JP2009072766A - Water treating method - Google Patents

Water treating method Download PDF

Info

Publication number
JP2009072766A
JP2009072766A JP2008195912A JP2008195912A JP2009072766A JP 2009072766 A JP2009072766 A JP 2009072766A JP 2008195912 A JP2008195912 A JP 2008195912A JP 2008195912 A JP2008195912 A JP 2008195912A JP 2009072766 A JP2009072766 A JP 2009072766A
Authority
JP
Japan
Prior art keywords
membrane
water
treatment
reverse osmosis
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008195912A
Other languages
Japanese (ja)
Inventor
Hiroo Takahata
寛生 高畠
Hiroaki Kubo
広明 久保
Masahide Taniguchi
雅英 谷口
Tadahiro Uemura
忠廣 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008195912A priority Critical patent/JP2009072766A/en
Publication of JP2009072766A publication Critical patent/JP2009072766A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treating method suitable for regenerating sewage like factory wastewater containing biodegradable organic matter as a main component, causing less fouling in a nanofiltration membrane or a reverse osmosis membrane, like particularly an organic acid or hydrocarbon, by the nanofiltration membrane or reverse osmosis membrane, and a water treating method suppressing fouling by organism metabolite at the nanofiltration membrane and/or reverse osmosis membrane, and keeping a biological treatment facility compact, in this water treating method. <P>SOLUTION: Water 21 to be treated is subjected to membrane separation using the nanofiltration membrane and/or reverse osmosis membrane and separated into permeated water and condensed water, and the condensed water is subjected to a biological treatment for solid-liquid separation. A membrane separation activated sludge method is used as a method for biological treating for solid-liquid separation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、工場廃水等をナノろ過膜や逆浸透膜によって再生処理する水処理方法に関するものである。   The present invention relates to a water treatment method for regenerating factory waste water or the like with a nanofiltration membrane or a reverse osmosis membrane.

従来、下水や産業廃水などの汚水を浄化処理する水処理設備としては、図2に示すようなものがある。図2において、曝気槽1に供給された汚水2は曝気槽内の微生物によって汚水中の有機物が酸化分解処理された後に、活性汚泥とともに混合溶液として沈殿池3に送られる。また、沈殿池3においては、沈殿する活性汚泥4と上澄み水(二次処理水)5とに分離され、活性汚泥4が曝気槽1に戻されるとともに、二次処理水5が凝集沈殿池6に送られる。この凝集沈殿池6において二次処理水5に含まれる浮遊物等が凝集剤の凝集作用により大部分がフロックとなって沈降するが、ここで除去出来なかった一部のフロックは、この後に続く砂濾過池7の濾過層で除去されて三次処理水8となって逆浸透膜分離装置9に送られる。そして、逆浸透膜分離装置9において、逆浸透膜10を透過した液体分は塩類や色度成分が除去された清澄な水11として取り出され、逆浸透膜10を透過しなかった塩類や色度成分を含む濃縮液12が分離排出される。   2. Description of the Related Art Conventionally, there is a water treatment facility for purifying sewage such as sewage and industrial wastewater as shown in FIG. In FIG. 2, the sewage 2 supplied to the aeration tank 1 is sent to the sedimentation basin 3 as a mixed solution together with activated sludge after organic matter in the sewage is oxidatively decomposed by microorganisms in the aeration tank. In addition, in the sedimentation basin 3, the activated sludge 4 and the supernatant water (secondary treated water) 5 are separated, the activated sludge 4 is returned to the aeration tank 1, and the secondary treated water 5 is condensed into the coagulating sedimentation basin 6 Sent to. In this agglomeration sedimentation basin 6, suspended matters contained in the secondary treated water 5 are mostly flocked due to the aggregating action of the aggregating agent, but some flocs that could not be removed here follow. It is removed by the filtration layer of the sand filtration pond 7 to become the tertiary treated water 8 and sent to the reverse osmosis membrane separation device 9. In the reverse osmosis membrane separation device 9, the liquid that permeates the reverse osmosis membrane 10 is taken out as clear water 11 from which salts and chromaticity components have been removed, and the salts and chromaticity that have not permeated the reverse osmosis membrane 10. The concentrated liquid 12 containing the components is separated and discharged.

そして近年、生物処理槽内に精密膜あるいは限外ろ過膜モジュールを設置し、生物処理と固液分離を同時に行うことが可能な膜分離活性汚泥法が開発され普及しつつある。そしてこの膜分離活性汚泥法を用いて処理された処理水を、逆浸透膜等を用いて膜分離処理を行う下水および廃水処理方法が提案されている(例えば、特許文献1参照)。   In recent years, a membrane separation activated sludge method in which a precision membrane or an ultrafiltration membrane module is installed in a biological treatment tank and biological treatment and solid-liquid separation can be performed simultaneously has been developed and is becoming popular. A sewage and wastewater treatment method has been proposed in which treated water treated using this membrane separation activated sludge method is subjected to membrane separation treatment using a reverse osmosis membrane or the like (see, for example, Patent Document 1).

逆浸透膜によって膜分離処理を行うと、被処理水は膜を透過した透過水と、膜を透過しなかった濃縮水とに分離される。そこで逆浸透膜による膜分離処理で発生した濃縮水を前段の膜分離活性汚泥槽(生物処理槽)に還流する処理方法も提案されている。   When membrane separation treatment is performed using a reverse osmosis membrane, the water to be treated is separated into permeated water that has permeated through the membrane and concentrated water that has not permeated through the membrane. Therefore, a treatment method has also been proposed in which the concentrated water generated in the membrane separation treatment using the reverse osmosis membrane is returned to the preceding membrane separation activated sludge tank (biological treatment tank).

しかしながら、この膜分離活性汚泥法の後で逆浸透膜により膜分離処理する廃水処理方法においては、膜分離活性汚泥法によって得られた透過水中に含まれる生物代謝産物が逆浸透膜を詰まらせる、いわゆるファウリングの問題があった。   However, in the wastewater treatment method in which the membrane separation treatment is performed by the reverse osmosis membrane after the membrane separation activated sludge method, the biological metabolite contained in the permeated water obtained by the membrane separation activated sludge method clogs the reverse osmosis membrane. There was a so-called fouling problem.

また発生した廃水を全量生物処理しなくてはならず、処理に必要な活性汚泥槽(生物処理槽)数も多くなり、そのため操作も複雑になり、広い敷地面積を要するのみならず建設コスト、ランニングコストも高くなる問題があった。
特開平4−305287号公報
In addition, the entire amount of wastewater generated must be biologically treated, and the number of activated sludge tanks (biological treatment tanks) required for treatment increases, which complicates operation and requires not only a large site area but also construction costs, There was a problem that the running cost was high.
JP-A-4-305287

本発明は、特に工場廃水等をナノろ過膜や逆浸透膜によって再生処理する水処理方法において、ナノろ過膜や逆浸透膜での生物代謝産物によるファウリングを抑制し、かつ生物処理設備をコンパクトに抑えることを目的とする。   In particular, the present invention is a water treatment method for regenerating and treating factory wastewater with a nanofiltration membrane or a reverse osmosis membrane, which suppresses fouling caused by biological metabolites in the nanofiltration membrane or reverse osmosis membrane, and makes the biological treatment equipment compact. The purpose is to suppress it.

かかる課題を解決するための本発明は、以下の構成からなる。
(1)被処理水をナノろ過膜および/または逆浸透膜を用いて膜分離処理することにより透過水と濃縮水とに分離し、前記濃縮水を生物処理し固液分離処理することを特徴とする水処理方法。
(2)前記生物処理し固液分離処理する方法が、膜分離活性汚泥法であることを特徴とする上記(1)に記載の処理方法。
(3)前記生物処理し固液分離処理して得られた処理水の少なくとも一部を後段のナノろ過膜および/または逆浸透膜で膜分離処理することを特徴とする上記(1)又は(2)に記載の水処理方法。
(4)前記後段のナノろ過膜および/または逆浸透膜が低ファウリング逆浸透膜であることを特徴とする上記(3)に記載の水処理方法。
(5)前記生物処理し固液分離処理して得られた処理水の少なくとも一部を、生物処理の前段のナノろ過膜および/または逆浸透膜の被処理水として還流することを特徴とする上記(1)又は(2)に記載の水処理方法。
(6)前記生物処理し固液分離処理して得られた処理水の少なくとも一部を、活性炭処理、限外ろ過膜処理およびオゾン処理のうちいずれか1種以上の処理を行った後、生物処理の前段のナノろ過膜および/または逆浸透膜の被処理水として還流することを特徴とする上記(1)又は(2)に記載の水処理方法。
The present invention for solving this problem has the following configuration.
(1) The water to be treated is separated into permeated water and concentrated water by membrane separation treatment using a nanofiltration membrane and / or a reverse osmosis membrane, and the concentrated water is biologically treated and subjected to solid-liquid separation treatment. Water treatment method.
(2) The method according to (1), wherein the biological treatment and solid-liquid separation method is a membrane separation activated sludge method.
(3) The above (1) or (1), wherein at least a part of the treated water obtained by the biological treatment and the solid-liquid separation treatment is subjected to membrane separation treatment with a nanofiltration membrane and / or a reverse osmosis membrane in the subsequent stage. The water treatment method as described in 2).
(4) The water treatment method according to (3) above, wherein the latter nanofiltration membrane and / or reverse osmosis membrane is a low fouling reverse osmosis membrane.
(5) At least a part of the treated water obtained by the biological treatment and solid-liquid separation treatment is refluxed as water to be treated in the nanofiltration membrane and / or reverse osmosis membrane in the previous stage of biological treatment. The water treatment method according to (1) or (2) above.
(6) After at least a part of the treated water obtained by the biological treatment and the solid-liquid separation treatment is subjected to any one or more of activated carbon treatment, ultrafiltration membrane treatment and ozone treatment, The water treatment method according to the above (1) or (2), wherein the nanofiltration membrane and / or the reverse osmosis membrane before treatment is refluxed as water to be treated.

本発明の方法によれば、特に有機酸やハイドロカーボンなどのように、ナノろ過膜や逆浸透膜のファウリングを生じ難い生物分解性有機物が主成分である工場廃水等の汚水を、ナノろ過膜や逆浸透膜にて再生処理する水処理方法において、ナノろ過膜や逆浸透膜のファウリングを抑制することができ、かつ、生物処理設備をコンパクトに抑えることが可能となる。   According to the method of the present invention, sewage such as factory waste water, which is mainly composed of biodegradable organic substances that are unlikely to cause fouling of nanofiltration membranes or reverse osmosis membranes, such as organic acids and hydrocarbons, is subjected to nanofiltration. In a water treatment method in which regeneration treatment is performed using a membrane or a reverse osmosis membrane, fouling of the nanofiltration membrane or the reverse osmosis membrane can be suppressed, and the biological treatment facility can be suppressed in a compact manner.

本発明の水処理方法は、特に有機酸やハイドロカーボンなどのように、ナノろ過膜や逆浸透膜のファウリングを生じ難い生物分解性有機物が主成分である工場廃水等の汚水を処理する場合に好適であり、この汚水をナノろ過膜および/または逆浸透膜を用いて透過水と濃縮水とに分離し、濃縮水を生物処理し固液分離処理することを特徴とする。   The water treatment method of the present invention is particularly suitable for treating sewage such as industrial wastewater, which is mainly composed of biodegradable organic substances that are unlikely to cause fouling of nanofiltration membranes or reverse osmosis membranes, such as organic acids and hydrocarbons. The sewage is separated into permeated water and concentrated water using a nanofiltration membrane and / or a reverse osmosis membrane, and the concentrated water is subjected to biological treatment and solid-liquid separation treatment.

本発明では、ナノろ過膜および/または逆浸透膜の前段で生物処理を行わないため、生物代謝産物によるナノろ過膜および/または逆浸透膜のファウリングを抑制することができる。また本発明では、ナノろ過膜および/または逆浸透膜で透過水と濃縮水に分離した後の濃縮水のみを生物処理するため、生物処理設備をコンパクトに抑えることが可能となる。   In the present invention, since biological treatment is not performed before the nanofiltration membrane and / or reverse osmosis membrane, fouling of the nanofiltration membrane and / or reverse osmosis membrane due to biological metabolites can be suppressed. Further, in the present invention, only the concentrated water after being separated into permeated water and concentrated water by the nanofiltration membrane and / or reverse osmosis membrane is biologically processed, so that the biological treatment facility can be kept compact.

図1に、本発明の水処理方法に用いられる水処理装置の概略図の一例を示す。ただし、本発明の水処理方法はこの実施形態に限られるものではない。   In FIG. 1, an example of the schematic of the water treatment apparatus used for the water treatment method of this invention is shown. However, the water treatment method of the present invention is not limited to this embodiment.

被処理水21は加圧ポンプ22にて、ナノろ過膜および/または逆浸透膜23に圧送し、透過水24および濃縮水25を得る。ナノろ過膜および/または逆浸透膜23で得られた濃縮水25は、生物処理槽27に送られ、生物処理されると共に、ろ過膜26にて固液分離される。   The water 21 to be treated is pumped to the nanofiltration membrane and / or the reverse osmosis membrane 23 by the pressure pump 22 to obtain the permeated water 24 and the concentrated water 25. The concentrated water 25 obtained by the nanofiltration membrane and / or the reverse osmosis membrane 23 is sent to the biological treatment tank 27 for biological treatment and solid-liquid separation by the filtration membrane 26.

本発明の被処理水21とは、ナノろ過膜および/または逆浸透膜23に供給される供給水を指す。また被処理水21の性状は、特に限定されないが、有機酸やハイドロカーボンなどのように、ナノろ過膜や逆浸透膜ではファウリングし難く、かつ生物分解性の有機物が主成分であることが好ましい。また廃水などの原水に対し、MF膜処理、UF膜処理、活性炭処理などの前処理を施したものを被処理水21とし、ナノろ過膜および/または逆浸透膜23のファウリングを低減させても良い。   The treated water 21 of the present invention refers to the supply water supplied to the nanofiltration membrane and / or the reverse osmosis membrane 23. The properties of the water 21 to be treated are not particularly limited, but it is difficult to foul with a nanofiltration membrane or a reverse osmosis membrane such as an organic acid or a hydrocarbon, and a biodegradable organic substance is a main component. preferable. In addition, raw water such as waste water that has been pretreated such as MF membrane treatment, UF membrane treatment, activated carbon treatment, etc. is treated water 21 to reduce fouling of the nanofiltration membrane and / or reverse osmosis membrane 23. Also good.

槽内に設置されるろ過膜26の装置は、ろ過膜の取り扱い性や物理的耐久性を向上させるために、例えば、フレームの両面にろ過水流路材を挟んでろ過膜を接着した平膜エレメント構造をしていることが望ましい。ろ過膜26の装置構造は特に限定されるものではなく、中空糸膜を用いたエレメントであっても構わないが、平膜エレメント構造は、膜面に平行な流速を与えた場合の剪断力による汚れの除去効果が高いことから、本発明に適している。なお、平膜エレメント構造には、回転平膜構造も含まれる。   In order to improve the handleability and physical durability of the filtration membrane, the device of the filtration membrane 26 installed in the tank is, for example, a flat membrane element in which a filtration membrane is bonded to both sides of the frame with a filtrate channel material sandwiched between them. It is desirable to have a structure. The device structure of the filtration membrane 26 is not particularly limited, and an element using a hollow fiber membrane may be used. However, the flat membrane element structure is based on a shearing force when a flow velocity parallel to the membrane surface is applied. Since the effect of removing dirt is high, it is suitable for the present invention. The flat membrane element structure includes a rotating flat membrane structure.

ろ過膜26の膜構造としては、多孔質膜や、多孔質膜に機能層を複合化した複合膜などが挙げられるが、特に限定されるものではない。これらの膜の具体例としては、ポリアクリロニトリル多孔質膜、ポリイミド多孔質膜、ポリエーテルスルホン多孔質膜、ポリフェニレンスルフィドスルホン多孔質膜、ポリテトラフルオロエチレン多孔質膜、ポリフッ化ビニリデン多孔質膜、ポリプロピレン多孔質膜、ポリエチレン多孔質膜等の多孔質膜などが挙げられるが、ポリフッ化ビニリデン多孔質膜やポリテトラフルオロエチレン多孔質膜は耐薬品性が高いため、特に好ましい。さらに、これら多孔質膜に機能層として架橋型シリコーン、ポリブタジエン、ポリアクリロニトリルブタジエン、エチレンプロピレンラバー、ネオプレンゴム等のゴム状高分子を複合化した複合膜を挙げることができる。   Examples of the membrane structure of the filtration membrane 26 include a porous membrane and a composite membrane in which a functional layer is combined with the porous membrane, but are not particularly limited. Specific examples of these membranes include polyacrylonitrile porous membrane, polyimide porous membrane, polyethersulfone porous membrane, polyphenylene sulfide sulfone porous membrane, polytetrafluoroethylene porous membrane, polyvinylidene fluoride porous membrane, polypropylene Examples of the porous film include a porous film and a porous film such as a polyethylene porous film, and a polyvinylidene fluoride porous film and a polytetrafluoroethylene porous film are particularly preferable because of high chemical resistance. Furthermore, a composite film in which a rubbery polymer such as cross-linked silicone, polybutadiene, polyacrylonitrile butadiene, ethylene propylene rubber, or neoprene rubber is compounded as a functional layer can be given as a functional layer.

またろ過膜26の膜孔径は、活性汚泥を固形成分と溶解成分とに固液分離できる程度の孔径であることが好ましい。膜孔径が大きければ、膜透水性が向上するが、膜ろ過水に固形成分が含有する可能性が高くなる傾向がある。一方、膜孔径が小さければ、膜ろ過水に固形成分が含有する可能性が小さくなるが、膜透水性が低下する傾向がある。具体的には、0.01〜0.5μmとすることが好ましく、0.05〜0.5μmとすることがさらに好ましい。   The membrane pore size of the filtration membrane 26 is preferably a pore size such that activated sludge can be solid-liquid separated into a solid component and a dissolved component. If the membrane pore size is large, the membrane permeability is improved, but the possibility that a solid component is contained in the membrane filtrate tends to increase. On the other hand, if the membrane pore size is small, the possibility that a solid component is contained in the membrane filtrate is reduced, but the membrane permeability tends to be lowered. Specifically, it is preferably 0.01 to 0.5 μm, and more preferably 0.05 to 0.5 μm.

生物処理槽27は、濃縮水25を貯え、ろ過膜26を浸漬することができれば特に制限されるものではなく、コンクリート槽、繊維強化プラスチック槽などが好ましく用いられる。また、処理槽27の内部が複数に分割されていてもかまわないし、複数に分割されている槽のうち一部を、ろ過膜26を浸漬する槽として、他方を嫌気槽や脱窒槽として利用し、被処理水を互いの分割されている槽間で循環されるようにしてもよい。   The biological treatment tank 27 is not particularly limited as long as it can store the concentrated water 25 and immerse the filtration membrane 26, and a concrete tank, a fiber reinforced plastic tank, or the like is preferably used. Moreover, the inside of the processing tank 27 may be divided into a plurality of parts, and a part of the divided tanks may be used as a tank for immersing the filtration membrane 26 and the other as an anaerobic tank or a denitrification tank. The water to be treated may be circulated between the tanks that are divided from each other.

生物処理槽27に導入する活性汚泥は、廃水処理等に一般に利用されるものであり、種汚泥としては他の廃水処理施設の引き抜き汚泥などが通常使用される。また、膜分離活性汚泥法では、汚泥濃度として2,000mg/L〜20,000mg/L程度で運転される。活性汚泥法は、微生物が廃水中の汚濁成分を餌として利用することにより、水の浄化を可能とするものである。   The activated sludge introduced into the biological treatment tank 27 is generally used for wastewater treatment or the like, and as the seed sludge, drawn sludge from other wastewater treatment facilities is usually used. In the membrane separation activated sludge method, the operation is performed at a sludge concentration of about 2,000 mg / L to 20,000 mg / L. The activated sludge method makes it possible to purify water by using microorganisms as contaminants in wastewater.

加圧ポンプ22は、ろ過水を加圧することができれば特に制限されるものではなく、渦巻ポンプ、ディフューザーポンプ、渦巻斜流ポンプ、斜流ポンプ、ピストンポンプ、プランジャポンプ、ダイアフラムポンプ、歯車ポンプ、スクリューポンプ、ベーンポンプ、カスケードポンプ、ジェットポンプなどを用いることができるが、逆浸透処理するために必要な圧力にまで容易に加圧できることから、渦巻ポンプ、ディフューザーポンプ、ピストンポンプ、プランジャポンプ、カスケードポンプ、ジェットポンプなどが好ましく用いられる。   The pressurizing pump 22 is not particularly limited as long as it can pressurize filtered water, and is a centrifugal pump, diffuser pump, spiral mixed flow pump, mixed flow pump, piston pump, plunger pump, diaphragm pump, gear pump, screw Pumps, vane pumps, cascade pumps, jet pumps, etc. can be used, but because they can be easily pressurized to the pressure required for reverse osmosis treatment, centrifugal pumps, diffuser pumps, piston pumps, plunger pumps, cascade pumps, A jet pump or the like is preferably used.

ナノろ過膜および/または逆浸透膜23は、ろ過水中の溶質を、再生水として利用可能な濃度にまで低減することができる性能を有していることが要求される。具体的には、本発明は、海水やかん水のように、塩分やミネラル成分等、多種のイオン、たとえば、カルシウムイオン、マグネシウムイオン、硫酸イオンのような二価イオンや、ナトリウムイオン、カリウムイオン、塩素イオンのような一価イオン、また、フミン酸(分子量Mw≧100,000)、フルボ酸(分子量Mw=100〜1,000)、アルコール、エーテル、糖類などをはじめとする溶解性有機物を阻止する性能を有することが求められる。ナノろ過膜とは、操作圧力が 1.5MPa 以下,分画分子量が 200 から1000 で,塩化ナトリウムの阻止率90%以下のろ過膜と定義されており、それより分画分子量の小さく、高い阻止性能を有するものを逆浸透膜という。また、逆浸透膜でもナノろ過膜に近いものはルースRO膜とも呼ばれる。   The nanofiltration membrane and / or reverse osmosis membrane 23 is required to have a performance capable of reducing the solute in the filtered water to a concentration that can be used as reclaimed water. Specifically, the present invention provides various ions such as salt and mineral components such as seawater and brine, for example, divalent ions such as calcium ion, magnesium ion, sulfate ion, sodium ion, potassium ion, Blocks monovalent ions such as chloride ions, and soluble organic substances such as humic acid (molecular weight Mw ≧ 100,000), fulvic acid (molecular weight Mw = 100 to 1,000), alcohol, ether, saccharides, etc. It is required to have the performance to A nanofiltration membrane is defined as a filtration membrane with an operating pressure of 1.5 MPa or less, a fractional molecular weight of 200 to 1000, and a rejection rate of sodium chloride of 90% or less. What has performance is called a reverse osmosis membrane. A reverse osmosis membrane close to a nanofiltration membrane is also called a loose RO membrane.

ナノろ過膜や逆浸透膜は、中空糸膜や平膜の形状があり、いずれも本発明を適用することが出来る。また、取扱いを容易にするため中空糸膜や平膜を筐体に納めて流体分離素子(エレメント)としたものを用いることができる。この流体分離素子は、ナノろ過膜や逆浸透膜として平膜状の半透膜を用いる場合、例えば図5に示すように、多数の孔を穿設した筒状の中心パイプ39の周りに、半透膜40と、トリコットなどの透過水流路材42と、プラスチックネットなどの供給水流路材41とを含む膜ユニットを巻回し、これらを円筒状の筐体に納めた構造とするのが好ましい。複数の流体分離素子を直列あるいは並列に接続して分離膜モジュールとすることも好ましい。この流体分離素子において、供給水35は、一方の端部からユニット内に供給され、他方の端部に到達するまでの間に半透膜40を透過した透過水37が、中心パイプ39へと流れ、他方の端部において中心パイプ39から取り出される。一方、半透膜40を透過しなかった供給水35は、他方の端部において濃縮水36として取り出される。   Nanofiltration membranes and reverse osmosis membranes have hollow fiber membranes and flat membranes, and the present invention can be applied to both. Further, in order to facilitate handling, a fluid separation element (element) in which a hollow fiber membrane or a flat membrane is housed in a housing can be used. When this fluid separation element uses a flat membrane-like semipermeable membrane as a nanofiltration membrane or a reverse osmosis membrane, for example, as shown in FIG. 5, around a cylindrical central pipe 39 having a large number of holes, It is preferable that a membrane unit including a semipermeable membrane 40, a permeate flow passage material 42 such as a tricot, and a supply water flow passage material 41 such as a plastic net is wound, and these are housed in a cylindrical casing. . It is also preferable to form a separation membrane module by connecting a plurality of fluid separation elements in series or in parallel. In this fluid separation element, the supply water 35 is supplied into the unit from one end, and the permeated water 37 that has permeated the semipermeable membrane 40 before reaching the other end is supplied to the central pipe 39. The flow is withdrawn from the central pipe 39 at the other end. On the other hand, the supply water 35 that has not permeated the semipermeable membrane 40 is taken out as concentrated water 36 at the other end.

半透膜40の素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材を使用することができる。またその膜構造は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合膜のどちらでもよい。   As the material of the semipermeable membrane 40, a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer, or the like can be used. In addition, the membrane structure has a dense layer on at least one side of the membrane, and on the asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane. Either a composite membrane having a very thin separation functional layer formed of another material may be used.

しかしながら、中でも高耐圧性と高透水性、高溶質除去性能を兼ね備え、優れたポテンシャルを有する、ポリアミドを分離機能層とした複合膜が好ましい。特に、海水を原水とするような場合には、第一の半透膜ユニットでは浸透圧以上の圧力をかける必要があり、実質的には少なくとも5MPaの操作圧力が負荷されることが多い。この圧力に対して、高い透水性と阻止性能を維持するためにはポリアミドを分離機能層とし、それを微多孔性膜や不織布からなる支持体で保持する構造のものが適している。また、ポリアミド半透膜としては、多官能アミンと多官能酸ハロゲン化物との重縮合反応により得られる架橋ポリアミドの分離機能層を支持体に有してなる複合半透膜が適している。   However, among them, a composite membrane having a high pressure resistance, high water permeability, and high solute removal performance and having an excellent potential and using polyamide as a separation functional layer is preferable. In particular, when seawater is used as raw water, it is necessary to apply a pressure equal to or higher than the osmotic pressure in the first semipermeable membrane unit, and an operating pressure of at least 5 MPa is often applied substantially. In order to maintain high water permeability and blocking performance against this pressure, a structure in which polyamide is used as a separation functional layer and is held by a support made of a microporous membrane or a nonwoven fabric is suitable. Moreover, as the polyamide semipermeable membrane, a composite semipermeable membrane having a separation functional layer of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide on a support is suitable.

分離機能層は、酸やアルカリに対して化学的安定性が高い架橋ポリアミドからなるもの、もしくは架橋ポリアミドを主成分とするものからなることが好ましい。架橋ポリアミドは、多官能アミンと多官能酸ハロゲン化物との界面重縮合により形成され、多官能アミンまたは多官能酸ハロゲン化物成分の少なくとも一方が3官能以上の化合物を含んでいることが好ましい。   The separation functional layer is preferably made of a cross-linked polyamide having high chemical stability with respect to acid or alkali, or made of a cross-linked polyamide as a main component. The crosslinked polyamide is preferably formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide, and at least one of the polyfunctional amine or the polyfunctional acid halide component preferably contains a trifunctional or higher functional compound.

ここで、多官能アミンとは、一分子中に少なくとも2個の一級および/または二級アミノ基を有するアミンをいい、例えば、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼンに結合したフェニレンジアミン、キシリレンジアミン、1,3,5ートリアミノベンゼン、1,2,4−トリアミノベンゼン、3,5−ジアミノ安息香酸などの芳香族多官能アミン、エチレンジアミン、プロピレンジアミンなどの脂肪族アミン、1,2−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、ピペラジン、1,3−ビスピペリジルプロパン、4−アミノメチルピペラジンなどの脂環式多官能アミン等を挙げることができる。中でも、膜の選択分離性や透過性、耐熱性を考慮すると芳香族多官能アミンであることが好ましく、このような多官能芳香族アミンとしては、m−フェニレンジアミン、p−フェニレンジアミン、1,3,5−トリアミノベンゼンが好適に用いられる。さらには、入手の容易性や取り扱いのしやすさから、m−フェニレンジアミン(以下、m−PDAと記す)を用いることがより好ましい。これらの多官能アミンは、単独で用いたり、混合して用いたりしてもよい。   Here, the polyfunctional amine refers to an amine having at least two primary and / or secondary amino groups in one molecule. For example, two amino groups are any of ortho, meta, and para positions. Aromatic polyfunctional amines such as phenylenediamine, xylylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene and 3,5-diaminobenzoic acid bonded to benzene in the positional relationship of Aliphatic amines such as ethylenediamine and propylenediamine, alicyclic polyfunctional amines such as 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 1,3-bispiperidylpropane and 4-aminomethylpiperazine be able to. Of these, aromatic polyfunctional amines are preferred in view of selective separation, permeability, and heat resistance of the membrane. Examples of such polyfunctional aromatic amines include m-phenylenediamine, p-phenylenediamine, 1, 3,5-triaminobenzene is preferably used. Furthermore, it is more preferable to use m-phenylenediamine (hereinafter referred to as m-PDA) from the standpoint of availability and ease of handling. These polyfunctional amines may be used alone or in combination.

多官能酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいう。例えば、3官能酸ハロゲン化物では、トリメシン酸クロリド、1,3,5−シクロヘキサントリカルボン酸トリクロリド、1,2,4−シクロブタントリカルボン酸トリクロリドなどを挙げることができ、2官能酸ハロゲン化物では、ビフェニルジカルボン酸ジクロリド、ビフェニレンカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリドなどの芳香族2官能酸ハロゲン化物、アジポイルクロリド、セバコイルクロリドなどの脂肪族2官能酸ハロゲン化物、シクロペンタンジカルボン酸ジクロリド、シクロヘキサンジカルボン酸ジクロリド、テトラヒドロフランジカルボン酸ジクロリドなどの脂環式2官能酸ハロゲン化物を挙げることができる。多官能アミンとの反応性を考慮すると、多官能酸ハロゲン化物は多官能酸塩化物であることが好ましく、また、膜の選択分離性、耐熱性を考慮すると、多官能芳香族酸塩化物であることが好ましい。中でも、入手の容易性や取り扱いのしやすさの観点から、トリメシン酸クロリドを用いるとより好ましい。これらの多官能酸ハロゲン化物は、単独で用いたり、混合して用いたりしてもよい。   The polyfunctional acid halide refers to an acid halide having at least two carbonyl halide groups in one molecule. Examples of trifunctional acid halides include trimesic acid chloride, 1,3,5-cyclohexanetricarboxylic acid trichloride, 1,2,4-cyclobutanetricarboxylic acid trichloride, and bifunctional acid halides include biphenyl dicarboxylic acid. Aromatic difunctional acid halides such as acid dichloride, biphenylene carboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, naphthalene dicarboxylic acid chloride, aliphatic difunctional acid such as adipoyl chloride, sebacoyl chloride Mention may be made of alicyclic bifunctional acid halides such as halides, cyclopentane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, tetrahydrofuran dicarboxylic acid dichloride. Considering the reactivity with the polyfunctional amine, the polyfunctional acid halide is preferably a polyfunctional acid chloride, and considering the selective separation property and heat resistance of the membrane, the polyfunctional aromatic acid chloride is preferable. Preferably there is. Among them, it is more preferable to use trimesic acid chloride from the viewpoint of easy availability and easy handling. These polyfunctional acid halides may be used alone or in combination.

そして、微多孔性支持膜を含む支持体は、実質的には分離性能を有さない層であり、実質的に分離性能を有する架橋ポリアミドの分離機能層に機械的強度を与えるために設けられるもので、布帛や不織布などの基材上に微多孔性支持膜を形成したものなどが用いられる。   The support including the microporous support membrane is a layer that does not substantially have separation performance, and is provided to give mechanical strength to the separation functional layer of the crosslinked polyamide having substantial separation performance. For example, a material in which a microporous support film is formed on a substrate such as a fabric or a nonwoven fabric is used.

微多孔性支持膜は、それ自体も実質的には分離性能を有さない層で、実質的に分離性能を有する分離機能層に機械的強度を与えるために用いられるものであり、均一で微細な孔あるいは片面からもう一方の面まで徐々に大きな微細な孔をもっていて、その微細孔の大きさはその片面の表面が100nm以下であるような構造の支持膜が好ましい。   The microporous support membrane itself is a layer that does not substantially have separation performance, and is used to give mechanical strength to the separation functional layer having substantially separation performance. It is preferable to use a support film having such a structure that has a fine hole or a gradually small fine hole from one surface to the other surface, and the surface of the single surface is 100 nm or less.

上記の支持体は、ミリポア社製”ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製”ウルトラフィルターUK10”(商品名)のような各種市販フィルター材料から選択することもできるが、通常は、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って製造できる。その素材にはポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロースやポリ塩化ビニル等のホモポリマーあるいはブレンドしたものが通常使用されるが、化学的、機械的、熱的に安定性の高い、ポリスルホンを使用するのが好ましい。   The above-mentioned support can be selected from various commercially available filter materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha, , “Office of Saleen Water Research and Development Progress Report”, “No. 359 (1968). As the material, polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride and other homopolymers or blends are usually used, but chemically, mechanically and thermally stable polysulfone is used. It is preferred to use.

例えば、上記ポリスルホンのジメチルホルムアミド(DMF)溶液を密に織ったポリエステル布あるいは不織布の上に一定の厚さに注型し、それをドデシル硫酸ソーダ0.5重量%およびDMF2重量%を含む水溶液中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した微多孔性支持膜が得られる。微多孔性支持膜の素材としては、ポリスルホン以外にポリアミドやポリエステルも好ましく用いられる。   For example, a dimethylformamide (DMF) solution of the above polysulfone is cast on a densely woven polyester fabric or nonwoven fabric to a certain thickness, and the resulting solution is dissolved in an aqueous solution containing 0.5% by weight of sodium dodecyl sulfate and 2% by weight of DMF. By wet coagulation with, a microporous support membrane having a fine pore having a diameter of several tens of nm or less on the surface is obtained. As a material for the microporous support membrane, polyamide and polyester are preferably used in addition to polysulfone.

以下では、本発明の水処理方法の実施態様を示す処理フローについて概説する。   Below, the processing flow which shows the embodiment of the water treatment method of this invention is outlined.

まず、被処理水21は、ナノろ過膜および/または逆浸透膜23によって、透過水24と濃縮水25とに分離される。ナノろ過膜および/または逆浸透膜23の運転条件(ろ過流束、回収率など)は、使用するナノろ過膜や逆浸透膜の種類によって、また、被処理水水質や透過水水質の要求によって適宜決定することが出来るが、ろ過流束は、膜のファウリングを最小限にすることを念頭に置いて決定することが好ましい。被処理水に対する透過水の割合である回収率に関しては、高い方が好ましいが、高くするほど、透過水質が悪化することに留意する必要がある。また、回収率が高すぎると溶けきれなくなった溶質が膜面で析出し、膜を傷つけたり、流路を閉塞したりするため、析出しない範囲に回収率を設定することが必要である。もちろん、析出防止のためにスケール防止剤を添加すれば、析出がある程度抑えられるため、回収率を高く設定することも可能である。また、回収率が高過ぎる場合は、被処理水流量を減少させれば、回収率を高く維持できるが、被処理水流量を著しく小さい量まで減少させると膜面での滞留が生じやすくなる(すなわち、濃度分極が大きくなって性能低下を生じる)ため、被処理水流量を推奨範囲に維持する必要がある。そのため、被処理水流量を適正範囲に維持する目的で、ナノろ過膜や逆浸透膜を多段にして、回収率を上げても良い。   First, the water 21 to be treated is separated into permeated water 24 and concentrated water 25 by the nanofiltration membrane and / or reverse osmosis membrane 23. The operating conditions (filtration flux, recovery rate, etc.) of the nanofiltration membrane and / or reverse osmosis membrane 23 depend on the type of nanofiltration membrane and reverse osmosis membrane used, and also depending on the requirements of the quality of treated water and permeated water. While it can be determined as appropriate, the filtration flux is preferably determined with the intention of minimizing membrane fouling. Regarding the recovery rate, which is the ratio of the permeated water to the water to be treated, it is preferable that the recovery rate is high. Further, if the recovery rate is too high, the solute that cannot be completely dissolved is deposited on the film surface, and the membrane is damaged or the flow path is blocked. Therefore, it is necessary to set the recovery rate within a range where it does not precipitate. Of course, if a scale inhibitor is added to prevent precipitation, precipitation can be suppressed to some extent, so that the recovery rate can be set high. In addition, when the recovery rate is too high, the recovery rate can be maintained high by reducing the flow rate of the water to be treated. However, if the flow rate of the water to be processed is reduced to an extremely small amount, retention on the membrane surface is likely to occur ( That is, the concentration polarization becomes large and the performance is deteriorated). Therefore, it is necessary to maintain the treated water flow rate within the recommended range. Therefore, in order to maintain the flow rate of water to be treated within an appropriate range, the nanofiltration membrane and reverse osmosis membrane may be multi-staged to increase the recovery rate.

その後、濃縮水25は生物処理槽へ送られ生物処理槽27内で生物処理される。生物処理は、濃縮水25の成分濃度、固液分離後の処理水の要求水質などによって様々な組合せが可能である。例えば、濃縮水25の有機物濃度(COD、BOD、TOC等)が高い(例えば2,000mgCOD/L以上)場合には、まず嫌気処理を行ってから、好気処理を行うことが好ましい。また、濃縮水25の窒素成分濃度が有機物成分比で高い(例えば、COD/N比20以下)場合には、硝化脱窒法を導入することが好ましい。また、濃縮水25のリン成分濃度が有機物成分比で高い(例えば、COD/P比100以下)場合には、生物学的リン除去法や凝集剤添加リン除去法を導入することが好ましい。   Thereafter, the concentrated water 25 is sent to the biological treatment tank and biologically treated in the biological treatment tank 27. Various combinations of biological treatments are possible depending on the component concentration of the concentrated water 25, the required water quality of the treated water after solid-liquid separation, and the like. For example, when the organic matter concentration (COD, BOD, TOC, etc.) of the concentrated water 25 is high (for example, 2,000 mg COD / L or more), it is preferable to perform anaerobic treatment after first performing anaerobic treatment. Further, when the nitrogen component concentration of the concentrated water 25 is high in the organic component ratio (for example, the COD / N ratio is 20 or less), it is preferable to introduce a nitrification denitrification method. Further, when the concentration of phosphorus component in the concentrated water 25 is high in the organic component ratio (for example, the COD / P ratio is 100 or less), it is preferable to introduce a biological phosphorus removal method or a flocculant-added phosphorus removal method.

また生物処理後に固液分離する方法としては、重力沈殿法、砂ろ過法、MF(精密ろ過)膜やUF(限外ろ過)膜による膜ろ過法などがあげられる。そして、上記のように生物処理には好気処理を含むことが好ましいが、その好気処理と固液分離を同じ槽内で行えるという点で、濃縮水25を生物処理し固液分離処理する方法として、膜分離活性汚泥法を採用することが好ましい。   Examples of solid-liquid separation methods after biological treatment include gravity precipitation, sand filtration, MF (microfiltration) membrane and UF (ultrafiltration) membrane filtration. The biological treatment preferably includes aerobic treatment as described above, but the concentrated water 25 is biologically treated and solid-liquid separated in that aerobic treatment and solid-liquid separation can be performed in the same tank. As a method, it is preferable to employ a membrane separation activated sludge method.

また膜分離活性汚泥法は、重力沈殿式の活性汚泥法と比較し、高濃度の活性汚泥を生物処理槽内に保持することが可能であり、省スペース、余剰汚泥(廃棄物)発生量の低減などのメリットがある。濃縮水25は被処理水21を濃縮したものであり、必然的に含有成分濃度は高くなるが、含有成分濃度が高いほど、そのメリットは顕著となる。また、膜分離活性汚泥法によって得られる処理水は、生物処理後に、重力沈殿法や砂ろ過法によって固液分離処理される場合に比べ、処理水質が優れる特長も有しており、後述のように、生物処理し固液分離処理した処理水をさらにナノろ過膜および/または逆浸透膜で処理する場合にもナノろ過膜および/または逆浸透膜のファウリングを抑制できるというメリットを持つ。   Compared with the gravity precipitation activated sludge method, the membrane-separated activated sludge method can retain a high concentration of activated sludge in the biological treatment tank, saving space and generating excess sludge (waste). There are advantages such as reduction. The concentrated water 25 is obtained by concentrating the water to be treated 21, and the contained component concentration inevitably increases. However, the higher the contained component concentration, the more prominent the merit. In addition, the treated water obtained by membrane separation activated sludge method has the feature that the treated water quality is superior compared to the case of solid-liquid separation treatment by gravity precipitation method or sand filtration method after biological treatment. In addition, there is an advantage that fouling of the nanofiltration membrane and / or reverse osmosis membrane can be suppressed even when the treated water subjected to biological treatment and solid-liquid separation treatment is further treated with a nanofiltration membrane and / or a reverse osmosis membrane.

膜分離活性汚泥法としては、生物処理が行われる生物処理槽27内の少なくとも一部のスペースにろ過膜26を設置し、生物処理される水中にろ過膜を浸漬する方法(浸漬型)としてもよく、生物処理槽27内の活性汚泥を、生物処理槽27の外部に設置したろ過膜26を含む膜ろ過装置に送液する方法(外部循環型)としてもよいが、省エネルギー、省スペースの観点から、前者の浸漬型の方が好ましい。また、膜ろ過を行い膜透過水を得る方法として、膜ろ過の二次側から吸引ポンプで引き抜く方法や水頭差を利用する方法等がある。ろ過膜に接触する活性汚泥の濃度は、2,000mg/L〜20,000mg/Lであることが好ましい。また、ろ過膜の下方部に散気装置を設置し、該散気装置に連通して設置された曝気装置(ブロア等)から、酸素を含むガス(エア等)を供給し、膜表面に付着した活性汚泥成分を膜表面から剥離させながら、膜ろ過を行うことが好ましい。被処理水の生物処理槽27における滞留時間は通常1時間〜72時間であるが、被処理水性状や生物処理条件に応じて最適なものを採択するのがよい。また、凝集剤を添加する装置を設置して、生物処理槽3内に貯えられた活性汚泥を含む被処理水に凝集剤を添加しても構わない。膜ろ過流束(単位膜面積あたりの膜ろ過流量)は、0.1〜1.0m/dであることが好ましい。また濃縮水25を嫌気処理した後に、膜分離活性汚泥処理を行っても構わない。   As the membrane separation activated sludge method, a method (immersion type) in which the filtration membrane 26 is installed in at least a part of the space in the biological treatment tank 27 where biological treatment is performed, and the filtration membrane is immersed in the biologically treated water. The activated sludge in the biological treatment tank 27 may be sent to a membrane filtration apparatus including the filtration membrane 26 installed outside the biological treatment tank 27 (external circulation type), but from the viewpoint of energy saving and space saving. Therefore, the former immersion type is preferred. Moreover, as a method of performing membrane filtration to obtain membrane permeated water, there are a method of drawing with a suction pump from the secondary side of membrane filtration, a method of utilizing a water head difference, and the like. The concentration of activated sludge in contact with the filtration membrane is preferably 2,000 mg / L to 20,000 mg / L. In addition, an aeration device is installed below the filtration membrane, and oxygen-containing gas (air, etc.) is supplied from the aeration device (blower, etc.) installed in communication with the aeration device, and adheres to the membrane surface. It is preferable to perform membrane filtration while separating the activated sludge component from the membrane surface. The residence time in the biological treatment tank 27 of the water to be treated is usually 1 hour to 72 hours, but it is preferable to adopt an optimum one depending on the state of the water to be treated and the biological treatment conditions. Moreover, you may install the apparatus which adds a flocculant, and may add a flocculant to the to-be-processed water containing the activated sludge stored in the biological treatment tank 3. FIG. The membrane filtration flux (membrane filtration flow rate per unit membrane area) is preferably 0.1 to 1.0 m / d. Further, after the concentrated water 25 is anaerobically treated, the membrane separation activated sludge treatment may be performed.

また被処理水21に対するナノろ過膜および/または逆浸透膜の透過水の割合を高めるために、図3または図4に例示するように生物処理し固液分離処理して得られた処理水をナノろ過膜および/または逆浸透膜で更に処理しても構わない。   Further, in order to increase the ratio of the permeated water of the nanofiltration membrane and / or reverse osmosis membrane to the water to be treated 21, treated water obtained by biological treatment and solid-liquid separation treatment as illustrated in FIG. 3 or FIG. Further processing may be performed with a nanofiltration membrane and / or a reverse osmosis membrane.

図3は、生物処理し固液分離処理した処理水を、生物処理の前段のナノろ過膜および/または逆浸透膜23とは別のナノろ過膜および/または逆浸透膜29によって処理する水処理方法に用いる水処理装置の一例である。この際、生物処理後段のナノろ過膜および/または逆浸透膜29は、溶存有機物が膜面に付着するケミカルファウリング(化学的汚れ)や、溶存有機物を栄養源にして微生物が増殖して膜面に付着するバイオファウリング(生物的汚れ)が起こりにくい低ファウリング逆浸透膜であることが好ましい。低ファウリング逆浸透膜の例としては、東レ株式会社製TML20、日東電工株式会社製LF10(膜表面の荷電を中性とし、親水性基を導入し、荷電物質の吸着や鉄コロイドなどの重金属の影響を受けにくくした膜)、Hydranautic社製LFC1、LFC3、ダウ社製BW30−365FRなどの逆浸透膜が挙げられる。また、ろ過水中の溶質や懸濁物質の濃度が低ければ、逆浸透膜として、2nm程度より小さい粒子や高分子を阻止する液体分離膜であるナノフィルトレーション膜を使用しても特に問題はない。この際の運転条件の決定方法に関しても、前述のナノろ過膜や逆浸透膜と同様にして決定することが可能であるが、生物処理では、基本的に塩分除去は困難であるので、塩分濃度が上がった分、浸透圧の影響やスケール析出の可能性についてより注意を払う必要がある。   FIG. 3 shows water treatment in which treated water subjected to biological treatment and solid-liquid separation treatment is treated with a nanofiltration membrane and / or reverse osmosis membrane 29 different from the nanofiltration membrane and / or reverse osmosis membrane 23 in the previous stage of biological treatment. It is an example of the water treatment apparatus used for a method. At this time, the nanofiltration membrane and / or the reverse osmosis membrane 29 at the later stage of the biological treatment are chemically fouled (chemical fouling) in which dissolved organic matter adheres to the membrane surface, and microorganisms grow by using the dissolved organic matter as a nutrient source. A low-fouling reverse osmosis membrane that is unlikely to cause biofouling (biological soiling) adhering to the surface is preferable. Examples of low-fouling reverse osmosis membranes include TML20 manufactured by Toray Industries, Inc. and LF10 manufactured by Nitto Denko Corporation (the surface of the membrane is neutral, a hydrophilic group is introduced, adsorption of charged substances and heavy metals such as iron colloids) Membranes made difficult to be affected by), reverse osmosis membranes such as Hydranautic LFC1, LFC3 and Dow BW30-365FR. In addition, if the concentration of solutes and suspended substances in filtered water is low, there is a particular problem even if a nanofiltration membrane that is a liquid separation membrane that blocks particles and polymers smaller than about 2 nm is used as a reverse osmosis membrane. Absent. The method for determining the operating conditions at this time can also be determined in the same manner as the nanofiltration membrane or reverse osmosis membrane described above. However, in biological treatment, salt removal is basically difficult, so the salinity concentration Therefore, it is necessary to pay more attention to the influence of osmotic pressure and the possibility of scale deposition.

また図4は、生物処理し固液分離処理した処理水の一部を生物処理の前段のナノろ過膜および/または逆浸透膜に還流する水処理方法に用いる水処理装置の一例である。   FIG. 4 is an example of a water treatment apparatus used in a water treatment method in which a part of treated water subjected to biological treatment and solid-liquid separation treatment is returned to the nanofiltration membrane and / or reverse osmosis membrane in the previous stage of biological treatment.

この際、還流する生物処理し固液分離処理した処理水の割合は、高い方が、被処理水21に対するナノろ過膜および/または逆浸透膜での透過水の回収率が高くなり好ましいが、透過水質の悪化および溶質の析出などによるナノろ過膜および/または逆浸透膜のファウリングを引き起こす危険性があるため、注意する必要がある。また還流する割合は、生物処理前段のナノろ過膜や逆浸透膜の種類によって、また、被処理水21および/または還流する水の水質や透過水水質の要求によって適宜決定することが出来、還流する水の水質を監視して、水質悪化時には還流を少なくしたり停止したりすることも可能である。   At this time, the ratio of the treated biological water that has been subjected to biological treatment and solid-liquid separation that is refluxed is preferably higher because the recovery rate of permeated water in the nanofiltration membrane and / or reverse osmosis membrane with respect to the water to be treated 21 becomes higher. Care must be taken because there is a risk of fouling of the nanofiltration membrane and / or reverse osmosis membrane due to deterioration of permeate quality and solute precipitation. The ratio of reflux can be determined as appropriate depending on the type of nanofiltration membrane or reverse osmosis membrane in the pre-stage of biological treatment, and depending on the quality of the water to be treated 21 and / or the quality of the refluxed water and the quality of the permeated water. It is also possible to monitor the water quality of the water to be used and to reduce or stop reflux when the water quality deteriorates.

また、ろ過流束は、膜のファウリングが発生しないように設定される必要があり、ナノろ過膜や逆浸透膜の供給水質によって決定されるべきものであるが、平膜を用いた場合は、10〜20L/m2・h程度に設定するのが好ましい。なお、生物処理し固液分離処理した処理水をナノろ過膜や逆浸透膜に還流する手前に、活性炭処理、UF(限外ろ過)膜処理、オゾン処理などの後処理を行い、生物代謝産物などによるナノろ過膜や逆浸透膜のファウリング物質を低減させる方法もとることが出来る。   In addition, the filtration flux needs to be set so that membrane fouling does not occur, and should be determined by the quality of the water supplied by the nanofiltration membrane or reverse osmosis membrane. It is preferable to set to about 10 to 20 L / m 2 · h. In addition, the biological metabolites are subjected to post-treatments such as activated carbon treatment, UF (ultrafiltration) membrane treatment, ozone treatment, etc., before the treated water that has undergone biological treatment and solid-liquid separation treatment is returned to the nanofiltration membrane or reverse osmosis membrane. The method of reducing the fouling substance of the nanofiltration membrane by reverse osmosis membrane etc. can be taken.

本発明の水処理方法は、主に、産業廃水処理に適用することができるが、その適用範囲はこれらに限られるものではない。   The water treatment method of the present invention can be mainly applied to industrial wastewater treatment, but its application range is not limited to these.

本発明の水処理方法に用いる水処理装置の一例を示す概略図である。It is the schematic which shows an example of the water treatment apparatus used for the water treatment method of this invention. 従来の水処理方法に用いる水処理装置の一例を示す概略図である。It is the schematic which shows an example of the water treatment apparatus used for the conventional water treatment method. 本発明の水処理方法に用いる水処理装置の別の一例を示す概略図である。It is the schematic which shows another example of the water treatment apparatus used for the water treatment method of this invention. 本発明の水処理方法に用いる水処理装置のさらに別の一例を示す概略図である。It is the schematic which shows another example of the water treatment apparatus used for the water treatment method of this invention. 逆浸透膜流体分離素子の一例を示す概略図である。It is the schematic which shows an example of a reverse osmosis membrane fluid separation element.

符号の説明Explanation of symbols

21:被処理水
22:加圧ポンプ
23:ナノろ過膜/逆浸透膜
24:ナノろ過膜/逆浸透膜での透過水
25:ナノろ過膜/逆浸透膜での濃縮水
26:ろ過膜
27:生物処理槽
28:生物処理し固液分離処理した処理水
29:生物処理の後段のナノろ過膜/逆浸透膜
35:供給水
36:濃縮水
37:透過水
38:テレスコープ防止板
39:中心パイプ
40:半透膜
41:供給水流路材
42:透過水流路材
21: Water to be treated 22: Pressure pump 23: Nanofiltration membrane / reverse osmosis membrane 24: Permeated water in nanofiltration membrane / reverse osmosis membrane 25: Concentrated water in nanofiltration membrane / reverse osmosis membrane 26: Filtration membrane 27 : Biological treatment tank 28: Treated water subjected to biological treatment and solid-liquid separation treatment 29: Nanofiltration membrane / reverse osmosis membrane 35 after biological treatment 35: Supply water 36: Concentrated water 37: Permeated water 38: Telescope prevention plate 39: Center pipe 40: Semipermeable membrane 41: Supply water channel material 42: Permeate channel material

Claims (6)

被処理水をナノろ過膜および/または逆浸透膜を用いて膜分離処理することにより透過水と濃縮水とに分離し、前記濃縮水を生物処理し固液分離処理することを特徴とする水処理方法。 Water to be treated is separated into permeated water and concentrated water by subjecting the water to be treated to membrane separation using a nanofiltration membrane and / or a reverse osmosis membrane, and the concentrated water is subjected to biological treatment and solid-liquid separation treatment. Processing method. 前記生物処理し固液分離処理する方法が、膜分離活性汚泥法であることを特徴とする請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein the biological treatment and solid-liquid separation treatment is a membrane separation activated sludge method. 前記生物処理し固液分離処理して得られた処理水の少なくとも一部を後段のナノろ過膜および/または逆浸透膜で膜分離処理することを特徴とする請求項1又は2に記載の水処理方法。 The water according to claim 1 or 2, wherein at least a part of the treated water obtained by the biological treatment and solid-liquid separation treatment is subjected to membrane separation treatment by a nanofiltration membrane and / or a reverse osmosis membrane in the subsequent stage. Processing method. 前記後段のナノろ過膜および/または逆浸透膜が低ファウリング逆浸透膜であることを特徴とする請求項3に記載の水処理方法。 The water treatment method according to claim 3, wherein the latter nanofiltration membrane and / or reverse osmosis membrane is a low fouling reverse osmosis membrane. 前記生物処理し固液分離処理して得られた処理水の少なくとも一部を、生物処理の前段のナノろ過膜および/または逆浸透膜の被処理水として還流することを特徴とする請求項1又は2に記載の水処理方法。 2. At least a part of the treated water obtained by the biological treatment and solid-liquid separation treatment is refluxed as treated water for the nanofiltration membrane and / or reverse osmosis membrane in the previous stage of biological treatment. Or the water treatment method of 2. 前記生物処理し固液分離処理して得られた処理水の少なくとも一部を、活性炭処理、限外ろ過膜処理およびオゾン処理のうちいずれか1種以上の処理を行った後、生物処理の前段のナノろ過膜および/または逆浸透膜の被処理水として還流することを特徴とする請求項1又は2に記載の水処理方法。 At least a part of the treated water obtained by the biological treatment and solid-liquid separation treatment is subjected to any one or more of activated carbon treatment, ultrafiltration membrane treatment, and ozone treatment, and then subjected to biological treatment. The water treatment method according to claim 1, wherein the nanofiltration membrane and / or reverse osmosis membrane is refluxed as water to be treated.
JP2008195912A 2007-08-30 2008-07-30 Water treating method Pending JP2009072766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195912A JP2009072766A (en) 2007-08-30 2008-07-30 Water treating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007223676 2007-08-30
JP2008195912A JP2009072766A (en) 2007-08-30 2008-07-30 Water treating method

Publications (1)

Publication Number Publication Date
JP2009072766A true JP2009072766A (en) 2009-04-09

Family

ID=40608305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195912A Pending JP2009072766A (en) 2007-08-30 2008-07-30 Water treating method

Country Status (1)

Country Link
JP (1) JP2009072766A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102038A (en) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 Immersion type double membrane bioreactor and salt-containing sewage treatment method
CN103449602A (en) * 2013-09-17 2013-12-18 江南大学 Method of reducing salinity accumulation in forward osmosis membrane-bioreactor
JP2014061486A (en) * 2012-09-21 2014-04-10 Kubota Corp Water treatment method and water treatment system
JP2016209842A (en) * 2015-05-12 2016-12-15 栗田工業株式会社 Organic wastewater treatment method
CN106966540A (en) * 2017-05-05 2017-07-21 常州润德石墨科技有限公司 Steel pickling waste liquor recycling treatment system and its processing method
WO2018020591A1 (en) * 2016-07-26 2018-02-01 栗田工業株式会社 Method for treating organic wastewater
CN109970290A (en) * 2019-04-29 2019-07-05 南京林业大学 A kind of method and its dedicated unit of the high saliferous ethane nitrile wastewater of zero discharge treatment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143849A (en) * 1974-10-01 1976-04-14 Toray Industries Noshukusuino shorihoho
JPS51148968A (en) * 1975-06-16 1976-12-21 Daicel Chem Ind Ltd Waste water treatment
JPH06142693A (en) * 1992-05-13 1994-05-24 Shokuhin Sangyo Clean Eko Syst Gijutsu Kenkyu Kumiai Treating method for low concentration drain
JPH0889959A (en) * 1994-09-27 1996-04-09 Kurita Water Ind Ltd Water purification device
JPH0947787A (en) * 1995-08-10 1997-02-18 Hitachi Plant Eng & Constr Co Ltd Waste water treating device
JP2002306930A (en) * 2001-04-13 2002-10-22 Toray Ind Inc Method for treating water and equipment for water treatment
JP2004290765A (en) * 2003-03-26 2004-10-21 Toray Ind Inc Method for treating soluble organic matter-containing liquid
JP2005177744A (en) * 2003-11-27 2005-07-07 Toray Ind Inc Producing apparatus of reclaimed water and producing method of reclaimed water
JP2007069204A (en) * 2005-08-12 2007-03-22 Toray Ind Inc Water treatment method, water treatment apparatus and method of manufacturing regenerated water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143849A (en) * 1974-10-01 1976-04-14 Toray Industries Noshukusuino shorihoho
JPS51148968A (en) * 1975-06-16 1976-12-21 Daicel Chem Ind Ltd Waste water treatment
JPH06142693A (en) * 1992-05-13 1994-05-24 Shokuhin Sangyo Clean Eko Syst Gijutsu Kenkyu Kumiai Treating method for low concentration drain
JPH0889959A (en) * 1994-09-27 1996-04-09 Kurita Water Ind Ltd Water purification device
JPH0947787A (en) * 1995-08-10 1997-02-18 Hitachi Plant Eng & Constr Co Ltd Waste water treating device
JP2002306930A (en) * 2001-04-13 2002-10-22 Toray Ind Inc Method for treating water and equipment for water treatment
JP2004290765A (en) * 2003-03-26 2004-10-21 Toray Ind Inc Method for treating soluble organic matter-containing liquid
JP2005177744A (en) * 2003-11-27 2005-07-07 Toray Ind Inc Producing apparatus of reclaimed water and producing method of reclaimed water
JP2007069204A (en) * 2005-08-12 2007-03-22 Toray Ind Inc Water treatment method, water treatment apparatus and method of manufacturing regenerated water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102038A (en) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 Immersion type double membrane bioreactor and salt-containing sewage treatment method
JP2014061486A (en) * 2012-09-21 2014-04-10 Kubota Corp Water treatment method and water treatment system
CN103449602A (en) * 2013-09-17 2013-12-18 江南大学 Method of reducing salinity accumulation in forward osmosis membrane-bioreactor
JP2016209842A (en) * 2015-05-12 2016-12-15 栗田工業株式会社 Organic wastewater treatment method
WO2018020591A1 (en) * 2016-07-26 2018-02-01 栗田工業株式会社 Method for treating organic wastewater
CN106966540A (en) * 2017-05-05 2017-07-21 常州润德石墨科技有限公司 Steel pickling waste liquor recycling treatment system and its processing method
CN109970290A (en) * 2019-04-29 2019-07-05 南京林业大学 A kind of method and its dedicated unit of the high saliferous ethane nitrile wastewater of zero discharge treatment

Similar Documents

Publication Publication Date Title
Warsinger et al. A review of polymeric membranes and processes for potable water reuse
Singh et al. Introduction to membrane processes for water treatment
JP5286785B2 (en) Fresh water production method
JP2009072766A (en) Water treating method
Chen et al. Membrane separation: basics and applications
JP2006187719A (en) Method for operating fresh water production device and fresh water production device
JP6657958B2 (en) Fresh water production method
Zirehpour et al. Membranes for wastewater treatment
US10583401B2 (en) Integrated ultrafiltration and reverse osmosis desalination systems
JP6881435B2 (en) Water treatment method and water treatment equipment
WO2013111826A1 (en) Desalination method and desalination device
JP2007244979A (en) Water treatment method and water treatment apparatus
WO2012098969A1 (en) Method for cleaning membrane module, method of fresh water generation, and fresh water generator
JPWO2008096585A1 (en) Filtration apparatus and water treatment method
JP5581669B2 (en) Water treatment method, water treatment member and water treatment facility
WO2013031231A1 (en) Seawater desalination method
RU2480414C2 (en) Method of treating process water
JP2009226336A (en) Purification method for process water
JP2019076827A (en) Water treatment equipment and water treatment method
JP2005177744A (en) Producing apparatus of reclaimed water and producing method of reclaimed water
WO2014087991A1 (en) Method and device for treating organic wastewater
Töre et al. Developments in membrane bioreactor technologies and evaluation on case study applications for recycle and reuse of miscellaneous wastewaters
JP2005270710A (en) Liquid treating apparatus and liquid treating method
Pellegrin et al. Membrane processes
JP2005034723A (en) Method for modifying reverse osmosis membrane and regenerated separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108