JP2005177744A - Producing apparatus of reclaimed water and producing method of reclaimed water - Google Patents

Producing apparatus of reclaimed water and producing method of reclaimed water Download PDF

Info

Publication number
JP2005177744A
JP2005177744A JP2004331584A JP2004331584A JP2005177744A JP 2005177744 A JP2005177744 A JP 2005177744A JP 2004331584 A JP2004331584 A JP 2004331584A JP 2004331584 A JP2004331584 A JP 2004331584A JP 2005177744 A JP2005177744 A JP 2005177744A
Authority
JP
Japan
Prior art keywords
water
membrane
reverse osmosis
filtered
filtered water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004331584A
Other languages
Japanese (ja)
Inventor
Hirobumi Morikawa
博文 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004331584A priority Critical patent/JP2005177744A/en
Publication of JP2005177744A publication Critical patent/JP2005177744A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a producing apparatus of reclaimed water and a producing method of the reclaimed water by which a disinfectant can be effectively utilized by a simple method and thereby lowering of penetration performance and separation performance of a reverse osmosis membrane due to propagation of microorganisms or adhesion or the like of the microorganism and its metabolite on a reverse osmosis membrane surface can be effectively prevented. <P>SOLUTION: Water to be treated is filtered by using a dipping type membrane filtration apparatus equipped with a filtration membrane which is arranged by dipping in a treating tank and which filters the water to be filtered and a filtered water tank for storing filtered water obtained by filtration of the water to be treated with the filtration membrane and then the filtered water obtained by filtration is sterilized and is subjected to reverse osmosis treatment using the reverse osmosis membrane. In this producing method of the reclaimed water, a part of concentrated water obtained by the reverse osmosis treatment is returned to the filtered water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、再生水の製造装置および再生水の製造方法に関するものである。詳しくは、下水道や産業廃水などの廃水を再生して得られる再生水の製造装置および再生水の製造方法に関するものである。   The present invention relates to a reclaimed water production apparatus and a reclaimed water production method. Specifically, the present invention relates to a reclaimed water production apparatus and a reclaimed water production method obtained by regenerating wastewater such as sewers and industrial wastewater.

従来、下水道や産業廃水などの廃水は、砂濾過法、凝集沈殿法、塩素添加などを主要プロセスとしてシステムが構築され、処理が行われてきた。しかし、砂濾過法や凝集沈殿法では、広大な設備面積を必要としたり、原水状況によっては、厳密な運転管理を行わないと十分な分離が行えないなどの問題がクローズアップされてきており、その欠点を解消することができる技術として、膜分離法、中でも膜エレメントと膜エレメントケースからなる膜分離モジュールを被処理水に浸漬する浸漬式膜分離法が幅広く採用されている。   Conventionally, wastewater such as sewage and industrial wastewater has been constructed and treated with a sand filtration method, a coagulation sedimentation method, and chlorine addition as main processes. However, the sand filtration method and the coagulation sedimentation method require a large facility area, and depending on the raw water conditions, problems such as sufficient separation cannot be performed unless strict operation management is performed, have been highlighted. As a technique capable of eliminating the drawbacks, a membrane separation method, in particular, a submerged membrane separation method in which a membrane separation module including a membrane element and a membrane element case is immersed in water to be treated has been widely used.

また、水不足問題を背景に、廃水をさらに高度処理して再生水とし、この再生水を再利用しようとする動きも広がってきている。この下水道や産業廃水などの廃水を浄化処理するものとして、浸漬式膜分離法によって得られた濾過水をさらに逆浸透膜処理する方法が提案されている(たとえば、特許文献1参照)。   In addition, against the background of the water shortage problem, there is a growing movement to further process wastewater into reclaimed water and reuse this reclaimed water. As a method for purifying wastewater such as sewers and industrial wastewater, a method of further treating a filtrate obtained by a submerged membrane separation method with a reverse osmosis membrane has been proposed (for example, see Patent Document 1).

しかしながらこの方法では、被処理水中に存在する微生物の一部が、被処理水に浸漬している膜を通過したり、あるいは被処理水中に存在する微生物による代謝物の一部が被処理水に浸漬している膜を通過し、これを栄養源にするなどして、逆浸透膜表面上での微生物増殖あるいは微生物およびその代謝物の膜面への付着などによる逆浸透膜の透過性能や分離性能の低下をもたらすという欠点があった。   However, in this method, some of the microorganisms present in the treated water pass through the membrane immersed in the treated water, or some of the metabolites of the microorganisms present in the treated water are in the treated water. Permeation performance and separation of reverse osmosis membranes by passing through the immersed membrane and using it as a nutrient source, such as microbial growth on the reverse osmosis membrane surface or adhesion of microorganisms and their metabolites to the membrane surface There was a disadvantage that it caused a decrease in performance.

一方、このような問題を回避するため、逆浸透膜への供給液のpHを4以下とする酸性水処理工程を有することを特徴とする膜の殺菌方法が提案されている(たとえば、特許文献2参照)。しかしながらこの方法では、酸性水の一部は微生物の殺菌に用いられることなく、逆浸透膜濃縮水の一部として廃棄され、有効に利用されているとはいえないものであった。
特開平4−305287号公報 特開2000−237555号公報
On the other hand, in order to avoid such a problem, a membrane sterilization method characterized by having an acidic water treatment step in which the pH of the liquid supplied to the reverse osmosis membrane is 4 or less has been proposed (for example, Patent Documents). 2). However, in this method, part of the acidic water is not used for sterilization of microorganisms, but is discarded as part of the reverse osmosis membrane concentrated water and cannot be said to be used effectively.
JP-A-4-305287 JP 2000-237555 A

本発明は、上述した従来技術の問題点を解決し、下水道や産業廃水などの廃水を再生して、散水やトイレの水などの中水として、あるいは飲料水として使用可能な再生水を得ることができ、かつ簡便な方法で濾過水に添加した殺菌剤を有効に利用することができ、逆浸透膜表面上での微生物増殖あるいは微生物およびその代謝物の膜面への付着などによる逆浸透膜の透過性能や分離性能の低下を有効に防止できる再生水の製造装置および再生水の製造方法を提供することにある。   The present invention solves the above-mentioned problems of the prior art and regenerates wastewater such as sewers and industrial wastewater to obtain reclaimed water that can be used as middle water such as water spray or toilet water, or as drinking water. It is possible to effectively use a bactericidal agent added to filtered water by a simple method, and the reverse osmosis membrane by the growth of microorganisms on the surface of the reverse osmosis membrane or the adhesion of microorganisms and their metabolites to the membrane surface. An object of the present invention is to provide a reclaimed water production apparatus and a reclaimed water production method capable of effectively preventing a decrease in permeation performance and separation performance.

上記課題を解決するため、本発明は以下の構成を採用するものである。すなわち、
(1)処理槽と、該処理槽に浸漬配置された被処理水の濾過を行う濾過膜と、該濾過膜により被処理水を濾過して得られた濾過水を貯留する濾過水槽とを備えた再生水の製造装置であって、前記濾過水槽から濾過水を取り出し加圧するポンプと、加圧された濾過水を逆浸透処理する逆浸透膜と、濾過水を殺菌するための殺菌剤添加装置と、濾過水を逆浸透処理して得られた濃縮水の一部を前記濾過水槽および/または前記濾過水槽と前記ポンプとの間に還流する装置とを備えたことを特徴とする再生水の製造装置。
In order to solve the above problems, the present invention adopts the following configuration. That is,
(1) A treatment tank, a filtration membrane for filtering the treated water immersed in the treatment tank, and a filtered water tank for storing the filtrate obtained by filtering the treated water through the filtration membrane are provided. A reclaimed water production apparatus comprising: a pump for taking out and pressurizing filtered water from the filtered water tank; a reverse osmosis membrane for reverse osmosis treatment of the pressurized filtered water; and a disinfectant adding device for sterilizing the filtered water; An apparatus for producing reclaimed water, comprising: the filtered water tank and / or a device for returning a part of the concentrated water obtained by reverse osmosis treatment of the filtered water between the filtered water tank and the pump. .

(2)被処理水を、処理槽に浸漬配置された被処理水の濾過を行う濾過膜と、該濾過膜により被処理水を濾過して得られた濾過水を貯留する濾過水槽とを備えた浸漬式膜濾過装置を用いて濾過し、濾過して得られた濾過水を殺菌してから逆浸透膜を用いて逆浸透処理する再生水の製造方法において、逆浸透処理して得られた濃縮水の一部を濾過水に還流することを特徴とする再生水の製造方法。   (2) A filtration membrane for filtering the water to be treated immersed in the treatment tank and a filtration water tank for storing the filtered water obtained by filtering the water to be treated by the filtration membrane In the method for producing reclaimed water, which is filtered using a submerged membrane filtration device and sterilized filtered water obtained by filtration and then reverse osmosis treated using a reverse osmosis membrane, the concentration obtained by reverse osmosis treatment A method for producing reclaimed water, characterized in that a part of water is refluxed to filtered water.

(3)濃縮水のうち濾過水に還流される割合が10〜50%の範囲内であることを特徴とする前記(2)に記載の再生水の製造方法。   (3) The method for producing reclaimed water according to (2) above, wherein the ratio of the concentrated water that is refluxed to the filtered water is in the range of 10 to 50%.

本発明によれば、下水道や産業廃水などの廃水を再生して、散水やトイレの水などの中水として、あるいは飲料水として使用可能な再生水を得ることができ、かつ簡便な方法で濾過水に添加した殺菌剤を有効に利用することができ、逆浸透膜表面上での微生物増殖あるいは微生物およびその代謝物の膜面への付着などによる逆浸透膜の透過性能や分離性能の低下を有効に防止できる再生水の製造装置および再生水の製造方法を提供することができる。   According to the present invention, it is possible to regenerate waste water such as sewage and industrial waste water, and to obtain reclaimed water that can be used as middle water such as water spray or toilet water, or as drinking water. It is possible to effectively use the fungicide added to the surface of the reverse osmosis membrane and effectively reduce the permeation and separation performance of the reverse osmosis membrane due to the growth of microorganisms on the surface of the reverse osmosis membrane or adhesion of microorganisms and metabolites to the membrane surface An apparatus for producing reclaimed water and a method for producing reclaimed water can be provided.

以下、本発明における再生水の製造装置を図1に示す実施態様に基づいて説明する。   Hereinafter, the manufacturing apparatus of the reclaimed water in this invention is demonstrated based on the embodiment shown in FIG.

図1は本発明に係る再生水の製造装置の一実施態様を示す概略フロー図である。   FIG. 1 is a schematic flow diagram showing one embodiment of the apparatus for producing reclaimed water according to the present invention.

図1に示す再生水の製造装置は、被処理水1を濾過して濾過水を得るための濾過膜2と、該濾過膜2を被処理水に浸漬するための処理槽3と、濾過膜2により被処理水1を濾過して得られた濾過水を貯留する濾過水槽4と、該濾過水槽4から濾過水を取り出し加圧するポンプ5と、加圧された濾過水を逆浸透処理する逆浸透膜6と、濾過水を殺菌するための殺菌剤添加装置7と、濾過水を逆浸透処理して得られた濃縮水の一部を濾過水槽4と濾過水を加圧するポンプ5との間に還流する配管8とを備えている。再生水は9から、廃棄される濃縮水は10から得られる。   The reclaimed water production apparatus shown in FIG. 1 includes a filtration membrane 2 for filtering the treated water 1 to obtain filtered water, a treatment tank 3 for immersing the filtered membrane 2 in the treated water, and a filtration membrane 2. The filtered water tank 4 for storing the filtered water obtained by filtering the water 1 to be treated by the above, the pump 5 for taking out the pressurized water from the filtered water tank 4 and pressurizing it, and the reverse osmosis for performing the reverse osmosis treatment of the pressurized filtered water Between the membrane 6, the disinfectant addition device 7 for sterilizing the filtered water, and a part of the concentrated water obtained by reverse osmosis treatment of the filtered water between the filtered water tank 4 and the pump 5 for pressurizing the filtered water. And a recirculating pipe 8. Reclaimed water is obtained from 9 and discarded concentrated water is obtained from 10.

ここで、濾過膜2は、濾過膜の取り扱い性や物理的耐久性を向上させるために、たとえばフレームの両面に濾過水流路材を挟んで濾過膜を接着した平膜エレメント構造をしている。この構造は特に限定されるものではなく、中空糸膜を用いたエレメントであってもかまわないが、平膜エレメント構造は、膜面に平行な流速を与えた場合の剪断力による汚れの除去効果が高いことから、本発明に適している。なお、平膜エレメント構造には、回転平膜構造も含まれる。   Here, the filtration membrane 2 has a flat membrane element structure in which, for example, the filtration membrane is bonded to both sides of the frame with the filtration water channel material interposed therebetween in order to improve the handling property and physical durability of the filtration membrane. This structure is not particularly limited, and an element using a hollow fiber membrane may be used. However, the flat membrane element structure is effective in removing dirt due to shear force when a flow velocity parallel to the membrane surface is applied. Is suitable for the present invention. The flat membrane element structure includes a rotating flat membrane structure.

濾過膜2の膜構造としては、多孔質膜や、多孔質膜に機能層を複合化した複合膜などが挙げられるが、特に限定されるものではない。これらの膜の具体例としては、ポリアクリロニトリル多孔質膜、ポリイミド多孔質膜、ポリエーテルスルホン多孔質膜、ポリフェニレンスルフィドスルホン多孔質膜、ポリテトラフルオロエチレン多孔質膜、ポリフッ化ビニリデン多孔質膜、ポリプロピレン多孔質膜、ポリエチレン多孔質膜等の多孔質膜が挙げられるが、ポリフッ化ビニリデン多孔質膜やポリテトラフルオロエチレン多孔質膜が耐薬品性が高いため、特に好ましい。さらに、これら多孔質膜に機能層として架橋型シリコーン、ポリブタジエン、ポリアクリロニトリルブタジエン、エチレンプロピレンラバー、ネオプレンゴム等のゴム状高分子を複合化した複合膜を挙げることができる。   Examples of the membrane structure of the filtration membrane 2 include a porous membrane and a composite membrane in which a functional layer is combined with the porous membrane, but is not particularly limited. Specific examples of these membranes include polyacrylonitrile porous membrane, polyimide porous membrane, polyethersulfone porous membrane, polyphenylene sulfide sulfone porous membrane, polytetrafluoroethylene porous membrane, polyvinylidene fluoride porous membrane, polypropylene Examples of the porous film include a porous film and a polyethylene porous film, and a polyvinylidene fluoride porous film and a polytetrafluoroethylene porous film are particularly preferable because of high chemical resistance. Furthermore, a composite film in which a rubbery polymer such as cross-linked silicone, polybutadiene, polyacrylonitrile butadiene, ethylene propylene rubber, or neoprene rubber is compounded as a functional layer can be given as a functional layer.

処理槽3は、被処理水を貯え、濾過膜2を被処理水に浸漬することができれば特に制限されるものではなく、コンクリート槽、繊維強化プラスチック槽などが好ましく用いられる。また、処理槽3の内部が複数に分割されていてもかまわないし、複数に分割されている槽のうち一部を濾過膜2を浸漬する槽として、他方を脱窒槽として利用し、被処理水を互いの分割されている槽間で循環されるようにしていてもよい。   The treatment tank 3 is not particularly limited as long as it can store the water to be treated and the filter membrane 2 can be immersed in the water to be treated, and a concrete tank, a fiber reinforced plastic tank, or the like is preferably used. Moreover, the inside of the treatment tank 3 may be divided into a plurality of tanks, and a part of the plurality of divided tanks may be used as a tank for immersing the filtration membrane 2 and the other may be used as a denitrification tank. May be circulated between the tanks divided from each other.

濾過水槽4は、濾過水を貯留することができれば特に制限されるものではなく、コンクリート槽、繊維強化プラスチック槽などが好ましく用いられる。また、被処理水を濾過膜2で濾過するために、濾過膜2と濾過水槽4との間にポンプ等を設けていてもかまわないし、水頭圧力差をかけるために、濾過水槽4内の濾過水液面が、処理槽3内の被処理水液面よりも低くなるようにしていてもかまわない。   The filtered water tank 4 is not particularly limited as long as it can store filtered water, and a concrete tank, a fiber reinforced plastic tank, or the like is preferably used. Moreover, in order to filter to-be-processed water with the filtration membrane 2, you may provide a pump etc. between the filtration membrane 2 and the filtration water tank 4, and in order to apply a head pressure difference, the filtration in the filtration water tank 4 is sufficient. The water level may be lower than the water level to be treated in the treatment tank 3.

ポンプ5は、濾過水を加圧することができれば特に制限されるものではなく、渦巻ポンプ、ディフューザーポンプ、渦巻斜流ポンプ、斜流ポンプ、ピストンポンプ、プランジャポンプ、ダイアフラムポンプ、歯車ポンプ、スクリューポンプ、ベーンポンプ、カスケードポンプ、ジェットポンプなどを用いることができるが、逆浸透処理するために必要な圧力にまで容易に加圧できることから、渦巻ポンプ、ディフューザーポンプ、ピストンポンプ、プランジャポンプ、カスケードポンプ、ジェットポンプなどが好ましく用いられる。   The pump 5 is not particularly limited as long as the filtered water can be pressurized, and is a centrifugal pump, a diffuser pump, a spiral mixed flow pump, a mixed flow pump, a piston pump, a plunger pump, a diaphragm pump, a gear pump, a screw pump, Vane pumps, cascade pumps, jet pumps, etc. can be used, but because they can be easily pressurized to the pressure required for reverse osmosis treatment, centrifugal pumps, diffuser pumps, piston pumps, plunger pumps, cascade pumps, jet pumps Etc. are preferably used.

逆浸透膜6は、濾過水中の溶質や懸濁物質を、再生水として利用可能な濃度にまで低減することができる性能を有していれば特に問題はないが、溶存有機物が膜面に付着するケミカルファウリング(化学的汚れ)や、溶存有機物を栄養源にして微生物が増殖して膜面に付着するバイオファウリング(生物的汚れ)が起こりにくい、低ファウリング逆浸透膜であることが好ましい。低ファウリング逆浸透膜の例としては、東レ株式会社製TML20、日東電工株式会社製LF10(膜表面の荷電を中性とし、親水性基を導入し、荷電物質の吸着や鉄コロイドなどの重金属の影響を受けにくくした膜)、Hydranautic社製LFC1、LFC3、ダウ社製BW30−365FRなどが挙げられる。また、濾過水中の溶質や懸濁物質の濃度が低ければ、逆浸透膜として、2nm程度より小さい粒子や高分子を阻止する液体分離膜であるナノフィルトレーション膜を使用しても特に問題はない。   The reverse osmosis membrane 6 is not particularly problematic as long as it has a performance capable of reducing solutes and suspended substances in filtered water to a concentration that can be used as reclaimed water, but dissolved organic substances adhere to the membrane surface. A low-fouling reverse osmosis membrane that is resistant to chemical fouling (chemical fouling) and biofouling (biological fouling) in which microorganisms grow and adhere to the membrane surface using dissolved organic matter as nutrients is preferable. . Examples of low-fouling reverse osmosis membranes include TML20 manufactured by Toray Industries, Inc. and LF10 manufactured by Nitto Denko Corporation (the surface of the membrane is neutral, a hydrophilic group is introduced, adsorption of charged substances and heavy metals such as iron colloids) MFC), Hydranautic LFC1, LFC3, Dow BW30-365FR, and the like. In addition, if the concentration of solutes and suspended substances in filtered water is low, there is a particular problem even if a nanofiltration membrane that is a liquid separation membrane that blocks particles and polymers smaller than about 2 nm is used as a reverse osmosis membrane. Absent.

殺菌剤添加装置7は、殺菌剤に対して耐久性があり、殺菌剤を定量的に供給することができれば特に問題はなく、通常は硬質塩化ビニル製またはポリエチレン製の薬液タンクおよびダイヤフラム式またはプランジャー式の薬液定量注入ポンプとの組み合わせが用いられる。また、殺菌剤添加装置には、濾過水中に含まれる塩素イオンを次亜塩素酸イオンに賦活化する水電解消毒装置も含まれる。   The disinfectant addition device 7 is durable to the disinfectant and there is no particular problem as long as the disinfectant can be supplied quantitatively, and usually a hard vinyl chloride or polyethylene chemical tank and a diaphragm type or plan. A combination with a jar-type liquid metering infusion pump is used. The disinfectant addition device also includes a water electrolytic disinfection device that activates chlorine ions contained in filtered water to hypochlorite ions.

濃縮水の一部を濾過水に還流する配管8は、殺菌剤に対して耐久性があれば特に問題はなく、通常は硬質塩化ビニル製またはステンレス製の配管が用いられる。また、濃縮水の還流される割合を任意に設定できるように、配管8の途中および/または廃棄される濃縮水側に、流量を制御できるコックやバルブが設けられていることが好ましい。濾過水を逆浸透処理して得られた濃縮水の一部を濾過水に還流する配管8の接続位置は、濾過水槽4と濾過膜2との間の配管に接続して濾過水に環流するか、濾過水槽4に接続して濾過水に環流するようにしてもかまわないし、図1に示すように濾過水槽4と濾過水を加圧するポンプ5との間でもかまわない。   The pipe 8 for returning a part of the concentrated water to the filtered water is not particularly problematic as long as it has durability against the sterilizing agent, and usually a pipe made of hard vinyl chloride or stainless steel is used. Moreover, it is preferable that a cock or a valve capable of controlling the flow rate is provided in the middle of the pipe 8 and / or on the concentrated water side to be discarded so that the ratio of the concentrated water to be recirculated can be arbitrarily set. The connection position of the pipe 8 for returning a part of the concentrated water obtained by reverse osmosis treatment of the filtered water to the filtered water is connected to the pipe between the filtered water tank 4 and the filtration membrane 2 and circulates to the filtered water. Alternatively, it may be connected to the filtered water tank 4 and recirculated to the filtered water, or may be between the filtered water tank 4 and the pump 5 for pressurizing the filtered water as shown in FIG.

上述の再生水の製造装置において、再生水の製造は次のように行われる。   In the above-described reclaimed water production apparatus, reclaimed water is produced as follows.

すなわち、処理槽3内で処理された被処理水は、処理槽3内に浸漬された濾過膜2で濾過され、濾過水は濾過水槽4に貯留される。濾過水を濾過水槽4に貯留するために、濾過水をポンプ等を用いて吸引してもかまわないし、濾過水槽4内の濾過水液面を処理槽3内の被処理水液面よりも下げることで、水頭圧力差をかけてもかまわない。貯留された濾過水は、殺菌剤添加装置7により殺菌剤が添加されたあと、ポンプ5により加圧されて逆浸透膜6に供給され、逆浸透処理される。   That is, the water to be treated treated in the treatment tank 3 is filtered by the filtration membrane 2 immersed in the treatment tank 3, and the filtered water is stored in the filtered water tank 4. In order to store the filtered water in the filtered water tank 4, the filtered water may be sucked using a pump or the like, and the filtered water level in the filtered water tank 4 is made lower than the treated water level in the processing tank 3. Therefore, it is possible to apply a water head pressure difference. The stored filtered water is pressurized by the pump 5 and supplied to the reverse osmosis membrane 6 after being added with the sterilizing agent by the sterilizing agent adding device 7, and is subjected to reverse osmosis treatment.

ここで殺菌剤としては、逆浸透膜表面上での微生物増殖あるいは微生物およびその代謝物の膜面への付着を防ぐ効果があるものを用いることができる。有機酸や無機酸、次亜塩素酸ナトリウム、クロラミン、二酸化塩素、オゾン、過酸化水素、ホルムアルデヒド、過酢酸、亜硫酸水素ナトリウムなどが高い殺菌効果を有していることから好ましい。有機酸や無機酸としては、安価でかつ少量で高い殺菌効果を有している硫酸が特に好ましい。また殺菌剤は、複数の種類を混合して用いることもできる。硫酸と亜硫酸水素ナトリウムとを混合して用いることも、好ましい実施態様である。   Here, as the bactericidal agent, those having an effect of preventing microbial growth on the reverse osmosis membrane surface or adhesion of microorganisms and their metabolites to the membrane surface can be used. Organic acids, inorganic acids, sodium hypochlorite, chloramine, chlorine dioxide, ozone, hydrogen peroxide, formaldehyde, peracetic acid, sodium hydrogen sulfite and the like are preferable because they have a high bactericidal effect. As the organic acid or inorganic acid, sulfuric acid which is inexpensive and has a high bactericidal effect in a small amount is particularly preferable. Moreover, a bactericidal agent can also be used in mixture of several types. Mixing and using sulfuric acid and sodium hydrogen sulfite is also a preferred embodiment.

殺菌剤の添加量は、殺菌剤の種類とその殺菌剤が有する殺菌効果、および逆浸透膜の殺菌剤に対する耐久性に応じて適宜決定すればよい。殺菌剤として有機酸や無機酸を用いる場合は、濾過水のpHが4以下となる添加量であることが好ましく、高い殺菌効果を発現するために、pHが3以下となる添加量であることがさらに好ましいが、あまりpHが低すぎても逆浸透膜が劣化するため、pHが2以上となる添加量であることが好ましい。次亜塩素酸ナトリウムを用いる場合は、殺菌効果を発現するために遊離残留塩素濃度が0.01ppm以上となる添加量であることが好ましいが、あまり濃度が高すぎても逆浸透膜が劣化するため、1.0ppm以下となる添加量であることが好ましい。クロラミンを用いる場合は、殺菌効果を発現するためにクロラミン濃度が0.1ppm以上となる添加量であることが好ましいが、あまり濃度が高すぎても逆浸透膜が劣化するため、10ppm以下となる添加量であることが好ましい。硫酸と亜硫酸水素ナトリウムとを混合して用いる場合は、上記の殺菌剤として有機酸や無機酸を用いる場合のpH条件に加え、さらに殺菌効果を発現するために、亜硫酸水素ナトリウムが10ppm以上となる添加量であることが好ましいが、あまり添加量が多すぎても逆浸透膜が劣化するため、1000ppm以下となる添加量であることが好ましい。   The addition amount of the bactericide may be appropriately determined according to the type of bactericide, the bactericidal effect of the bactericide, and the durability of the reverse osmosis membrane with respect to the bactericide. When an organic acid or an inorganic acid is used as the bactericidal agent, the addition amount is preferably such that the pH of the filtered water is 4 or less, and in order to develop a high bactericidal effect, the addition amount is such that the pH is 3 or less. Is more preferable, but since the reverse osmosis membrane deteriorates even if the pH is too low, the addition amount is preferably such that the pH is 2 or more. When sodium hypochlorite is used, the amount of free residual chlorine is preferably 0.01 ppm or more in order to exhibit a bactericidal effect, but the reverse osmosis membrane deteriorates even if the concentration is too high. Therefore, the addition amount is preferably 1.0 ppm or less. When chloramine is used, it is preferable that the chloramine concentration is 0.1 ppm or more in order to exhibit a bactericidal effect, but the reverse osmosis membrane deteriorates even if the concentration is too high, so that it becomes 10 ppm or less. The addition amount is preferable. In the case of using a mixture of sulfuric acid and sodium hydrogen sulfite, in addition to the pH conditions in the case of using an organic acid or an inorganic acid as the bactericidal agent, sodium hydrogen sulfite is 10 ppm or more in order to develop a bactericidal effect. The addition amount is preferable, but since the reverse osmosis membrane deteriorates even if the addition amount is too large, the addition amount is preferably 1000 ppm or less.

殺菌剤の添加方法としては、濾過水に常時添加する方法、間欠的に添加する方法のいずれも用いることができるが、硫酸、次亜塩素酸ナトリウム、二酸化塩素、オゾン、過酸化水素などを用いる場合には間欠的に添加する方法が、逆浸透膜を劣化させにくくするために好ましく、クロラミンを用いる場合には、高い殺菌効果を発現する常時添加する方法が好ましい。   As a method for adding a bactericidal agent, either a method of constantly adding to filtered water or a method of adding intermittently can be used, but sulfuric acid, sodium hypochlorite, chlorine dioxide, ozone, hydrogen peroxide, etc. are used. In some cases, the intermittent addition method is preferable in order to make the reverse osmosis membrane difficult to deteriorate, and when chloramine is used, the method of always adding a high bactericidal effect is preferable.

逆浸透処理された濾過水のうち、濃縮水の一部は濾過水に還流される。このようにすることで、濃縮水中に残存している殺菌剤を有効に利用し、殺菌剤の添加量を削減することができる。   Of the filtered water that has been subjected to the reverse osmosis treatment, a part of the concentrated water is returned to the filtered water. By doing in this way, the disinfectant which remains in concentrated water can be used effectively, and the addition amount of a disinfectant can be reduced.

濃縮水のうち、濾過水に還流される割合は、あまり高すぎても逆浸透膜表面上での微生物増殖あるいは微生物およびその代謝物の膜面への付着などによる逆浸透膜の透過性能や分離性能の低下が生じて好ましくなく、あまり少なすぎても殺菌剤の添加量削減効果が低いことから好ましくなく、10%〜50%の範囲内であることが好ましい。これ以外の濾過水に還流されなかった濃縮水は、廃棄される。   Of the concentrated water, the ratio of reflux to filtered water is too high, but the reverse osmosis membrane permeation performance and separation due to microorganism growth on the surface of the reverse osmosis membrane or adhesion of microorganisms and their metabolites to the membrane surface. A decrease in performance is not preferable, and if it is too small, it is not preferable because the effect of reducing the addition amount of the bactericide is low. Concentrated water that has not been refluxed to other filtered water is discarded.

上記のような方法により逆浸透処理して製造された水が、再生水として使用される。   Water produced by reverse osmosis treatment by the above method is used as reclaimed water.

実施例1
ポリエステル不織布にポリフッ化ビニリデン膜がコーティングされた複合平膜(細孔径0.1μm、厚さ200μm、初期純水透過性能4×10−8 /m /s/Pa)をフレームの両面に貼り付けた平膜エレメント2(有効膜部分:縦250mm、幅200mm、有効膜面積0.1m)10枚を図1に示す浸漬式膜濾過装置の処理槽3に浸漬した。被処理水1として、グルコース0.1g/L、ペプトン0.1g/L、リン酸水素二カリウム7.8mg/L、リン酸一カリウム3.9mg/Lからなる人工下水(生物学的酸素要求量(BOD)160mg/L、全窒素濃度13.6mg/L、全リン濃度2.3mg/L)を550L/日の割合で処理槽3に供給した。平膜エレメント2により、被処理水を550L/日の割合で濾過し、濾過水槽4に供給した。平膜エレメント2の下部からは、被処理水の生物処理のため、および平膜エレメント2の膜表面に微生物が付着するのを防ぐために、200L/分の割合で空気を供給した。濾過水槽4から70mL/分の割合で濾過水を取り出し、ポンプ5を用いて1.0MPaの圧力に加圧し、有効膜面積9.42cmの逆浸透膜6に供給した。殺菌剤添加装置7から濾過水に、30重量%硫酸水溶液を0.050mL/分の割合で、1日当たり24分間、間欠的に添加した。逆浸透処理して得られた濃縮水のうち30mL/分(30%)を、濾過水槽4とポンプ5との間に還流した。逆浸透膜6に供給される濾過水のpHは、硫酸水溶液が添加されていない時は7.0、添加されているときは2.5であった。25℃において逆浸透処理して得られた再生水の量は、逆浸透処理開始時には0.8g/分であったものが、55日経過後に半減した。
Example 1
A composite flat membrane (polypore diameter 0.1 μm, thickness 200 μm, initial pure water permeability 4 × 10 −8 m 3 / m 2 / s / Pa) coated on a polyester nonwoven fabric with a polyvinylidene fluoride film on both sides of the frame Ten bonded flat membrane elements 2 (effective membrane portion: length 250 mm, width 200 mm, effective membrane area 0.1 m 2 ) were immersed in the treatment tank 3 of the immersion membrane filtration apparatus shown in FIG. As treated water 1, artificial sewage composed of glucose 0.1 g / L, peptone 0.1 g / L, dipotassium hydrogen phosphate 7.8 mg / L, monopotassium phosphate 3.9 mg / L (biological oxygen demand) An amount (BOD) of 160 mg / L, a total nitrogen concentration of 13.6 mg / L, and a total phosphorus concentration of 2.3 mg / L were supplied to the treatment tank 3 at a rate of 550 L / day. The treated water was filtered by the flat membrane element 2 at a rate of 550 L / day and supplied to the filtered water tank 4. From the lower part of the flat membrane element 2, air was supplied at a rate of 200 L / min for biological treatment of water to be treated and to prevent microorganisms from adhering to the membrane surface of the flat membrane element 2. The filtered water was taken out from the filtered water tank 4 at a rate of 70 mL / min, pressurized to 1.0 MPa using the pump 5, and supplied to the reverse osmosis membrane 6 having an effective membrane area of 9.42 cm 2 . 30% by weight sulfuric acid aqueous solution was intermittently added to the filtered water from the disinfectant addition device 7 at a rate of 0.050 mL / min for 24 minutes per day. 30 mL / min (30%) of the concentrated water obtained by the reverse osmosis treatment was refluxed between the filtered water tank 4 and the pump 5. The pH of the filtrate supplied to the reverse osmosis membrane 6 was 7.0 when the sulfuric acid aqueous solution was not added and 2.5 when it was added. The amount of reclaimed water obtained by reverse osmosis treatment at 25 ° C. was 0.8 g / min at the start of reverse osmosis treatment, but halved after 55 days.

比較例1
実施例1に対し、逆浸透処理して得られた濃縮水を、濾過水槽4とポンプ5との間に還流せずに運転した。25℃において逆浸透処理して得られた再生水の量は、逆浸透処理開始時には実施例1と同量の0.8g/分であった。再生水の量の低下割合を、実施例1と同様に55日経過後に半減するように運転するためには、殺菌剤添加装置7から濾過水に、30重量%硫酸水溶液を0.064mL/分の割合で、1日当たり24分間、間欠的に添加する必要があり、実施例1に比べて多くの殺菌剤が必要であった。
Comparative Example 1
Concentrated water obtained by reverse osmosis treatment of Example 1 was operated without reflux between the filtered water tank 4 and the pump 5. The amount of reclaimed water obtained by reverse osmosis treatment at 25 ° C. was 0.8 g / min, the same amount as in Example 1 at the start of reverse osmosis treatment. In order to operate the reduction rate of the amount of the reclaimed water to be halved after 55 days in the same manner as in Example 1, 30 wt% aqueous sulfuric acid solution was added to the filtered water from the disinfectant addition device 7 to 0.064 mL / min. It was necessary to add intermittently for 24 minutes per day, and more bactericides were needed than in Example 1.

実施例2
実施例1に対し、濾過水槽4から85mL/分の割合で濾過水を取り出すことと、逆浸透処理して得られた濃縮水のうち15mL/分(15%)を濾過水槽4とポンプ5との間に還流すること以外は実施例1と同一条件で運転した。25℃において逆浸透処理して得られた再生水の量は、逆浸透処理開始時には実施例1と同量の0.8g/分であったものが、50日経過後に半減した。
Example 2
For Example 1, 15 mL / min (15%) of the concentrated water obtained by removing the filtered water from the filtered water tank 4 at a rate of 85 mL / min and the reverse osmosis treatment was obtained with the filtered water tank 4 and the pump 5. The operation was performed under the same conditions as in Example 1 except that the mixture was refluxed during the period. The amount of reclaimed water obtained by reverse osmosis treatment at 25 ° C. was 0.8 g / min, the same amount as in Example 1 at the start of reverse osmosis treatment, but halved after 50 days.

実施例3
実施例1に対し、濾過水槽4から55mL/分の割合で濾過水を取り出すことと、逆浸透処理して得られた濃縮水のうち45mL/分(45%)を濾過水槽4とポンプ5との間に還流すること以外は実施例1と同一条件で運転した。25℃において逆浸透処理して得られた再生水の量は、逆浸透処理開始時には実施例1と同量の0.8g/分であったものが、50日経過後に半減した。
Example 3
For Example 1, 45 mL / min (45%) of the concentrated water obtained by removing the filtered water from the filtered water tank 4 at a rate of 55 mL / min and the reverse osmosis treatment, The operation was performed under the same conditions as in Example 1 except that the mixture was refluxed during the period. The amount of reclaimed water obtained by reverse osmosis treatment at 25 ° C. was 0.8 g / min, the same amount as in Example 1 at the start of reverse osmosis treatment, but halved after 50 days.

実施例4
実施例1に対し、濾過水槽4から95mL/分の割合で濾過水を取り出すことと、逆浸透処理して得られた濃縮水のうち5mL/分(5%)を濾過水槽4とポンプ5との間に還流すること以外は実施例1と同一条件で運転した。25℃において逆浸透処理して得られた再生水の量は、逆浸透処理開始時には実施例1と同量の0.8g/分であったものが、45日経過後に半減した。
Example 4
Compared to Example 1, the filtered water was taken out from the filtered water tank 4 at a rate of 95 mL / min, and 5 mL / min (5%) of the concentrated water obtained by reverse osmosis treatment was filtered with the filtered water tank 4 and the pump 5. The operation was performed under the same conditions as in Example 1 except that the mixture was refluxed during the period. The amount of reclaimed water obtained by reverse osmosis treatment at 25 ° C. was 0.8 g / min, the same amount as in Example 1 at the start of reverse osmosis treatment, but halved after 45 days.

実施例5
実施例1に対し、濾過水槽4から45mL/分の割合で濾過水を取り出すことと、逆浸透処理して得られた濃縮水のうち55mL/分(55%)を濾過水槽4とポンプ5との間に還流すること以外は実施例1と同一条件で運転した。25℃において逆浸透処理して得られた再生水の量は、逆浸透処理開始時には実施例1と同量の0.8g/分であったものが、45日経過後に半減した。
Example 5
With respect to Example 1, the filtered water is taken out from the filtered water tank 4 at a rate of 45 mL / min, and 55 mL / min (55%) of the concentrated water obtained by the reverse osmosis treatment is supplied to the filtered water tank 4 and the pump 5. The operation was performed under the same conditions as in Example 1 except that the mixture was refluxed during the period. The amount of reclaimed water obtained by reverse osmosis treatment at 25 ° C. was 0.8 g / min, the same amount as in Example 1 at the start of reverse osmosis treatment, but halved after 45 days.

実施例6
ポリエステル不織布にポリフッ化ビニリデン膜がコーティングされた複合平膜(細孔径0.1μm、厚さ200μm、初期純水透過性能4×10−8 /m /s/Pa)をフレームの両面に貼り付けた平膜エレメント2(有効膜部分:縦250mm、幅200mm、有効膜面積0.1m)10枚を図1に示す浸漬式膜濾過装置の処理槽3に浸漬した。被処理水1として、グルコース0.1g/L、ペプトン0.1g/L、リン酸水素二カリウム7.8mg/L、リン酸一カリウム3.9mg/Lからなる人工下水(生物学的酸素要求量(BOD)160mg/L、全窒素濃度13.6mg/L、全リン濃度2.3mg/L)を550L/日の割合で処理槽3に供給した。平膜エレメント2により、被処理水を550L/日の割合で濾過し、濾過水槽4に供給した。平膜エレメント2の下部からは、被処理水の生物処理のため、および平膜エレメント2の膜表面に微生物が付着するのを防ぐために、200L/分の割合で空気を供給した。濾過水槽4から70mL/分の割合で濾過水を取り出し、ポンプ5を用いて1.0MPaの圧力に加圧し、有効膜面積9.42cmの逆浸透膜6に供給した。殺菌剤添加装置7から濾過水に、硫酸27重量%と亜硫酸水素ナトリウム42重量%とを含む水溶液を0.050mL/分の割合で、1日当たり24分間、間欠的に添加した。逆浸透処理して得られた濃縮水のうち30mL/分(30%)を、濾過水槽4とポンプ5との間に還流した。逆浸透膜6に供給される濾過水のpHは、硫酸と亜硫酸水素ナトリウムとを含む水溶液が添加されていない時は7.0、添加されているときは2.5であった。また、逆浸透膜6に供給される濾過水中の亜硫酸水素ナトリウム濃度は、硫酸と亜硫酸水素ナトリウムとを含む水溶液が添加されていない時は0ppm、添加されているときは300ppmであった。25℃において逆浸透処理して得られた再生水の量は、逆浸透処理開始時には0.8g/分であったものが、65日経過後に半減した。
Example 6
A composite flat membrane (polypore diameter 0.1 μm, thickness 200 μm, initial pure water permeability 4 × 10 −8 m 3 / m 2 / s / Pa) coated on a polyester nonwoven fabric with a polyvinylidene fluoride film on both sides of the frame Ten bonded flat membrane elements 2 (effective membrane portion: length 250 mm, width 200 mm, effective membrane area 0.1 m 2 ) were immersed in the treatment tank 3 of the immersion membrane filtration apparatus shown in FIG. As treated water 1, artificial sewage composed of glucose 0.1 g / L, peptone 0.1 g / L, dipotassium hydrogen phosphate 7.8 mg / L, monopotassium phosphate 3.9 mg / L (biological oxygen demand) An amount (BOD) of 160 mg / L, a total nitrogen concentration of 13.6 mg / L, and a total phosphorus concentration of 2.3 mg / L were supplied to the treatment tank 3 at a rate of 550 L / day. The treated water was filtered by the flat membrane element 2 at a rate of 550 L / day and supplied to the filtered water tank 4. From the lower part of the flat membrane element 2, air was supplied at a rate of 200 L / min for biological treatment of water to be treated and to prevent microorganisms from adhering to the membrane surface of the flat membrane element 2. The filtered water was taken out from the filtered water tank 4 at a rate of 70 mL / min, pressurized to 1.0 MPa using the pump 5, and supplied to the reverse osmosis membrane 6 having an effective membrane area of 9.42 cm 2 . An aqueous solution containing 27% by weight of sulfuric acid and 42% by weight of sodium hydrogen sulfite was intermittently added from the disinfectant addition device 7 to the filtered water at a rate of 0.050 mL / min for 24 minutes per day. 30 mL / min (30%) of the concentrated water obtained by the reverse osmosis treatment was refluxed between the filtered water tank 4 and the pump 5. The pH of the filtered water supplied to the reverse osmosis membrane 6 was 7.0 when an aqueous solution containing sulfuric acid and sodium hydrogen sulfite was not added, and 2.5 when it was added. The concentration of sodium bisulfite in the filtered water supplied to the reverse osmosis membrane 6 was 0 ppm when an aqueous solution containing sulfuric acid and sodium bisulfite was not added, and 300 ppm when it was added. The amount of reclaimed water obtained by reverse osmosis treatment at 25 ° C. was 0.8 g / min at the start of reverse osmosis treatment, but halved after 65 days.

実施例7
実施例6に対し、殺菌剤添加装置7から濾過水に添加する水溶液中の硫酸を29重量%とすることと、亜硫酸水素ナトリウムを14重量%とすること以外は実施例6と同一条件で運転した。逆浸透膜6に供給される濾過水のpHは、硫酸と亜硫酸水素ナトリウムとを含む水溶液が添加されていない時は7.0、添加されているときは2.5であった。また、逆浸透膜6に供給される濾過水中の亜硫酸水素ナトリウム濃度は、硫酸と亜硫酸水素ナトリウムとを含む水溶液が添加されていない時は0ppm、添加されているときは100ppmであった。25℃において逆浸透処理して得られた再生水の量は、逆浸透処理開始時には0.8g/分であったものが、60日経過後に半減した。
Example 7
Compared to Example 6, operation was performed under the same conditions as Example 6 except that the sulfuric acid in the aqueous solution added to the filtered water from the bactericide addition device 7 was 29% by weight and that sodium bisulfite was 14% by weight. did. The pH of the filtered water supplied to the reverse osmosis membrane 6 was 7.0 when an aqueous solution containing sulfuric acid and sodium hydrogen sulfite was not added, and 2.5 when it was added. The concentration of sodium bisulfite in the filtered water supplied to the reverse osmosis membrane 6 was 0 ppm when an aqueous solution containing sulfuric acid and sodium bisulfite was not added, and 100 ppm when it was added. The amount of reclaimed water obtained by reverse osmosis treatment at 25 ° C. was 0.8 g / min at the start of reverse osmosis treatment, but halved after 60 days.

本発明は、下水道や産業廃水などの廃水を再生水として使用する際に好適に利用することができるものである。   The present invention can be suitably used when using wastewater such as sewers and industrial wastewater as reclaimed water.

本発明に係る再生水の製造装置の一実施態様を示す概略フロー図である。It is a schematic flowchart which shows one embodiment of the manufacturing apparatus of the reclaimed water which concerns on this invention. 比較例1で使用した浸漬式膜濾過装置の概略フロー図である。FIG. 3 is a schematic flow diagram of the immersion membrane filtration apparatus used in Comparative Example 1.

符号の説明Explanation of symbols

1:被処理水
2:濾過膜
3:処理槽
4:濾過水槽
5:ポンプ
6:逆浸透膜
7:殺菌剤添加装置
8:配管
9:再生水
10:濃縮水
1: Water to be treated 2: Filtration membrane 3: Treatment tank 4: Filtration water tank 5: Pump 6: Reverse osmosis membrane 7: Disinfectant addition device 8: Piping 9: Reclaimed water 10: Concentrated water

Claims (3)

処理槽と、該処理槽に浸漬配置された被処理水の濾過を行う濾過膜と、該濾過膜により被処理水を濾過して得られた濾過水を貯留する濾過水槽とを備えた再生水の製造装置であって、前記濾過水槽から濾過水を取り出し加圧するポンプと、加圧された濾過水を逆浸透処理する逆浸透膜と、濾過水を殺菌するための殺菌剤添加装置と、濾過水を逆浸透処理して得られた濃縮水の一部を前記濾過水槽および/または前記濾過水槽と前記ポンプとの間に還流する装置とを備えたことを特徴とする再生水の製造装置。 Reclaimed water comprising a treatment tank, a filtration membrane for filtering the treated water immersed in the treatment tank, and a filtered water tank for storing the filtered water obtained by filtering the treated water through the filtration membrane A production apparatus comprising a pump for taking out and pressurizing filtered water from the filtered water tank, a reverse osmosis membrane for performing reverse osmosis treatment of the pressurized filtered water, a disinfectant adding device for sterilizing the filtered water, and filtered water An apparatus for producing reclaimed water, comprising: the filtered water tank and / or a device for returning a part of the concentrated water obtained by reverse osmosis treatment between the filtered water tank and the pump. 被処理水を、処理槽に浸漬配置された被処理水の濾過を行う濾過膜と、該濾過膜により被処理水を濾過して得られた濾過水を貯留する濾過水槽とを備えた浸漬式膜濾過装置を用いて濾過し、濾過して得られた濾過水を殺菌してから逆浸透膜を用いて逆浸透処理する再生水の製造方法において、逆浸透処理して得られた濃縮水の一部を濾過水に還流することを特徴とする再生水の製造方法。 A submerged type comprising a filtration membrane for filtering the water to be treated, immersed in the treatment tank, and a filtration water tank for storing the filtrate obtained by filtering the water to be treated by the filtration membrane One of the concentrated water obtained by reverse osmosis treatment in a method for producing reclaimed water that is filtered using a membrane filtration device and sterilized filtered water obtained by filtration and then reverse osmosis treated using a reverse osmosis membrane. A method for producing reclaimed water, characterized in that the part is refluxed to filtered water. 濃縮水のうち濾過水に還流される割合が10〜50%の範囲内であることを特徴とする請求項2に記載の再生水の製造方法。 The method for producing reclaimed water according to claim 2, wherein a ratio of the concentrated water that is refluxed to the filtered water is within a range of 10 to 50%.
JP2004331584A 2003-11-27 2004-11-16 Producing apparatus of reclaimed water and producing method of reclaimed water Pending JP2005177744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004331584A JP2005177744A (en) 2003-11-27 2004-11-16 Producing apparatus of reclaimed water and producing method of reclaimed water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003396731 2003-11-27
JP2004331584A JP2005177744A (en) 2003-11-27 2004-11-16 Producing apparatus of reclaimed water and producing method of reclaimed water

Publications (1)

Publication Number Publication Date
JP2005177744A true JP2005177744A (en) 2005-07-07

Family

ID=34797268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004331584A Pending JP2005177744A (en) 2003-11-27 2004-11-16 Producing apparatus of reclaimed water and producing method of reclaimed water

Country Status (1)

Country Link
JP (1) JP2005177744A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029963A (en) * 2006-07-28 2008-02-14 Nitto Denko Corp Water treatment method and apparatus
JP2009072766A (en) * 2007-08-30 2009-04-09 Toray Ind Inc Water treating method
CN102116044A (en) * 2010-12-15 2011-07-06 刘日明 Energy-saving toilet flushing tank
JP2014020962A (en) * 2012-07-19 2014-02-03 Hitachi-Ge Nuclear Energy Ltd Radioactive wastewater treatment method and treatment device for the same
JP2017176969A (en) * 2016-03-29 2017-10-05 アクアス株式会社 Processing method of raw water
JP2018069124A (en) * 2016-10-25 2018-05-10 オルガノ株式会社 Water treatment apparatus and method using reverse osmosis membrane
JP2018069120A (en) * 2016-10-25 2018-05-10 オルガノ株式会社 Water treatment method and apparatus using reverse osmosis membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029963A (en) * 2006-07-28 2008-02-14 Nitto Denko Corp Water treatment method and apparatus
JP2009072766A (en) * 2007-08-30 2009-04-09 Toray Ind Inc Water treating method
CN102116044A (en) * 2010-12-15 2011-07-06 刘日明 Energy-saving toilet flushing tank
JP2014020962A (en) * 2012-07-19 2014-02-03 Hitachi-Ge Nuclear Energy Ltd Radioactive wastewater treatment method and treatment device for the same
JP2017176969A (en) * 2016-03-29 2017-10-05 アクアス株式会社 Processing method of raw water
JP2018069124A (en) * 2016-10-25 2018-05-10 オルガノ株式会社 Water treatment apparatus and method using reverse osmosis membrane
JP2018069120A (en) * 2016-10-25 2018-05-10 オルガノ株式会社 Water treatment method and apparatus using reverse osmosis membrane
JP7050414B2 (en) 2016-10-25 2022-04-08 オルガノ株式会社 Water treatment method using reverse osmosis membrane

Similar Documents

Publication Publication Date Title
JP5804228B1 (en) Water treatment method
EP2276705B1 (en) Environmentally friendly hybrid microbiological control technologies for cooling towers
JP5549591B2 (en) Fresh water production method and fresh water production apparatus
CN106132518B (en) Water treatment method and water treatment device using membrane
WO2000027756A1 (en) Water treating method
JP2007069204A (en) Water treatment method, water treatment apparatus and method of manufacturing regenerated water
JP2009240902A (en) Water treating method and water treating apparatus
JP2008183510A (en) Purified water production method and apparatus
KR20130137004A (en) Chemical cleaning method for immersed membrane element
JP6194887B2 (en) Fresh water production method
JP2006015236A (en) Apparatus and method for preparing regenerated water
JP2007244979A (en) Water treatment method and water treatment apparatus
JP5163760B2 (en) Reclaimed water production apparatus and method
JP2009006209A (en) Cleaning method of hollow fiber membrane module
JP2009072766A (en) Water treating method
JP2008086849A (en) Water treatment method and apparatus
JP2005177744A (en) Producing apparatus of reclaimed water and producing method of reclaimed water
JP2012086120A (en) Method for washing immersion type membrane module with chemical
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2005185985A (en) Method and apparatus for producing water
JP5103769B2 (en) Cleaning method for reclaimed water production equipment
JPWO2013058063A1 (en) Fresh water system
WO2012057176A1 (en) Water-treatment method and desalinization method
Qrenawi et al. Membrane Bioreactor (MBR) as a Reliable Technology for Wastewater Treatment
WO2016136957A1 (en) Method for treating water containing organic material, and device for treating water containing organic material