WO2010113589A1 - Water treatment device and water treatment method - Google Patents

Water treatment device and water treatment method Download PDF

Info

Publication number
WO2010113589A1
WO2010113589A1 PCT/JP2010/053540 JP2010053540W WO2010113589A1 WO 2010113589 A1 WO2010113589 A1 WO 2010113589A1 JP 2010053540 W JP2010053540 W JP 2010053540W WO 2010113589 A1 WO2010113589 A1 WO 2010113589A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water
membrane separation
water treatment
filtration
Prior art date
Application number
PCT/JP2010/053540
Other languages
French (fr)
Japanese (ja)
Inventor
一貴 高田
弘伸 西尾
Original Assignee
株式会社神鋼環境ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神鋼環境ソリューション filed Critical 株式会社神鋼環境ソリューション
Priority to BRPI1007607A priority Critical patent/BRPI1007607A2/en
Priority to CN2010800034718A priority patent/CN102239121A/en
Publication of WO2010113589A1 publication Critical patent/WO2010113589A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control

Definitions

  • the present invention relates to a water treatment apparatus and a water treatment method, and more particularly to a water treatment apparatus and a water treatment method for membrane separation using a membrane separation module in which a filtration membrane is used.
  • this type of water treatment apparatus is, for example, wastewater from factories (steel, food, electric power, electronics, medicine, automobiles, etc.), domestic wastewater, waste leachate wastewater, industrial water, etc. Water, lake water, seawater and the like are used as raw water (treated water) to obtain purified water as permeate by membrane separation with a membrane separation module.
  • an object of the present invention is to provide a water treatment apparatus and a water treatment method capable of obtaining a large amount of purified water for each chemical cleaning.
  • the present invention is a water treatment apparatus comprising a membrane separation module in which a filtration membrane is used, and configured to membrane-treat water to be treated by the membrane separation module,
  • the membrane separation module continuously performs membrane separation in a continuous period of 30 days or more while setting the flux of permeated water that permeates the filtration membrane within the range of 0.10 to 0.35 m / d. It is in the water treatment apparatus characterized by comprising.
  • the present invention is a water treatment method for membrane separation of water to be treated in a membrane separation module in which a filtration membrane is used,
  • the membrane separation module continuously performs membrane separation with a continuous period of 30 days or more while setting the flux of permeate passing through the filtration membrane within a range of 0.10 to 0.35 m / d.
  • the water treatment method is characterized.
  • the schematic block diagram of the water treatment apparatus which concerns on one Embodiment.
  • the water treatment apparatus 1 of the present embodiment includes a membrane separation module 2 having a membrane separation module 2a and membrane separation of raw water A by the membrane separation module 2a.
  • the water treatment apparatus 1 of the present embodiment stores the raw water transfer path 8 for transferring the raw water A as the water to be treated to the membrane separation unit 2 and the purified water B as the permeated water obtained by the membrane separation module 2a. And a permeate transfer path 9 for transferring to a tank (not shown).
  • the raw water A is transferred to the membrane separation unit 2 via the raw water transfer path 8, and the permeated water obtained in the membrane separation part 2 via the permeate transfer path 9.
  • the purified water B is configured to be transferred to a purified water storage tank (not shown).
  • the membrane separation unit 2 includes a membrane separation tank 2b for storing the raw water A transferred to the membrane separation unit 2.
  • the membrane separation module 2a is installed as an immersion membrane below the liquid level in the membrane separation tank 2b.
  • the membrane separation module 2a includes a filtration membrane.
  • the type of the filtration membrane is not particularly limited, and examples thereof include an ultrafiltration membrane (UF membrane) and a microfiltration membrane (MF membrane).
  • UF membrane ultrafiltration membrane
  • MF membrane microfiltration membrane
  • the filtration membrane is a so-called hollow formed in a hollow fiber shape having a diameter of several millimeters formed of a material such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), cellulose acetate, aromatic polyamide, or polyvinyl alcohol.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • cellulose acetate cellulose acetate
  • aromatic polyamide or polyvinyl alcohol.
  • the membrane separation is performed by bringing the raw water A into contact with the membrane separation module 2a continuously for a predetermined duration while setting the flux of permeated water that permeates the filtration membrane within a predetermined range”
  • the case where the membrane is separated by bringing the raw water A into contact with the membrane separation module 2a in a state where the flux is temporarily out of a predetermined range is included in the duration.
  • a case where “the membrane is separated by bringing the raw water A into contact with the membrane separation module 2a in a state where the flux is out of a predetermined range for a total period of 1/20 of the duration” is included.
  • a case where “the membrane is separated by bringing the raw water A into contact with the membrane separation module 2a in a state where the flux is out of a predetermined range for a total period of 1/10 of the duration” is included.
  • the flux of permeated water that permeates the filtration membrane is set in the range of 0.10 to 0.35 m / d, preferably 0.15 to 0.25 m / d.
  • the membrane separation module 2a is continuously contacted with the raw water A in a continuous period of 30 days or longer to perform membrane separation.
  • the period (continuation period) is preferably 180 days or more, more preferably 1 to 20 years, and even more preferably 2 to 15 years.
  • the water treatment apparatus 1 of the present embodiment includes a pump 3, and purified water B, which is permeated water that is drawn by the pump 3 to the membrane separation module 2 a and permeates the filtration membrane of the membrane separation module 2 a, is purified. It is configured to be transferred to a water storage tank (not shown).
  • the water treatment apparatus 1 of this embodiment includes a flow meter 4 that measures the flow rate of the permeated water that passes through the filtration membrane, and an inverter 5 that changes the rotational speed of the pump 3 based on the obtained measurement value.
  • the first signal transmission mechanism 6 that transmits the signal (obtained measurement value) transmitted from the flow meter 4 to the inverter 5 via a control device (not shown), and the signal (pump 3) transmitted from the inverter 5
  • a second signal transmission mechanism 7 for transmitting to the pump 3 a command for changing the rotational speed of the motor.
  • the water treatment apparatus 1 of the present embodiment is configured such that the flux of permeate passing through the filter membrane is controlled based on the measurement value obtained by the flow meter 4.
  • control device transmits the value of the flow rate per area of the filtration membrane, that is, the filtration membrane, from the value of the flow rate (movement amount per unit time) measured by the flow meter 4.
  • the permeated water flux value is calculated.
  • raw water A is not particularly limited, examples of the raw water A include waste water from factories (steel, food, electric power, electronics, pharmaceuticals, automobiles, etc.), domestic waste water, and waste leachate. Water such as industrial water, river water, lake water, seawater and the like.
  • the water treatment apparatus of the present embodiment is configured as described above. Next, the water treatment method of the present embodiment will be described.
  • the raw water A is brought into contact with the membrane separation module 2a for membrane separation. Further, the water treatment method of the present embodiment is such that the flux of permeated water that permeates the filtration membrane is within the range of 0.10 to 0.35 m / d, and the membrane separation module is continuously used for a period of 30 days or more.
  • the raw water A is brought into contact with 2a for membrane separation.
  • the suspended solid (SS) concentration in the membrane separation tank varies depending on the quality of the raw water, but when the water to be treated is river water, lake water, etc., it is 10 to 2000 mg / L, preferably 100 to 1500 mg / L. can do.
  • membrane separation module also referred to as “membrane separation module”
  • a predetermined time for example, 30 to 180 seconds
  • air scrubbing cleaning that swings the film 2a periodically (for example, about once every 2 to 10 days).
  • the water treatment apparatus and the water treatment method of the present embodiment have the above-described advantages due to the above-described configuration
  • the water treatment apparatus and the water treatment method of the present invention are not limited to the above-described configuration, and are appropriately designed. It can be changed.
  • the purified water B which is the permeated water that passes through the filtration membrane of the membrane separation module 2a, is stored in the purified water B.
  • the purified water B is configured to be transferred to a tank (not shown), it is a permeated water through which raw water A is attracted to the membrane separation module 2a and permeates the filtration membrane of the membrane separation module 2a due to a difference in water pressure due to gravity.
  • the purified water B may be configured to be transferred to a purified water storage tank (not shown).
  • a PVC container having a length of 30 cm, a width of 40 cm, and a height of 180 cm was used.
  • Raw water was supplied to the membrane separation tank to an effective water depth of 1.5 m (effective volume 180 liters), and a hollow fiber immersion type MF membrane module (immersion membrane) having a membrane area of 25 m 2 was immersed therein.
  • the nominal aperture of the membrane is 0.1 ⁇ m.
  • a suction filtration experiment was conducted using groundwater as raw water. The supplied raw water is sucked by the submerged membrane, and suspended substances (SS) are concentrated and accumulated in the membrane separation tank.
  • SS suspended substances
  • the experiment was performed by changing the membrane filtration flux within a range of 0.01 to 1.35 m / d.
  • the operation period of the membrane module is 0.01 m / d for 6 months, 0.1 m / d for 1.5 months, 0.48 m / d for 2 months, 0.75 m / d for 1 month, 0.96 m / d For 1 month and 1.35 m / d for 1 month.
  • the membrane filtration flow rate was determined by providing a flow meter on the suction filtration side and measuring the flow rate. Moreover, about the film
  • FIG. 2 shows the relationship between the membrane filtration flux and the rate of increase in the membrane differential pressure. In addition, the membrane differential pressure increase rate calculated the average membrane differential pressure increase rate (experimental value) from the film differential pressure measured every 1 hour.
  • the number of years until the membrane differential pressure reaches 30 kPa is set as the chemical cleaning interval (until chemical cleaning is required).
  • the chemical washing interval for each membrane filtration flux was calculated.
  • the permeation efficiency was calculated as an index of the frequency of chemical cleaning per the amount of purified water obtained.
  • the transmission efficiency is calculated by the following equation (2). It is shown that the higher the permeation efficiency, the more the chemical cleaning frequency per the amount of purified water obtained can be suppressed.
  • Permeation efficiency (year ⁇ m / d) flux (m / d) ⁇ chemical cleaning interval (year) (2) The calculation results are shown in FIG.
  • the permeation efficiency was higher than that of the permeated water flux outside the range.
  • the transmission efficiency is best in the range of 0.15 to 0.25 m / d. Therefore, it became clear that the chemical cleaning frequency per the amount of purified water obtained can be suppressed by the present invention.

Abstract

Disclosed is a water treatment device that can produce a large amount of treated water per chemical cleaning. The water treatment device is provided with a membrane separation module that uses a filtration membrane, and treats water in the membrane separation module using membrane separation. This water treatment device is characterized by being capable of performing membrane separation in the membrane separation module for a continuous period of at least 30 days, with the flux of water passing through the filtration membrane set within the range 0.10–0.35 m/d.

Description

水処理装置および水処理方法Water treatment apparatus and water treatment method
 本発明は、水処理装置および水処理方法に関し、詳しくは、濾過膜が用いられている膜分離モジュールにて膜分離する水処理装置および水処理方法に関する。 The present invention relates to a water treatment apparatus and a water treatment method, and more particularly to a water treatment apparatus and a water treatment method for membrane separation using a membrane separation module in which a filtration membrane is used.
 従来より、この種の水処理装置は、例えば、工場(鉄鋼、食品、電力、電子、医薬、自動車等の工場)の廃水、生活廃水、ゴミ浸出水等の廃水、工業用水等の用水、河川水、湖沼水、及び海水等を原水(被処理水)として膜分離モジュールで膜分離して透過水たる浄化水を得るのに用いられる。 Conventionally, this type of water treatment apparatus is, for example, wastewater from factories (steel, food, electric power, electronics, medicine, automobiles, etc.), domestic wastewater, waste leachate wastewater, industrial water, etc. Water, lake water, seawater and the like are used as raw water (treated water) to obtain purified water as permeate by membrane separation with a membrane separation module.
 ところで、この種の水処理装置においては、長期間の使用による目詰まり等によって濾過膜の機能が著しく低下することから、その機能を回復させるべく定期的に濾過膜の薬品洗浄が行われている。 By the way, in this type of water treatment apparatus, the function of the filtration membrane is remarkably lowered due to clogging or the like due to long-term use. Therefore, chemical cleaning of the filtration membrane is periodically performed to restore the function. .
日本国特開平9-308882号公報Japanese Unexamined Patent Publication No. 9-308882
 しかしながら、薬品洗浄は、そもそも濾過膜にダメージを与え、濾過膜の寿命を短くするという問題を有している。従って、薬品洗浄の頻度を下げつつも、多くの浄化水を得ることができる水処理装置及び水処理方法が望まれている。 However, chemical cleaning has a problem of damaging the filter membrane in the first place and shortening the life of the filter membrane. Therefore, a water treatment device and a water treatment method that can obtain a large amount of purified water while reducing the frequency of chemical cleaning are desired.
 本発明は、上記問題点及び要望に鑑み、薬品洗浄1回分当たりに対して、多くの浄化水を得ることができる水処理装置及び水処理方法を提供することを課題とする。 In view of the above problems and demands, an object of the present invention is to provide a water treatment apparatus and a water treatment method capable of obtaining a large amount of purified water for each chemical cleaning.
 本発明者らが鋭意研究したところ、濾過膜を透過する透過水の流束を一定範囲内にしつつ、継続的に一定以上の継続期間で該膜分離モジュールにて被処理水を膜分離することにより、薬品洗浄1回分当たりに対して、多くの浄化水を得ることができることを見出し、本発明の完成を想到するに至った。 As a result of diligent research by the present inventors, it is possible to perform membrane separation of water to be treated in the membrane separation module continuously over a certain period of time while keeping the flux of permeated water that permeates the filtration membrane within a certain range. Thus, it has been found that a large amount of purified water can be obtained per chemical washing, and the present invention has been completed.
 即ち、本発明は、濾過膜が用いられている膜分離モジュールを備え、該膜分離モジュールにて被処理水を膜分離するように構成されてなる水処理装置であって、
 該濾過膜を透過する透過水の流束を0.10~0.35m/dの範囲内に設定しつつ、継続的に30日以上の継続期間で該膜分離モジュールにて膜分離するように構成されてなることを特徴とする水処理装置にある。
That is, the present invention is a water treatment apparatus comprising a membrane separation module in which a filtration membrane is used, and configured to membrane-treat water to be treated by the membrane separation module,
The membrane separation module continuously performs membrane separation in a continuous period of 30 days or more while setting the flux of permeated water that permeates the filtration membrane within the range of 0.10 to 0.35 m / d. It is in the water treatment apparatus characterized by comprising.
 また、本発明は、濾過膜が用いられている膜分離モジュールにて被処理水を膜分離する水処理方法であって、
 該濾過膜を透過する透過水の流束を0.10~0.35m/dの範囲内に設定しつつ、継続的に30日以上の継続期間で該膜分離モジュールにて膜分離することを特徴とする水処理方法にある。
Further, the present invention is a water treatment method for membrane separation of water to be treated in a membrane separation module in which a filtration membrane is used,
The membrane separation module continuously performs membrane separation with a continuous period of 30 days or more while setting the flux of permeate passing through the filtration membrane within a range of 0.10 to 0.35 m / d. The water treatment method is characterized.
 以上のように、本発明によれば、薬品洗浄1回分当たりに対して、多くの浄化水を得ることができる。 As described above, according to the present invention, a large amount of purified water can be obtained for each chemical cleaning.
一実施形態に係る水処理装置の概略ブロック図。The schematic block diagram of the water treatment apparatus which concerns on one Embodiment. 透過水の流束に対する膜差圧上昇速度を示したグラフ。The graph which showed the membrane differential pressure rise speed with respect to the flux of permeate. 透過水の流束に対する透過効率を示したグラフ。The graph which showed the permeation | transmission efficiency with respect to the flux of permeate.
 以下、添付図面を参照しつつ、本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
 図1に示すように、本実施形態の水処理装置1は、膜分離モジュール2aを有し該膜分離モジュール2aにより原水Aを膜分離する膜分離部2が備えられてなる。 As shown in FIG. 1, the water treatment apparatus 1 of the present embodiment includes a membrane separation module 2 having a membrane separation module 2a and membrane separation of raw water A by the membrane separation module 2a.
 また、本実施形態の水処理装置1は、被処理水たる原水Aを膜分離部2に移送する原水移送経路8と、膜分離モジュール2aで得られた透過水たる浄化水Bを浄化水貯留槽(図示せず)に移送する透過水移送経路9とを備えてなる。 Further, the water treatment apparatus 1 of the present embodiment stores the raw water transfer path 8 for transferring the raw water A as the water to be treated to the membrane separation unit 2 and the purified water B as the permeated water obtained by the membrane separation module 2a. And a permeate transfer path 9 for transferring to a tank (not shown).
 さらに、本実施形態の水処理装置1は、原水移送経路8を介して、原水Aが膜分離部2に移送され、透過水移送経路9を介して、膜分離部2で得られた透過水たる浄化水Bが浄化水貯留槽(図示せず)に移送されるように構成されてなる。 Furthermore, in the water treatment apparatus 1 of the present embodiment, the raw water A is transferred to the membrane separation unit 2 via the raw water transfer path 8, and the permeated water obtained in the membrane separation part 2 via the permeate transfer path 9. The purified water B is configured to be transferred to a purified water storage tank (not shown).
 前記膜分離部2は、該膜分離部2に移送された原水Aを貯留する膜分離槽2bを備えてなる。 The membrane separation unit 2 includes a membrane separation tank 2b for storing the raw water A transferred to the membrane separation unit 2.
 前記膜分離モジュール2aは、膜分離槽2b内の液面下に浸漬膜として設置されてなる。 The membrane separation module 2a is installed as an immersion membrane below the liquid level in the membrane separation tank 2b.
 前記膜分離モジュール2aは、濾過膜を備えてなる。 The membrane separation module 2a includes a filtration membrane.
 前記濾過膜の種類としては、特に限定されるものではないが、例えば、限外濾過膜(UF膜)、精密濾過膜(MF膜)等が挙げられる。 The type of the filtration membrane is not particularly limited, and examples thereof include an ultrafiltration membrane (UF membrane) and a microfiltration membrane (MF membrane).
 前記濾過膜としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、酢酸セルロース、芳香族ポリアミド、ポリビニールアルコールなどの素材により形成された直径数mmの中空糸状に形成されたいわゆる中空糸膜などと呼ばれるタイプのものや、該中空糸膜よりも径の太い数cm程度の太さを有するいわゆるチューブラー膜と呼ばれるタイプのもの、さらには、使用時に内部にメッシュなどの支持材が配された状態で平板状で用いられる封筒状のいわゆる平膜と呼ばれるものなど従来公知のものを採用することができる。 The filtration membrane is a so-called hollow formed in a hollow fiber shape having a diameter of several millimeters formed of a material such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), cellulose acetate, aromatic polyamide, or polyvinyl alcohol. There is a type called a yarn membrane, a type called so-called tubular membrane having a diameter of several centimeters thicker than the hollow fiber membrane, and a support material such as a mesh inside when used. A conventionally well-known thing can be employ | adopted, such as what is called an envelope-shaped what is called a flat film used by flat form in the arranged state.
 本実施形態の水処理装置1は、濾過膜を透過する透過水の流束(単位時間あたり単位膜面積あたりの透過水量 m/m/日=m/d)を0.10~0.35m/dの範囲内に設定しつつ、継続的に30日以上の継続期間で膜分離モジュール2aに原水Aを接触させて膜分離するように構成されてなる。
 尚、「濾過膜を透過する透過水の流束を所定の範囲内に設定しつつ、継続的に所定の継続期間で膜分離モジュール2aに原水Aを接触させて膜分離する」には、“継続期間のうち一時的に、該流束が所定の範囲からはずれた状態で膜分離モジュール2aに原水Aを接触させて膜分離する”場合も含まれる。例えば、“継続期間のうち合計1/20の期間、該流束が所定の範囲からはずれた状態で膜分離モジュール2aに原水Aを接触させて膜分離する”場合も含まれる。更には、“継続期間のうち合計1/10の期間、該流束が所定の範囲からはずれた状態で膜分離モジュール2aに原水Aを接触させて膜分離する”場合も含まれる。
The water treatment apparatus 1 of the present embodiment has a permeated water flux permeating the filtration membrane (permeated water amount per unit membrane area m 3 / m 2 / day = m / d) of 0.10 to 0.00. While being set within the range of 35 m / d, the membrane separation module 2a is continuously brought into contact with the membrane separation module 2a in a continuous period of 30 days or more for membrane separation.
In addition, “the membrane separation is performed by bringing the raw water A into contact with the membrane separation module 2a continuously for a predetermined duration while setting the flux of permeated water that permeates the filtration membrane within a predetermined range” The case where the membrane is separated by bringing the raw water A into contact with the membrane separation module 2a in a state where the flux is temporarily out of a predetermined range is included in the duration. For example, a case where “the membrane is separated by bringing the raw water A into contact with the membrane separation module 2a in a state where the flux is out of a predetermined range for a total period of 1/20 of the duration” is included. Furthermore, a case where “the membrane is separated by bringing the raw water A into contact with the membrane separation module 2a in a state where the flux is out of a predetermined range for a total period of 1/10 of the duration” is included.
 また、本実施形態の水処理装置1は、濾過膜を透過する透過水の流束を0.10~0.35m/d、好ましくは、0.15~0.25m/dの範囲内に設定しつつ、継続的に30日以上の継続期間で膜分離モジュール2aに原水Aを接触させて膜分離するように構成されてなる。 Further, in the water treatment apparatus 1 of the present embodiment, the flux of permeated water that permeates the filtration membrane is set in the range of 0.10 to 0.35 m / d, preferably 0.15 to 0.25 m / d. However, the membrane separation module 2a is continuously contacted with the raw water A in a continuous period of 30 days or longer to perform membrane separation.
 前記期間(継続期間)は、好ましくは、180日以上、より好ましくは、1~20年、更により好ましくは、2~15年である。 The period (continuation period) is preferably 180 days or more, more preferably 1 to 20 years, and even more preferably 2 to 15 years.
 本実施形態の水処理装置1は、ポンプ3を備え、該ポンプ3によって原水Aが前記膜分離モジュール2aに引き寄せられ且つ該膜分離モジュール2aの濾過膜を透過する透過水たる浄化水Bが浄化水貯留槽(図示せず)に移送されるように構成されてなる。 The water treatment apparatus 1 of the present embodiment includes a pump 3, and purified water B, which is permeated water that is drawn by the pump 3 to the membrane separation module 2 a and permeates the filtration membrane of the membrane separation module 2 a, is purified. It is configured to be transferred to a water storage tank (not shown).
 また、本実施形態の水処理装置1は、濾過膜を透過する透過水の流量を測定する流量計4と、得られた測定値に基づいてポンプ3の回転数を変化させるためのインバータ5と、流量計4から発信された信号(得られた測定値)を制御装置(図示せず)を介してインバータ5に伝達する第1信号伝達機構6と、インバータ5から発信された信号(ポンプ3の回転数を変化させるための命令)をポンプ3に伝達する第2信号伝達機構7とを備えてなる。 Moreover, the water treatment apparatus 1 of this embodiment includes a flow meter 4 that measures the flow rate of the permeated water that passes through the filtration membrane, and an inverter 5 that changes the rotational speed of the pump 3 based on the obtained measurement value. The first signal transmission mechanism 6 that transmits the signal (obtained measurement value) transmitted from the flow meter 4 to the inverter 5 via a control device (not shown), and the signal (pump 3) transmitted from the inverter 5 And a second signal transmission mechanism 7 for transmitting to the pump 3 a command for changing the rotational speed of the motor.
 さらに、本実施形態の水処理装置1は、前記流量計4で得られた測定値に基づいて、濾過膜を透過する透過水の流束が制御されるように構成されてなる。 Furthermore, the water treatment apparatus 1 of the present embodiment is configured such that the flux of permeate passing through the filter membrane is controlled based on the measurement value obtained by the flow meter 4.
 また、前記制御装置(図示せず)は、該流量計4により測定された流量(単位時間あたりの移動量)の値から、濾過膜の面積あたりの流量の値、すなわち、濾過膜を透過する透過水の流束の値が算出されるように構成されてなる。 Further, the control device (not shown) transmits the value of the flow rate per area of the filtration membrane, that is, the filtration membrane, from the value of the flow rate (movement amount per unit time) measured by the flow meter 4. The permeated water flux value is calculated.
 前記原水Aは、特に限定されるものではないが、原水Aとしては、例えば、工場(鉄鋼、食品、電力、電子、医薬、自動車等の工場)の廃水、生活廃水、ゴミ浸出水等の廃水、工業用水等の用水、河川水、湖沼水、及び海水等が挙げられる。 Although the raw water A is not particularly limited, examples of the raw water A include waste water from factories (steel, food, electric power, electronics, pharmaceuticals, automobiles, etc.), domestic waste water, and waste leachate. Water such as industrial water, river water, lake water, seawater and the like.
 本実施形態の水処理装置は、上記の如く構成されてなるが、次ぎに、本実施形態の水処理方法について説明する。 The water treatment apparatus of the present embodiment is configured as described above. Next, the water treatment method of the present embodiment will be described.
 本実施形態の水処理方法は、前記膜分離モジュール2aに原水Aを接触させて膜分離する。
 また、本実施形態の水処理方法は、該濾過膜を透過する透過水の流束を0.10~0.35m/dの範囲内にし、30日以上の期間で継続的に該膜分離モジュール2aに原水Aを接触させて膜分離する。
 尚、膜分離槽内の懸濁物質(SS)濃度は、原水水質によって変わるが、被処理水が河川水、湖沼水等の場合は、10~2000mg/L、好ましくは100~1500mg/Lとすることができる。
 また、膜の表面に付着した懸濁物質を除去するために、膜モジュール(「膜分離モジュール」ともいう。)2aの下部より空気を所定時間(例えば、30~180秒間)供給して膜モジュール2aの膜を揺動させるエアスクラビング洗浄を定期的に(例えば、2~10日に1回程度)行うことが好ましい。
In the water treatment method of the present embodiment, the raw water A is brought into contact with the membrane separation module 2a for membrane separation.
Further, the water treatment method of the present embodiment is such that the flux of permeated water that permeates the filtration membrane is within the range of 0.10 to 0.35 m / d, and the membrane separation module is continuously used for a period of 30 days or more. The raw water A is brought into contact with 2a for membrane separation.
The suspended solid (SS) concentration in the membrane separation tank varies depending on the quality of the raw water, but when the water to be treated is river water, lake water, etc., it is 10 to 2000 mg / L, preferably 100 to 1500 mg / L. can do.
Further, in order to remove suspended substances adhering to the surface of the membrane, air is supplied from the lower part of the membrane module (also referred to as “membrane separation module”) 2a for a predetermined time (for example, 30 to 180 seconds), and the membrane module. It is preferable to perform air scrubbing cleaning that swings the film 2a periodically (for example, about once every 2 to 10 days).
 尚、本実施形態の水処理装置および水処理方法は、上記構成により、上記利点を有するものであったが、本発明の水処理装置および水処理方法は、上記構成に限定されず、適宜設計変更可能である。 Although the water treatment apparatus and the water treatment method of the present embodiment have the above-described advantages due to the above-described configuration, the water treatment apparatus and the water treatment method of the present invention are not limited to the above-described configuration, and are appropriately designed. It can be changed.
 即ち、本実施形態の水処理装置1は、該ポンプ3によって、原水Aが前記膜分離モジュール2aに引き寄せられ且つ該膜分離モジュール2aの濾過膜を透過する透過水たる浄化水Bが浄化水貯留槽(図示せず)に移送されるように構成されてなるが、重力による水圧差によって、原水Aが前記膜分離モジュール2aに引き寄せられ且つ該膜分離モジュール2aの濾過膜を透過する透過水たる浄化水Bが浄化水貯留槽(図示せず)に移送されるように構成されてもよい。 That is, in the water treatment apparatus 1 of this embodiment, the purified water B, which is the permeated water that passes through the filtration membrane of the membrane separation module 2a, is stored in the purified water B. Although it is configured to be transferred to a tank (not shown), it is a permeated water through which raw water A is attracted to the membrane separation module 2a and permeates the filtration membrane of the membrane separation module 2a due to a difference in water pressure due to gravity. The purified water B may be configured to be transferred to a purified water storage tank (not shown).
 次に、下記例を挙げて本発明についてさらに具体的に説明する。 Next, the present invention will be described more specifically with reference to the following examples.
 膜分離槽としては、縦30cm、横40cm、高さ180cmのPVC製容器を用いた。膜分離槽内に有効水深1.5m(有効容積180リットル)まで原水を供給し、膜面積25mの中空糸浸漬型MF膜モジュール(浸漬膜)を浸漬させた。膜の公称口径は0.1μmである。原水として地下水を用いて、吸引ろ過実験を行った。供給された原水は浸漬膜により吸引され、膜分離槽内では懸濁物質(SS)が濃縮されて蓄積される。膜分離槽内に懸濁物質が高濃度に蓄積されることを防ぐために、適宜、それぞれ30リットル程度の懸濁物質を膜分離槽下部より引き抜いて、膜分離槽内の懸濁物質の濃度を500~1,000mg/Lとした。なお、膜の表面に付着した懸濁物質を除去するためのエアスクラビング洗浄を、懸濁物質引き抜き時に行った。このエアスクラビング洗浄は、膜モジュール下部より空気量5Nm3 /hrで約1分間空気を供給して膜モジュールの中空糸膜を揺動させることにより行い、懸濁物質を膜より除去した。尚、膜分離槽の水位が略一定となるように、膜分離槽に原水を常に供給した。 As the membrane separation tank, a PVC container having a length of 30 cm, a width of 40 cm, and a height of 180 cm was used. Raw water was supplied to the membrane separation tank to an effective water depth of 1.5 m (effective volume 180 liters), and a hollow fiber immersion type MF membrane module (immersion membrane) having a membrane area of 25 m 2 was immersed therein. The nominal aperture of the membrane is 0.1 μm. A suction filtration experiment was conducted using groundwater as raw water. The supplied raw water is sucked by the submerged membrane, and suspended substances (SS) are concentrated and accumulated in the membrane separation tank. In order to prevent the suspended substances from accumulating in the membrane separation tank at a high concentration, about 30 liters of suspended substances are withdrawn from the lower part of the membrane separation tank, and the concentration of the suspended substances in the membrane separation tank is adjusted accordingly. The amount was 500 to 1,000 mg / L. Note that air scrubbing cleaning for removing suspended substances adhering to the surface of the membrane was performed when the suspended substances were extracted. This air scrubbing washing was performed by supplying air from the lower part of the membrane module at an air amount of 5 Nm 3 / hr for about 1 minute to swing the hollow fiber membrane of the membrane module, thereby removing suspended substances from the membrane. In addition, raw water was always supplied to the membrane separation tank so that the water level in the membrane separation tank became substantially constant.
 実験は、膜ろ過流束0.01~1.35m/dの範囲内で変化させて行った。膜モジュールの運転期間は、0.01m/dは6ヶ月、0.1m/dは1.5ヶ月、0.48m/dは2ヶ月、0.75m/dは1ヶ月、0.96m/dは1ヶ月、1.35m/dは1ヶ月それぞれ実施した。なお、0.48m/d、0.75m/d、0.96m/d、及び1.35m/dのエアスクラビング洗浄については、膜への懸濁物質の付着が顕著であったことにより、10分間隔で実施した。それぞれの条件における実施期間にばらつきはあるが、膜差圧上昇速度の把握により、薬品洗浄を必要とする膜差圧に達するまでの期間を計算により求めた。 The experiment was performed by changing the membrane filtration flux within a range of 0.01 to 1.35 m / d. The operation period of the membrane module is 0.01 m / d for 6 months, 0.1 m / d for 1.5 months, 0.48 m / d for 2 months, 0.75 m / d for 1 month, 0.96 m / d For 1 month and 1.35 m / d for 1 month. For air scrubbing cleaning at 0.48 m / d, 0.75 m / d, 0.96 m / d, and 1.35 m / d, 10 Performed at minute intervals. Although there were variations in the implementation period under each condition, the period until reaching the film differential pressure requiring chemical cleaning was obtained by calculation by grasping the rate of increase in the film differential pressure.
 膜ろ過流量については、吸引ろ過側に流量計を設けて流量を測定することにより求めた。また、膜差圧については、圧力計を配管に設置して吸引圧力を測定した。尚、膜ろ過流量は、1時間おきに測定し、略一定となるように調整した。また、膜差圧は、1時間おきに測定した。
 膜ろ過流束と膜差圧上昇速度との関係を図2に示す。尚、膜差圧上昇速度は、1時間おきに測定した膜差圧から平均の膜差圧上昇速度(実験値)を算出した。
The membrane filtration flow rate was determined by providing a flow meter on the suction filtration side and measuring the flow rate. Moreover, about the film | membrane differential pressure, the pressure gauge was installed in piping and the suction pressure was measured. The membrane filtration flow rate was measured every other hour and adjusted to be substantially constant. Moreover, the film differential pressure was measured every other hour.
FIG. 2 shows the relationship between the membrane filtration flux and the rate of increase in the membrane differential pressure. In addition, the membrane differential pressure increase rate calculated the average membrane differential pressure increase rate (experimental value) from the film differential pressure measured every 1 hour.
 図2に示すように、膜ろ過流束(m/d)(X)と膜差圧上昇速度(kPa/d)(Y)との間には相関があり、膜ろ過流束(m/d)(X)と膜差圧上昇速度(kPa/d)(Y)との関係は、下記式(1)により近似できる。
  Y=0.0059×EXP(5.059*X) (1)
 この近似式(式(1))より、表1に示す膜ろ過流束ごとに対する膜差圧上昇速度(計算値)を求めた。そして、この膜差圧上昇速度(計算値)が膜ろ過流束ごとに一定であると仮定し、更に、膜差圧が30kPaとなるまでの年数を薬品洗浄インターバル(薬品洗浄が必要となるまでの年数)と仮定して、膜ろ過流束ごとの薬品洗浄インターバルを算出した。
 また、得られる浄化水量当たりの薬品洗浄頻度の指標として、透過効率を算出した。ここで、透過効率は、下記式(2)により算出したものである。透過効率が高い程、得られる浄化水量当たりの薬品洗浄頻度が抑制され得ることが示されている。
 透過効率(年・m/d)=流束(m/d)×薬品洗浄インターバル(年) (2)
 上記の算出結果を図3、表1に示す。
 ところで、従来は、特に上水道への適用においては薬品洗浄の間隔を約半年と設定し、これを達成する最大膜ろ過流束を選定していた。それでは、真のろ過効率を考察することに欠ける。そのため、本発明では、ろ過効率(=透過効率)を考案して、透過効率が最大となる膜ろ過流束を決定することを試みた。
As shown in FIG. 2, there is a correlation between the membrane filtration flux (m / d) (X) and the membrane differential pressure increase rate (kPa / d) (Y), and the membrane filtration flux (m / d ) (X) and the differential pressure increase rate (kPa / d) (Y) can be approximated by the following equation (1).
Y = 0.0059 × EXP (5.059 * X) (1)
From this approximate expression (Expression (1)), the rate of increase in the membrane differential pressure (calculated value) for each membrane filtration flux shown in Table 1 was determined. Then, it is assumed that the rate of increase in the membrane differential pressure (calculated value) is constant for each membrane filtration flux. Further, the number of years until the membrane differential pressure reaches 30 kPa is set as the chemical cleaning interval (until chemical cleaning is required). The chemical washing interval for each membrane filtration flux was calculated.
Further, the permeation efficiency was calculated as an index of the frequency of chemical cleaning per the amount of purified water obtained. Here, the transmission efficiency is calculated by the following equation (2). It is shown that the higher the permeation efficiency, the more the chemical cleaning frequency per the amount of purified water obtained can be suppressed.
Permeation efficiency (year · m / d) = flux (m / d) × chemical cleaning interval (year) (2)
The calculation results are shown in FIG.
By the way, conventionally, especially in application to waterworks, the interval of chemical cleaning was set to about half a year, and the maximum membrane filtration flux that achieves this was selected. Then, it lacks to consider true filtration efficiency. Therefore, in the present invention, the filtration efficiency (= permeation efficiency) was devised, and an attempt was made to determine the membrane filtration flux that maximizes the permeation efficiency.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 0.10~0.35m/dの範囲では、その範囲外の透過水の流束の場合に比して、透過効率が高い値を示した。特に、0.15~0.25m/dの範囲が、もっとも透過効率が良いことが分かった。
 従って、本発明によって、得られる浄化水量当たりの薬品洗浄頻度が抑制され得ることが明らかとなった。
In the range of 0.10 to 0.35 m / d, the permeation efficiency was higher than that of the permeated water flux outside the range. In particular, it has been found that the transmission efficiency is best in the range of 0.15 to 0.25 m / d.
Therefore, it became clear that the chemical cleaning frequency per the amount of purified water obtained can be suppressed by the present invention.
 1:水処理装置、2:膜分離部、2a:膜分離モジュール、2b:膜分離槽、3:ポンプ、4:流量計、5:インバータ、6:第1信号伝達機構、7:第2信号伝達機構、8:原水移送経路、9:透過水移送経路、A:原水、B:浄化水 1: water treatment device, 2: membrane separation unit, 2a: membrane separation module, 2b: membrane separation tank, 3: pump, 4: flow meter, 5: inverter, 6: first signal transmission mechanism, 7: second signal Transmission mechanism, 8: Raw water transfer path, 9: Permeate transfer path, A: Raw water, B: Purified water

Claims (5)

  1.  濾過膜が用いられている膜分離モジュールを備え、該膜分離モジュールにて被処理水を膜分離するように構成されてなる水処理装置であって、
     該濾過膜を透過する透過水の流束を0.10~0.35m/dの範囲内に設定しつつ、継続的に30日以上の継続期間で該膜分離モジュールにて膜分離するように構成されてなることを特徴とする水処理装置。
    A water treatment apparatus comprising a membrane separation module in which a filtration membrane is used, and configured to membrane-treat water to be treated by the membrane separation module,
    The membrane separation module continuously performs membrane separation in a continuous period of 30 days or more while setting the flux of permeated water that permeates the filtration membrane within the range of 0.10 to 0.35 m / d. A water treatment apparatus characterized by comprising.
  2.  該濾過膜を透過する透過水の流束を0.15~0.25m/dの範囲内に設定しつつ、継続的に30日以上の継続期間で該膜分離モジュールにて膜分離するように構成されてなる請求項1記載の水処理装置。 The membrane separation module continuously performs membrane separation with a duration of 30 days or more while setting the flux of permeated water that permeates the filtration membrane within the range of 0.15 to 0.25 m / d. The water treatment apparatus according to claim 1, which is configured.
  3.  前記期間が180日以上である請求項1記載の水処理装置。 The water treatment apparatus according to claim 1, wherein the period is 180 days or more.
  4.  濾過膜が用いられている膜分離モジュールにて被処理水を膜分離する水処理方法であって、
     該濾過膜を透過する透過水の流束を0.10~0.35m/dの範囲内に設定しつつ、継続的に30日以上の継続期間で該膜分離モジュールにて膜分離することを特徴とする水処理方法。
    A water treatment method for membrane separation of water to be treated in a membrane separation module in which a filtration membrane is used,
    The membrane separation module continuously performs membrane separation with a continuous period of 30 days or more while setting the flux of permeate passing through the filtration membrane within a range of 0.10 to 0.35 m / d. A water treatment method characterized.
  5.  前記期間が180日以上である請求項2記載の水処理装置。 The water treatment apparatus according to claim 2, wherein the period is 180 days or more.
PCT/JP2010/053540 2009-03-31 2010-03-04 Water treatment device and water treatment method WO2010113589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI1007607A BRPI1007607A2 (en) 2009-03-31 2010-03-04 "water treatment apparatus and method"
CN2010800034718A CN102239121A (en) 2009-03-31 2010-03-04 Water treatment device and water treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009084216A JP5548378B2 (en) 2009-03-31 2009-03-31 Water treatment apparatus and water treatment method
JP2009-084216 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113589A1 true WO2010113589A1 (en) 2010-10-07

Family

ID=42827890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053540 WO2010113589A1 (en) 2009-03-31 2010-03-04 Water treatment device and water treatment method

Country Status (4)

Country Link
JP (1) JP5548378B2 (en)
CN (1) CN102239121A (en)
BR (1) BRPI1007607A2 (en)
WO (1) WO2010113589A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030481B1 (en) * 2014-12-23 2017-01-20 Bfg Env Tech MOBILE DEVICE FOR THE BIOLOGICAL TREATMENT OF BIOREACTOR TYPE WASTEWATER.

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238136A (en) * 1993-02-17 1994-08-30 Daicel Chem Ind Ltd Method for washing filter membrane module
JPH07148500A (en) * 1993-10-01 1995-06-13 Kankyo Eng Kk Method for treating organic sludge
JPH07313850A (en) * 1994-05-30 1995-12-05 Kubota Corp Method for backward washing immersion-type ceramic membrane separator
JPH10180008A (en) * 1996-12-26 1998-07-07 Kurita Water Ind Ltd Membrane separation device
JP2000317273A (en) * 1999-05-07 2000-11-21 Kurita Water Ind Ltd Membrane separation method
JP2002210335A (en) * 2001-01-16 2002-07-30 Japan Organo Co Ltd Apparatus and method for desalting using reverse osmosis membrane
JP2006021066A (en) * 2004-07-06 2006-01-26 Japan Organo Co Ltd Washing method for immersion type membrane module and washing apparatus
JP2008142596A (en) * 2006-12-07 2008-06-26 Japan Organo Co Ltd Method and apparatus for modifying separation membrane, separation membrane modified by the modification method, and method and apparatus for operating separation membrane
JP2008259967A (en) * 2007-04-12 2008-10-30 Japan Organo Co Ltd Method and apparatus for modifying separation membrane, modified separation membrane and method and device for operating separation membrane
JP2008264772A (en) * 2007-03-27 2008-11-06 Asahi Kasei Chemicals Corp Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JP2009000590A (en) * 2007-06-19 2009-01-08 Japan Organo Co Ltd Water treatment method of organic matter-containing wastewater

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238136A (en) * 1993-02-17 1994-08-30 Daicel Chem Ind Ltd Method for washing filter membrane module
JPH07148500A (en) * 1993-10-01 1995-06-13 Kankyo Eng Kk Method for treating organic sludge
JPH07313850A (en) * 1994-05-30 1995-12-05 Kubota Corp Method for backward washing immersion-type ceramic membrane separator
JPH10180008A (en) * 1996-12-26 1998-07-07 Kurita Water Ind Ltd Membrane separation device
JP2000317273A (en) * 1999-05-07 2000-11-21 Kurita Water Ind Ltd Membrane separation method
JP2002210335A (en) * 2001-01-16 2002-07-30 Japan Organo Co Ltd Apparatus and method for desalting using reverse osmosis membrane
JP2006021066A (en) * 2004-07-06 2006-01-26 Japan Organo Co Ltd Washing method for immersion type membrane module and washing apparatus
JP2008142596A (en) * 2006-12-07 2008-06-26 Japan Organo Co Ltd Method and apparatus for modifying separation membrane, separation membrane modified by the modification method, and method and apparatus for operating separation membrane
JP2008264772A (en) * 2007-03-27 2008-11-06 Asahi Kasei Chemicals Corp Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JP2008259967A (en) * 2007-04-12 2008-10-30 Japan Organo Co Ltd Method and apparatus for modifying separation membrane, modified separation membrane and method and device for operating separation membrane
JP2009000590A (en) * 2007-06-19 2009-01-08 Japan Organo Co Ltd Water treatment method of organic matter-containing wastewater

Also Published As

Publication number Publication date
JP5548378B2 (en) 2014-07-16
BRPI1007607A2 (en) 2016-02-16
JP2010234239A (en) 2010-10-21
CN102239121A (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP5804228B1 (en) Water treatment method
KR102329058B1 (en) A computer readable recording medium recording a clogged point specific program of the separation membrane module, a tidal system and a tidal method
JP6492658B2 (en) Cleaning method for hollow fiber membrane module
JP5431493B2 (en) Immersion type separation membrane apparatus cleaning method and immersion type separation membrane apparatus cleaning system
JP2010227836A (en) Method for operating film module
JP2015077530A (en) Water production method and water production device
JPWO2012098969A1 (en) Membrane module cleaning method, fresh water generation method and fresh water generation device
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
JP4135267B2 (en) Method of operating a total filtration type membrane separation apparatus and total filtration type membrane separation apparatus
JP6087667B2 (en) Desalination method and desalination apparatus
JP2013212497A (en) Water treating method
JP7103526B2 (en) Cleaning trouble judgment method and cleaning trouble judgment program of water production equipment
JP5548378B2 (en) Water treatment apparatus and water treatment method
Kwon et al. Optimization of hollow fiber membrane cleaning process for microalgae harvest
JP4979519B2 (en) Operation method of membrane separation activated sludge treatment equipment
JP6052866B2 (en) Water treatment method
JP2009214062A (en) Operation method of immersion type membrane module
JP7103513B2 (en) Control method of water production equipment by filtration characteristic prediction, trouble judgment method of water production equipment, water production equipment, operation program of water production equipment, trouble judgment program of water production equipment, and recording medium
WO2012057176A1 (en) Water-treatment method and desalinization method
JP5908185B2 (en) Organic film modification method, modified organic film, and reformer
JP2000084370A (en) Membrane separation device and its operation
JP2012061383A (en) Hollow fiber membrane unit, water treatment apparatus, and water treatment method
Van Houtte et al. Intermunicipal Water Company of Veurne-Ambacht (IWVA), Doornpanne 1, B-8670 Koksijde

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003471.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758365

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6650/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758365

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1007607

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1007607

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110929