JPWO2008096585A1 - Filtration apparatus and water treatment method - Google Patents
Filtration apparatus and water treatment method Download PDFInfo
- Publication number
- JPWO2008096585A1 JPWO2008096585A1 JP2008508013A JP2008508013A JPWO2008096585A1 JP WO2008096585 A1 JPWO2008096585 A1 JP WO2008096585A1 JP 2008508013 A JP2008508013 A JP 2008508013A JP 2008508013 A JP2008508013 A JP 2008508013A JP WO2008096585 A1 JPWO2008096585 A1 JP WO2008096585A1
- Authority
- JP
- Japan
- Prior art keywords
- water
- filtration
- unit
- refiltration
- filtration unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 278
- 238000001914 filtration Methods 0.000 title claims abstract description 239
- 238000000034 method Methods 0.000 title claims description 31
- 238000011110 re-filtration Methods 0.000 claims abstract description 86
- 239000002245 particle Substances 0.000 claims abstract description 23
- 239000012528 membrane Substances 0.000 claims description 59
- 239000000706 filtrate Substances 0.000 claims description 19
- 238000009287 sand filtration Methods 0.000 claims description 17
- 239000008400 supply water Substances 0.000 claims description 15
- 239000004576 sand Substances 0.000 claims description 13
- 238000005406 washing Methods 0.000 claims description 8
- 238000001471 micro-filtration Methods 0.000 claims description 5
- 238000000108 ultra-filtration Methods 0.000 claims description 5
- 239000002351 wastewater Substances 0.000 claims description 3
- 238000011001 backwashing Methods 0.000 description 27
- 239000013535 sea water Substances 0.000 description 22
- 238000001223 reverse osmosis Methods 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 238000010612 desalination reaction Methods 0.000 description 11
- 238000005374 membrane filtration Methods 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 8
- 239000012535 impurity Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 239000012510 hollow fiber Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 239000004952 Polyamide Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229920002647 polyamide Polymers 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 3
- 239000003830 anthracite Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 239000008394 flocculating agent Substances 0.000 description 3
- 238000005339 levitation Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005188 flotation Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 2
- 239000003621 irrigation water Substances 0.000 description 2
- 239000008239 natural water Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000011085 pressure filtration Methods 0.000 description 2
- 239000008262 pumice Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000206607 Porphyra umbilicalis Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229910052956 cinnabar Inorganic materials 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 238000011118 depth filtration Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
- B01D61/026—Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2317/00—Membrane module arrangements within a plant or an apparatus
- B01D2317/04—Elements in parallel
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Sorption (AREA)
Abstract
ろ過ユニットを効率的に使用することによって高い水質の清澄水を連続的かつ低コストで得ることができる実用的なろ過装置を提供するため、少なくとも水中の懸濁粒子を除去するろ過ユニット(A)を複数並列に接続し、該複数のろ過ユニット(A)の下流側に、必要に応じて水中の懸濁粒子を再度除去する再ろ過ユニット(B)を接続してなる、清澄水を得るろ過装置であって、それぞれのろ過ユニット(A)は、該ろ過ユニット(A)のろ過水を清澄水として取り出す清澄水ラインと、該ろ過ユニット(A)のろ過水を再ろ過ユニット(B)へ供給する再ろ過ユニット供給ラインを有し、再ろ過ユニット(B)は、該再ろ過ユニット(B)のろ過水を前記前記清澄水ラインへ合流させる合流ラインを有しているろ過装置とする。Filtration unit (A) for removing at least suspended particles in water in order to provide a practical filtration device capable of obtaining high quality clarified water continuously and at low cost by efficiently using a filtration unit Filtration to obtain clarified water, wherein a plurality of filtration units are connected in parallel, and a refiltration unit (B) for removing suspended particles in water again is connected to the downstream side of the plurality of filtration units (A) as necessary. Each of the filtration units (A) is a clarified water line for taking out the filtered water of the filtration unit (A) as clarified water, and the filtered water of the filtration unit (A) to the refiltration unit (B). A re-filtration unit supply line is provided, and the re-filtration unit (B) is a filtration device having a merging line that joins the filtered water of the re-filtration unit (B) to the clarified water line.
Description
本発明は、原水中の懸濁物質などを除去し、清澄水を得るためのろ過装置および水処理方法に関するものであり、詳しくは、原水水質やろ過性能が変動した場合にも安定して水質の高いろ過水を低コストで得ることが可能なろ過装置およびその運転方法に関するものである。 The present invention relates to a filtration apparatus and a water treatment method for removing suspended substances and the like in raw water to obtain clarified water, and more specifically, stable water quality even when raw water quality and filtration performance fluctuate. The present invention relates to a filtration apparatus capable of obtaining high-purity filtered water at a low cost and an operation method thereof.
河川水をはじめとする自然水から飲料水や用水を製造する浄水技術は、古くから凝集沈澱、加圧浮上などの化学的手段と、砂ろ過による物理的手段を中心として普及・発展してきている。砂ろ過は、重力によって砂槽を通して清澄水を得る重力ろ過とポンプによって圧力をかけてろ過を行う加圧ろ過とに大きく分類され、原水水質や立地条件などによって適宜選択される。 Water purification technology for producing drinking water and irrigation water from river water and other natural water has long been popularized and developed mainly by chemical means such as coagulation sedimentation and pressurized flotation, and physical means by sand filtration. . Sand filtration is roughly classified into gravity filtration that obtains clarified water through a sand tank by gravity and pressure filtration that performs filtration by applying pressure with a pump, and is appropriately selected according to the raw water quality and location conditions.
また、近年は、さらなる水不足の深刻化を受けて海水を脱塩して飲料水や用水を製造する、いわゆる海水淡水化が実用化されている。海水淡水化は、従来、水資源が極端に少なく、かつ、石油による熱資源が非常に豊富である中東地域で蒸発法を中心に実用化されてきていたが、エネルギー効率の高い逆浸透法により、近くに熱源がなくても高効率で海水から淡水を得られるようになってきている。最近では、逆浸透法の技術進歩による信頼性の向上やコストダウンが進み、熱源が豊富な中東においても多くの逆浸透法海水淡水化プラントが建設され始めている。 In recent years, so-called seawater desalination, in which seawater is desalted to produce drinking water and irrigation water in response to further serious water shortages, has been put into practical use. Seawater desalination has been put to practical use mainly in the Middle East region, where water resources are extremely small and oil heat resources are extremely abundant. Even if there is no heat source nearby, fresh water can be obtained from seawater with high efficiency. Recently, improvement in reliability and cost reduction have progressed as a result of technological advances in reverse osmosis, and many reverse osmosis seawater desalination plants have begun to be built even in the Middle East, where heat sources are abundant.
通常、海水を直接、逆浸透膜に通すと海水中に含有される懸濁物質や生物などの侵入により、膜表面が傷つく、膜表面への付着によって膜性能(透水性能、阻止性能)が低下する、膜への流路が閉塞する、といったトラブルを生じるため、逆浸透膜へ供給する海水の水質には注意が必要である。すなわち、逆浸透法海水淡水化においても旧来の浄水技術が必要とされ、必要に応じて凝集沈澱、加圧浮上を併用しつつ、砂ろ過によって懸濁物質や微生物などを除去した清澄な海水を逆浸透膜に供給するのが一般的である。また、最近では、砂ろ過に代わってサブミクロンの細孔を有する精密ろ過膜やさらに0.01ミクロンレベルの分離性能を有する限外ろ過膜が採用されつつある。 Normally, when seawater is passed directly through a reverse osmosis membrane, the membrane surface is damaged due to the invasion of suspended substances or organisms contained in the seawater, and the membrane performance (water permeability performance, blocking performance) decreases due to adhesion to the membrane surface. Therefore, attention should be paid to the quality of the seawater supplied to the reverse osmosis membrane. In other words, the conventional water purification technology is also required for desalination of seawater using reverse osmosis, and the use of coagulating sedimentation and pressurized levitation as needed, and clear water from which suspended solids and microorganisms have been removed by sand filtration. It is common to supply to a reverse osmosis membrane. Recently, in place of sand filtration, microfiltration membranes having submicron pores and ultrafiltration membranes having a separation performance of 0.01 micron level are being adopted.
ここで、砂ろ過の場合も膜ろ過の場合も、ろ過の進行に伴って懸濁物質などの不純物がろ材の表面や内部に蓄積していくため、許容圧力範囲内でろ過流量が得られなくなったり、状況によっては不純物がろ材から漏出しはじめる。このような状況になるのを避けるために、ろ材の洗浄行程が必要とされる。具体的には、ろ過水などの清澄水をろ過と反対方向に高速で通水する“逆洗”が適用されることが一般的である。しかしながら、洗浄工程によってろ材の間隙に詰まった不純物を取り除くと、ろ材の間隙が大きくなる。そのため、逆洗直後からある程度の時間、すなわち、ろ材間に不純物が蓄積して間隙が小さくなるまでは、不純物のリークが生じやすくなるため、得られるろ過水の水質が基準値を満足しないことになり、その間は清澄水として採水せずに排水するのが一般的である。 Here, in both sand filtration and membrane filtration, impurities such as suspended substances accumulate on the surface and inside of the filter media as filtration progresses, making it impossible to obtain a filtration flow rate within the allowable pressure range. Depending on the situation, impurities begin to leak from the filter media. In order to avoid this situation, a cleaning process of the filter medium is required. Specifically, “backwashing” in which clear water such as filtered water is passed at high speed in the opposite direction to filtration is generally applied. However, if the impurities clogged in the gap of the filter medium are removed by the cleaning process, the gap of the filter medium increases. For this reason, since the impurities are likely to leak for a certain period of time immediately after backwashing, that is, until impurities accumulate between the filter media and the gap becomes small, the quality of the filtrate water obtained does not satisfy the standard value. In the meantime, it is common to drain the water as clear water without sampling.
通常の浄水処理の場合は、ろ過後の濁度(JIS K0101−1998で規定)が0.1を下回ることを目標水質としているが(非特許文献1、2)、この基準では排水の必要があるろ過水がそれほど生じず、逆洗後の排水時間もせいぜい1時間以内で十分であった。一方、海水淡水化における前処理の場合、逆浸透膜への供給水質の一般的な基準であるSDI(Silt Density Index,ASTM D4189−95で規定)を3〜4程度にすることが必要となる。しかしながら、浄水の基準である濁度0.1を大きく下回る値であっても、SDIがこの基準を満足できないことも多々ある。このため、海水の水質やろ過条件などによっては、逆洗後の排水時間が1時間以内では逆浸透膜の供給水質を満足することが困難となる場合がある。したがって、図3に示すような1段ろ過の場合は、非特許文献3や非特許文献4に例示するような水質が悪い逆洗直後の水を、逆浸透膜へ供給するか、排水時間を長くとって水質が良くなるまで使用を停止するか、もしくは、沖縄の大型海水淡水化プラント(非特許文献5、6)や特許文献1や図4に例示するような2段ろ過を採用する必要があり、それぞれ、逆浸透膜の交換コスト、ろ過水量減少による運転コストの増大や、2段ろ過による設備費、運転コストの増大を招いていた。
本発明の目的は、原水中の懸濁物質などを効率的に除去すること、とくに、半透膜ユニットの供給水として十分に水質の高い清澄水を低コストで製造することにある。 An object of the present invention is to efficiently remove suspended substances and the like in raw water, and in particular, to produce clear water having sufficiently high water quality as supply water for a semipermeable membrane unit at a low cost.
前記課題を解決するための本発明は、次の(1)〜(15)を特徴とするものである。
(1)少なくとも水中の懸濁粒子を除去するろ過ユニット(A)を複数並列に接続し、該複数のろ過ユニット(A)の下流側に、必要に応じて水中の懸濁粒子を再度除去する再ろ過ユニット(B)を接続してなる、清澄水を得るろ過装置であって、それぞれのろ過ユニット(A)は、該ろ過ユニット(A)のろ過水を清澄水として取り出す清澄水ラインと、該ろ過ユニット(A)のろ過水を再ろ過ユニット(B)へ供給する再ろ過ユニット供給ラインを有し、再ろ過ユニット(B)は、該再ろ過ユニット(B)のろ過水を前記清澄水ラインへ合流させる合流ラインを有しているろ過装置。
(2)前記再ろ過ユニット(B)の合計許容処理水量が、前記ろ過ユニット(A)の合計許容処理水量よりも小さく、かつ、前記再ろ過ユニット(B)の合計許容処理水量が、前記ろ過ユニット(A)の単体許容処理水量以上である、前記(1)に記載のろ過装置。
(3)前記ろ過ユニット(A)と前記再ろ過ユニット(B)とがともに砂ろ過ユニットであり、再ろ過ユニット(B)の砂の粒径がろ過ユニット(A)の砂の粒径よりも小さい、前記(1)または(2)に記載のろ過装置。
(4)前記ろ過ユニット(A)が砂ろ過であり、かつ前記再ろ過ユニット(B)が精密ろ過膜もしくは限外ろ過膜である、前記(1)または(2)に記載のろ過装置。
(5)前記再ろ過ユニット(B)は、再ろ過ユニット(B)のろ過水を系外に排出する排水ラインを有している、前記(1)−(4)のいずれかに記載のろ過装置。
(6)前記再ろ過ユニット供給ラインから分岐、もしくは、前記再ろ過ユニット供給ラインと並列して、ろ過ユニット(A)のろ過水を系外に排出する排水ラインを有している、前記(1)−(5)のいずれかに記載のろ過装置。
(7)前記(1)−(6)のいずれか記載のろ過装置を用いて清澄水を得る水処理方法であって、水中の懸濁粒子を前記複数のろ過ユニット(A)で除去してそれぞれろ過水を得るとともに、該それぞれのろ過水について、水質基準値を満足しない時には、該水質基準値を満足しないろ過水を前記再ろ過ユニット(B)へ供給してさらに水中の懸濁粒子を除去し、該ろ過ユニット(B)で得られたろ過水を、前記水質基準値を満足するろ過ユニット(A)のろ過水と合流させる水処理方法。
(8)間欠的に前記複数のろ過ユニット(A)の一部の洗浄を行い、該洗浄の直後から一定時間は、該洗浄を行ったろ過ユニット(A)のろ過水を再ろ過ユニット(B)へ供給し、それ以外のろ過ユニット(A)のろ過水は清澄水として取り出す、前記(7)に記載の水処理方法。
(9)前記再ろ過ユニット(B)のろ過水が、水質基準値を満足しない時には、該ろ過水を系外に排水する、前記(7)または(8)に記載の水処理方法。
(10)前記再ろ過ユニット(B)への供給水がさらに別の水質基準値を満足しない時には、該供給水を系外へ排水する、前記(7)−(9)のいずれかに記載の水処理方法。
(11)前記水質基準値が、SDIもしくは濁度である、前記(7)−(10)のいずれかに記載の水処理方法。
(12)前記(1)−(6)のいずれか記載のろ過装置を用いて清澄水を得る水処理方法であって、間欠的に前記複数のろ過ユニット(A)の一部の洗浄を行い、該洗浄の直後から一定時間は、該洗浄を行ったろ過ユニット(A)のろ過水を再ろ過ユニット(B)へ供給し、それ以外のろ過ユニット(A)のろ過水は清澄水として取り出す水処理方法。
(13)前記ろ過ユニット(A)の供給水に凝集剤を添加するとともに、前記再ろ過ユニット(B)の供給水に前記ろ過ユニット(A)の供給水とは異なる種類の凝集剤を添加する、前記(7)−(12)のいずれかに記載の水処理方法。
(14)前記ろ過装置で得られた清澄水をさらに脱塩処理する、前記(7)−(13)のいずれかに記載の水処理方法。
(15)前記(1)−(6)のいずれかに記載のろ過装置の下流側に、該ろ過装置の清澄水を脱塩処理する半透膜ユニットが備えられてなる水処理装置。The present invention for solving the above-described problems is characterized by the following (1) to (15).
(1) A plurality of filtration units (A) that remove at least suspended particles in water are connected in parallel, and suspended particles in water are removed again on the downstream side of the plurality of filtration units (A) as necessary. Each of the filtration units (A) is a filtration device that connects the refiltration unit (B) to obtain clarified water, and each filtration unit (A) is a clarified water line for taking out the filtrate of the filtration unit (A) as clarified water; The refiltration unit supply line which supplies the filtration water of this filtration unit (A) to the refiltration unit (B) is provided, and the refiltration unit (B) uses the filtered water of the refiltration unit (B) as the clarified water. A filtration device having a merge line that joins the line.
(2) The total allowable treated water amount of the refiltration unit (B) is smaller than the total allowable treated water amount of the filtration unit (A), and the total allowable treated water amount of the refiltration unit (B) The filtration device according to (1), wherein the filtration device is equal to or greater than the unit allowable processing water amount of the unit (A).
(3) The filtration unit (A) and the refiltration unit (B) are both sand filtration units, and the particle size of the sand of the refiltration unit (B) is larger than the particle size of the sand of the filtration unit (A). The filtration device according to (1) or (2), which is small.
(4) The filtration device according to (1) or (2), wherein the filtration unit (A) is sand filtration, and the refiltration unit (B) is a microfiltration membrane or an ultrafiltration membrane.
(5) The filtration according to any one of (1) to (4), wherein the refiltration unit (B) has a drainage line for discharging the filtered water of the refiltration unit (B) to the outside of the system. apparatus.
(6) Branching from the refiltration unit supply line, or in parallel with the refiltration unit supply line, the drainage line for discharging the filtrate of the filtration unit (A) out of the system (1 )-(5).
(7) A water treatment method for obtaining clear water using the filtration device according to any one of (1) to (6), wherein suspended particles in water are removed by the plurality of filtration units (A). Each of the filtered water is obtained, and when each of the filtered water does not satisfy the water quality standard value, the filtered water that does not satisfy the water quality standard value is supplied to the refiltration unit (B), and suspended particles in the water are further supplied. The water treatment method which removes and joins the filtrate obtained by this filtration unit (B) with the filtrate of the filtration unit (A) which satisfies the said water quality reference value.
(8) A part of the plurality of filtration units (A) is intermittently washed, and the filtered water of the washed filtration unit (A) is re-filtered for a certain time immediately after the washing. ), And the filtered water of the other filtration unit (A) is taken out as clarified water.
(9) The water treatment method according to (7) or (8), wherein when the filtrate of the refiltration unit (B) does not satisfy a water quality reference value, the filtrate is drained out of the system.
(10) The supply water according to any one of (7) to (9), wherein when the supply water to the refiltration unit (B) does not satisfy another water quality reference value, the supply water is drained out of the system. Water treatment method.
(11) The water treatment method according to any one of (7) to (10), wherein the water quality reference value is SDI or turbidity.
(12) A water treatment method for obtaining clarified water using the filtration device according to any one of (1) to (6), wherein a part of the plurality of filtration units (A) is intermittently washed. For a certain time immediately after the washing, the filtered water of the filtration unit (A) that has performed the washing is supplied to the refiltration unit (B), and the filtered water of the other filtration units (A) is taken out as clear water. Water treatment method.
(13) A flocculant is added to the supply water of the filtration unit (A), and a flocculant of a different type from the supply water of the filtration unit (A) is added to the supply water of the refiltration unit (B). The water treatment method according to any one of (7) to (12).
(14) The water treatment method according to any one of (7) to (13), wherein the clear water obtained by the filtration device is further desalted.
(15) A water treatment device comprising a semipermeable membrane unit for desalting the clarified water of the filtration device on the downstream side of the filtration device according to any one of (1) to (6).
本発明によれば、海水や河川水などの水中の懸濁粒子を除去するためのろ過ユニット(A)を複数並列に接続するとともに、該複数のろ過ユニット(A)の下流側に、必要に応じて水中の懸濁粒子を再度除去する再ろ過ユニット(B)を接続しているので、基本的にはろ過ユニット(A)のろ過水を清澄水として取り出すことができ、また、水質が十分でない、たとえば洗浄直後のろ過ユニット(A)のろ過水も再ろ過ユニットに供給、処理して、そのろ過水を清澄水として取り出すことが出来る。その結果、清澄水の回収率が高くなるとともに、設備規模も必要最小限に抑えることが出来るため、低コストで半透膜の前処理として優れた水質の清澄水を安定して低コストで得ることが可能となる。 According to the present invention, a plurality of filtration units (A) for removing suspended particles in water such as seawater and river water are connected in parallel, and downstream of the plurality of filtration units (A). Since the re-filtration unit (B) that removes suspended particles in the water again is connected accordingly, the filtered water of the filtration unit (A) can be taken out as clear water, and the water quality is sufficient. For example, the filtrate of the filtration unit (A) immediately after washing can be supplied to the re-filtration unit and processed, and the filtrate can be taken out as clarified water. As a result, the recovery rate of clarified water is increased, and the scale of equipment can be minimized, so that clarified water with excellent water quality can be stably obtained at low cost as a pretreatment for a semipermeable membrane at low cost. It becomes possible.
1:原水
2:pH調整手段
3:凝集剤添加手段
4:ろ過ユニット(A)の供給ポンプ
5:ろ過ユニット(ろ過ユニット(A))
6:ろ過ユニット(再ろ過ユニット(B))
7:再ろ過ユニット(B)の供給ポンプ
8:ろ過ユニット(A)の供給バルブ
9:清澄水バルブ
10:ろ過ユニット(A)の逆洗排水バルブ
11:ろ過水排出バルブ
12:再ろ過ユニット(B)の供給バルブ
13:再ろ過清澄水バルブ
14:再ろ過ユニット(B)の逆洗排水バルブ
15:再ろ過水排水バルブ
16:ろ過水排水ライン
17:排水ライン
18:清澄水タンク
19:ろ過ユニット(A)の逆洗水供給バルブ
20:再ろ過ユニット(B)の逆洗水供給バルブ
21:ろ過ユニット(A)の逆洗ポンプ
22:再ろ過ユニット(B)の逆洗ポンプ
23:廃水ピット
24:膜ろ過ユニット
90:清澄水ライン
91:合流ライン1: Raw water 2: pH adjustment means 3: Flocculant addition means 4: Supply pump of filtration unit (A) 5: Filtration unit (filtration unit (A))
6: Filtration unit (re-filtration unit (B))
7: Supply pump of refiltration unit (B) 8: Supply valve of filtration unit (A) 9: Clear water valve 10: Backwash drain valve 11 of filtration unit (A) 11: Filtration water discharge valve 12: Refiltration unit ( B) supply valve 13: refiltered clarified water valve 14:
まず、本発明にかかるろ過装置の基本的フローおよびその装置を用いた水処理方法を、図1に示す模式図を参照しながら説明する。 First, a basic flow of a filtration apparatus according to the present invention and a water treatment method using the apparatus will be described with reference to the schematic diagram shown in FIG.
図1に示すろ過装置は、原水1が供給ポンプ4によってpH調整手段2と凝集剤添加手段3を経てろ過ユニット5a〜5d(ろ過ユニット(A))に供給されるようになっている。ろ過ユニット5a〜5dで処理された水は、ろ過水質に応じ、ろ過水質が良好な場合は、清澄水バルブ9a〜9dを備えた清澄水ライン90a〜90dを通して清澄水タンク18に貯留されるようになっている。また、ろ過ユニット5a〜5dのいずれかから得られるろ過水の水質が良好でない場合、すなわち、ろ過ユニット5a〜5dのいずれかから得られたろ過水が所定の水質基準値を満足しない場合、その水質基準値を満足しないろ過水に対応する清澄水バルブ9a〜9dのいずれかを閉じて、代わりにろ過水排出バルブ11a〜11dのいずれかおよびろ過ユニット6への供給バルブ12を開いて、ろ過ユニット5a〜5dのろ過水のうちの水質基準を満足しないろ過水をろ過ユニット6(再ろ過ユニット(B))に供給し、ろ過ユニット6でさらに水中の懸濁粒子を除去して水質を高めることが可能となっている。ろ過ユニット6のろ過水は清澄水として、再ろ過清澄水バルブ13を備えた合流ライン91を通して清澄水ライン90a〜90dと合流し、清澄水タンク18に通じている。
In the filtration apparatus shown in FIG. 1,
ろ過ユニット5a〜5dおよびろ過ユニット6はそれぞれ逆洗が可能なように逆洗ポンプ21、22を備えている。また、逆洗排水は、逆洗排水バルブ10a〜10d、14を開くことによって排水ライン17を通して廃水ピット23に送られるようになっている。また、本発明の適用に必須ではないが、原水水質やろ過ユニット5a〜5dの構成によって、さらには、ろ過ユニット6の逆洗直後など、ろ過ユニット6のろ過水質が良好ではなく所望の基準値を満足しない場合は、再ろ過清澄水バルブ13を閉じるとともに再ろ過水排水バルブ15を開き、ろ過ユニット6のろ過水を系外に排出することによって、清澄水タンク18内の水質低下を防止することが出来るようになっている。なお、ろ過ユニット6の水質が基準値を満足している時は、合流ライン91を通して清澄水タンク18に送るようになっている。
The
さらに、図1に示す装置では、ろ過ユニット(A)の逆洗直後など著しく水質が悪い場合や、ろ過ユニット(A)の逆洗に薬液を使用した場合など、逆洗直後のろ過水が再ろ過ユニット(B)への供給に適しない場合に、ろ過ユニット5a〜5dのろ過水を系外に排出しろ過ユニット6への水の供給を停止することができるようになっている。具体的には、ろ過ユニット5a〜5dのろ過水排水ライン16を有している。ろ過ユニット5a〜5dのろ過水水質を後述するようなオンラインモニターで観測し、原水水質の悪化やろ過ユニット5a〜5dのトラブルなどでろ過ユニット6を通しても良好な水質が期待できないような場合やろ過ユニット6にダメージを与えるような場合に、ろ過ユニット6への通水を一時的に停止し、ろ過ユニット6を守る。ろ過水排水ライン16は、図1に示すようにろ過ユニット6への供給ラインから分岐させる以外に、ろ過ユニット6への供給ラインとは完全に切り離して、並列に設けてもよい。
Furthermore, in the apparatus shown in FIG. 1, the filtered water immediately after backwashing is reused, for example, when the water quality is extremely poor, such as immediately after backwashing of the filtration unit (A), or when chemicals are used for backwashing of the filtration unit (A). When it is not suitable for supply to the filtration unit (B), the filtered water of the
ここで、ろ過ユニット6への水の供給を停止するかどうかの判断方法としては、ろ過ユニット(A)のろ過水質をオンラインでモニターする方法が最も現実的である。オンラインモニターとしては、濁度計、微粒子カウンター、SDI計、TOC計、油分計などが挙げられるが、本発明の目的からして濁度計やSDI計が好適である。本発明に適用する濁度計は、測定限界値が浄水レベルである0.1よりも小さい高精度のものが好ましく、例えば、散乱光方式のレーザー濁度計が適している。一方、SDI計は計測に分単位の時間を要するので、SDI計を用いる場合は、他のオンラインモニターの併用も好ましい。
Here, the most realistic method for determining whether or not to stop the supply of water to the
ところで、ろ過ユニット(A)は、原水中に含まれる懸濁物質や凝集剤によって生じたフロックによって経時的に目詰まりを生じていくため、時々逆洗を実施してろ材の目詰まりを取り除く必要がある。ここで、逆洗のタイミングとしては、あらかじめインターバルを設定して定期的に実施する方法や、定流量運転の場合はろ過圧力が設定上限を越えた場合などに実施するのが一般的である。また、目詰まりが進んでいくと懸濁物質などが徐々にろ材を通り抜けてくる現象、いわゆる破過が生じ、ろ過水質の悪化が見られるようになるため、ろ過水質をモニターし、水質が設定値を超えた場合に逆洗を実施することも可能である。 By the way, since the filtration unit (A) is clogged with time due to flocs generated by suspended substances and flocculants contained in the raw water, it is necessary to carry out backwash from time to time to remove clogging of the filter medium. There is. Here, the timing of backwashing is generally carried out by setting an interval in advance and periodically, or in the case of constant flow operation, when the filtration pressure exceeds a set upper limit. In addition, as clogging progresses, suspended matter and other substances gradually pass through the filter media, so-called breakthrough, and deterioration of filtered water quality is observed. Filtered water quality is monitored and water quality is set. Backwashing can also be performed when the value is exceeded.
しかしながら、逆洗実施後のろ過ユニット(A)は、目詰まりした懸濁物質などが除去されるが、逆洗によって懸濁物質がろ材全体に残留したり、ろ過抵抗が小さくなる一方で懸濁物質もすり抜けやすくなるため、残留した懸濁物質がリークしてきたり、ある程度ろ材が再度目詰まりしてろ過性能が良好になるまで、そのろ過水を清澄水として清澄水タンク18に送ることは好ましくない。そのため、図3に例示した様な、再ろ過ユニット(B)を具備しない従来の技術では、逆洗が終了し、ろ過が再開した後しばらくの間は、ろ過ユニット排水バルブ11a〜11dを通して排水する。一般的な浄水処理の場合は、この排水はせいぜい1時間程度であるが、逆浸透膜の供給水とするためにはさらに水質を高める必要がある。
However, the filtration unit (A) after backwashing removes clogged suspended matter, etc., but suspended matter remains in the entire filter medium due to backwashing or suspended while the filtration resistance is reduced. It is not preferable to send the filtered water as clarified water to the clarified
そこで、本発明者らが海水淡水化を目的として鋭意検討を実施した結果、ろ過ユニットを適正に設計、運転条件を設定した多くの場合、ろ過ユニット(A)から得られるろ過水はSDIが4以下になるまでに2〜3時間程度、3以下になるまでには5時間程度かかるとともに、その間は再ろ過ユニット(B)による再ろ過を実施することによって最終的に得られる清澄水のSDIが、ろ過ユニット(A)の逆洗直後から確実に4以下になること、さらに、ろ過ユニット(A)から得られるろ過水のSDIが3程度になると再ろ過ユニット(B)を通した後もSDIが変化しないことが判明した。 Therefore, as a result of intensive studies by the present inventors for the purpose of seawater desalination, in many cases where the filtration unit is appropriately designed and operating conditions are set, the filtered water obtained from the filtration unit (A) has an SDI of 4 It takes about 2 to 3 hours to reach below, and about 5 hours to reach below 3 and during that time the SDI of the clear water finally obtained by performing refiltration by the refiltration unit (B) is After the backwashing of the filtration unit (A), it should be surely 4 or less. Furthermore, when the SDI of the filtered water obtained from the filtration unit (A) becomes about 3, the SDI after passing through the refiltration unit (B). Turned out not to change.
さらに、本発明者らが原水、ろ過ユニット(A)のろ過水、再ろ過ユニット(B)のろ過水の水質の経時変化を追跡調査したところ、原水をろ過ユニット(A)でろ過して得られるろ過水では懸濁物質濃度が逆洗から時間を経るとともに低下し、5時間以内に一定濃度に到達するものの溶解性の有機物濃度は逆洗直後から時間経過後もほとんど同じ除去性能を発現すること、また、ろ過ユニット(A)のろ過水をさらに再ろ過した後のろ過水では、ろ過ユニット(A)のろ過水における懸濁物質濃度が定常に到達するまでは、再ろ過ユニット(B)のろ過水の懸濁物質濃度も低下するものの、ろ過ユニット(A)のろ過水の懸濁物質濃度が定常になると再ろ過ユニット(B)によって低減できる懸濁物質濃度も定常に達し、また、溶解性有機物濃度は、ろ過ユニット(A)の逆洗からの経過時間に関わらず同じ除去性能を発現することが明らかになった。 Furthermore, when the present inventors followed the water quality change over time of the raw water, the filtered water of the filtration unit (A), and the filtered water of the refiltration unit (B), the raw water was obtained by filtering with the filtration unit (A). In the filtered water, the suspended solid concentration decreases with time after backwashing, and reaches a certain concentration within 5 hours, but the soluble organic substance concentration exhibits almost the same removal performance immediately after backwashing and after the lapse of time. In addition, in the filtered water after further refiltering the filtered water of the filtration unit (A), the refiltration unit (B) until the suspended solid concentration in the filtered water of the filtration unit (A) reaches a steady state. The suspended solids concentration of the filtered water in the filtration unit (A) also decreases, but when the suspended solids concentration of the filtered water in the filtration unit (A) becomes steady, the suspended solids concentration that can be reduced by the refiltration unit (B) also reaches the steady state. Soluble organic Concentration revealed that express the same removal performance regardless of the elapsed time from the backwash of the filtration unit (A).
これらの結果から、逆洗約5時間後に懸濁物質濃度がほぼ定常状態に達した後のろ過ユニット(A)のろ過水質が良好であるならば、その後は再ろ過ユニット(B)による処理は不要であるとの結論に達した。 From these results, if the filtered water quality of the filtration unit (A) after the suspended solid concentration reaches a nearly steady state after about 5 hours of backwashing is good, then the treatment by the refiltration unit (B) A conclusion was reached that it was unnecessary.
これらを鑑み、ろ過ユニット(A)のうち水質が十分に良好でない逆洗後のろ過水のみを再ろ過ユニット(B)で水質が良好になるまで処理し、それ以外はろ過ユニット(A)のろ過水を直接清澄水として得ることが効率的であるという結論に達した。 In view of these, only the filtered water after backwashing in which the water quality is not sufficiently good in the filtration unit (A) is treated in the refiltration unit (B) until the water quality is good, and other than that of the filtration unit (A) It was concluded that it is efficient to obtain filtered water directly as clear water.
なお、上記のような洗浄を複数あるろ過ユニット(A)で行うにあたっては、全ろ過ユニットに対して同時に行うのではなく、一部のろ過ユニットについてのみ行い、順次、洗浄に供するろ過ユニットを切り替えていくことが好ましい。こうすることで、残りのろ過ユニット(A)は清澄水を得るための通常運転を行うことができ、ろ過装置全体としては連続的に安定して清澄水を得ることができる。 In addition, when performing the above-mentioned washing with a plurality of filtration units (A), it is not carried out for all filtration units at the same time, but only for some filtration units, and the filtration units used for washing are sequentially switched. It is preferable to continue. By carrying out like this, the remaining filtration unit (A) can perform the normal driving | operation for obtaining clarified water, and as a whole filtration apparatus, clarified water can be obtained continuously stably.
また、再ろ過ユニット(B)での処理の要否は、前述したようにオンラインの水質モニターでろ過ユニット5a〜5d(A)のろ過水質を監視し、基準値以内になったら直接清澄水タンクに送るという方法を採ることも出来るが、複数ユニットから安定して水量を得るためには、ろ過ユニット(A)の逆洗後一定時間だけろ過ユニット(B)に通水するように設定しておくことも好ましい。こうすることで、他のユニットとの切り替えなど運転シーケンスを設定しやすい。
In addition, the necessity of the treatment in the refiltration unit (B) is as follows. The filtered water quality of the
ところで、本発明に適用可能なろ過ユニットとしては、特に制限されるものではなく、一般的な砂ろ過(緩速ろ過、急速ろ過)、活性炭ろ過、繊維ろ過、膜ろ過など、原水水質に応じて適宜使用することが可能である。なお、その前後の補助処理として、凝集、沈澱、浮上、吸着などを併用することは全く差し支えなく、原水中に含まれる不純物に応じて適宜選択することが出来る。とくに、溶解性高分子や油分などろ過ユニット(A)で除去が難しい成分はあらかじめ除去しておくことが好ましく、そのためには、凝集材を添加して沈澱させたり浮上させたりして除去する方法が効果的である。 By the way, as a filtration unit applicable to this invention, it does not restrict | limit in particular, According to raw | natural water quality, such as general sand filtration (slow filtration, rapid filtration), activated carbon filtration, fiber filtration, membrane filtration, etc. It can be used as appropriate. In addition, as an auxiliary treatment before and after that, coagulation, precipitation, flotation, adsorption and the like can be used together, and can be appropriately selected according to the impurities contained in the raw water. In particular, it is preferable to remove in advance components that are difficult to remove with a filtration unit (A), such as a soluble polymer and oil, and for this purpose, a method of removing by adding an aggregating material and allowing it to settle or float Is effective.
また、ろ過の分離サイズを最適にするために砂の粒径、膜の細孔径なども適宜選択可能であるが、ろ過ユニット(A)では基本的に目的とする水質を得るためのろ過水質が求められ、再ろ過ユニット(B)ではろ過ユニット(A)でリークしてきたものを除去することが求められるため、再過ユニット(B)のろ過サイズがろ過ユニット(A)のろ過サイズよりも小さいことが好ましい。具体的には、例えば、砂ろ過に限定すると、再過ユニット(B)の砂の粒径がろ過ユニット(A)の砂の粒径と比べて小さいことが好ましい。また、ろ過ユニット(A)の前段に比較的大きな懸濁物質を除去できる粗ろ過処理がない場合などはろ過ユニット(A)をいわゆる複層ろ過にすると懸濁物質の捕捉が表面だけにとどまらない、いわゆる深層ろ過になるため、ろ過圧力の上昇を抑えることが出来て好ましい。一方、再ろ過ユニット(B)においては、すでにろ過ユニット(A)を通った水が供給されるため、砂ろ過の場合は単層ろ過の方が好ましい。また、膜ろ過を適用する場合も特に制限はないが、再ろ過ユニット(B)のろ過サイズ(すなわち、細孔径)をろ過ユニット(A)のろ過サイズよりも小さくすると本発明の目的を達成するのに好ましい。なお、一般に膜ろ過は他のろ過方法に比べてばらつきなく高い精度で不純物を除去できる一方で、膜の強度や逆洗に対する回復性で砂ろ過などに劣る場合が多い。そのため、膜ろ過を適用する場合であっても、ろ過ユニット(A)には砂ろ過を適用し、再ろ過ユニット(B)に膜ろ過を適用するのが好ましい。 Moreover, in order to optimize the separation size of filtration, the particle size of sand, the pore size of the membrane and the like can be selected as appropriate. However, in the filtration unit (A), the filtration water quality for obtaining the desired water quality is basically available. In the refiltration unit (B), since it is required to remove what has leaked in the filtration unit (A), the filtration size of the re-pass unit (B) is smaller than the filtration size of the filtration unit (A). It is preferable. Specifically, for example, when limited to sand filtration, it is preferable that the particle size of the sand of the re-pass unit (B) is smaller than the particle size of the sand of the filtration unit (A). In addition, when there is no coarse filtration treatment that can remove relatively large suspended substances in the previous stage of the filtration unit (A), trapping of suspended substances is not limited to the surface when the filtration unit (A) is so-called multi-layer filtration. Since so-called depth filtration is performed, an increase in filtration pressure can be suppressed, which is preferable. On the other hand, in the refiltration unit (B), since the water which has already passed through the filtration unit (A) is supplied, in the case of sand filtration, single layer filtration is preferable. Further, when membrane filtration is applied, there is no particular limitation, but the object of the present invention is achieved when the filtration size (that is, the pore diameter) of the refiltration unit (B) is made smaller than the filtration size of the filtration unit (A). Is preferable. In general, membrane filtration can remove impurities with high accuracy without variation compared to other filtration methods, but is often inferior to sand filtration due to the strength of the membrane and recoverability against backwashing. Therefore, even when membrane filtration is applied, it is preferable to apply sand filtration to the filtration unit (A) and apply membrane filtration to the refiltration unit (B).
ろ過ユニット(A)に砂ろ過を適用し、再ろ過ユニット(B)に膜ろ過を適用した場合のフローを図2に例示する。なお、このフローにおいて、再ろ過ユニット(B)として膜ろ過ユニット24を配置するとともに、図1におけるろ過ユニット逆洗排水バルブ14およびそれを設けている配管を設置しなかった点以外は、図1と同様である。また、膜ろ過は、ろ過中は再ろ過水排水バルブ15を閉止して、供給水全量をろ過する「全ろ過」にすることもできるし、一部をろ過し、残りを懸濁物質が濃縮された水として排水バルブ15から連続排水する「クロスフローろ過」にすることも可能である。このような構成にすることで、両方式の優れた点を引き出すことができる。
FIG. 2 illustrates a flow when sand filtration is applied to the filtration unit (A) and membrane filtration is applied to the refiltration unit (B). In this flow, except that the
本発明に適用可能なろ材としては特に制限されるものではなく、砂ろ過においては硅砂、アンスラサイト、ガーネット、軽石などを用いるのが一般的である。代表的なサイズとしては、複層の場合は1〜3mm程度の平均粒径を有するアンスラサイト、0.3〜1mm程度の平均粒径を有する硅砂を用いることが多いが、原水水質などによっては、粒径の大きな軽石や、さらに細かいガーネットを併用することも可能である。また、膜ろ過の場合は、本発明の目的であるSDIを低減させるために、平均細孔径が0.1〜1μm程度のいわゆる精密ろ過膜や0.001〜0.1ミクロン程度の限外ろ過膜を使用するのが好ましい。 The filter medium applicable to the present invention is not particularly limited. In sand filtration, dredged sand, anthracite, garnet, pumice, etc. are generally used. As a typical size, anthracite having an average particle size of about 1 to 3 mm and dredged sand having an average particle size of about 0.3 to 1 mm are often used in the case of multiple layers, but depending on the quality of raw water It is also possible to use pumice with a large particle size or finer garnet in combination. In the case of membrane filtration, in order to reduce the SDI which is the object of the present invention, a so-called microfiltration membrane having an average pore diameter of about 0.1 to 1 μm or an ultrafiltration of about 0.001 to 0.1 microns. It is preferred to use a membrane.
また、精密ろ過膜や限外ろ過膜を使用する場合、その形状としては、平膜、チューブ膜、中空糸膜など特に限定されるものではないが、体積あたりの膜面積を大きくとることが出来ることから、中空糸膜が好ましい。素材としても、無機材料や高分子材料やその複合材料を用いることが出来るが、中空糸膜の場合は、膜に十分な強度を付与することが困難で、揺動による材料の疲労による損傷も生じやすいことから、高分子膜の適用が効果的である。これらの中空糸膜の素材としては、ポリアクリロニトリル、ポリイミド、ポリエーテルスルホン、ポリフェニレンスルフィドスルホン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。細孔構造としても、均一な細孔構造を有する多孔質対称膜や、表面に緻密部分を有する非対称膜や2種類以上の素材からなる複合膜が挙げられる。 In addition, when using a microfiltration membrane or an ultrafiltration membrane, the shape is not particularly limited, such as a flat membrane, a tube membrane, and a hollow fiber membrane, but the membrane area per volume can be increased. Therefore, a hollow fiber membrane is preferable. As a material, an inorganic material, a polymer material, or a composite material thereof can be used. However, in the case of a hollow fiber membrane, it is difficult to impart sufficient strength to the membrane, and damage due to material fatigue due to rocking is also possible. Since it is likely to occur, application of a polymer film is effective. Examples of the material for these hollow fiber membranes include polyacrylonitrile, polyimide, polyethersulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polytetrafluoroethylene, polypropylene, and polyethylene. Examples of the pore structure include a porous symmetric membrane having a uniform pore structure, an asymmetric membrane having a dense portion on the surface, and a composite membrane composed of two or more kinds of materials.
本発明者らが鋭意検討した結果によると、機械的強度や汚れにくさ、化学的安定性の点からポリフッ化ビニリデンを素材とする中空糸膜が優れ、さらに、供給水が地下水や深層海水のように濁質があまり含まれない場合には対称膜が、また、表層海水、河川水、湖水などの表面水の場合には、供給水側表面に緻密部分を有する非対称膜や複合膜が優れている。一方、モジュール構造としては、供給水を加圧ろ過する方式として、平膜を海苔巻き状に巻回したスパイラル型、チューブ膜や中空糸膜を容器に収納した加圧型、ろ過側を吸引するモジュール構造として、浸漬型が挙げられる。 According to the results of intensive studies by the present inventors, a hollow fiber membrane made of polyvinylidene fluoride is superior from the viewpoint of mechanical strength, resistance to dirt, and chemical stability, and the supply water is groundwater or deep seawater. In the case of surface water such as surface seawater, river water, and lake water, an asymmetric membrane or a composite membrane having a dense portion on the surface of the supply water is excellent. ing. On the other hand, as a module structure, as a method of pressure filtration of supply water, a spiral type in which a flat membrane is wound in a laver shape, a pressure type in which a tube membrane or a hollow fiber membrane is housed in a container, a module that sucks the filtration side As the structure, an immersion type can be mentioned.
さらに、本発明の主旨からしてろ過ユニット(A)と再ろ過ユニット(B)単体の処理能力や基数、運転条件などに制限はないが、再ろ過ユニット(B)全体がろ過ユニット(A)の一部のバックアップの目的で使用されることを鑑みるに、再ろ過ユニット(B)の合計の許容処理水量が、ろ過ユニット(A)の合計の許容処理水量よりも小さく、かつ、再ろ過ユニット(B)の合計の許容処理水量がろ過ユニット(A)の単体の許容処理水量以上であることが好ましい。また、再ろ過ユニット(B)がろ過ユニット(A)のバックアップに間に合う様にするためには、ろ過ユニット(A)単体の基数をNa、逆洗間隔をTa1、逆洗+排水時間をTa2、再ろ過ユニット(B)への供給時間Ta3、再ろ過ユニット(B)単体の基数をNb、逆洗間隔をTb1、逆洗+排水時間をTb2とするとき、
Tb2/Tb1≦1−(Ta2+Ta3)/Ta1×Na/Nb
とするとよい。Furthermore, although there is no restriction | limiting in the processing capacity of a filtration unit (A) and a refiltration unit (B) single-piece | unit, and operating conditions from the main point of this invention, the refiltration unit (B) whole is a filtration unit (A). In view of the fact that the total allowable treated water amount of the refiltration unit (B) is smaller than the total allowable treated water amount of the filtration unit (A), the refiltration unit It is preferable that the total allowable treated water amount of (B) is equal to or larger than the single allowable treated water amount of the filtration unit (A). Further, in order for the refiltration unit (B) to be in time for the backup of the filtration unit (A), the base number of the filtration unit (A) is Na, the backwash interval is Ta 1 , and the backwash + drainage time is Ta. 2. When the supply time Ta 3 to the refiltration unit (B), the base number of the refiltration unit (B) alone is Nb, the backwash interval is Tb 1 , and the backwash + drainage time is Tb 2
Tb 2 / Tb 1 ≦ 1- (Ta 2 + Ta 3 ) / Ta 1 × Na / Nb
It is good to do.
ところで、前述のようにろ過ユニット(A)の前で凝集剤を添加する場合、凝集剤の種類は特に制限されるものではなく、ポリ塩化アルミニウム、硫酸バンド、塩化鉄(III)などの無機系凝集剤やカチオン系、アニオン系、ノニオン系の高分子凝集剤などから幅広く選択することが可能であるが、凝集剤によっては、凝集しやすいpHを調整することが好ましく、例えば塩化鉄(III)の場合は一般的にはpH5以上8未満、好ましくは、pH7以下である。一方、再ろ過ユニット(B)の前で凝集剤を添加することも出来る。この場合は、ろ過ユニット(A)で凝集除去できなかったものが含有されているので、ろ過ユニット(A)と種類の異なる、例えば、荷電の異なる凝集剤を添加すると効果的である。 By the way, when the flocculant is added before the filtration unit (A) as described above, the kind of the flocculant is not particularly limited, and inorganic systems such as polyaluminum chloride, sulfate band, iron (III) chloride, and the like. It is possible to select from a wide range of flocculants and cationic, anionic and nonionic polymer flocculants. However, depending on the flocculant, it is preferable to adjust the pH at which the flocculent is easy to flocculate, for example, iron (III) chloride. In general, the pH is 5 or more and less than 8, preferably 7 or less. On the other hand, a flocculant can also be added in front of the refiltration unit (B). In this case, since a substance that could not be aggregated and removed by the filtration unit (A) is contained, it is effective to add a coagulant having a different type from the filtration unit (A), for example, a different charge.
本発明のろ過装置は飲料水製造、産業用水製造、廃水処理、湖沼浄化など特に制限されるものではなく、様々な原水を浄化するのに適している。さらに、本発明のろ過装置を適用して得られた処理水は水質基準に応じて、そのまま利用することも可能であるが、本発明のろ過装置の下流側に逆浸透膜などの半透膜ユニットを設け、ろ過装置で得られた清澄水を脱塩処理することも好ましい。逆浸透膜などの供給水として用いれば、非常に清澄な水を高回収率、低コストで製造することができる。とくに本発明のろ過装置を海水から淡水を製造する大型プラントの前処理に適用することで、低コストで安定した清澄海水を逆浸透膜に供給することが出来、海水淡水化コスト低減に大きく貢献することが出来る。
ここで、用いられる逆浸透膜は、海水中の塩分を高度に除去することが要求されるが、酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材を使用することができる。またその膜構造は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合膜のどちらでもよい。The filtration apparatus of the present invention is not particularly limited to drinking water production, industrial water production, wastewater treatment, lake purification, etc., and is suitable for purifying various raw waters. Furthermore, the treated water obtained by applying the filtration device of the present invention can be used as it is according to the water quality standard, but a semipermeable membrane such as a reverse osmosis membrane is provided downstream of the filtration device of the present invention. It is also preferable to provide a unit and desalinate the clarified water obtained by the filtration device. If used as feed water for reverse osmosis membranes, etc., very clear water can be produced with high recovery and low cost. In particular, by applying the filtration device of the present invention to pretreatment of a large plant that produces fresh water from seawater, it is possible to supply low-cost, stable, clear seawater to the reverse osmosis membrane, greatly contributing to the reduction of seawater desalination costs. I can do it.
Here, the reverse osmosis membrane to be used is required to highly remove salt from seawater, but polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, and vinyl polymer can be used. . In addition, the membrane structure has a dense layer on at least one side of the membrane, and on the asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane. Either a composite membrane having a very thin separation functional layer formed of another material may be used.
しかしながら、中でも高耐圧性と高透水性、高溶質除去性能を兼ね備え、優れたポテンシャルを有する、ポリアミドを分離機能層とした複合膜が好ましい。特に、海水を原水とするような場合には、浸透圧以上の圧力を供給水側にかける必要があり、実質的には少なくとも5MPaの操作圧力が負荷されることが多い。この圧力に対して、高い透水性と阻止性能を維持できるためにはポリアミドを機能層とし、それを多孔質膜や不織布からなる支持体で保持する構造のものが適している。また、ポリアミド半透膜としては、多官能アミンと多官能酸ハロゲン化物との重縮合反応により得られる架橋ポリアミドの分離機能層を支持体に有してなる複合半透膜が適している。 However, among them, a composite membrane having a high pressure resistance, high water permeability, and high solute removal performance and having an excellent potential and using polyamide as a separation functional layer is preferable. In particular, when seawater is used as raw water, it is necessary to apply a pressure equal to or higher than the osmotic pressure to the supply water side, and an operating pressure of at least 5 MPa is often applied substantially. In order to maintain high water permeability and blocking performance against this pressure, a structure in which polyamide is used as a functional layer and is held by a support made of a porous membrane or nonwoven fabric is suitable. Moreover, as the polyamide semipermeable membrane, a composite semipermeable membrane having a separation functional layer of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide on a support is suitable.
<参考例>
東レ(株)愛媛工場の近傍の海水(全溶質濃度3.4重量、水温25℃、pH=7.5)を硫酸でpH=6.2に調整(硫酸消費量26mg/リットル)し、流量250リットル/hで、塩化鉄(III)を15mg/リットル添加した後、容積20Lのタンクで撹拌した上で、加圧浮上装置(幅200mm×長300mm×高2000mm、浮上LV=4m/h、加圧水圧0.5MPa、循環水量30リットル/h)に供給した。その処理水を同じ流量250リットル/hで砂ろ過ユニット(A)に供給し、ろ過処理した。このろ過ユニットは、直径20cmの縦型で、ろ材として硅砂(有効径0.6mm、均等係数1.4)を500mmおよびその上にアンスラサイト(有効径1.4mm、均等係数1.4)を500mmを積層したものである。この砂ろ過器を逆洗間隔24時間(ろ過運転23時間+逆洗時間1時間)で運転した。<Reference example>
Seawater (total solute concentration: 3.4 wt., Water temperature: 25 ° C., pH = 7.5) near Toray Industries, Inc. factory adjusted to pH = 6.2 with sulfuric acid (sulfuric acid consumption 26 mg / liter), flow rate After adding 15 mg / liter of iron (III) chloride at 250 liter / h, the mixture was stirred in a tank with a volume of 20 L, and then a pressure levitation device (width 200 mm × length 300 mm × height 2000 mm, levitation LV = 4 m / h, The pressure water pressure was 0.5 MPa and the circulating water volume was 30 liters / h). The treated water was supplied to the sand filtration unit (A) at the same flow rate of 250 liter / h and filtered. This filtration unit is a vertical type with a diameter of 20 cm, and 500 mm of sand (effective diameter 0.6 mm, uniformity coefficient 1.4) is used as a filter medium, and anthracite (effective diameter 1.4 mm, uniformity coefficient 1.4) thereon. 500 mm is laminated. The sand filter was operated at a backwash interval of 24 hours (23 hours of filtration operation + 1 hour of backwash time).
さらに、ろ過ユニット(A)の処理水を、ろ材として硅砂(有効径0.35mm、均等係数1.4)を800mm単層にした以外はろ過ユニット(A)と同じ構造の再ろ過ユニット(B)によって、逆洗間隔48時間(ろ過運転47時間+逆洗1時間)で全量ろ過処理した。 Furthermore, the re-filtration unit (B) having the same structure as that of the filtration unit (A) except that the treated water of the filtration unit (A) is a single layer of cinnabar sand (effective diameter 0.35 mm, uniformity coefficient 1.4) as a filter medium. ), The whole amount was filtered at a backwash interval of 48 hours (47 hours of filtration operation + 1 hour of backwashing).
それぞれのろ過水のSDIをろ過ユニット(A)の逆洗直後からSDIを測定したところ、図5のようになった。なお、SDIについては、ミリポア(株)製のSDI測定装置を用いて、ASTM D4189−95の方法に従って、15分間の測定(すなわち、SDI15)を実施した。また、図中、波線矢印はSDIの概略推定線、実践矢印はそれぞれのろ過ユニットの逆洗を実施したタイミングを意味している。When SDI of each filtered water was measured immediately after backwashing of the filtration unit (A), it was as shown in FIG. Note that the SDI, using SDI measuring apparatus manufactured by Millipore Corporation, according to the method of ASTM D4189-95, of 15 minutes measured (i.e., SDI 15) was carried out. Moreover, in the figure, the wavy arrow means the approximate estimation line of SDI, and the practice arrow means the timing when each filter unit is backwashed.
<実施例1>
上記の参考例から、ろ過ユニット(A)4基(5a−5d)と再ろ過ユニット(B)1基(6)を用いて図1に示すフローを構成し、表1のようなシーケンスで運転すれば、4基のろ過ユニット(A)の逆洗後5時間までの処理水は再ろ過ユニット(B)で処理することになり、常時SDI≦3の清澄水を23m3/日製造できると計算された。また、ろ過ユニット(A)と再ろ過ユニット(B)の逆洗を含む稼働のべ時間は、116.5時間・基、凝集剤塩化鉄(III)と硫酸の使用量は、それぞれ345g/日、600g/日となった。また、取水量に対する清澄水生産量の比率は100%となった。<Example 1>
From the above reference example, the flow shown in FIG. 1 is configured using four filtration units (A) (5a-5d) and one refiltration unit (B) (6), and operates in the sequence shown in Table 1. Then, the treated water up to 5 hours after backwashing the four filtration units (A) will be treated in the re-filtration unit (B), and clarified water with SDI ≦ 3 can always be produced at 23 m 3 / day. calculated. In addition, the total operation time including backwashing of the filtration unit (A) and the refiltration unit (B) is 116.5 hours / group, and the use amounts of the flocculant iron chloride (III) and sulfuric acid are 345 g / day, respectively. 600 g / day. Moreover, the ratio of the clarified water production amount to the water intake amount was 100%.
なお、表中、B、F、FB、R、F1〜F4は、B=逆洗、F=ろ過、FB=ろ過→再ろ過へ、R=休止、F1〜F4=ろ過ユニット5a−5dのろ過水の再ろ過、という運転状態を示している。
In the table, B, F, FB, R, and F1 to F4 are B = back washing, F = filtration, FB = filtration to re-filtration, R = pause, F1 to F4 = filtration of
<比較例1>
図3に示すように、再ろ過ユニット(B)を設けないフローを想定した。参考例から、再ろ過ユニット(B)を備えない場合は、1基のろ過ユニットで24時間中5時間の水質がSDI>3となり、逆洗1時間を差し引いて、18時間、SDI≦3の清澄水を製造できることになった。すなわち、設備費を同じとするために実施例1と同じろ過ユニット数(A+B=5基)と考えると、清澄水を22.5m3/日、5基のろ過ユニット(A)の逆洗を含む稼働のべ時間は、120時間・基、凝集剤塩化鉄(III)と硫酸の使用量は、それぞれ430g/日、750g/日となり、実施例1に比べて製造水量はわずかに少なく、のべ稼働時間、薬品使用量は多い(すなわち、運転コストが高い)という結果になった。また、取水量に対する清澄水生産量の比率は78%となった。運転シーケンスを表2に示す。<Comparative Example 1>
As shown in FIG. 3, the flow which does not provide a refiltration unit (B) was assumed. From the reference example, when the refiltration unit (B) is not provided, the water quality of 5 hours in 24 hours is SDI> 3 with one filtration unit, and 1 hour of backwash is subtracted, and 18 hours, SDI ≦ 3 It became possible to produce clear water. That is, considering the same number of filtration units as in Example 1 (A + B = 5 units) in order to make the equipment costs the same, the clarified water is 22.5 m 3 / day, and the 5 filtration units (A) are backwashed. The total operating time is 120 hours / group, and the usage of the flocculant iron (III) chloride and sulfuric acid is 430 g / day and 750 g / day, respectively, and the amount of water produced is slightly less than in Example 1. As a result, the operation time and chemical consumption were large (that is, the operation cost was high). Moreover, the ratio of the clarified water production amount to the water intake amounted to 78%. Table 2 shows the operation sequence.
なお、表中、B、F、FB、R、F1〜F4は、B=逆洗、F=ろ過、FB=ろ過→再ろ過へ、R=休止、という運転状態を示している。 In the table, B, F, FB, R, and F1 to F4 indicate operating states of B = back washing, F = filtration, FB = filtration → refiltration, and R = pause.
Claims (15)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007025170 | 2007-02-05 | ||
JP2007025170 | 2007-02-05 | ||
PCT/JP2008/050622 WO2008096585A1 (en) | 2007-02-05 | 2008-01-18 | Filter apparatus and method of water treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2008096585A1 true JPWO2008096585A1 (en) | 2010-05-20 |
Family
ID=39681496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008508013A Pending JPWO2008096585A1 (en) | 2007-02-05 | 2008-01-18 | Filtration apparatus and water treatment method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2008096585A1 (en) |
TW (1) | TW200914382A (en) |
WO (1) | WO2008096585A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112012023508A2 (en) * | 2010-03-18 | 2016-05-31 | Envirostream Solutions Pty Ltd | mobile water filtration unit. |
EP2607320A4 (en) * | 2010-08-17 | 2014-05-14 | Toray Industries | Fresh water producing apparatus and method for operating same |
TWI419736B (en) * | 2011-07-19 | 2013-12-21 | Wang Yung Chuan Lee | Water filtration filter system with secondary leakage prevention function |
JP6144574B2 (en) | 2013-08-23 | 2017-06-07 | 日立造船株式会社 | Seawater desalination system and seawater desalination method |
KR101614077B1 (en) | 2015-07-06 | 2016-04-20 | 주식회사 필터레인 | Filter system using stackable filter plate |
KR101725285B1 (en) * | 2015-10-01 | 2017-04-10 | 주식회사 포스코건설 | Sequential waiting membrane filtration apparatus and membrane filtration method thereof |
WO2017115429A1 (en) * | 2015-12-28 | 2017-07-06 | 三菱重工業株式会社 | Water treatment method and water treatment system |
JP7316156B2 (en) * | 2019-09-02 | 2023-07-27 | 水ing株式会社 | Water purification method and water purification device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS565181A (en) * | 1979-06-28 | 1981-01-20 | Ebara Infilco Co Ltd | Treatment of organic waste water |
JPS62187610U (en) * | 1986-05-22 | 1987-11-28 | ||
JPH0880406A (en) * | 1994-09-13 | 1996-03-26 | Toyo Eng Corp | Method for washing filter medium |
JPH10476A (en) * | 1996-06-14 | 1998-01-06 | Ngk Insulators Ltd | Sewage sterilizer using antibacterial agent |
JP4073072B2 (en) * | 1998-01-26 | 2008-04-09 | Agcエンジニアリング株式会社 | Raw water desalination method and desalination equipment by membrane method |
JP3852660B2 (en) * | 2000-01-24 | 2006-12-06 | 富士電機システムズ株式会社 | Control method of filtration basin equipment |
JP2002011305A (en) * | 2000-06-29 | 2002-01-15 | Ishigaki Co Ltd | Filtration apparatus equipped with screen |
JP2005334777A (en) * | 2004-05-27 | 2005-12-08 | Kubota Corp | Water purifier |
-
2008
- 2008-01-18 WO PCT/JP2008/050622 patent/WO2008096585A1/en active Application Filing
- 2008-01-18 JP JP2008508013A patent/JPWO2008096585A1/en active Pending
- 2008-02-04 TW TW097104124A patent/TW200914382A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2008096585A1 (en) | 2008-08-14 |
TW200914382A (en) | 2009-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Advanced membrane technology and applications | |
Leiknes et al. | The development of a biofilm membrane bioreactor | |
Van Hoof et al. | The effect of ultrafiltration as pretreatment to reverse osmosis in wastewater reuse and seawater desalination applications | |
Ebrahim et al. | Fifteen years of R&D program in seawater desalination at KISR Part I. Pretreatment technologies for RO systems | |
JPWO2008096585A1 (en) | Filtration apparatus and water treatment method | |
US10583401B2 (en) | Integrated ultrafiltration and reverse osmosis desalination systems | |
JP2008173534A (en) | Water treatment method and water treatment apparatus | |
Massé et al. | Dead-end and tangential ultrafiltration of natural salted water: Influence of operating parameters on specific energy consumption | |
JP2012239948A (en) | Method for washing filter medium, and water treatment apparatus | |
Hawari et al. | Dilution of seawater using dewatered construction water in a hybrid forward osmosis system | |
KR100847909B1 (en) | System for taking fresh water using centrifugal separation type pre-treatment filter apparatus | |
JP2006272218A (en) | Two-stage membrane filtration system and operation method of two-stage membrane filtration system | |
WO2017159303A1 (en) | Method for treating waste water having high hardness | |
JP6613323B2 (en) | Water treatment apparatus and water treatment method | |
KR101786821B1 (en) | Water treatment apparatus with gravity-driven type | |
KR20110077177A (en) | Low-energy system for purifying waste water using forward osmosis | |
WO2011042704A1 (en) | Multi layered particulate filter for reducing the turbidity and sdi of water filter | |
Ericsson et al. | Membrane applications in raw water treatment with and without reverse osmosis desalination | |
KR20130123879A (en) | High efficiency water treatment system using hollow fiber membrane and method of the same | |
JP2006136753A (en) | High pressure type fine sand filter and filtering method using it | |
JP3697938B2 (en) | Wastewater treatment equipment | |
Kwon et al. | Fouling control of a submerged membrane module (YEF) by filtration modes | |
Kang et al. | Use of submerged microfiltration membranes for glass industry wastewater reclamation: pilot-scale testing and membrane cleaning | |
KR102715984B1 (en) | Sea water desalting system for prodeced water of variable treatment type, and variable operation method for the same | |
Ezzeghni | Designing and optimizing 10,000 m3/day conventional SWRO desalination plant |