane during the backwashing treatment, and vice versa. An object of the present invention is to provide a water treatment device and a water treatment method that suppress a decrease in the cleaning effect of the filtration membrane due to washing water.
 本発明に係る水処理装置は、ろ過膜の一次側から二次側に被処理水を通してろ過するろ過処理と、ろ過膜の二次側から一次側に逆洗水を通してろ過膜を洗浄する逆洗処理と、を行う水処理装置において、ろ過膜に逆洗水を供給する逆洗水供給部と、ろ過膜の内部の気泡によるガスロックを検出する検出部と、検出部がろ過膜のガスロックを検出した場合に、逆洗水供給部による逆洗水の供給を一時的に停止させ、予め決められた時間が経過後、逆洗水供給部による逆洗水の供給を再開させる制御部と、制御部が逆洗水供給部による逆洗水の供給を停止させることにより誘導されたろ過膜の内部の気泡を排出するガス排出ユニットと、を備える。 The water treatment apparatus according to the present invention has a filtration treatment in which the water to be treated is passed from the primary side to the secondary side of the filtration membrane and a backwash in which the filtration membrane is washed by passing backwash water from the secondary side to the primary side of the filtration membrane. In a water treatment device that performs treatment, a backwash water supply unit that supplies backwash water to the filtration membrane, a detection unit that detects gas lock due to air bubbles inside the filtration membrane, and a detection unit are gas locks of the filtration membrane. When the backwash water supply unit temporarily stops the backwash water supply, and after a predetermined time elapses, the backwash water supply unit restarts the backwash water supply. The control unit includes a gas discharge unit that discharges air bubbles inside the filtration membrane induced by stopping the supply of backwash water by the backwash water supply unit.
 本発明に係る水処理方法は、ろ過膜の一次側から二次側に被処理水を通してろ過するろ過処理と、ろ過膜の二次側から一次側に逆洗水を通してろ過膜を洗浄する逆洗処理と、を行う水処理方法において、ろ過膜に逆洗水を供給するステップと、ろ過膜の内部の気泡によるガスロックを検出するステップと、ガスロックを検出した場合に、逆洗水の供給を一時的に停止させるステップと、逆洗水の供給を一時的に停止させることによりガス排出ユニットに誘導されたろ過膜の内部の気泡を排出するステップと、逆洗水の供給を一時的に停止させてから予め決められた時間が経過後、逆洗水の供給を再開させるステップと、を備える。 The water treatment method according to the present invention includes a filtration treatment in which the water to be treated is passed from the primary side to the secondary side of the filter membrane and a backwash in which the filter membrane is washed by passing backwash water from the secondary side to the primary side of the filter membrane. In the water treatment method of performing the treatment, a step of supplying backwash water to the filter membrane, a step of detecting gas lock due to air bubbles inside the filter membrane, and a step of supplying backwash water when gas lock is detected. The step of temporarily stopping the backwash water supply, the step of discharging the air bubbles inside the filter membrane guided to the gas discharge unit by temporarily stopping the backwash water supply, and the step of temporarily stopping the backwash water supply. A step of restarting the backwash water supply after a predetermined time has elapsed from the stoppage is provided.
 本発明に係る水処理装置によれば、逆洗処理中にガス排出ユニットからろ過膜の間又はろ過膜の内部で発生したガスの除去を効率的に行い、逆洗水によるろ過膜の洗浄効果の低下を抑制する。 According to the water treatment apparatus according to the present invention, the gas generated between the filtration membranes or inside the filtration membrane is efficiently removed from the gas discharge unit during the backwashing treatment, and the cleaning effect of the filtration membrane by the backwashing water is performed. Suppress the decrease in.
 本発明に係る水処理方法によれば、逆洗処理中にガス排出ユニットからろ過膜の間又はろ過膜の内部で発生したガスの除去を効率的に行い、逆洗水によるろ過膜の洗浄効果の低下を抑制する。 According to the water treatment method according to the present invention, the gas generated between the filtration membranes or inside the filtration membrane is efficiently removed from the gas discharge unit during the backwashing treatment, and the cleaning effect of the filtration membrane by the backwashing water is performed. Suppress the decrease in.
本発明の実施の形態1に係る水処理装置の構成の一例を示す図である。It is a figure which shows an example of the structure of the water treatment apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る水処理装置のガスロック発生判断部及び制御部の構成を例示した図である。It is a figure which illustrated the structure of the gas lock generation determination part and control part of the water treatment apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る水処理装置のろ過膜の断面を例示した図である。It is a figure which illustrated the cross section of the filtration membrane of the water treatment apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る水処理装置のガス排出ユニットの構成を例示した図である。It is a figure which illustrated the structure of the gas discharge unit of the water treatment apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る水処理装置に揺動部及び噴流部を設けた例を示す図である。It is a figure which shows the example which provided the rocking part and the jet part in the water treatment apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る水処理装置のガス排出ユニットの設置位置の変形例を示す図である。It is a figure which shows the modification of the installation position of the gas discharge unit of the water treatment apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る水処理装置の運転フロー図である。It is an operation flow chart of the water treatment apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る水処理装置の構成の一例を示す図である。It is a figure which shows an example of the structure of the water treatment apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る水処理装置の一部拡大図である。It is a partially enlarged view of the water treatment apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る水処理装置の変形例を示す図である。It is a figure which shows the modification of the water treatment apparatus which concerns on Embodiment 2 of this invention.
 以下、添付図面を参照して、本願が開示する水処理装置及び水処理方法に係る実施の形態を詳細に説明する。なお、以下に示す実施の形態は一例であり、これらの実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments relating to the water treatment apparatus and the water treatment method disclosed in the present application will be described in detail with reference to the attached drawings. The embodiments shown below are examples, and the present invention is not limited to these embodiments.
実施の形態1.
 図1は、実施の形態1に係る水処理装置100の構成の一例を示す図である。図1に示すように水処理装置100は、被処理水1を貯留する被処理水貯留槽2と、被処理水貯留槽2内の被処理水1に浸漬配置され、被処理水貯留槽2内の被処理水1をろ過するろ過膜3と、ろ過膜3によってろ過されたろ過水4を貯留するろ過水槽5と、ろ過膜3に逆洗水を供給する逆洗水供給部6と、逆洗水供給部6がろ過膜3に逆洗水を供給する場合に発生するガスを排出するガス排出ユニット7と、ろ過膜3のガスロックを検出する検出部8と、水処理装置100の運転を制御する制御部9とを備える。
Embodiment 1.
FIG. 1 is a diagram showing an example of the configuration of the water treatment device 100 according to the first embodiment. As shown in FIG. 1, the water treatment apparatus 100 is immersed in the water to be treated water storage tank 2 for storing the water to be treated 1 and the water to be treated 1 in the water to be treated water storage tank 2, and the water to be treated water storage tank 2 is arranged. A filter membrane 3 for filtering the water to be treated 1 inside, a filtered water tank 5 for storing the filtered water 4 filtered by the filter membrane 3, a backwash water supply unit 6 for supplying backwash water to the filter membrane 3 A gas discharge unit 7 that discharges gas generated when the backwash water supply unit 6 supplies backwash water to the filter membrane 3, a detection unit 8 that detects a gas lock of the filter membrane 3, and a water treatment device 100. A control unit 9 for controlling operation is provided.
 ここで、逆洗水とは、例えば、ろ過水、オゾン又は次亜塩素酸を含んだ薬品溶液であるが、逆洗水としてオゾン水を用いた場合は、次亜塩素酸を含む洗浄水等と比較して気泡が発生しやすくなるため、以下、逆洗水は、オゾン水として説明する。 Here, the backwash water is, for example, filtered water, a chemical solution containing ozone or hypochlorous acid, but when ozone water is used as the backwash water, the wash water containing hypochlorous acid or the like is used. Since bubbles are more likely to be generated as compared with the above, the backwash water will be described below as ozone water.
 被処理水貯留槽2内に貯留された被処理水1を、ろ過膜3によってろ過し、ろ過水槽5へと供給するろ過処理において、ろ過膜3の被処理水1の流入側を一次側とし、ろ過膜3のろ過水4の流出側を二次側とする。また、逆洗水供給部6から逆洗水をろ過膜3へ供給する逆洗処理において、ろ過膜3の逆洗水の流入側を二次側とし、ろ過膜3の逆洗水の流出側を一次側とする。 In the filtration process in which the water to be treated 1 stored in the water storage tank 2 to be treated is filtered by the filtration membrane 3 and supplied to the filtration water tank 5, the inflow side of the water 1 to be treated of the filtration membrane 3 is set as the primary side. The outflow side of the filtered water 4 of the filtration film 3 is the secondary side. Further, in the backwash treatment in which the backwash water is supplied from the backwash water supply unit 6 to the filtration membrane 3, the backwash water inflow side of the filtration membrane 3 is set as the secondary side, and the backwash water outflow side of the filtration membrane 3 is set. Is the primary side.
 図1に示すように、被処理水貯留槽2には、被処理水貯留槽2に被処理水1を導入する被処理水導入配管11が接続されている。接続配管12の一端は、ろ過膜3の二次側に接続されており、接続配管12の他端は、ガス排出ユニット7に接続されている。ガス排出ユニット7にはろ過配管13が接続されている。ろ過配管13には第1バルブ14が配置されており、ろ過配管13はろ過水槽5に接続されている。また、第1バルブ14とろ過水槽5との間のろ過配管13には、ろ過ポンプ15が設置されている。ガス排出ユニット7から第1バルブ14の間のろ過配管13には、逆洗配管16が接続されている。逆洗配管16には、第2バルブ17が設置されており、逆洗配管16は逆洗水供給部6に接続されている。また、第2バルブ17と逆洗水供給部6との間の逆洗配管16には、逆洗ポンプ18が設置されている。 As shown in FIG. 1, a water to be treated water introduction pipe 11 for introducing the water to be treated 1 into the water to be treated water storage tank 2 is connected to the water to be treated water storage tank 2. One end of the connecting pipe 12 is connected to the secondary side of the filtration membrane 3, and the other end of the connecting pipe 12 is connected to the gas discharge unit 7. A filtration pipe 13 is connected to the gas discharge unit 7. A first valve 14 is arranged in the filtration pipe 13, and the filtration pipe 13 is connected to the filtration water tank 5. Further, a filtration pump 15 is installed in the filtration pipe 13 between the first valve 14 and the filtration water tank 5. A backwash pipe 16 is connected to the filtration pipe 13 between the gas discharge unit 7 and the first valve 14. A second valve 17 is installed in the backwash pipe 16, and the backwash pipe 16 is connected to the backwash water supply unit 6. Further, a backwash pump 18 is installed in the backwash pipe 16 between the second valve 17 and the backwash water supply unit 6.
 ここで、被処理水1は、例えば、河川、湖、沼若しくは海洋等から採水した自然水であっても良いし、又は下水若しくは産業排水等であってもよい。また、被処理水貯留槽2に活性汚泥を貯留しておいて、被処理水1を導入し、活性汚泥と混合した被処理水1をろ過膜3によってろ過する構成でもよい。 Here, the water to be treated 1 may be, for example, natural water collected from a river, lake, swamp, ocean, or the like, or sewage, industrial wastewater, or the like. Further, the activated sludge may be stored in the water to be treated storage tank 2, the water to be treated 1 may be introduced, and the water to be treated 1 mixed with the activated sludge may be filtered by the filtration membrane 3.
 ろ過膜3の形状は、例えば、中空糸型又は平膜型等である。また、ろ過膜3の材料は、例えば、セラミックス等の無機材料、又はポリフッ化ビニリデン(PVDF:PolyVinylidene DiFluoride)若しくはポリテトラフルオロエチレン(PTFE:Poly Tetra Fluoro Ethylene)等のフッ素樹脂系有機材料である。 The shape of the filtration membrane 3 is, for example, a hollow fiber type or a flat membrane type. The material of the filtration membrane 3 is, for example, an inorganic material such as ceramics, or a fluororesin-based organic material such as polyvinylidene fluoride (PVDF: Polyvinylidene DiFluoride) or polytetrafluoroethylene (PTFE: Poly Terra Fluoro Ethylene).
 図1に示すように、逆洗水供給部6は、オゾンガスを発生させるオゾンガス発生器61と、オゾンガス発生器61から供給されたオゾンガスと、内部に貯留した液体とを接触させてオゾン水を生成する逆洗水槽62とを備える。オゾンガス発生器61は、逆洗水槽62内に貯留された液体が予め決められたオゾン濃度となるようにオゾンガスを逆洗水槽62へと供給する。 As shown in FIG. 1, the backwash water supply unit 6 generates ozone water by bringing the ozone gas generator 61 that generates ozone gas, the ozone gas supplied from the ozone gas generator 61, and the liquid stored inside into contact with each other. A backwash water tank 62 is provided. The ozone gas generator 61 supplies ozone gas to the backwash water tank 62 so that the liquid stored in the backwash water tank 62 has a predetermined ozone concentration.
 検出部8は、ろ過配管13に接続された逆洗配管16の接続地点からガス排出ユニット7の間のろ過配管13に設けられ、ろ過膜3の膜間差圧を測定する圧力測定部81と、圧力測定部81が測定した膜間差圧に基づきろ過膜3のガスロックの発生を判断するガスロック発生判断部82とを備える。ここで、膜間差圧とは、ろ過膜3の一次側と二次側との圧力の差である。なお特に断らない限り、本願では膜間差圧は絶対値で示す。制御部9は、ガスロック発生判断部82によってろ過膜3にガスロックが発生したと判断された場合に、逆洗水供給部6によるオゾン水の供給を一時的に停止する。また、圧力測定部81の設置位置は、ろ過膜3の膜間差圧が測定できる位置であれば、図1に示した位置に限定されない。ここで、ろ過膜3の一次側の圧力を圧力P、ろ過膜3の二次側の圧力を圧力Pとした場合、膜間差圧ΔPは、以下の式(1)によって算出される値である。
 ΔP = P - P ・・・(1)
The detection unit 8 is provided in the filtration pipe 13 between the connection point of the backwash pipe 16 connected to the filtration pipe 13 and the gas discharge unit 7, and is provided with the pressure measuring unit 81 for measuring the intermembrane differential pressure of the filtration membrane 3. A gas lock generation determination unit 82 for determining the occurrence of gas lock in the filtration membrane 3 based on the intermembrane differential pressure measured by the pressure measurement unit 81 is provided. Here, the intermembrane differential pressure is the difference in pressure between the primary side and the secondary side of the filtration membrane 3. Unless otherwise specified, the differential pressure between membranes is shown as an absolute value in the present application. When the gas lock generation determination unit 82 determines that the gas lock has occurred in the filtration membrane 3, the control unit 9 temporarily stops the supply of ozone water by the backwash water supply unit 6. Further, the installation position of the pressure measuring unit 81 is not limited to the position shown in FIG. 1 as long as the intermembrane differential pressure of the filtration membrane 3 can be measured. Here, the pressure the pressure P A in the primary side of the filter membrane 3, when the pressure on the secondary side of the filtration membrane 3 to the pressure P B, the differential pressure ΔP between the membranes, is calculated by the following equation (1) The value.
ΔP = P A -P B ... (1)
 図2は、ガスロック発生判断部82及び制御部9の構成を例示した図である。図2(a)は、ガスロック発生判断部82の構成を例示しており、図2(b)は、制御部9の構成を例示している。ガスロック発生判断部82は、図2(a)に示すようなCPU1001aがメモリ1002aに記憶されたプログラムを実行するソフトウェア制御によって実現することが可能である。また、制御部9は、図2(b)に示すようなCPU1001bがメモリ1002bに記憶されたプログラムを実行するソフトウェア制御によって実現することが可能である。なお、ガスロック発生判断部82及び制御部9は、同一のCPU及びメモリを用いて実現する構成としてもよい。 FIG. 2 is a diagram illustrating the configuration of the gas lock generation determination unit 82 and the control unit 9. FIG. 2A illustrates the configuration of the gas lock generation determination unit 82, and FIG. 2B illustrates the configuration of the control unit 9. The gas lock generation determination unit 82 can be realized by software control in which the CPU 1001a as shown in FIG. 2A executes a program stored in the memory 1002a. Further, the control unit 9 can be realized by software control in which the CPU 1001b as shown in FIG. 2B executes a program stored in the memory 1002b. The gas lock generation determination unit 82 and the control unit 9 may be configured to be realized by using the same CPU and memory.
 なお、圧力測定部81はろ過配管13内の圧力を測定する計器を用いて、ガスロック発生判断部82によって膜間差圧を算出する構成でも良い。圧力測定部81がろ過配管13内の圧力のみを測定する場合、ガスロック発生判断部82は、圧力測定部81から被処理水貯留槽2の水面までの水頭差を加味して補正計算を行うことで圧力測定部81の測定値を膜間差圧に換算する。 The pressure measuring unit 81 may be configured to calculate the intermembrane differential pressure by the gas lock generation determining unit 82 using an instrument that measures the pressure in the filtration pipe 13. When the pressure measuring unit 81 measures only the pressure in the filtration pipe 13, the gas lock generation determining unit 82 performs the correction calculation in consideration of the head difference from the pressure measuring unit 81 to the water surface of the water storage tank 2 to be treated. As a result, the measured value of the pressure measuring unit 81 is converted into the intermembrane differential pressure.
 次に、実施の形態1に係る水処理装置100の動作について説明する。実施の形態1に係る水処理装置100は、ろ過膜3を用いて被処理水1をろ過する「ろ過処理」と、ろ過処理を中断し、ろ過膜3への逆洗水の供給を行う「逆洗処理」とを行う水処理装置である。 Next, the operation of the water treatment device 100 according to the first embodiment will be described. The water treatment device 100 according to the first embodiment has a "filtration treatment" in which the water to be treated 1 is filtered using the filtration membrane 3 and a "filter treatment" in which the filtration treatment is interrupted and the backwash water is supplied to the filtration membrane 3. It is a water treatment device that performs "backwashing treatment".
 水処理装置100では、ろ過処理による被処理水1のろ過に伴ってろ過膜3のファウリング、すなわち細孔の閉塞が進行する。ろ過膜3のファウリングが進行するとろ過膜3の膜間差圧が上昇する。ろ過膜3の許容できる膜間差圧には限度があり、限度以上の膜間差圧でろ過を継続するとろ過膜3が破損するおそれがある。また限度内の膜間差圧であっても、高い膜間差圧を維持してろ過を継続するとファウリングが進行し、逆洗によりろ過膜の細孔の閉塞を取り除くことが困難になるおそれがある。したがって、ろ過処理を開始してから所定時間Taが経過した場合、又は所定の膜間差圧を超えた場合に逆洗処理を実施することが望ましい。 In the water treatment apparatus 100, fouling of the filtration membrane 3, that is, blockage of pores progresses with the filtration of the water 1 to be treated by the filtration treatment. As the fouling of the filtration membrane 3 progresses, the intermembrane differential pressure of the filtration membrane 3 increases. There is a limit to the allowable intermembrane differential pressure of the filtration membrane 3, and if the filtration is continued with the intermembrane differential pressure exceeding the limit, the filtration membrane 3 may be damaged. Even if the intermembrane differential pressure is within the limit, if the filtration is continued while maintaining a high intermembrane differential pressure, fouling progresses, and it may be difficult to remove the blockage of the pores of the filtration membrane by backwashing. There is. Therefore, it is desirable to carry out the backwash treatment when a predetermined time Ta has elapsed from the start of the filtration treatment or when the predetermined intermembrane differential pressure is exceeded.
 所定時間Taは、例えば、1時間以上1ヵ月以下に設定することが望ましい。1時間よりも短い時間間隔ではファウリングがさほど進行していない状態での洗浄となり非効率である。また、頻繁に逆洗処理を実施することになるため維持管理コストが増大するおそれがある。一方、1ヵ月以上洗浄を行わない場合、洗浄で除去不可能な不可逆的ファウリングが進行するおそれがある。 It is desirable to set the predetermined time Ta to, for example, 1 hour or more and 1 month or less. If the time interval is shorter than 1 hour, cleaning is performed in a state where fouling has not progressed so much, which is inefficient. In addition, since the backwashing treatment is frequently performed, the maintenance cost may increase. On the other hand, if washing is not performed for one month or more, irreversible fouling that cannot be removed by washing may progress.
 所定の膜間差圧は、例えば、5kPa以上50kPa以下に設定することが望ましい。5kPaよりも低い膜間差圧ではファウリングがさほど進行していない状態での洗浄となり非効率である。また、頻繁に逆洗処理を実施することになるため維持管理コストが増大するおそれがある。一方、50kPa以上では、洗浄で除去不可能な不可逆的ファウリングが進行するおそれがある。 It is desirable to set the predetermined intermembrane differential pressure to, for example, 5 kPa or more and 50 kPa or less. If the differential pressure between the membranes is lower than 5 kPa, the washing is inefficient because the washing is performed in a state where the fouling has not progressed so much. In addition, since the backwashing treatment is frequently performed, the maintenance cost may increase. On the other hand, at 50 kPa or more, irreversible fouling that cannot be removed by washing may proceed.
 逆洗処理は、逆洗処理を開始してから所定時間Tbが経過するまで、又は所定の透水性Mを超えるまで実施する。ここで、透水性Mは、時間当たりの膜ろ過水量であるフラックスFと、膜間差圧ΔPとを用いて下記の式(2)によって算出される値である。ここで、所定時間Tbは、例えば、10分以上150分以下に設定することが望ましく、透水性は、例えば、0.2(m/日/kPa)以上0.8(m/日/kPa)以下に設定することが望ましい。
 M(m/日/kPa) = F(m/日) / ΔP(kPa) ・・・(2)
The backwash treatment is carried out until a predetermined time Tb elapses from the start of the backwash treatment or until a predetermined water permeability M is exceeded. Here, the water permeability M is a value calculated by the following formula (2) using the flux F, which is the amount of membrane filtration water per hour, and the intermembrane differential pressure ΔP. Here, the predetermined time Tb is preferably set to, for example, 10 minutes or more and 150 minutes or less, and the water permeability is, for example, 0.2 (m / day / kPa) or more and 0.8 (m / day / kPa). It is desirable to set as follows.
M (m / day / kPa) = F (m / day) / ΔP (kPa) ・ ・ ・ (2)
 ろ過処理及び逆洗処理の実施は、運転管理者により、都度、装置の操作を行うことで、手動により繰り返し実施してもよい。また、例えば、センサー、タイマー及び計測器等を用いて、それぞれの操作が自動で繰り返し実施可能なようにすることも可能であり、この場合には、省力化が可能である。手動又は自動、いずれの方法であっても、本発明の効果は、変わりなく得ることが可能である。 The filtration process and the backwash process may be manually and repeatedly performed by the operation manager by operating the device each time. Further, for example, it is possible to automatically and repeatedly perform each operation by using a sensor, a timer, a measuring instrument, or the like, and in this case, labor saving is possible. The effects of the present invention can be obtained unchanged by either manual or automatic methods.
 また、ろ過処理及び逆洗処理の実施時間は、運転管理者により、都度、装置の操作を行うことで、手動により調整してもよい。また、例えば、タイマーを設けて、あらかじめ設定した時間のみ行われるようにしてもよいし、カウンターなどを設けて、ろ過操作、逆洗操作の実施回数があらかじめ設定した回数に到達したところで終了させるなどしてもよい。 Further, the execution time of the filtration process and the backwash process may be manually adjusted by the operation manager by operating the device each time. Further, for example, a timer may be provided so that the operation is performed only for a preset time, a counter or the like is provided, and the filtration operation and the backwash operation are terminated when the number of executions reaches the preset number of times. You may.
 次に、実施の形態1に係る水処理装置100の「ろ過処理」及び「逆洗処理」について、詳細に説明する。 Next, the "filtration treatment" and the "backwash treatment" of the water treatment device 100 according to the first embodiment will be described in detail.
(1)ろ過処理
 ろ過処理では、水処理装置100は、被処理水貯留槽2内に貯留された被処理水1のろ過を行う。被処理水導入配管11から導入された被処理水1は、被処理水貯留槽2に貯留される。水処理装置100は、第2バルブ17が閉じた状態で、第1バルブ14を開き、ろ過ポンプ15を稼働させて被処理水貯留槽2に貯留された被処理水1を吸引し、ろ過膜3で被処理水1のろ過を行う。ろ過膜3によってろ過されたろ過水は、ろ過水槽5に移送される。
(1) Filtration Treatment In the filtration treatment, the water treatment device 100 filters the water to be treated 1 stored in the water storage tank 2 to be treated. The water to be treated 1 introduced from the water to be treated water introduction pipe 11 is stored in the water to be treated water storage tank 2. The water treatment device 100 opens the first valve 14 with the second valve 17 closed, operates the filtration pump 15, sucks the water 1 to be treated stored in the water storage tank 2 to be treated, and filters the membrane. In step 3, the water to be treated 1 is filtered. The filtered water filtered by the filtration membrane 3 is transferred to the filtered water tank 5.
(2)逆洗処理
 逆洗処理は、「逆洗水生成工程」と「逆洗水逆洗工程」とを有する。以下では、「逆洗水生成工程」、「逆洗水逆洗工程」のそれぞれについて、詳細に説明する。
(2) Backwashing treatment The backwashing treatment includes a "backwashing water generation step" and a "backwashing water backwashing step". In the following, each of the "backwash water generation step" and the "backwash water backwash step" will be described in detail.
<逆洗水生成工程>
 逆洗処理では、水処理装置100は、ろ過ポンプ15を停止し、第1バルブ14を閉じ、一方でオゾンガス発生器61を稼働させ、逆洗水槽62へのオゾンガス供給を開始する。逆洗水槽62には予めオゾンの溶媒となりうる液体を貯留させておき、該液体とオゾンガスを接触させることでオゾン水を生成する。
<Backwash water generation process>
In the backwash treatment, the water treatment device 100 stops the filtration pump 15, closes the first valve 14, while operating the ozone gas generator 61, and starts supplying ozone gas to the backwash water tank 62. A liquid that can be a solvent for ozone is stored in the backwash water tank 62 in advance, and ozone water is generated by bringing the liquid into contact with ozone gas.
 オゾンの溶媒となりうる液体は、例えば、水道水、工業用水、純水又は超純水のほか、ろ過水槽5に貯留されたろ過水4の一部を移送して使用しても良い。また、逆洗水槽62での逆洗水生成時には逆洗水槽62内の液体に対して、塩酸若しくは硫酸等の酸性薬品、又はラジカルスカベンジャ(例えば炭酸ガス)を、オゾンガス発生器61によるオゾンガス供給と同時又はオゾンガス発生器61によるオゾンガス供給に先駆けて供給しておいても良い。逆洗水槽62内の液体に対して、酸性薬品又はラジカルスカベンジャを加えることでオゾンの分解抑制が可能になり、オゾン水中での気泡発生抑制効果が得られる。 As the liquid that can be a solvent for ozone, for example, tap water, industrial water, pure water or ultrapure water, or a part of the filtered water 4 stored in the filtered water tank 5 may be transferred and used. Further, when the backwash water is generated in the backwash water tank 62, an acidic chemical such as hydrochloric acid or sulfuric acid or a radical scavenger (for example, carbon dioxide gas) is supplied to the liquid in the backwash water tank 62 by the ozone gas generator 61. It may be supplied at the same time as or prior to the supply of ozone gas by the ozone gas generator 61. By adding an acidic chemical or a radical scavenger to the liquid in the backwash water tank 62, it is possible to suppress the decomposition of ozone, and the effect of suppressing the generation of bubbles in ozone water can be obtained.
<逆洗水逆洗工程>
 逆洗水槽62内の液体の溶存オゾン濃度が所定濃度に到達すると、ろ過膜3へのオゾン水供給を開始する。すなわち、第2バルブ17を開き逆洗ポンプ18が稼働して、逆洗水槽62内に貯留されたオゾン水が逆洗配管16及び接続配管12を介してろ過膜3に供給される。供給されたオゾン水はろ過膜3の二次側から一次側へと透過する過程で、ろ過膜3の細孔を閉塞させているファウリング原因物質(バイオフィルム等の有機成分)を化学的に分解するか、又は物理的に剥離させる。
<Backwash water backwash process>
When the dissolved ozone concentration of the liquid in the backwash water tank 62 reaches a predetermined concentration, the supply of ozone water to the filtration membrane 3 is started. That is, the second valve 17 is opened, the backwash pump 18 operates, and the ozone water stored in the backwash water tank 62 is supplied to the filtration membrane 3 via the backwash pipe 16 and the connection pipe 12. In the process of permeating the supplied ozone water from the secondary side to the primary side of the filtration membrane 3, the fouling-causing substances (organic components such as biofilm) that block the pores of the filtration membrane 3 are chemically removed. Disassemble or physically peel off.
 ろ過膜3と逆洗水供給部6とを接続する接続配管12、ろ過配管13及び逆洗配管16内には、オゾンが分解して発生した酸素ガス、又はオゾン自身に由来する気泡が混入する場合がある。また、逆洗水としてオゾン水を用いていない場合でも、その他の何らかの原因によって気泡が混入する場合がある。ろ過膜3として、例えば、ろ過膜3の細孔径が0.1マイクロメートル程度の精密ろ過膜(MF(Microfiltration Membrane)膜)を使用する場合、逆洗で与えられる程度の圧力(60kPa以下)では、ろ過膜3を透過できるのは液体のみであり、酸素ガス又はオゾンガス等の気泡はろ過膜3を透過できない。 Oxygen gas generated by decomposition of ozone or bubbles derived from ozone itself are mixed in the connection pipe 12, the filtration pipe 13, and the backwash pipe 16 that connect the filtration membrane 3 and the backwash water supply unit 6. In some cases. Further, even when ozone water is not used as the backwash water, air bubbles may be mixed due to some other cause. When a microfiltration membrane (MF (Microfiltration Membrane) membrane) having a pore diameter of about 0.1 micrometer is used as the filtration membrane 3, for example, at a pressure (60 kPa or less) given by backwashing. Only liquids can permeate the filtration membrane 3, and bubbles such as oxygen gas or ozone gas cannot permeate the filtration membrane 3.
 図3は、逆洗処理中にガスロックが発生した、ろ過膜3の断面を例示した図である。図3において、領域Aは一次側であり、領域Bは二次側である。また、領域Bはろ過膜3の内部3aである。また、ろ過膜3の内部3aの気泡を気泡Xとする。ろ過膜3のガスロックの原因となる気泡Xは、オゾン水の供給を続ける限り、水流に押し戻されるため浮上ができず、ろ過膜3を塞ぎ続ける。つまり、逆洗配管16又は接続配管12内に混入した気泡Xがろ過膜3の内部3aに到達するとろ過膜3の細孔を塞いでしまい、オゾン水の流通を妨げ洗浄効果を損なわせるおそれがある。 FIG. 3 is a diagram illustrating a cross section of the filtration membrane 3 in which gas lock occurred during the backwashing process. In FIG. 3, region A is the primary side and region B is the secondary side. Further, the region B is the inside 3a of the filtration membrane 3. Further, the bubbles inside the filtration membrane 3 3a are referred to as bubbles X. As long as the supply of ozone water is continued, the bubbles X that cause the gas lock of the filtration membrane 3 cannot float because they are pushed back by the water flow, and continue to block the filtration membrane 3. That is, when the bubbles X mixed in the backwash pipe 16 or the connection pipe 12 reach the inside 3a of the filtration membrane 3, the pores of the filtration membrane 3 may be blocked, which may hinder the flow of ozone water and impair the cleaning effect. is there.
 実施の形態1に係る水処理装置100の制御部9は、ガスロック発生判断部82がろ過膜3にガスロックが発生したと判断した場合に、逆洗水供給部6によるオゾン水の供給を一時的に停止させ、所定時間Tcが経過した後に、逆洗水供給部6によるオゾン水の供給を再開させる。制御部9によって逆洗水供給部6によるオゾン水の供給が一時的に停止するため、ろ過膜3の内部3aに到達した気泡は、接続配管12を介してガス排出ユニット7へ誘導され、ガス排出ユニット7から配管の外へと排出される。したがって、実施の形態1に係る水処理装置100は、逆洗処理中にガス排出ユニット7からろ過膜3の間又はろ過膜3の内部3aで発生した気泡がろ過膜3の細孔を塞ぎ、オゾン水の流通を妨げることによる洗浄効果の低下を抑制する。制御部9によって、逆洗水供給部6によるオゾン水の供給を一時的に停止させる所定時間Tcは、例えば、5秒以上600秒以下に設定することが望ましい。ガス排出ユニット7の詳細な構成については後述する。 When the gas lock generation determination unit 82 determines that the gas lock has occurred in the filtration membrane 3, the control unit 9 of the water treatment apparatus 100 according to the first embodiment supplies ozone water by the backwash water supply unit 6. It is temporarily stopped, and after a predetermined time Tc has elapsed, the supply of ozone water by the backwash water supply unit 6 is restarted. Since the supply of ozone water by the backwash water supply unit 6 is temporarily stopped by the control unit 9, the bubbles that have reached the inside 3a of the filtration membrane 3 are guided to the gas discharge unit 7 via the connection pipe 12 and gas. It is discharged from the discharge unit 7 to the outside of the pipe. Therefore, in the water treatment device 100 according to the first embodiment, air bubbles generated between the gas discharge unit 7 and the filtration membrane 3 or inside the filtration membrane 3a during the backwashing process close the pores of the filtration membrane 3. It suppresses the deterioration of the cleaning effect due to obstructing the flow of ozone water. It is desirable that the predetermined time Tc for temporarily stopping the supply of ozone water by the backwash water supply unit 6 by the control unit 9 is set to, for example, 5 seconds or more and 600 seconds or less. The detailed configuration of the gas discharge unit 7 will be described later.
 次に、検出部8によるガスロックの検出の具体例について説明する。検出部8のガスロック発生判断部82は、圧力測定部81の測定結果を所定時間T毎に取り込み、今回(n回目)の測定結果である第1膜間差圧ΔPと、前回(n-1回目)の測定結果である第2膜間差圧ΔPn-1と、を比較して大小関係を判定する。ガスロック発生判断部82は、第2膜間差圧ΔPn-1よりも第1膜間差圧ΔPが大きい場合に、ガスロックが発生したと判断する。 Next, a specific example of gas lock detection by the detection unit 8 will be described. The gas lock generation determination unit 82 of the detection unit 8 takes in the measurement result of the pressure measurement unit 81 every T 1 for a predetermined time, and sets the first intermembrane differential pressure ΔP n which is the measurement result of this time (nth time) and the previous time (nth time). The magnitude relationship is determined by comparing with the second intermembrane differential pressure ΔP n-1 , which is the measurement result of the n- 1th measurement). The gas lock generation determination unit 82 determines that gas lock has occurred when the differential pressure ΔP n between the first membranes is larger than the differential pressure ΔP n-1 between the second membranes.
 また、より精度よくガスロックの発生を判断する場合は、ガスロック発生判断部82は、所定時間Tと、第1膜間差圧ΔP及び第2膜間差圧ΔPn-1の変化量と、から下記の式(3)を用いて、第2膜間差圧ΔPn-1に対する第1膜間差圧ΔPの単位時間当たりの圧力変化量Qを算出する。なお特に断らない限り、本願では圧力変化量Qは絶対値で示す。ガスロック発生判断部82は、第2膜間差圧ΔPn-1よりも第1膜間差圧ΔPが大きく、かつ圧力変化量Qが閾値Th以上の場合に、圧力が増加傾向でありガスロックが発生したと判断する。なお、ガスロック発生判断部82による圧力測定部81の測定結果の取り込み間隔Tは、例えば、1秒以上600秒以下が良く、さらに好ましくは30秒以上600秒以下である。また、閾値Thは、0.5(kPa/分)以上5.0(kPa/分)以下に設定するのが良い。なお、n=1回目の場合は、n-1回目の測定結果である第2膜間差圧ΔPn-1が存在しないため、ガスロックの検出は行わない。
 Q = (ΔP-ΔPn-1) / T ・・・(3)
Further, when determining the occurrence of gas lock more accurately, the gas lock generation determination unit 82 changes the predetermined time T 1 and the change of the first intermembrane differential pressure ΔP n and the second intermembrane differential pressure ΔP n-1 . From the amount, the pressure change amount Q per unit time of the first intermembrane differential pressure ΔP n with respect to the second intermembrane differential pressure ΔP n-1 is calculated from the following equation (3). Unless otherwise specified, the pressure change amount Q is shown as an absolute value in the present application. In the gas lock generation determination unit 82, the pressure tends to increase when the differential pressure ΔP n between the first membranes is larger than the differential pressure ΔP n-1 between the second membranes and the pressure change amount Q is equal to or more than the threshold value Th. Judge that a gas lock has occurred. Incidentally, sampling intervals of T 1 of the measurement result of the pressure measuring section 81 according to the gas lock occurrence determination unit 82 may, for example, the following 600 seconds 1 seconds, more preferably less 600 seconds 30 seconds. Further, the threshold value Th is preferably set to 0.5 (kPa / min) or more and 5.0 (kPa / min) or less. In the case of n = 1st time, the gas lock is not detected because the second intermembrane differential pressure ΔP n-1 which is the measurement result of the n- 1th time does not exist.
Q = (ΔP n ΔP n -1 ) / T 1 ... (3)
 また、ガスロック発生判断部82は、第2膜間差圧ΔPn-1として、測定結果の移動平均値Zを算出し、ガスロックの発生を判断することもできる。移動平均値Zとは、前回の測定結果である第2膜間差圧ΔPn-1以前のm個の測定結果を用いて、下記の式(4)によって算出される値である。移動平均値Zを求めるために使用するデータ数mは、例えば、2個以上10個以下である。
 Z = Σ(Pn-1+・・・+Pn-m) / m ・・・(4)
Further, the gas lock generation determination unit 82 can also determine the occurrence of gas lock by calculating the moving average value Z of the measurement result as the second intermembrane differential pressure ΔP n-1 . The moving average value Z is a value calculated by the following formula (4) using m measurement results before the second intermembrane differential pressure ΔP n-1 , which is the previous measurement result. The number of data m used to obtain the moving average value Z is, for example, 2 or more and 10 or less.
Z = Σ (P n-1 + ・ ・ ・ + P nm ) / m ・ ・ ・ (4)
 図4は、ガス排出ユニット7の構成を例示した図である。図4に示すように、ガス排出ユニット7は、接続配管12に接続され、ろ過膜3よりも鉛直上方に設けられた気液分離部71と、気液分離部71に誘導された気泡を排出する排気弁72と、排気弁72に接続された排気管73とを有する。 FIG. 4 is a diagram illustrating the configuration of the gas discharge unit 7. As shown in FIG. 4, the gas discharge unit 7 is connected to the connection pipe 12 and discharges the gas-liquid separation unit 71 provided vertically above the filtration membrane 3 and the air bubbles induced in the gas-liquid separation unit 71. It has an exhaust valve 72 and an exhaust pipe 73 connected to the exhaust valve 72.
 排気弁72の気液分離部71に接続されている側を一次側、排気管73に接続されている側を二次側と定義したとき、排気弁72は一次側から二次側のみに、かつ気体のみを透過させることのできる構造であることが望ましい。 When the side connected to the gas-liquid separation portion 71 of the exhaust valve 72 is defined as the primary side and the side connected to the exhaust pipe 73 is defined as the secondary side, the exhaust valve 72 is only from the primary side to the secondary side. Moreover, it is desirable that the structure allows only gas to pass through.
 排気管73は、排気弁72を透過した気体を大気中に放散させる。逆洗水としてオゾン水を用いる場合、排気管73は、オゾン分解触媒が充填されたオゾンを除去するオゾン除去部を備えてもよい。また、ガス排出ユニット7から排出される気体は、逆洗水に押し出されるようにして排気弁72を介して排気管73へと誘導されるため、排気管73を逆洗水槽62に接続して、排気弁72を透過した気体を逆洗水槽62内に放散させる構成としても良いし、被処理水貯留槽2に貯留されている被処理水1中に放散させる構成としても良い。 The exhaust pipe 73 dissipates the gas that has passed through the exhaust valve 72 into the atmosphere. When ozone water is used as the backwash water, the exhaust pipe 73 may include an ozone removing unit for removing ozone filled with an ozone decomposition catalyst. Further, since the gas discharged from the gas discharge unit 7 is guided to the exhaust pipe 73 via the exhaust valve 72 so as to be pushed out by the backwash water, the exhaust pipe 73 is connected to the backwash water tank 62. The gas that has passed through the exhaust valve 72 may be dissipated into the backwash water tank 62, or may be dissipated into the water to be treated 1 stored in the water to be treated water storage tank 2.
 ここで、接続配管12の形状は、図4に示す形状に限定するものではないが、逆洗水供給部6によるろ過膜3へのオゾン水の供給を停止した場合に、ろ過膜3の二次側に到達した気泡が気液分離部71へと浮上可能となる形状である。ろ過膜3の鉛直上方に気液分離部71が設けられている場合、接続配管12は、例えば、ろ過膜3と気液分離部71とを接続する直線状の配管である。また、ろ過膜3の内部3aに存在する気泡をガス排出ユニット7へと誘導するために、接続配管12は、気泡との親和性が低い親水性材料で構成されることが望ましい。接続配管12の内面を気泡との親和性が低い親水性材料により処理して親水性を付与しても良いし、酸素プラズマにより接続配管12の内面を処理して親水性を付与しても良い。なお、酸素プラズマにより接続配管12の内面を処理する場合、ステンレス又は鉄等の金属配管内面を直接処理しても良いし、金属配管又は塩化ビニル配管の内面にPTFE又はPFA(Perfluoro alkoxy alkane)等のフッ素樹脂を塗布し、塗布面を処理しても良い。 Here, the shape of the connecting pipe 12 is not limited to the shape shown in FIG. 4, but when the supply of ozone water to the filtration membrane 3 by the backwash water supply unit 6 is stopped, the filtration membrane 3-2 The shape is such that the bubbles that reach the next side can float to the gas-liquid separation unit 71. When the gas-liquid separation unit 71 is provided vertically above the filtration membrane 3, the connection pipe 12 is, for example, a linear pipe that connects the filtration membrane 3 and the gas-liquid separation unit 71. Further, in order to guide the bubbles existing in the inside 3a of the filtration membrane 3 to the gas discharge unit 7, it is desirable that the connecting pipe 12 is made of a hydrophilic material having a low affinity for the bubbles. The inner surface of the connecting pipe 12 may be treated with a hydrophilic material having a low affinity for air bubbles to impart hydrophilicity, or the inner surface of the connecting pipe 12 may be treated with oxygen plasma to impart hydrophilicity. .. When the inner surface of the connecting pipe 12 is treated with oxygen plasma, the inner surface of the metal pipe such as stainless steel or iron may be treated directly, or the inner surface of the metal pipe or vinyl chloride pipe may be treated with PTFE or PFA (Perfluoroalkoxy alkane) or the like. The coated surface may be treated by applying the fluororesin of.
 制御部9によって逆洗水供給部6からのオゾン水の供給が停止された場合、ろ過膜3の内部3aの気泡は、接続配管12を介して気液分離部71へと移送される。気液分離部71に移送された気泡は、排気弁72から排気管73を介して排出される。 When the supply of ozone water from the backwash water supply unit 6 is stopped by the control unit 9, the bubbles inside the filtration membrane 3 3a are transferred to the gas-liquid separation unit 71 via the connection pipe 12. The air bubbles transferred to the gas-liquid separation unit 71 are discharged from the exhaust valve 72 via the exhaust pipe 73.
 ガス排出ユニット7は、逆洗水供給部6からのオゾン水の供給が停止された場合に、ろ過膜3の内部3aの気泡を排出する構成であるが、逆洗水供給部6がろ過膜3にオゾン水を供給している場合のオゾン水に含まれる気泡も排出する構成とすることが好ましい。ここで、図4に示すように、気液分離部71の直径を直径L1、接続配管12の直径を直径L2、気液分離部71に接続されたろ過配管13の直径を直径L3とする。逆洗水供給部6がろ過膜3にオゾン水を供給している場合にもガス排出ユニット7によって気泡を排出する構成とするためには、気液分離部71の直径L1を、接続配管12の直径L2、及び気液分離部71に接続されたろ過配管13の直径L3よりも大きくすればよい。 The gas discharge unit 7 is configured to discharge air bubbles inside 3a of the filtration membrane 3 when the supply of ozone water from the backwash water supply unit 6 is stopped. The backwash water supply unit 6 discharges the filtration membrane. It is preferable that the configuration is such that bubbles contained in the ozone water when the ozone water is supplied to No. 3 are also discharged. Here, as shown in FIG. 4, the diameter of the gas-liquid separation unit 71 is the diameter L1, the diameter of the connecting pipe 12 is the diameter L2, and the diameter of the filtration pipe 13 connected to the gas-liquid separation unit 71 is the diameter L3. In order to configure the gas discharge unit 7 to discharge air bubbles even when the backwash water supply unit 6 supplies ozone water to the filtration membrane 3, the diameter L1 of the gas-liquid separation unit 71 is connected to the connection pipe 12. It may be larger than the diameter L2 of the above and the diameter L3 of the filtration pipe 13 connected to the gas-liquid separation unit 71.
 気液分離部71の直径L1を、接続配管12の直径L2、及び気液分離部71に接続されたろ過配管13の直径L3よりも大きく設定することによって、逆洗水供給部6により供給されるオゾン水に含まれる気泡の浮上分離を促すため、逆洗水供給部6により供給されるオゾン水に含まれる気泡を排気弁72から排出することができる。気液分離部71の直径L1、接続配管12の直径L2、及び過配管13の直径L3は、例えば、ろ過配管13内の流速に対して、気液分離部71の流下流速が0.1倍以上0.9倍以下になるように設定することが好ましい。 It is supplied by the backwash water supply unit 6 by setting the diameter L1 of the gas-liquid separation unit 71 to be larger than the diameter L2 of the connecting pipe 12 and the diameter L3 of the filtration pipe 13 connected to the gas-liquid separation unit 71. In order to promote the floating separation of the bubbles contained in the ozone water, the bubbles contained in the ozone water supplied by the backwash water supply unit 6 can be discharged from the exhaust valve 72. The diameter L1 of the gas-liquid separation unit 71, the diameter L2 of the connecting pipe 12, and the diameter L3 of the over-pipe 13 have, for example, 0.1 times the flow velocity of the gas-liquid separation unit 71 with respect to the flow velocity in the filtration pipe 13. It is preferable to set it to be 0.9 times or more and 0.9 times or less.
 次に、制御部9によって逆洗水供給部6によるオゾン水の供給が一時的に停止した場合に、ろ過膜を揺動させる又は配管を振動させる等、ろ過膜3の内部3aに存在する気泡をガス排出ユニット7へと積極的に誘導する方法を採用する場合について説明する。 Next, when the supply of ozone water by the backwash water supply unit 6 is temporarily stopped by the control unit 9, the air bubbles existing in the inside 3a of the filtration membrane 3 are caused by shaking the filtration membrane or the piping. A case of adopting a method of positively inducing the gas to the gas discharge unit 7 will be described.
 図5は、実施の形態1に係る水処理装置100に揺動部19及び噴流部20を設けた例を示す図である。ろ過膜3を揺動させる場合、例えば、図5に示すように、ろ過膜3の下部から曝気が行えるように揺動部19を設置し、ろ過膜3に向けて被処理水1内で曝気を行うことで、気液混相流がろ過膜3外部に吹き当てられ、ろ過膜3を揺動させることができる。また、ろ過膜3に向け水等の液体を送水可能な噴流部20を設け、液体をろ過膜3に向け吹き当てることでも同様な効果が得られる。図5に示す揺動部19は、例えば、曝気装置であり、噴流部20は、例えば、水等の液体を送水可能なポンプである。 FIG. 5 is a diagram showing an example in which a swing portion 19 and a jet portion 20 are provided in the water treatment device 100 according to the first embodiment. When swinging the filtration membrane 3, for example, as shown in FIG. 5, a swinging portion 19 is installed so that air can be exposed from the lower part of the filtration membrane 3, and air is exposed in the water 1 to be treated toward the filtration membrane 3. By performing the above, the gas-liquid mixed phase flow is blown to the outside of the filtration membrane 3, and the filtration membrane 3 can be shaken. Further, the same effect can be obtained by providing a jet portion 20 capable of sending a liquid such as water toward the filtration membrane 3 and spraying the liquid toward the filtration membrane 3. The rocking portion 19 shown in FIG. 5 is, for example, an aeration device, and the jet portion 20 is, for example, a pump capable of sending a liquid such as water.
 また、制御部9によって逆洗水供給部6によるオゾン水の供給が一時的に停止した場合に、過膜3の一次側から二次側に被処理水1を通水させ、ろ過膜3の内部3aに存在する気泡をガス排出ユニット7へと積極的に誘導する方法を採用することもできる。 Further, when the supply of ozone water by the backwash water supply unit 6 is temporarily stopped by the control unit 9, the water to be treated 1 is passed from the primary side to the secondary side of the perfiltration membrane 3 so that the filtration membrane 3 It is also possible to adopt a method of positively guiding the air bubbles existing in the internal 3a to the gas discharge unit 7.
 ろ過膜3の一次側から二次側に被処理水1を通水させる場合は、第2バルブ17を閉め、第1バルブ14を開き、ろ過ポンプ15を一時的に再稼働させる。ろ過ポンプ15の再稼働が終了すると第1バルブ14を閉め、第2バルブ17を開く。長時間のろ過ポンプ15の再稼働は、被処理水1中の懸濁物質によるろ過膜3のファウリングを招くため、ろ過ポンプ15を一時的に再稼働させる時間は、例えば、5秒以上300秒以下に設定することが望ましい。 When passing the water to be treated 1 from the primary side to the secondary side of the filtration membrane 3, the second valve 17 is closed, the first valve 14 is opened, and the filtration pump 15 is temporarily restarted. When the restart of the filtration pump 15 is completed, the first valve 14 is closed and the second valve 17 is opened. Since restarting the filtration pump 15 for a long time causes fouling of the filtration membrane 3 due to the suspended substance in the water to be treated 1, the time for temporarily restarting the filtration pump 15 is, for example, 5 seconds or more and 300. It is desirable to set it to seconds or less.
 検出部8によってろ過膜3にガスロックが発生したと判断され、制御部9によって逆洗水供給部6によるオゾン水の供給が一時的に停止した場合に、ろ過膜3の一次側から二次側に被処理水1を通水させる場合、ガス排出ユニット7は、ろ過膜3よりも鉛直上方に設けられていなくてもよい。図6は、ガス排出ユニット7の設置位置の変形例を示す図である。 When the detection unit 8 determines that gas lock has occurred in the filtration membrane 3 and the control unit 9 temporarily stops the supply of ozone water by the backwash water supply unit 6, the filtration membrane 3 is secondary from the primary side. When the water to be treated 1 is passed to the side, the gas discharge unit 7 may not be provided vertically above the filtration membrane 3. FIG. 6 is a diagram showing a modified example of the installation position of the gas discharge unit 7.
 検出部8によってろ過膜3にガスロックが発生したと判断され、制御部9によって逆洗水供給部6によるオゾン水の供給が一時的に停止した場合に、ろ過膜3の一次側から二次側に被処理水1を通水するため、図6に示すようにガス排出ユニット7がろ過膜3よりも鉛直上方に設けられていない場合でも、ろ過膜3の内部3aの気泡は、ろ過水4によってガス排出ユニット7へと誘導される。したがって、ろ過膜3の内部3aの気泡を排出することができる。 When it is determined by the detection unit 8 that gas lock has occurred in the filtration membrane 3 and the supply of ozone water by the backwash water supply unit 6 is temporarily stopped by the control unit 9, the primary side to the secondary of the filtration membrane 3 Since the water to be treated 1 is passed to the side, even if the gas discharge unit 7 is not provided vertically above the filtration membrane 3 as shown in FIG. 6, the bubbles inside the filtration membrane 3 are the filtered water. 4 leads to the gas discharge unit 7. Therefore, the bubbles inside the filtration membrane 3 3a can be discharged.
 制御部9によって逆洗水供給部6によるオゾン水の供給が一時的に停止した場合に、ろ過膜3の一次側から二次側に被処理水1を通水させる処理工程は、ろ過処理と逆洗処理とを交互に繰り返し実行する処理である。先行技術文献(国際公開第2009/008463号公報)に記載のように、通常、ろ過処理と逆洗処理とは自動的に繰り返し実施される。したがって、制御部9によって逆洗水供給部6によるオゾン水の供給が一時的に停止した場合に、ろ過膜3の一次側から二次側に被処理水1を通水させる処理工程は、通常の処理工程と同一と考えられるかもしれない。しかし、制御部9によって逆洗水供給部6によるオゾン水の供給が一時的に停止した場合に、ろ過膜3の一次側から二次側に被処理水1を通水させる処理工程は、検出部8によってろ過膜3にガスロックが発生したと判断された場合に実行される処理であるため、通常の処理工程とは異なる。実施の形態1に係る水処理装置100では、逆洗処理中にろ過膜3のガスロックの発生を検出するため、逆洗処理中にガス排出ユニット7からろ過膜3の間又はろ過膜3の内部3aで発生したガスの除去を効率的に行い、逆洗水によるろ過膜3の洗浄効果の低下を抑制する。 When the supply of ozone water by the backwash water supply unit 6 is temporarily stopped by the control unit 9, the treatment step of passing the water to be treated 1 from the primary side to the secondary side of the filtration membrane 3 is called filtration treatment. This is a process in which the backwashing process is alternately and repeatedly executed. As described in the prior art document (International Publication No. 2009/008463), the filtration treatment and the backwash treatment are usually automatically and repeatedly performed. Therefore, when the supply of ozone water by the backwash water supply unit 6 is temporarily stopped by the control unit 9, the treatment step of passing the water to be treated 1 from the primary side to the secondary side of the filtration membrane 3 is usually performed. It may be considered to be the same as the processing process of. However, when the control unit 9 temporarily stops the supply of ozone water by the backwash water supply unit 6, the treatment step of passing the water to be treated 1 from the primary side to the secondary side of the filtration membrane 3 is detected. This is a process to be executed when it is determined by the part 8 that gas lock has occurred in the filtration membrane 3, so that the process is different from the normal process. In the water treatment apparatus 100 according to the first embodiment, in order to detect the occurrence of gas lock of the filtration membrane 3 during the backwash treatment, the space between the gas discharge unit 7 and the filtration membrane 3 or the filtration membrane 3 during the backwash treatment The gas generated in the inner portion 3a is efficiently removed, and the deterioration of the cleaning effect of the filtration membrane 3 due to the backwashing water is suppressed.
 次に、実施の形態1に係る水処理方法についてフローチャートを用いて、整理して説明する。図7は、実施の形態1に係る水処理装置100の運転フロー図である。 Next, the water treatment method according to the first embodiment will be organized and explained using a flowchart. FIG. 7 is an operation flow chart of the water treatment device 100 according to the first embodiment.
 次に、実施の形態1に係る水処理方法についてフローチャートを用いて、整理して説明する。図7は、実施の形態1に係る水処理装置100の運転フロー図である。 Next, the water treatment method according to the first embodiment will be organized and explained using a flowchart. FIG. 7 is an operation flow chart of the water treatment device 100 according to the first embodiment.
 水処理装置100のろ過処理が開始されると、ステップS1では、第1バルブ14を開く。ステップS2では、ろ過ポンプ15を稼働させて被処理水貯留槽2に貯留された被処理水1を吸引し、ろ過膜3で被処理水1のろ過を行う。 When the filtration process of the water treatment device 100 is started, the first valve 14 is opened in step S1. In step S2, the filtration pump 15 is operated to suck the water 1 to be treated stored in the water storage tank 2 to be treated, and the filtration membrane 3 filters the water 1 to be treated.
 ステップS3では、ろ過処理を開始してから所定時間Taが経過した場合、又はろ過膜3の膜間差圧が所定の膜間差圧を超えた場合に逆洗処理の開始を判断する。逆洗処理の開始と判断された場合は、ステップS4及びステップS6に進む。 In step S3, the start of the backwash treatment is determined when a predetermined time Ta elapses from the start of the filtration treatment or when the intermembrane differential pressure of the filtration membrane 3 exceeds the predetermined intermembrane differential pressure. If it is determined that the backwashing process has started, the process proceeds to step S4 and step S6.
 ステップS4では、ろ過ポンプ15を停止する。ステップS5では、第1バルブ14閉める。ステップS6では、オゾンガス発生器61が運転を開始する。ステップS7では、逆洗水槽62内の液体の溶存オゾン濃度が所定濃度かを判断する。所定濃度以上の場合は、ステップS8に進む。 In step S4, the filtration pump 15 is stopped. In step S5, the first valve 14 is closed. In step S6, the ozone gas generator 61 starts operation. In step S7, it is determined whether the dissolved ozone concentration of the liquid in the backwash water tank 62 is a predetermined concentration. If the concentration is equal to or higher than the predetermined concentration, the process proceeds to step S8.
 ステップS5及びステップS7が終了した場合、ステップS8では、第2バルブ17開く。ステップS9では、逆洗ポンプ18を稼働させ、ろ過膜3にオゾン水を供給し、ろ過膜3の逆洗処理を行う。 When steps S5 and S7 are completed, the second valve 17 is opened in step S8. In step S9, the backwash pump 18 is operated, ozone water is supplied to the filtration membrane 3, and the backwash treatment of the filtration membrane 3 is performed.
 ステップS10では、所定時間Tbが経過した場合、又は所定透水性を超えた場合に逆洗処理の終了を判断する。逆洗処理の終了と判断された場合は、ステップS11に進み、逆洗処理の終了と判断されなかった場合はステップS101へと進む。 In step S10, the end of the backwash treatment is determined when the predetermined time Tb has elapsed or when the predetermined water permeability is exceeded. If it is determined that the backwashing process is completed, the process proceeds to step S11, and if it is not determined that the backwashing process is completed, the process proceeds to step S101.
 ステップS101では、検出部8は、ろ過膜3にガスロックが発生しているかを判断する。ガスロックが発生していると判断した場合は、ステップS102へと進み、ガスロックが発生していないと判断した場合は、ステップS10へと進む。 In step S101, the detection unit 8 determines whether gas lock has occurred in the filtration membrane 3. If it is determined that the gas lock has occurred, the process proceeds to step S102, and if it is determined that the gas lock has not occurred, the process proceeds to step S10.
 ステップS102では、逆洗ポンプ18を一時的に停止する。ステップS103では、逆洗ポンプ18を停止してから所定時間Tcが経過したかを判断する。所定時間Tc経過したと判断した場合は、ステップS104へと進む。ステップS104では、ガス排出ユニット7の排気弁72は、気液分離部71へと誘導された気泡を排出する。ステップS105では、逆洗ポンプ18を稼働させ、ろ過膜3へのオゾン水の供給を再開する。 In step S102, the backwash pump 18 is temporarily stopped. In step S103, it is determined whether a predetermined time Tc has elapsed since the backwash pump 18 was stopped. If it is determined that the predetermined time Tc has elapsed, the process proceeds to step S104. In step S104, the exhaust valve 72 of the gas discharge unit 7 discharges the air bubbles induced to the gas-liquid separation unit 71. In step S105, the backwash pump 18 is operated to restart the supply of ozone water to the filtration membrane 3.
 ステップS11では、逆洗ポンプ18を停止する。ステップS12では、第2バルブ17を閉める。ステップS13では、オゾンガス発生器61の運転を停止する。 In step S11, the backwash pump 18 is stopped. In step S12, the second valve 17 is closed. In step S13, the operation of the ozone gas generator 61 is stopped.
 実施の形態1に係る水処理装置100は、ろ過膜の一次側から二次側に被処理水を通してろ過するろ過処理と、ろ過膜の二次側から一次側に逆洗水を通してろ過膜を洗浄する逆洗処理と、を行う水処理装置において、ろ過膜に逆洗水を供給する逆洗水供給部と、ろ過膜の内部の気泡によるガスロックを検出する検出部と、検出部がろ過膜のガスロックを検出した場合に、逆洗水供給部による逆洗水の供給を一時的に停止させ、予め決められた時間が経過後、逆洗水供給部による逆洗水の供給を再開させる制御部と、制御部が逆洗水供給部による逆洗水の供給を停止させることにより誘導されたろ過膜の内部の気泡を排出するガス排出ユニットと、を備える。 The water treatment apparatus 100 according to the first embodiment has a filtration treatment in which the water to be treated is passed from the primary side to the secondary side of the filtration membrane and a backwash water is passed from the secondary side to the primary side of the filtration membrane to wash the filtration membrane. In the water treatment device that performs the backwash treatment, the backwash water supply unit that supplies the backwash water to the filtration membrane, the detection unit that detects gas lock due to air bubbles inside the filtration membrane, and the detection unit are the filtration membranes. When the gas lock is detected, the backwash water supply by the backwash water supply unit is temporarily stopped, and after a predetermined time has elapsed, the backwash water supply by the backwash water supply unit is restarted. It includes a control unit and a gas discharge unit that discharges air bubbles inside the filtration membrane induced by the control unit stopping the supply of backwash water by the backwash water supply unit.
 また、実施の形態1に係る水処理装置100の検出部は、逆洗水供給部によってろ過膜へ逆洗水を供給する場合のろ過膜の膜間差圧を測定する圧力測定部と、圧力測定部が測定した第1膜間差圧と、第1膜間差圧の測定以前に圧力測定部が測定した第2膜間差圧とを比較し、第2膜間差圧よりも第1膜間差圧が大きい場合に、ろ過膜にガスロックが発生したと判定するガスロック判定部と、を有する。 Further, the detection unit of the water treatment apparatus 100 according to the first embodiment includes a pressure measurement unit that measures the intermembrane differential pressure of the filtration membrane when the backwash water is supplied to the filtration membrane by the backwash water supply unit, and a pressure. The first intermembrane differential pressure measured by the measuring unit is compared with the second intermembrane differential pressure measured by the pressure measuring unit before the measurement of the first intermembrane differential pressure, and the first is higher than the second intermembrane differential pressure. It has a gas lock determination unit for determining that gas lock has occurred in the filtration membrane when the differential pressure between the membranes is large.
 また、実施の形態1に係る水処理装置100の検出部は、逆洗水供給部によってろ過膜へ逆洗水を供給する場合のろ過膜の膜間差圧を測定する圧力測定部と、圧力測定部が測定した第1膜間差圧と、第1膜間差圧の測定以前に圧力測定部が測定した第2膜間差圧とを比較し、第2膜間差圧よりも第1膜間差圧が大きく、かつ第2膜間差圧に対する第1膜間差圧の単位時間当たりの圧力変化量が予め決められた閾値以上の場合に、ろ過膜にガスロックが発生したと判定するガスロック判定部と、を有する。 Further, the detection unit of the water treatment apparatus 100 according to the first embodiment includes a pressure measurement unit that measures the intermembrane differential pressure of the filtration membrane when the backwash water is supplied to the filtration membrane by the backwash water supply unit, and a pressure. The first intermembrane differential pressure measured by the measuring unit is compared with the second intermembrane differential pressure measured by the pressure measuring unit before the measurement of the first intermembrane differential pressure, and the first is higher than the second intermembrane differential pressure. It is determined that gas lock has occurred in the filtration membrane when the intermembrane differential pressure is large and the amount of pressure change of the first intermembrane differential pressure with respect to the second intermembrane differential pressure per unit time is equal to or greater than a predetermined threshold value. It has a gas lock determination unit and a gas lock determination unit.
 以上の構成によって実施の形態1に係る水処理装置100は、逆洗処理中にガス排出ユニットからろ過膜の間又はろ過膜の内部で発生したガスの除去を効率的に行い、逆洗水によるろ過膜の洗浄効果の低下を抑制する。 With the above configuration, the water treatment apparatus 100 according to the first embodiment efficiently removes the gas generated between the filtration membranes or inside the filtration membrane from the gas discharge unit during the backwashing treatment, and uses backwashing water. Suppresses the deterioration of the cleaning effect of the filtration membrane.
 また、実施の形態1に係る水処理装置100は、制御部によって、逆洗水供給部による逆洗水の供給が一時的に停止した場合に、ろ過膜を揺動させる揺動部を備える。 Further, the water treatment device 100 according to the first embodiment includes a swinging portion that swings the filtration membrane when the backwashing water supply by the backwashing water supply unit is temporarily stopped by the control unit.
 また、実施の形態1に係る水処理装置100は、制御部によって、逆洗水供給部による逆洗水の供給が一時的に停止した場合に、ろ過膜の一次側からろ過膜へ向けて水流又は気液混合流を噴流する噴流部を備える。 Further, in the water treatment device 100 according to the first embodiment, when the supply of backwash water by the backwash water supply unit is temporarily stopped by the control unit, the water flow from the primary side of the filtration membrane toward the filtration membrane. Alternatively, it is provided with a jet section for jetting a gas-liquid mixed flow.
 また、実施の形態1に係る水処理装置100は、制御部によって、逆洗水供給部による逆洗水の供給が一時的に停止した場合に、ろ過膜の一次側から二次側に被処理水を通水することを特徴とする。 Further, in the water treatment device 100 according to the first embodiment, when the supply of backwash water by the backwash water supply unit is temporarily stopped by the control unit, the water treatment device 100 is treated from the primary side to the secondary side of the filtration membrane. It is characterized by allowing water to pass through.
 以上の構成によって実施の形態1に係る水処理装置100は、ろ過膜3の内部3aに存在する気泡をガス排出ユニット7へと積極的に誘導する。 With the above configuration, the water treatment device 100 according to the first embodiment positively guides the bubbles existing in the inside 3a of the filtration membrane 3 to the gas discharge unit 7.
 実施の形態1に係る水処理方法は、ろ過膜の一次側から二次側に被処理水を通してろ過するろ過処理と、ろ過膜の二次側から一次側に逆洗水を通してろ過膜を洗浄する逆洗処理と、を行う水処理方法において、ろ過膜に逆洗水を供給するステップと、ろ過膜の内部の気泡によるガスロックを検出するステップと、ガスロックを検出した場合に、逆洗水の供給を一時的に停止させるステップと、逆洗水の供給を一時的に停止させることによりガス排出ユニットに誘導されたろ過膜の内部の気泡を排出するステップと、逆洗水の供給を一時的に停止させてから予め決められた時間が経過後、逆洗水の供給を再開させるステップと、を備える。 The water treatment method according to the first embodiment is a filtration treatment in which the water to be treated is passed from the primary side to the secondary side of the filter membrane, and a backwash water is passed from the secondary side to the primary side of the filter membrane to wash the filter membrane. In the water treatment method of performing the backwash treatment, the step of supplying the backwash water to the filter membrane, the step of detecting the gas lock due to the bubbles inside the filter membrane, and the backwash water when the gas lock is detected. The step of temporarily stopping the supply of the backwash water, the step of discharging the air bubbles inside the filter membrane guided to the gas discharge unit by temporarily stopping the supply of the backwash water, and the step of temporarily stopping the supply of the backwash water. It is provided with a step of restarting the supply of backwash water after a predetermined time has elapsed since the water was stopped.
 以上の構成によって実施の形態1に係る水処理方法は、逆洗処理中にガス排出ユニットからろ過膜の間又はろ過膜の内部で発生したガスの除去を効率的に行い、逆洗水によるろ過膜の洗浄効果の低下を抑制する。 With the above configuration, the water treatment method according to the first embodiment efficiently removes the gas generated between the gas discharge unit and the filtration membrane or inside the filtration membrane during the backwash treatment, and filters by the backwash water. Suppresses the decrease in the cleaning effect of the membrane.
実施の形態2.
 本発明の実施の形態2に係る水処理装置200の構成について説明する。なお、実施の形態1と同一または対応する構成については、その説明を省略し、構成の異なる部分のみを説明する。
Embodiment 2.
The configuration of the water treatment apparatus 200 according to the second embodiment of the present invention will be described. The same or corresponding configurations as those in the first embodiment will be omitted, and only the parts having different configurations will be described.
 実施の形態2に係る水処理装置200は、複数のろ過膜3を有する構成である。ろ過膜3を複数本設置する場合、ガス排出ユニット7をろ過膜3と同数設けて、それぞれのガス排出ユニット7とそれぞれのろ過膜3とを接続配管12を介して接続し、実施の形態1に示した方法で運転を行うことで本発明の効果を得ることができる。しかし、複数のろ過膜3と同数のガス排出ユニット7を設けた場合、部品点数が多くなるため、生産コスト及び維持管理コストが増大する。 The water treatment device 200 according to the second embodiment has a configuration having a plurality of filtration membranes 3. When a plurality of filtration membranes 3 are installed, the same number of gas discharge units 7 as the filtration membranes 3 are provided, and each gas discharge unit 7 and each filtration membrane 3 are connected via a connection pipe 12, and the first embodiment The effect of the present invention can be obtained by performing the operation by the method shown in 1. However, when the same number of gas discharge units 7 as the plurality of filtration membranes 3 are provided, the number of parts increases, so that the production cost and the maintenance cost increase.
 図8は、実施の形態2に係る水処理装置200の構成の一例を示す図である。図8に示すように、水処理装置200は、複数のろ過膜3と、一端がガス排出ユニット7の気液分離部71に接続され、他端がろ過配管13に接続されたヘッダー管21と、一端がそれぞれのろ過膜3の二次側に接続され、他端が気液分離部71又はヘッダー管21に接続された複数の接続配管12とを有する。実施の形態2に係る水処理装置200において、接続配管12の少なくとも一つは、他端がガス排出ユニット7の気液分離部71に接続されている。 FIG. 8 is a diagram showing an example of the configuration of the water treatment device 200 according to the second embodiment. As shown in FIG. 8, the water treatment device 200 includes a plurality of filtration membranes 3 and a header pipe 21 having one end connected to the gas-liquid separation portion 71 of the gas discharge unit 7 and the other end connected to the filtration pipe 13. One end is connected to the secondary side of each filtration membrane 3, and the other end is provided with a plurality of connecting pipes 12 connected to a gas-liquid separation unit 71 or a header pipe 21. In the water treatment apparatus 200 according to the second embodiment, the other end of at least one of the connection pipes 12 is connected to the gas-liquid separation unit 71 of the gas discharge unit 7.
 検出部8の圧力測定部81は、ろ過配管13と逆洗配管16との接続地点からヘッダー管21の間のろ過配管13に設けられ、複数のろ過膜3全体の膜間差圧を測定する。検出部8のガスロック発生判断部82によるガスロック発生の判断は、実施の形態1に記載の具体例と同様の方法を用いることができる。なお、圧力測定部81の設置位置は、複数のろ過膜3の全体の膜間差圧が測定できる位置であれば、図8に示した位置に限定されない。 The pressure measuring unit 81 of the detection unit 8 is provided in the filtration pipe 13 between the connection point between the filtration pipe 13 and the backwash pipe 16 and the header pipe 21, and measures the intermembrane differential pressure of the entire plurality of filtration membranes 3. .. For the determination of gas lock generation by the gas lock generation determination unit 82 of the detection unit 8, the same method as the specific example described in the first embodiment can be used. The installation position of the pressure measuring unit 81 is not limited to the position shown in FIG. 8 as long as the total intermembrane differential pressure of the plurality of filtration membranes 3 can be measured.
 図9は、実施の形態2に係る水処理装置200の一部拡大図である。図9に示すように、気液分離部71の直径を直径L1、接続配管12の直径を直径L2、ヘッダー管21の直径を直径L4とした場合、気液分離部71の直径L1は、接続配管12の直径L2及びヘッダー管21の直径L4よりも大きい。気液分離部71の直径L1を、接続配管12の直径L2及びヘッダー管21の直径L4よりも大きくすることによって、逆洗水供給部6により供給されるオゾン水に含まれる気泡の浮上分離を促すため、逆洗水供給部6により供給されるオゾン水に含まれる気泡を排気弁72から排出することができる。気液分離部71の直径L1、接続配管12の直径L2、及びヘッダー管21の直径L4は、例えば、ヘッダー管21内の流速に対して、気液分離部71の流下流速が0.1倍以上0.9倍以下になるように設定することが好ましい。 FIG. 9 is a partially enlarged view of the water treatment apparatus 200 according to the second embodiment. As shown in FIG. 9, when the diameter of the gas-liquid separation portion 71 is the diameter L1, the diameter of the connecting pipe 12 is the diameter L2, and the diameter of the header pipe 21 is the diameter L4, the diameter L1 of the gas-liquid separation portion 71 is connected. It is larger than the diameter L2 of the pipe 12 and the diameter L4 of the header pipe 21. By making the diameter L1 of the gas-liquid separation unit 71 larger than the diameter L2 of the connecting pipe 12 and the diameter L4 of the header pipe 21, the floating separation of bubbles contained in the ozone water supplied by the backwash water supply unit 6 can be performed. In order to promote this, bubbles contained in the ozone water supplied by the backwash water supply unit 6 can be discharged from the exhaust valve 72. The diameter L1 of the gas-liquid separation unit 71, the diameter L2 of the connecting pipe 12, and the diameter L4 of the header pipe 21 have, for example, 0.1 times the flow velocity of the gas-liquid separation unit 71 with respect to the flow velocity in the header pipe 21. It is preferable to set it to be 0.9 times or more and 0.9 times or less.
 検出部8がろ過膜3のガスロックを検出した場合、水処理装置100と同様に、制御部9は逆洗水供給部6によるオゾン水の供給を一時的に停止する。オゾン水の供給が一時的に停止されると、ろ過膜3Aの内部の気泡は気液分離部71に誘導され排気弁72から排出される。ろ過膜3B,3C,3Dの内部の気泡はヘッダー管21に誘導され気泡Yとしてヘッダー管21内に留まる場合がある。したがって、ヘッダー管21を気泡との親和性が低い親水性材料で構成し、ヘッダー管21内に誘導された気泡が気液分離部71へと誘導されるようにヘッダー管21を形成することが好ましい。しかし、水処理装置の設計上、ヘッダー管21の形状を、ヘッダー管21に誘導された気泡を気液分離部71へと誘導する形状とすることが困難な場合は、図9に示すように気液分離部71の直径L1を、接続配管12の直径L2及びヘッダー管21の直径L4よりも大きくすればよい。気液分離部71の直径L1を、接続配管12の直径L2及びヘッダー管21の直径L4よりも大きくした場合、ヘッダー管21に誘導された気泡Yは、制御部9が逆洗水供給部6によるオゾン水の供給を再開させることによって気液分離部71に誘導され、気液分離部71に誘導された気泡Yは、浮上分離により排気弁72から排出される。 When the detection unit 8 detects the gas lock of the filtration membrane 3, the control unit 9 temporarily stops the supply of ozone water by the backwash water supply unit 6, as in the water treatment device 100. When the supply of ozone water is temporarily stopped, air bubbles inside the filtration membrane 3A are guided to the gas-liquid separation unit 71 and discharged from the exhaust valve 72. Bubbles inside the filtration membranes 3B, 3C, and 3D may be guided to the header tube 21 and stay in the header tube 21 as bubbles Y. Therefore, the header tube 21 may be made of a hydrophilic material having a low affinity for bubbles, and the header tube 21 may be formed so that the bubbles induced in the header tube 21 are guided to the gas-liquid separation portion 71. preferable. However, when it is difficult to make the shape of the header pipe 21 into a shape for guiding the air bubbles guided to the header pipe 21 to the gas-liquid separation portion 71 due to the design of the water treatment device, as shown in FIG. The diameter L1 of the gas-liquid separation portion 71 may be made larger than the diameter L2 of the connecting pipe 12 and the diameter L4 of the header pipe 21. When the diameter L1 of the gas-liquid separation unit 71 is made larger than the diameter L2 of the connecting pipe 12 and the diameter L4 of the header pipe 21, the air bubbles Y induced in the header pipe 21 are generated by the control unit 9 in the backwash water supply unit 6. The bubbles Y guided to the gas-liquid separation unit 71 by resuming the supply of ozone water and induced to the gas-liquid separation unit 71 are discharged from the exhaust valve 72 by levitation separation.
 したがって、実施の形態2に係る水処理装置200は、ろ過工程及び逆洗工程ともに実施の形態1の水処理装置100と同様の運転を行うことによって、実施の形態1の水処理装置100と同様の効果を奏する。 Therefore, the water treatment device 200 according to the second embodiment is the same as the water treatment device 100 of the first embodiment by performing the same operation as the water treatment device 100 of the first embodiment in both the filtration step and the backwashing step. Play the effect of.
 図10は、実施の形態2に係る水処理装置200の変形例を示す図である。図10に示す例では、複数の接続配管12が接続されたヘッダー管21が複数設けられ、複数のヘッダー管21のそれぞれの一端にはガス排出ユニット7が接続され、それぞれの他端は集合管22に接続されている。集合管22はろ過配管13に接続されており、その他の構成は実施の形態2に係る水処理装置200と同様である。 FIG. 10 is a diagram showing a modified example of the water treatment device 200 according to the second embodiment. In the example shown in FIG. 10, a plurality of header pipes 21 to which a plurality of connecting pipes 12 are connected are provided, a gas discharge unit 7 is connected to one end of each of the plurality of header pipes 21, and the other end of each is a collecting pipe. It is connected to 22. The collecting pipe 22 is connected to the filtration pipe 13, and other configurations are the same as those of the water treatment device 200 according to the second embodiment.
 図10に示す例は、ヘッダー管21が複数設けられ、複数のヘッダー管21が集合管22に接続された構成以外は実施の形態2に係る水処理装置200と同様であるため、実施の形態2に係る水処理装置200と同様の運転を行うことで、実施の形態2に係る水処理装置200と同様の効果を奏する。 The example shown in FIG. 10 is the same as the water treatment apparatus 200 according to the second embodiment except that a plurality of header pipes 21 are provided and the plurality of header pipes 21 are connected to the collecting pipe 22. By performing the same operation as the water treatment device 200 according to the second embodiment, the same effect as the water treatment device 200 according to the second embodiment can be obtained.
 実施の形態2に係る水処理装置200は、ろ過膜は複数設けられ、ガス排出ユニットは、ろ過膜の内部の気泡が誘導される気液分離部と、気液分離部に誘導された気泡を排出する排気弁と、を有し、水処理装置は、一端が気液分離部に接続され、他端が逆洗水供給部へと接続された配管に接続されたヘッダー管と、一端がそれぞれのろ過膜の二次側に接続され、他端が気液分離部又はガス排出部に接続された複数の接続配管と、を備え、接続配管の少なくとも一つは、他端が気液分離部に接続され、制御部が逆洗水供給部による逆洗水の供給を一時的に停止させることにより、ろ過膜の内部の気泡は、ヘッダー管又は気液分離部に誘導され、ヘッダー管に誘導された気泡は、制御部が逆洗水供給部による逆洗水の供給を再開させることにより、気液分離部に誘導されることを特徴とする。 The water treatment device 200 according to the second embodiment is provided with a plurality of filtration membranes, and the gas discharge unit has a gas-liquid separation unit in which air bubbles inside the filtration membrane are induced and a gas-liquid separation unit in which air bubbles are induced in the gas-liquid separation unit. The water treatment device has an exhaust valve for discharging, and one end is connected to a gas-liquid separation part and the other end is connected to a pipe connected to a backwash water supply part. A plurality of connecting pipes connected to the secondary side of the filtration membrane and the other end connected to the gas-liquid separation part or the gas discharge part, and at least one of the connection pipes has the other end of the gas-liquid separation part. By temporarily stopping the supply of backwash water by the backwash water supply unit, the air bubbles inside the filtration membrane are guided to the header tube or the gas-liquid separation part, and are guided to the header tube. The generated bubbles are characterized in that they are guided to the gas-liquid separation unit by the control unit restarting the supply of the backwash water by the backwash water supply unit.
 また、実施の形態2に係る水処理装置200の気液分離部の直径は、接続配管及びヘッダー管の直径よりも大きいことを特徴とする。 Further, the diameter of the gas-liquid separation portion of the water treatment apparatus 200 according to the second embodiment is larger than the diameter of the connecting pipe and the header pipe.
 以上の構成によって実施の形態2に係る水処理装置200は、逆洗処理中にガス排出ユニットからろ過膜の間又はろ過膜の内部で発生したガスの除去を効率的に行い、逆洗水によるろ過膜の洗浄効果の低下を抑制する。 With the above configuration, the water treatment apparatus 200 according to the second embodiment efficiently removes the gas generated between the filtration membranes or inside the filtration membrane from the gas discharge unit during the backwashing treatment, and uses backwashing water. Suppresses the deterioration of the cleaning effect of the filtration membrane.
 また、複数のろ過膜3と同数のガス排出ユニット7を設ける必要がないため、生産コスト及び維持管理コストの増加を抑制できる。 Further, since it is not necessary to provide the same number of gas discharge units 7 as the plurality of filtration membranes 3, it is possible to suppress an increase in production cost and maintenance cost.
 実施の形態1及び実施の形態2では、逆洗水はオゾン水として説明したが、逆洗水はオゾン水に限定されない。逆洗水として、例えば、ろ過水、又は次亜塩素酸を含んだ薬品溶液を用いてもよい。逆洗水として次亜塩素酸を含んだ薬品溶液を用いた場合は、逆洗水としてオゾン水を用いた場合よりも逆洗水のコストを低減することができる。 In the first and second embodiments, the backwash water is described as ozone water, but the backwash water is not limited to ozone water. As the backwash water, for example, filtered water or a chemical solution containing hypochlorous acid may be used. When a chemical solution containing hypochlorous acid is used as the backwash water, the cost of the backwash water can be reduced as compared with the case where ozone water is used as the backwash water.
 本発明は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。 In the present invention, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.
100,200 水処理装置
1 被処理水
2 被処理水貯留槽
3 ろ過膜
4 ろ過水
5 ろ過水槽
6 逆洗水供給部
7 ガス排出ユニット
8 検出部
9 制御部
11 被処理水導入配管
12 接続配管
13 ろ過配管
14 第1バルブ
15 ろ過ポンプ
16 逆洗配管
17 第2バルブ
18 逆洗ポンプ
19 揺動部
20 噴流部
21 ヘッダー管
22 集合管
61 オゾンガス発生器
62 逆洗水槽
71 気液分離部
72 排気弁
73 排気管
81 圧力測定部
82 ガスロック発生判断部
1001a,1001b CPU
1002a,1002b メモリ
100,200 Water treatment device 1 Water to be treated 2 Water to be treated 2 Storage tank 3 Filter film 4 Filtered water 5 Filtered water tank 6 Backwash water supply unit 7 Gas discharge unit 8 Detection unit 9 Control unit 11 Processed water introduction pipe 12 Connection pipe 13 Filter pipe 14 1st valve 15 Filter pump 16 Backwash pipe 17 2nd valve 18 Backwash pump 19 Swing part 20 Jet flow part 21 Header pipe 22 Collecting pipe 61 Ozone gas generator 62 Backwash water tank 71 Gas-liquid separation part 72 Exhaust Valve 73 Exhaust pipe 81 Pressure measurement unit 82 Gas lock generation determination unit 1001a, 1001b CPU
1002a, 1002b memory

Claims (9)

  1.  ろ過膜の一次側から二次側に被処理水を通してろ過するろ過処理と、前記ろ過膜の二次側から一次側に逆洗水を通して前記ろ過膜を洗浄する逆洗処理と、を行う水処理装置において、
     前記ろ過膜に前記逆洗水を供給する逆洗水供給部と、
     前記ろ過膜の内部の気泡によるガスロックを検出する検出部と、
     前記検出部が前記ろ過膜のガスロックを検出した場合に、前記逆洗水供給部による前記逆洗水の供給を一時的に停止させ、予め決められた時間が経過後、前記逆洗水供給部による前記逆洗水の供給を再開させる制御部と、
     前記制御部が前記逆洗水供給部による前記逆洗水の供給を停止させることにより誘導された前記ろ過膜の内部の前記気泡を排出するガス排出ユニットと、
     を備える水処理装置。
    Water treatment that performs a filtration treatment in which the water to be treated is passed from the primary side to the secondary side of the filtration membrane and a backwash treatment in which the filtration membrane is washed by passing backwash water from the secondary side to the primary side of the filtration membrane. In the device
    A backwash water supply unit that supplies the backwash water to the filtration membrane,
    A detection unit that detects gas lock due to air bubbles inside the filtration membrane,
    When the detection unit detects the gas lock of the filtration membrane, the backwash water supply by the backwash water supply unit is temporarily stopped, and after a predetermined time elapses, the backwash water supply is performed. A control unit that restarts the supply of the backwash water by the unit,
    A gas discharge unit that discharges the bubbles inside the filtration membrane induced by the control unit stopping the supply of the backwash water by the backwash water supply unit.
    A water treatment device equipped with.
  2.  前記ろ過膜は複数設けられ、
     前記ガス排出ユニットは、前記ろ過膜の内部の前記気泡が誘導される気液分離部と、前記気液分離部に誘導された前記気泡を排出する排気弁と、を有し、
     前記水処理装置は、
     一端が前記気液分離部に接続され、他端が前記逆洗水供給部へと接続された配管に接続されたヘッダー管と、
     一端がそれぞれの前記ろ過膜の二次側に接続され、他端が前記気液分離部又は前記ヘッダー管に接続された複数の接続配管と、
     を備え、
     前記接続配管の少なくとも一つは、他端が前記気液分離部に接続され、
     前記制御部が前記逆洗水供給部による前記逆洗水の供給を一時的に停止させることにより、前記ろ過膜の内部の前記気泡は、前記ヘッダー管又は前記気液分離部に誘導され、前記ヘッダー管に誘導された前記気泡は、前記制御部が前記逆洗水供給部による前記逆洗水の供給を再開させることにより、前記気液分離部に誘導されることを特徴とする請求項1に記載の水処理装置。
    A plurality of the filtration membranes are provided,
    The gas discharge unit has a gas-liquid separation portion in which the bubbles are induced inside the filtration membrane, and an exhaust valve for discharging the bubbles guided to the gas-liquid separation portion.
    The water treatment device
    A header pipe having one end connected to the gas-liquid separation unit and the other end connected to a pipe connected to the backwash water supply unit.
    A plurality of connecting pipes having one end connected to the secondary side of each of the filtration membranes and the other end connected to the gas-liquid separator or the header pipe.
    With
    At least one of the connecting pipes has the other end connected to the gas-liquid separation portion.
    When the control unit temporarily stops the supply of the backwash water by the backwash water supply unit, the bubbles inside the filtration membrane are guided to the header pipe or the gas-liquid separation unit, and the gas-liquid separation unit is guided. Claim 1 is characterized in that the air bubbles guided to the header pipe are guided to the gas-liquid separation unit by the control unit restarting the supply of the backwash water by the backwash water supply unit. The water treatment apparatus according to.
  3.  前記気液分離部の直径は、前記接続配管及び前記ヘッダー管の直径よりも大きいことを特徴とする請求項2に記載の水処理装置。 The water treatment apparatus according to claim 2, wherein the diameter of the gas-liquid separation portion is larger than the diameter of the connecting pipe and the header pipe.
  4.  前記制御部によって、前記逆洗水供給部による前記逆洗水の供給が一時的に停止した場合に、前記ろ過膜を揺動させる揺動部を備える請求項1から請求項3のいずれか1項に記載の水処理装置。 Any one of claims 1 to 3 including a swinging portion that swings the filtration membrane when the backwashing water supply by the backwashing water supply unit is temporarily stopped by the control unit. The water treatment apparatus described in the section.
  5.  前記制御部によって、前記逆洗水供給部による前記逆洗水の供給が一時的に停止した場合に、前記ろ過膜の一次側から前記ろ過膜へ向けて水流又は気液混合流を噴流する噴流部を備える請求項1から請求項4のいずれか1項に記載の水処理装置。 When the backwash water supply unit temporarily stops the supply of the backwash water by the control unit, a jet flow that ejects a water flow or a gas-liquid mixed flow from the primary side of the filtration membrane toward the filtration membrane. The water treatment apparatus according to any one of claims 1 to 4, further comprising a unit.
  6.  前記制御部によって、前記逆洗水供給部による前記逆洗水の供給が一時的に停止した場合に、前記ろ過膜の一次側から二次側に被処理水を通水することを特徴とする請求項1から請求項5のいずれか1項に記載の水処理装置。 When the supply of the backwash water by the backwash water supply unit is temporarily stopped by the control unit, the water to be treated is passed from the primary side to the secondary side of the filtration membrane. The water treatment apparatus according to any one of claims 1 to 5.
  7.  前記検出部は、
     前記逆洗水供給部によって前記ろ過膜へ前記逆洗水を供給する場合の前記ろ過膜の膜間差圧を測定する圧力測定部と、
     前記圧力測定部が測定した第1膜間差圧と、前記第1膜間差圧の測定以前に前記圧力測定部が測定した第2膜間差圧とを比較し、前記第2膜間差圧よりも前記第1膜間差圧が大きい場合に、前記ろ過膜にガスロックが発生したと判定するガスロック判定部と、
     を有する請求項1から請求項6のいずれか1項に記載の水処理装置。
    The detection unit
    A pressure measuring unit that measures the intermembrane differential pressure of the filtration membrane when the backwash water is supplied to the filtration membrane by the backwash water supply unit.
    The difference between the first membranes measured by the pressure measuring unit is compared with the differential pressure between the second membranes measured by the pressure measuring unit before the measurement of the differential pressure between the first membranes. A gas lock determination unit that determines that gas lock has occurred in the filtration membrane when the differential pressure between the first membranes is larger than the pressure.
    The water treatment apparatus according to any one of claims 1 to 6.
  8.  前記検出部は、
     前記逆洗水供給部によって前記ろ過膜へ前記逆洗水を供給する場合の前記ろ過膜の膜間差圧を測定する圧力測定部と、
     前記圧力測定部が測定した第1膜間差圧と、前記第1膜間差圧の測定以前に前記圧力測定部が測定した第2膜間差圧とを比較し、前記第2膜間差圧よりも前記第1膜間差圧が大きく、かつ前記第2膜間差圧に対する前記第1膜間差圧の単位時間当たりの圧力変化量が予め決められた閾値以上の場合に、前記ろ過膜にガスロックが発生したと判定するガスロック判定部と、
     を有する請求項1から請求項6のいずれか1項に記載の水処理装置。
    The detection unit
    A pressure measuring unit that measures the intermembrane differential pressure of the filtration membrane when the backwash water is supplied to the filtration membrane by the backwash water supply unit.
    The difference between the first membranes measured by the pressure measuring unit is compared with the differential pressure between the second membranes measured by the pressure measuring unit before the measurement of the differential pressure between the first membranes. The filtration is performed when the differential pressure between the first membranes is larger than the pressure and the amount of change in pressure of the differential pressure between the first membranes with respect to the differential pressure between the second membranes per unit time is equal to or greater than a predetermined threshold value. A gas lock determination unit that determines that gas lock has occurred on the membrane,
    The water treatment apparatus according to any one of claims 1 to 6.
  9.  ろ過膜の一次側から二次側に被処理水を通してろ過するろ過処理と、前記ろ過膜の二次側から一次側に逆洗水を通して前記ろ過膜を洗浄する逆洗処理と、を行う水処理方法において、
     前記ろ過膜に前記逆洗水を供給するステップと、
     前記ろ過膜の内部の気泡によるガスロックを検出するステップと、
     前記ガスロックを検出した場合に、前記逆洗水の供給を一時的に停止させるステップと、
     前記逆洗水の供給を一時的に停止させることによりガス排出ユニットに誘導された前記ろ過膜の内部の前記気泡を排出するステップと、
     前記逆洗水の供給を一時的に停止させてから予め決められた時間が経過後、前記逆洗水の供給を再開させるステップと、
     を備える水処理方法。
    Water treatment that performs a filtration treatment in which the water to be treated is passed from the primary side to the secondary side of the filtration membrane and a backwash treatment in which the filtration membrane is washed by passing backwash water from the secondary side to the primary side of the filtration membrane. In the method
    The step of supplying the backwash water to the filtration membrane and
    The step of detecting gas lock due to air bubbles inside the filtration membrane and
    When the gas lock is detected, the step of temporarily stopping the supply of the backwash water and
    A step of discharging the bubbles inside the filtration membrane induced to the gas discharge unit by temporarily stopping the supply of the backwash water, and a step of discharging the bubbles.
    A step of temporarily stopping the supply of the backwash water and then restarting the supply of the backwash water after a predetermined time has elapsed.
    A water treatment method that comprises.
PCT/JP2019/024091 2019-06-18 2019-06-18 Water treatment device and water treatment method WO2020255251A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980097403.3A CN113993611A (en) 2019-06-18 2019-06-18 Water treatment device and water treatment method
PCT/JP2019/024091 WO2020255251A1 (en) 2019-06-18 2019-06-18 Water treatment device and water treatment method
JP2019560788A JP6644211B1 (en) 2019-06-18 2019-06-18 Water treatment device and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024091 WO2020255251A1 (en) 2019-06-18 2019-06-18 Water treatment device and water treatment method

Publications (1)

Publication Number Publication Date
WO2020255251A1 true WO2020255251A1 (en) 2020-12-24

Family

ID=69412206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024091 WO2020255251A1 (en) 2019-06-18 2019-06-18 Water treatment device and water treatment method

Country Status (3)

Country Link
JP (1) JP6644211B1 (en)
CN (1) CN113993611A (en)
WO (1) WO2020255251A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007179A (en) * 2004-06-29 2006-01-12 Mitsubishi Electric Corp Membrane filtering arrangement and membrane filtration method
JP2006055718A (en) * 2004-08-18 2006-03-02 Kobelco Eco-Solutions Co Ltd Immersion membrane separation type sewage treatment apparatus and its operation method
JP2010119948A (en) * 2008-11-19 2010-06-03 Toray Ind Inc Membrane separator, and filtration treatment operation method
JP2012035243A (en) * 2010-08-12 2012-02-23 Kubota Corp Washing method of membrane separator, and membrane separator
JP2012086120A (en) * 2010-10-18 2012-05-10 Toray Ind Inc Method for washing immersion type membrane module with chemical
JP6479277B1 (en) * 2018-02-27 2019-03-06 三菱電機株式会社 Aeration amount control system and aeration amount control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087339B2 (en) * 2007-07-30 2012-12-05 有明マテリアル株式会社 Method for producing free-cutting ceramics
US20130280773A1 (en) * 2010-12-22 2013-10-24 Toray Industries, Inc. Method for producing chemical by continuous fermentation
JP5928995B2 (en) * 2011-02-22 2016-06-01 三菱レイヨン株式会社 Membrane separation processing apparatus and method of operating the apparatus
CN102407050A (en) * 2011-10-13 2012-04-11 广州达意隆包装机械股份有限公司 Multi-media filter control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007179A (en) * 2004-06-29 2006-01-12 Mitsubishi Electric Corp Membrane filtering arrangement and membrane filtration method
JP2006055718A (en) * 2004-08-18 2006-03-02 Kobelco Eco-Solutions Co Ltd Immersion membrane separation type sewage treatment apparatus and its operation method
JP2010119948A (en) * 2008-11-19 2010-06-03 Toray Ind Inc Membrane separator, and filtration treatment operation method
JP2012035243A (en) * 2010-08-12 2012-02-23 Kubota Corp Washing method of membrane separator, and membrane separator
JP2012086120A (en) * 2010-10-18 2012-05-10 Toray Ind Inc Method for washing immersion type membrane module with chemical
JP6479277B1 (en) * 2018-02-27 2019-03-06 三菱電機株式会社 Aeration amount control system and aeration amount control method

Also Published As

Publication number Publication date
JPWO2020255251A1 (en) 2021-09-13
JP6644211B1 (en) 2020-02-12
CN113993611A (en) 2022-01-28

Similar Documents

Publication Publication Date Title
KR102329058B1 (en) A computer readable recording medium recording a clogged point specific program of the separation membrane module, a tidal system and a tidal method
JP6432914B2 (en) Water treatment method and water treatment apparatus
JP6492658B2 (en) Cleaning method for hollow fiber membrane module
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
WO2017149758A1 (en) Membrane filtration device, filtration membrane cleaning method, and method for manufacturing filtration membrane
JP5431493B2 (en) Immersion type separation membrane apparatus cleaning method and immersion type separation membrane apparatus cleaning system
JP5928995B2 (en) Membrane separation processing apparatus and method of operating the apparatus
JP2012196590A (en) Filtration membrane, cleaning means of filtration membrane, and selection method of pretreat means
WO2020255251A1 (en) Water treatment device and water treatment method
KR101858754B1 (en) System and Method for Filtering
TWI717743B (en) Membrane clean device and method for cleaning membrane
JP2013212497A (en) Water treating method
JP7103526B2 (en) Cleaning trouble judgment method and cleaning trouble judgment program of water production equipment
JP2005351707A (en) Method and device for detecting membrane filtration performance, and membrane filtration method and device
CN115103820B (en) Control method and operation method for water producing device, failure determination method for water producing device, and recording medium
JP2007289899A (en) Membrane washing method for membrane separation means, and water treatment apparatus
JP6878050B2 (en) Membrane filtration device, membrane filtration method and blow device of membrane filtration device
WO2022025265A1 (en) Method for operating separation membrane module, computer-readable recording medium having program recorded thereon, and water production system
JP7213711B2 (en) Water treatment device and water treatment method
JP2011177689A (en) Water treatment system and treatment liquid discharge method
KR20150005008A (en) Maintenance chemical cleaning method of separation membrane and Maintenance chemical cleaning system thereof
WO2021199371A1 (en) Water treatment device and water treatment method
KR102010482B1 (en) Filtering System and Method for Cleaning Hollow Fiber Membrane Module
JP7199247B2 (en) IMMERSION MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION OF IMMERSION MEMBRANE FILTRATION DEVICE
WO2010113589A1 (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019560788

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933618

Country of ref document: EP

Kind code of ref document: A1