JP7383141B2 - TOC removal device and TOC removal method - Google Patents

TOC removal device and TOC removal method Download PDF

Info

Publication number
JP7383141B2
JP7383141B2 JP2022524323A JP2022524323A JP7383141B2 JP 7383141 B2 JP7383141 B2 JP 7383141B2 JP 2022524323 A JP2022524323 A JP 2022524323A JP 2022524323 A JP2022524323 A JP 2022524323A JP 7383141 B2 JP7383141 B2 JP 7383141B2
Authority
JP
Japan
Prior art keywords
water
toc
treated
edi
deionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022524323A
Other languages
Japanese (ja)
Other versions
JPWO2021235130A1 (en
Inventor
賢治 柴崎
慶介 佐々木
一重 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Publication of JPWO2021235130A1 publication Critical patent/JPWO2021235130A1/ja
Application granted granted Critical
Publication of JP7383141B2 publication Critical patent/JP7383141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Description

本発明は、被処理水中のTOC除去装置及びTOC除去方法に関する。 The present invention relates to an apparatus for removing TOC from water to be treated and a method for removing TOC.

従来から、半導体装置の製造工程や液晶装置の製造工程における洗浄水等として、有機物、イオン成分、微粒子、細菌等の不純物が高度に除去された超純水等の純水が使用されている。特に、半導体装置を含む電子部品を製造する際には、その洗浄工程において多量の純水が使用されており、その水質に対する要求も年々高まっている。
例えば、微量の不純物として全有機炭素(TOC:Total Organic Carbon)の低減が求められている。すなわち、一次系(一次純水システム)のイオン交換樹脂装置の前段に紫外線酸化装置(UV酸化装置)を設置し、TOC成分を分解・除去した後、サブシステム(二次純水システム)へと送水する構成が採用されている。TOCを低減した水を得るために、一次系で効率よくTOCを低減させておくことが重要であり、これによりサブシステムでのUV酸化装置の負担を小さくすることも可能となる。
BACKGROUND ART Conventionally, pure water such as ultrapure water from which impurities such as organic substances, ionic components, particulates, and bacteria have been highly removed has been used as cleaning water in the manufacturing process of semiconductor devices and the manufacturing process of liquid crystal devices. In particular, when manufacturing electronic components including semiconductor devices, a large amount of pure water is used in the cleaning process, and demands on the quality of the water are increasing year by year.
For example, it is required to reduce total organic carbon (TOC) as a trace impurity. In other words, an ultraviolet oxidation device (UV oxidation device) is installed before the ion exchange resin device of the primary system (primary pure water system), and after decomposing and removing TOC components, it is sent to the subsystem (secondary pure water system). A water supply configuration is adopted. In order to obtain water with reduced TOC, it is important to reduce TOC efficiently in the primary system, which also makes it possible to reduce the burden on the UV oxidizer in the subsystem.

ところで、ノンケミカルへの要望から、一次系のイオン交換樹脂装置を電気再生式脱イオン装置(EDI)に置き換えることが求められている。
特許文献1には、一次系に紫外線酸化装置とイオン交換装置とをこの順で備え、被処理水中の有機物を紫外線酸化装置によって分解し、有機物が分解された被処理水をイオン交換装置によって処理すること、イオン交換装置は、電気再生式脱イオン装置を1段又は複数段直列に接続した再生型イオン交換装置であることが記載されている。
By the way, due to the demand for non-chemical products, there is a demand for replacing the primary ion exchange resin device with an electrical regenerative deionization device (EDI).
Patent Document 1 discloses that a primary system is equipped with an ultraviolet oxidation device and an ion exchange device in this order, organic matter in the water to be treated is decomposed by the ultraviolet oxidation device, and the water to be treated in which the organic matter has been decomposed is treated by the ion exchange device. It is described that the ion exchange device is a regenerative ion exchange device in which one or more stages of electrical regenerative deionization devices are connected in series.

特開2017-127875号公報Japanese Patent Application Publication No. 2017-127875

本発明者らは、特許文献1に記載の方法のようにUV酸化装置→EDI→EDIというフローでは、TOC濃度を低減した処理水を得ようとする場合、UV酸化装置のエネルギー効率が悪いということを見出した。つまり、被処理水に含まれるTOCには、EDIで除去できるイオン化可能なイオン性のTOCと、EDIでは除去できない非イオン性のTOCがある。そして、前述したフローでは、EDIで除去できるイオン化可能なTOCについてもUV酸化しているため、その分、UV酸化装置のエネルギー効率が悪くなるということを見出した。 The present inventors found that the energy efficiency of the UV oxidizer is poor when trying to obtain treated water with a reduced TOC concentration in the flow of UV oxidizer → EDI → EDI as in the method described in Patent Document 1. I discovered that. That is, the TOC contained in the water to be treated includes ionizable ionic TOC that can be removed by EDI and non-ionic TOC that cannot be removed by EDI. It has also been found that in the above-described flow, ionizable TOC that can be removed by EDI is also UV-oxidized, and therefore the energy efficiency of the UV oxidation device is degraded accordingly.

そこで、本発明の目的は、UV酸化装置のエネルギー効率が良く、被処理水中のTOCを低減できるTOC除去装置及びTOC除去方法を提供することにある。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a TOC removal device and a TOC removal method that have good energy efficiency in a UV oxidation device and can reduce TOC in water to be treated.

本発明者らは、複数の電気再生式脱イオン装置と紫外線酸化装置を適切に組み合わせることにより、UV酸化装置のエネルギー効率を向上させつつ、TOC濃度を効率よく低減できることを見出した。 The present inventors have discovered that by appropriately combining a plurality of electrical regenerative deionization devices and a UV oxidation device, the TOC concentration can be efficiently reduced while improving the energy efficiency of the UV oxidation device.

すなわち、本発明は、被処理水が供給される第1の電気再生式脱イオン装置と、前記第1の電気再生式脱イオン装置で処理された処理水が供給される紫外線酸化装置と、前記紫外線酸化装置で処理された処理水が供給される第2の電気再生式脱イオン装置と、を有する、一次純水システムとしてのTOC除去装置に関する。 That is, the present invention provides a first electrical regenerative deionization device to which water to be treated is supplied, an ultraviolet oxidation device to which treated water treated by the first electrical regeneration deionization device is supplied, and a UV oxidation device to which the treated water is supplied. The present invention relates to a TOC removal device as a primary pure water system , which includes a second electrical regeneration type deionization device to which treated water treated with an ultraviolet oxidation device is supplied.

また本発明は、第1の電気再生式脱イオン装置と、紫外線酸化装置と、第2の電気再生式脱イオン装置と、を有する一次純水システムとしてのTOC除去装置を用いてTOCを除去するTOC除去方法であって、(a)被処理水を前記第1の電気再生式脱イオン装置に供給して処理するステップと、(b)前記第1の電気再生式脱イオン装置からの処理水を前記紫外線酸化装置に供給して処理するステップと、(c)前記紫外線酸化装置からの処理水を前記第2の電気再生式脱イオン装置に供給して処理するステップと、を有するTOC除去方法に関する。 Moreover, the present invention removes TOC using a TOC removal device as a primary pure water system having a first electrical regenerative deionization device, an ultraviolet oxidation device, and a second electrical regeneration deionization device. A TOC removal method, comprising: (a) supplying the water to be treated to the first electro-regenerative deionization device for treatment; and (b) treated water from the first electro-regeneration deionization device. (c) supplying treated water from the ultraviolet oxidation device to the second electrical regenerative deionization device for treatment. Regarding.

本発明によれば、UV酸化装置のエネルギー効率が良く、被処理水中のTOCを低減できるTOC除去装置及びTOC除去方法を提供することができる。 According to the present invention, it is possible to provide a TOC removal device and a TOC removal method that have high energy efficiency in a UV oxidation device and can reduce TOC in water to be treated.

本発明の一実施態様に係るTOC除去装置の構成を示す概念図である。1 is a conceptual diagram showing the configuration of a TOC removal device according to an embodiment of the present invention. 比較例に用いた装置の構成を示す概念図である。FIG. 2 is a conceptual diagram showing the configuration of an apparatus used in a comparative example. EDIに超純水(UPW)を通水した場合の電流の印加によるTOC値の変化を示す図である。FIG. 3 is a diagram showing changes in TOC value due to application of current when ultrapure water (UPW) is passed through EDI.

以下、図面を参照して本発明を説明するが、本発明は図面に記された構成に限定されるものではない。 The present invention will be described below with reference to the drawings, but the present invention is not limited to the configuration shown in the drawings.

図1において、本発明に係るTOC除去装置100は、ポンプ45を介して被処理水10が供給される第1の電気再生式脱イオン装置(EDI-1)30と、第1の電気再生式脱イオン装置30で処理された水が供給される紫外線酸化装置(UV酸化装置)40と、紫外線酸化装置(UV酸化装置)40で処理された水が供給される第2の電気再生式脱イオン装置(EDI-2)50と、を備える。
そして、被処理水10が第1の電気再生式脱イオン装置30に供給されると、第1の電気再生式脱イオン装置30によって被処理水中のイオン化可能なTOCが除去される。次いで、その処理水(つまり、第1の電気再生式脱イオン装置30によってイオン化可能なTOCが除去された被処理水)が紫外線酸化装置40に供給されて、非イオン性のTOC成分が分解される。その後、その処理水(つまり、紫外線酸化装置40に供給され、非イオン性のTOC成分が分解された被処理水)が第2の電気再生式脱イオン装置(EDI-2)50に送られ、紫外線酸化装置40で分解されたTOCが第2の電気再生式脱イオン装置(EDI-2)50によって除去され、処理水20が得られる。
In FIG. 1, a TOC removal device 100 according to the present invention includes a first electrical regeneration deionization device (EDI-1) 30 to which water to be treated 10 is supplied via a pump 45, and a first electrical regeneration deionization device (EDI-1) An ultraviolet oxidation device (UV oxidation device) 40 to which water treated by the deionization device 30 is supplied, and a second electric regenerative deionization device to which water treated by the ultraviolet oxidation device (UV oxidation device) 40 is supplied. A device (EDI-2) 50 is provided.
Then, when the water to be treated 10 is supplied to the first electro-regenerative deionization device 30, the first electro-regeneration deionization device 30 removes ionizable TOC from the water to be treated. The treated water (that is, the treated water from which ionizable TOC has been removed by the first electroregenerative deionization device 30) is then supplied to the ultraviolet oxidation device 40 to decompose nonionic TOC components. Ru. Thereafter, the treated water (that is, the treated water supplied to the ultraviolet oxidation device 40 and in which nonionic TOC components have been decomposed) is sent to the second electroregenerative deionization device (EDI-2) 50, TOC decomposed in the ultraviolet oxidation device 40 is removed by a second electrical regenerative deionization device (EDI-2) 50, and treated water 20 is obtained.

本発明に用いられる紫外線酸化装置40は、有機物を分解する目的で設置される。そのため、200nm以下の波長を含む紫外線を照射して、紫外線酸化処理を行う紫外線酸化装置を用いることが好ましい。なお、サブシステムにおいても紫外線酸化装置を備える場合があるが、例えば超純水のTOC濃度として1μg/L以下が求められるような設備においては、溶存酸素(DO)濃度の比較的高い1次純水システムに紫外線酸化装置を設置することにより、全体としてのエネルギーコストを抑えることが可能となる。溶存酸素が存在することにより、紫外線照射により溶存酸素からヒドロキシラジカルや過酸化水素が生成し、TOC分解効率が向上することが期待できる。
また、本発明において照射する紫外線のエネルギー量としては、特に制限はなく、また被処理水中に含まれる非イオン性のTOC成分の量にもよるが、例えば0.1~0.5kW・h/mなどを挙げることができる。
The ultraviolet oxidation device 40 used in the present invention is installed for the purpose of decomposing organic matter. Therefore, it is preferable to use an ultraviolet oxidation device that performs ultraviolet oxidation treatment by irradiating ultraviolet light having a wavelength of 200 nm or less. Note that the subsystem may also be equipped with an ultraviolet oxidation device, but for example, in equipment where the TOC concentration of ultrapure water is required to be 1 μg/L or less, primary pure water with a relatively high dissolved oxygen (DO) concentration is used. By installing an ultraviolet oxidizer in a water system, it is possible to reduce overall energy costs. Due to the presence of dissolved oxygen, hydroxyl radicals and hydrogen peroxide are generated from the dissolved oxygen by ultraviolet irradiation, and it is expected that the TOC decomposition efficiency will be improved.
Furthermore, the amount of energy of the ultraviolet rays irradiated in the present invention is not particularly limited and depends on the amount of nonionic TOC components contained in the water to be treated, but for example, 0.1 to 0.5 kW/h/ Examples include m3 .

次に、本発明に用いられるEDIについて説明する。EDIは、イオン交換膜にて区画され、イオン交換体が充填された脱塩室と、脱塩室にて脱塩されたイオンを濃縮する濃縮室と、電流を通電するための陽極と陰極とを有する装置である。そして、電流を通電して運転することで、イオン交換体による被処理水の脱イオン化(脱塩)処理と、イオン交換体の再生処理とを同時に行う装置である。EDIに通水された被処理水は、脱塩室に充填されたイオン交換体によって脱塩され、EDI処理水としてEDI外部に排出される。同様に、イオン類が濃縮された濃縮水は、EDI濃縮水として外部に排出される。 Next, EDI used in the present invention will be explained. EDI consists of a desalination chamber divided by an ion exchange membrane and filled with an ion exchanger, a concentration chamber that concentrates the ions desalted in the desalination chamber, and an anode and a cathode for passing current. This is a device with The device is operated by applying current to simultaneously perform deionization (desalination) of the water to be treated using the ion exchanger and regeneration treatment of the ion exchanger. The water to be treated that has passed through the EDI is desalinated by an ion exchanger filled in a desalination chamber, and is discharged to the outside of the EDI as EDI treated water. Similarly, concentrated water in which ions are concentrated is discharged to the outside as EDI concentrated water.

ここで、EDIでは、電流を印加することにより水解離反応(HO→H+OH)が進行し、イオン交換体に捕捉されたイオンは、イオン交換体を伝ってイオン交換膜及び濃縮室まで移動する。
移動するイオンの量は電流値に依存するため、イオン負荷量の少ない水に対して過剰に電流値をかけると、イオン交換体に捕捉されたイオンの移動のほかに、水解離反応が過剰に発生することになる。すると、イオン交換体自体が劣化してしまい、イオン交換基が壊れ運転電圧が上昇する。この時壊れたイオン交換体の一部が処理水のTOC濃度を上昇させる恐れがある。
つまり本発明においては、第1のEDIの消費電力よりも第2のEDIの消費電力を低く抑えて運転することが望ましい。これは、第1のEDIによって被処理水中のイオン化可能なTOCが除去された分、第2のEDIの供給水のイオン負荷が小さいためである。第1のEDIおよび第2のEDIとしては、同じEDIを用いてもよく、異なるEDIを用いてもよい。
Here, in EDI, a water dissociation reaction (H 2 O → H + +OH - ) progresses by applying an electric current, and the ions captured by the ion exchanger pass through the ion exchanger to the ion exchange membrane and concentration. Move to the room.
The amount of moving ions depends on the current value, so if an excessive current value is applied to water with a low ion load, in addition to the movement of ions captured by the ion exchanger, the water dissociation reaction will be excessive. will occur. As a result, the ion exchanger itself deteriorates, the ion exchange groups break down, and the operating voltage increases. At this time, there is a possibility that a part of the broken ion exchanger may increase the TOC concentration of the treated water.
In other words, in the present invention, it is desirable to operate with the power consumption of the second EDI lower than the power consumption of the first EDI. This is because the ion load of the feed water of the second EDI is small as the ionizable TOC in the water to be treated is removed by the first EDI. The same EDI may be used as the first EDI and the second EDI, or different EDIs may be used.

なお、EDIの回収率は、EDIに供給される被処理水量と、得られる処理水量によって算出される。すなわち、EDI回収率=(EDI処理水量)/(EDI被処理水量)×100(%)である。EDI回収率に特に制限はないが、90~95%であることが好ましい。 Note that the recovery rate of EDI is calculated based on the amount of treated water supplied to EDI and the amount of treated water obtained. That is, EDI recovery rate=(EDI treated water amount)/(EDI treated water amount)×100(%). There is no particular limit to the EDI recovery rate, but it is preferably 90 to 95%.

本発明に用いられる被処理水10としては、特に制限はないが、工水、地下水、表層水、水道水、海水、海水を逆浸透法または蒸発法等によって脱塩した海水淡水化処理水、下水、下水処理水、各種排水、例えば半導体製造工程で使用された排水、これらの混合水が挙げられる。なお、被処理水成分としては、導電率が10μS/cm以下、TOC濃度が500ppb以下、のいずれか一つ以上を満たすことが好ましい。これらの条件を満たさない場合は、凝集沈殿処理、ろ過処理、軟化処理、脱炭酸処理、活性炭処理、等の前処理を行うことが好ましい。 The water to be treated 10 used in the present invention is not particularly limited, but includes industrial water, groundwater, surface water, tap water, seawater, desalinated water obtained by desalinating seawater by reverse osmosis or evaporation, etc. Examples include sewage, treated sewage water, various types of wastewater, such as wastewater used in semiconductor manufacturing processes, and mixed water thereof. In addition, it is preferable that the water component to be treated satisfies at least one of the following: electrical conductivity of 10 μS/cm or less, and TOC concentration of 500 ppb or less. If these conditions are not met, it is preferable to perform pretreatment such as coagulation and precipitation treatment, filtration treatment, softening treatment, decarboxylation treatment, and activated carbon treatment.

本発明において、TOC除去装置で処理された処理水20のTOC濃度としては、被処理水のTOC濃度より低いものであれば特に制限はない。ただし、後述する実施例1の結果から、TOC濃度は、例えば、2.5ppb未満、より好ましくは2ppb未満、さらに好ましくは1ppb未満を挙げることができる。 In the present invention, the TOC concentration of the treated water 20 treated by the TOC removal device is not particularly limited as long as it is lower than the TOC concentration of the water to be treated. However, from the results of Example 1 described below, the TOC concentration can be, for example, less than 2.5 ppb, more preferably less than 2 ppb, and even more preferably less than 1 ppb.

また、本発明に係るTOC除去装置は、UV酸化装置40の前段、例えば、第1のEDI30の前段または、第1のEDI30とUV酸化装置40との間に、図1に示すようなpH調整装置70をさらに備えてもよい。
pH調整装置70から、UV酸化装置40に供給される水にpH調整剤が添加されてpHが調整される。UV酸化装置40に供給される水のpHの上限としては、特に制限はないが、後述する実施例3の結果より、9.5以下であることが好ましく、8.5未満であることがより好ましく、8.0以下であることがさらに好ましい。また、pHの下限としては、特に制限はないが、1.0以上であることが好ましく、2.0以上であることがより好ましく、3.0以上であることがさらに好ましい。
本発明で用いられるpH調整剤としては、水のpHを調整できるものであれば特に制限はなく、無機酸、有機酸、無機塩基、有機塩基のいずれも用いることができる。無機酸の例としては、塩酸、硫酸、硝酸、スルホン酸、リン酸等を、有機酸の例としては、ギ酸、酢酸、シュウ酸、コハク酸等を挙げることができる。また、無機塩基の例としては、水酸化ナトリウム、水酸化カリウム等を、有機塩基の例としては、グアニジン型の有機塩基等を挙げることができる。
Furthermore, the TOC removal device according to the present invention includes a pH adjustment device as shown in FIG. A device 70 may also be included.
A pH adjuster is added to the water supplied from the pH adjuster 70 to the UV oxidizer 40 to adjust the pH. The upper limit of the pH of the water supplied to the UV oxidizer 40 is not particularly limited, but from the results of Example 3 described later, it is preferably 9.5 or less, and more preferably less than 8.5. It is preferably 8.0 or less, and more preferably 8.0 or less. Further, the lower limit of pH is not particularly limited, but it is preferably 1.0 or more, more preferably 2.0 or more, and even more preferably 3.0 or more.
The pH adjuster used in the present invention is not particularly limited as long as it can adjust the pH of water, and any of inorganic acids, organic acids, inorganic bases, and organic bases can be used. Examples of inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, sulfonic acid, phosphoric acid, etc., and examples of organic acids include formic acid, acetic acid, oxalic acid, succinic acid, etc. Further, examples of inorganic bases include sodium hydroxide, potassium hydroxide, etc., and examples of organic bases include guanidine type organic bases.

本発明に係るTOC除去装置は、第2の電気再生式脱イオン装置50で処理された処理水をブロー(排出)するブロー配管60をさらに備えてもよい。ブロー配管60は、第2の電気再生式脱イオン装置50に接続されている。例えば、TOC除去装置の運転開始初期または再起動時であって、EDI処理水のTOC濃度が所定値よりも高い場合に、TOC濃度が低減して所定値以下になるまでブローする。ここで、ブロー配管によって処理水がブローされる時間としては、特に制限はない。ただし、後述する実施例2の結果から、運転開始初期のブロー時間は15時間以上が好ましく、30時間以上がより好ましい。また、再起動時のブロー時間は、好ましくは7時間以上、より好ましくは10時間以上、さらに好ましくは15時間以上、特に好ましくは20時間以上である。 The TOC removal device according to the present invention may further include a blow pipe 60 that blows (discharges) the treated water treated by the second electrical regeneration type deionization device 50. Blow piping 60 is connected to second electroregenerative deionization device 50 . For example, if the TOC concentration of the EDI treated water is higher than a predetermined value at the beginning of operation or restart of the TOC removal device, blowing is performed until the TOC concentration decreases to a predetermined value or less. Here, there is no particular restriction on the time during which the treated water is blown through the blow piping. However, from the results of Example 2 described later, the blowing time at the initial stage of operation is preferably 15 hours or more, more preferably 30 hours or more. Further, the blowing time at the time of restart is preferably 7 hours or more, more preferably 10 hours or more, even more preferably 15 hours or more, and particularly preferably 20 hours or more.

なお、本発明に係るTOC除去装置は、UV酸化装置40の後段であって第2の電気再生式脱イオン装置(EDI-2)50の前段に、UV殺菌装置(不図示)を備えていてもよい。
ここで、UV殺菌装置としては、主UV波長が200~300nm、好ましくは220~280nm、より好ましくは240~260nmのものを挙げることができる。また、照射する紫外線のエネルギー量としては、特に制限はなく、また被処理水中の非イオン性のTOC成分の量にもよるが、例えば0.01~0.1kW・h/mなどを挙げることができる。
Note that the TOC removal device according to the present invention is equipped with a UV sterilizer (not shown) after the UV oxidation device 40 and before the second electrical regenerative deionization device (EDI-2) 50. Good too.
Here, examples of the UV sterilization device include those having a main UV wavelength of 200 to 300 nm, preferably 220 to 280 nm, more preferably 240 to 260 nm. In addition, there is no particular limit to the energy amount of the ultraviolet rays to be irradiated, and it also depends on the amount of nonionic TOC components in the water to be treated, but for example, it may be 0.01 to 0.1 kW/h/ m3 . be able to.

ここで、図2に示すように、紫外線酸化装置40を第1の電気再生式脱イオン装置30の前段に設置し、第1の電気再生式脱イオン装置30の後段に、さらに第2の電気再生式脱イオン装置50を配した構成と本願発明の構成とを比較して述べる。図2に示す構成とした場合は、被処理水に含まれるすべてのTOCが、まず紫外線酸化装置40で分解される。このため、本願発明の構成とした場合に比べ、既にイオン化し電気再生式脱イオン装置30で除去可能なTOCについてもUV酸化を行っている分、紫外線酸化装置40に多くのエネルギーを必要とする。また、被処理水に炭酸等のラジカルスカベンジャーが含まれる場合、紫外線酸化装置40の効率が低下する。そして、紫外線酸化装置40で発生したラジカルの重合により生成した酸化性物質である過酸化水素は、後段の第1の電気再生式脱イオン装置30内のイオン交換体を劣化させ、性能低下を引き起こす可能性がある。
一方、本願発明の構成とした場合は、第1の電気再生式脱イオン装置30でイオン化しているTOC及び炭酸等を除去し、その後、非イオン性のTOCを分解するためだけのエネルギーを紫外線酸化装置40で照射するだけで済むため、図2に示す構成に比べ、少ないエネルギー照射量で済む。そして、エネルギー照射量を少なく抑えることができるため、過酸化水素の発生量を低くできる。したがって、本願発明の構成においては、図2に示す構成と比べると、紫外線酸化装置40の後段に設置される第2の電気再生式脱イオン装置50の性能低下の抑制も期待できる。さらに、紫外線酸化装置40の前段にpH調整装置70を設けることで、ラジカルスカベンジャーであるアルカリを低減し、TOC除去率の低下を防止することができる。
Here, as shown in FIG. 2, an ultraviolet oxidation device 40 is installed before the first electrical regenerative deionization device 30, and a second electrical regeneration deionization device 30 is installed after the first electrical regenerative deionization device 30. The configuration in which the regenerative deionization device 50 is arranged and the configuration of the present invention will be compared and described. In the configuration shown in FIG. 2, all TOC contained in the water to be treated is first decomposed in the ultraviolet oxidation device 40. Therefore, compared to the configuration of the present invention, the UV oxidation device 40 requires more energy because the TOC that has already been ionized and can be removed by the electric regenerative deionization device 30 is also subjected to UV oxidation. . Moreover, when the water to be treated contains a radical scavenger such as carbonic acid, the efficiency of the ultraviolet oxidation device 40 decreases. Then, hydrogen peroxide, which is an oxidizing substance generated by polymerization of radicals generated in the ultraviolet oxidation device 40, deteriorates the ion exchanger in the first electrically regenerative deionization device 30 in the subsequent stage, causing a decrease in performance. there is a possibility.
On the other hand, in the case of the configuration of the present invention, ionized TOC, carbonic acid, etc. are removed in the first electrical regenerative deionization device 30, and then energy is used to decompose nonionic TOC using ultraviolet rays. Since irradiation only needs to be performed using the oxidizer 40, the amount of energy irradiation can be reduced compared to the configuration shown in FIG. Furthermore, since the amount of energy irradiation can be kept low, the amount of hydrogen peroxide generated can be reduced. Therefore, in the configuration of the present invention, compared to the configuration shown in FIG. 2, it can be expected that the deterioration in performance of the second electrical regenerative deionization device 50 installed after the ultraviolet oxidation device 40 can be suppressed. Furthermore, by providing the pH adjustment device 70 before the ultraviolet oxidation device 40, it is possible to reduce alkali, which is a radical scavenger, and prevent a decrease in the TOC removal rate.

以下、実施例を用いて本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail using examples, but the present invention is not limited to the examples.

(実施例1)
導電率1~2μS/cm、ホウ素濃度14ppb、シリカ濃度23ppb、TOC濃度13ppb、溶存酸素(DO)8ppmを含む被処理水について、図1に示す装置を用いて、TOCの除去試験を行った。UVの照射エネルギーとしては、0.33kW・h/mとし、通水量1m/hに対し、100時間の通水試験を実施した。第1の電気再生式脱イオン装置(EDI-1)及び第2の電気再生式脱イオン装置(EDI-2)としては、ともにEDI-XP(商品名、オルガノ社製)を用いた。運転電流値の設定は5Aとした。紫外線酸化装置としては、JPW(商品名、日本フォトサイエンス社製、波長:185nm)を用いた。被処理水、EDI-1処理水、UV酸化装置処理水、EDI-2処理水のそれぞれの出口のTOC濃度を表1に示す。なお、UV酸化装置に供給される水のpHは、pH調整装置により5.5~6.0に調整した。
(Example 1)
A TOC removal test was conducted using the apparatus shown in FIG. 1 on treated water containing a conductivity of 1 to 2 μS/cm, a boron concentration of 14 ppb, a silica concentration of 23 ppb, a TOC concentration of 13 ppb, and a dissolved oxygen (DO) of 8 ppm. The UV irradiation energy was 0.33 kW·h/m 3 , and a water flow test was conducted for 100 hours with a water flow rate of 1 m 3 /h. EDI-XP (trade name, manufactured by Organo Inc.) was used as both the first electrical regenerative deionization device (EDI-1) and the second electrical regenerative deionization device (EDI-2). The operating current value was set to 5A. As the ultraviolet oxidation device, JPW (trade name, manufactured by Nippon Photoscience Co., Ltd., wavelength: 185 nm) was used. Table 1 shows the TOC concentrations at the respective outlets of the treated water, EDI-1 treated water, UV oxidizer treated water, and EDI-2 treated water. Note that the pH of the water supplied to the UV oxidation device was adjusted to 5.5 to 6.0 using a pH adjustment device.

Figure 0007383141000001
Figure 0007383141000001

(比較例1)
装置構成を図2に示す構成にした以外は、実施例1と同一の条件でTOCの除去試験を行った。なお、UV酸化装置に供給される水のpHは、実施例1と同様、5.5~6.0であった。結果を表2に示す。
(Comparative example 1)
A TOC removal test was conducted under the same conditions as in Example 1, except that the device configuration was changed to the configuration shown in FIG. 2. Note that the pH of the water supplied to the UV oxidizer was 5.5 to 6.0, as in Example 1. The results are shown in Table 2.

Figure 0007383141000002
Figure 0007383141000002

上記、実施例1及び比較例1から明らかなとおり、UV酸化装置で同一の照射エネルギーを用いても、実施例1では、第2の電気再生式脱イオン装置(EDI-2)で処理された処理水のTOC濃度が<1ppbであったのに対し、比較例1では3ppbであった。
仮に、比較例1においてEDI-2で処理された処理水のTOC濃度を<1ppbとするには、UV酸化装置における照射エネルギーを高くする必要がある。これは、エネルギー効率を悪化させるのみならず、大量のUV照射により発生する過酸化水素等により、その後段に設置した第1の電気再生式脱イオン装置(EDI-1)、さらには、第2の電気再生式脱イオン装置(EDI-2)の劣化を招く恐れがある。
As is clear from the above Example 1 and Comparative Example 1, even if the same irradiation energy was used in the UV oxidation device, in Example 1, the treatment was performed in the second electroregenerative deionization device (EDI-2). The TOC concentration of the treated water was <1 ppb, whereas in Comparative Example 1 it was 3 ppb.
In order to make the TOC concentration of the treated water treated with EDI-2 <1 ppb in Comparative Example 1, it is necessary to increase the irradiation energy in the UV oxidation device. This not only deteriorates energy efficiency, but also causes hydrogen peroxide etc. generated by large amounts of UV irradiation to damage the first electrically regenerative deionization device (EDI-1) installed at the subsequent stage, and even the second This may lead to deterioration of the electrical regenerative deionization device (EDI-2).

(実施例2)
再生後の電気再生式脱イオン装置(商品名:EDI-XP、オルガノ社製)に超純水(UPW)を通水し、電流を5A印加してEDI処理水のTOC濃度の推移を確認した。結果を図3に示す。図3において、ΔTOCとは、TOC濃度の実測値から、UPW中のTOC濃度の測定値を計器ブランクとして減じた値をいう。
なお、試験は以下の条件にて行った。
0~47時間 :UPW通水+電流印加
47~65時間 :UPW通水のみ(電流印加なし)
65~73時間 :UPW通水+電流印加
73~161時間:UPW通水、電流印加ともになし
161時間以降 :UPW通水+電流印加
(Example 2)
After regeneration, ultrapure water (UPW) was passed through the electric regeneration deionization device (product name: EDI-XP, manufactured by Organo), and a current of 5 A was applied to confirm the change in TOC concentration in the EDI-treated water. . The results are shown in Figure 3. In FIG. 3, ΔTOC refers to a value obtained by subtracting the measured value of TOC concentration in UPW as an instrument blank from the measured value of TOC concentration.
The test was conducted under the following conditions.
0 to 47 hours: UPW water flow + current application 47 to 65 hours: UPW water flow only (no current application)
65 to 73 hours: UPW water flow + current application 73 to 161 hours: Neither UPW water flow nor current application 161 hours or later: UPW water flow + current application

通電開始直後のΔTOCは9ppb程度であったが、徐々に低下し、30時間経過後には1ppb以下となった。47時間経過後65時間経過するまでは、UPWの通水を継続したまま電流の印加を止め、65時間経過後から73時間経過するまで再度電流を印加したが、いずれも出口のΔTOCの推移は変化しなかった(UPWを通水中に電流印加の有無を行った場合のTOC濃度の推移を検証)。
73時間経過後に装置を停止し、UPWの通水及び電流の印加を停止した。そして、161時間経過後から再起動して、ΔTOCの推移を観察した。すると再び0時間時点と同等の9ppbまでΔTOCは増加し、1ppb以下になるまでに約7時間、1ppb以下で安定するまで約15時間程度の時間を要した。
The ΔTOC was approximately 9 ppb immediately after the start of energization, but gradually decreased to 1 ppb or less after 30 hours had passed. After 47 hours and until 65 hours had elapsed, the application of current was stopped while water flow through the UPW was continued, and the current was applied again after 65 hours and until 73 hours had elapsed, but in both cases the change in ΔTOC at the outlet was There was no change (verification of changes in TOC concentration when applying or not applying current while flowing water through UPW).
After 73 hours had elapsed, the apparatus was stopped, and the UPW water flow and current application were stopped. Then, after 161 hours had elapsed, the system was restarted and the transition of ΔTOC was observed. Then, ΔTOC increased again to 9 ppb, which is the same as at 0 hours, and it took about 7 hours to reach 1 ppb or less, and about 15 hours to stabilize at 1 ppb or less.

運転開始初期におけるTOC濃度が高いのは、イオン交換体由来のTOCが脱塩水中にリークしたことによるものである。したがって、低TOCの水を製造する場合には、運転開始初期のEDI処理水をTOCが低減するまで、好ましくは15時間以上、より好ましくは30時間程度ブローしてから後段の装置に通水することが望ましい。
今回の試験で、一度停止させたEDIを再起動する際にもTOC濃度が初期と同レベルまで上昇することが判明した。したがって、EDIを再起動させた場合には、初期ブローを行うことが望ましく、ブロー時間は、好ましくは7時間以上、より好ましくは10時間以上、さらに好ましくは15時間以上、特に好ましくは20時間以上である。
The high TOC concentration at the beginning of operation is due to TOC derived from the ion exchanger leaking into the demineralized water. Therefore, when producing low TOC water, the EDI treated water at the initial stage of operation is blown until the TOC is reduced, preferably for 15 hours or more, more preferably for about 30 hours, and then the water is passed to the subsequent equipment. This is desirable.
This test revealed that even when EDI is restarted after it has been stopped, the TOC concentration rises to the same level as the initial level. Therefore, when EDI is restarted, it is desirable to perform an initial blow, and the blowing time is preferably 7 hours or more, more preferably 10 hours or more, even more preferably 15 hours or more, and particularly preferably 20 hours or more. It is.

また、2段EDIにおいて低TOC濃度の水を製造する場合には、2段目のEDIは連続運転で運転されることが望ましい。上述のように、電流印加の有無はEDI処理水のTOC濃度に影響を及ぼさないが、超純水の通水の有無はEDI処理水のTOC濃度に大きな影響を及ぼす。このことから、2段EDIのうち、1段目のEDIを間欠運転(UPWの通水及び電流印加を任意の時間ごとにON/OFFする運転)としても、少なくともユースポイントに近い2段目のEDIを連続運転(UPWの通水及び電流印加を時間的な切れ目なく継続してONとする運転)していれば、1段目のEDIを停止状態(UPWの通水及び電流印加をOFFにした状態)から運転状態(UPWの通水及び電流印加をONにした状態)に切り替えた場合でも、1段目のEDIで発生するTOCを2段目のEDIで除去することができ、低TOC濃度の水を得ることができる。 Furthermore, when producing water with a low TOC concentration using two-stage EDI, it is desirable that the second-stage EDI be operated continuously. As described above, whether or not current is applied does not affect the TOC concentration of EDI-treated water, but whether or not ultrapure water is passed has a large effect on the TOC concentration of EDI-treated water. Therefore, even if the first stage EDI of the two-stage EDI is operated intermittently (operation in which UPW water flow and current application are turned ON/OFF at arbitrary intervals), at least the second stage EDI near the point of use If the EDI is in continuous operation (operation in which UPW water flow and current application are continuously turned on without a break in time), the first stage EDI is in a stopped state (UPW water flow and current application are turned OFF). Even when switching from the operating state (with UPW water flow and current application ON), the TOC generated in the first stage EDI can be removed in the second stage EDI, resulting in low TOC. You can get concentrated water.

(実施例3)
純水(pH6.5)、NaOHを添加した水(pH8.0及びpH9.6)、並びにHSOを添加した水(pH4.0)を、それぞれ紫外線酸化装置(商品名:JPW、日本フォトサイエンス社製)に通水し、紫外線酸化装置処理水を電気再生式脱イオン装置(商品名:EDI-XP、オルガノ社製)に通水した。紫外線酸化装置への供給水のTOC濃度の調整は、IPAの添加によって行い、各pHの水においてTOC濃度を1ppmとした。なお、各TOC濃度の測定は、TOC計(商品名:Sievers M9e、SUEZ WTS Analytical Instruments社製)にて行った。紫外線酸化装置による紫外線の照射エネルギーは、0.88kW・h/mにて試験を実施した。
EDI処理水のTOC濃度を測定し、TOCの除去率を計算した結果を表3に示す。
(Example 3)
Pure water (pH 6.5), water added with NaOH (pH 8.0 and pH 9.6), and water added with H 2 SO 4 (pH 4.0) were each treated with an ultraviolet oxidation device (trade name: JPW, Japan). The ultraviolet oxidation device-treated water was passed through an electric regeneration deionization device (trade name: EDI-XP, manufactured by Organo Inc.). The TOC concentration of the water supplied to the ultraviolet oxidation device was adjusted by adding IPA, and the TOC concentration was set to 1 ppm in water at each pH. Note that each TOC concentration was measured using a TOC meter (trade name: Sievers M9e, manufactured by SUEZ WTS Analytical Instruments). The test was conducted at an ultraviolet irradiation energy of 0.88 kW·h/m 3 from the ultraviolet oxidizer.
Table 3 shows the results of measuring the TOC concentration of the EDI treated water and calculating the TOC removal rate.

Figure 0007383141000003
Figure 0007383141000003

pHが9.6の水を紫外線酸化装置に通水した場合、TOC除去率が大幅に低下していることがわかる。このことから、低TOC濃度の水を得るためには、紫外線酸化装置への供給水のpHを適切な値(範囲)に調整する必要がある。 It can be seen that when water with a pH of 9.6 is passed through the ultraviolet oxidation device, the TOC removal rate is significantly reduced. From this, in order to obtain water with a low TOC concentration, it is necessary to adjust the pH of the water supplied to the ultraviolet oxidation device to an appropriate value (range).

10 被処理水
20 処理水
30 第1の電気再生式脱イオン装置(EDI-1)
40 UV酸化装置
45 ポンプ
50 第2の電気再生式脱イオン装置(EDI-2)
60 ブロー配管
70 pH調整装置
100 TOC除去装置
10 Water to be treated 20 Treated water 30 First electrical regeneration deionization device (EDI-1)
40 UV oxidizer 45 Pump 50 Second electro-regenerative deionizer (EDI-2)
60 Blow piping 70 pH adjustment device 100 TOC removal device

Claims (10)

被処理水が供給される第1の電気再生式脱イオン装置と、
前記第1の電気再生式脱イオン装置で処理された処理水が供給される紫外線酸化装置と、
前記紫外線酸化装置で処理された処理水が供給される第2の電気再生式脱イオン装置と、
を有する、一次純水システムとしてのTOC除去装置。
a first electroregenerative deionization device to which water to be treated is supplied;
an ultraviolet oxidation device to which treated water treated by the first electric regenerative deionization device is supplied;
a second electrically regenerative deionization device to which treated water treated by the ultraviolet oxidation device is supplied;
A TOC removal device as a primary pure water system .
前記TOC除去装置で処理された処理水のTOC濃度が1ppb未満である、請求項1に記載のTOC除去装置。 The TOC removal device according to claim 1, wherein the TOC concentration of the treated water treated by the TOC removal device is less than 1 ppb. 前記紫外線酸化装置に供給される水のpHが1.0以上8.5未満である、請求項1または2に記載のTOC除去装置。 The TOC removal device according to claim 1 or 2, wherein the pH of the water supplied to the ultraviolet oxidation device is 1.0 or more and less than 8.5. 前記第1の電気再生式脱イオン装置の前段にpH調整装置を備える、請求項1~3のいずれか1項に記載のTOC除去装置。 The TOC removal device according to any one of claims 1 to 3, further comprising a pH adjustment device upstream of the first electroregenerative deionization device . 前記第2の電気再生式脱イオン装置で処理された処理水をブローするブロー配管をさらに備える、請求項1~4のいずれか1項に記載のTOC除去装置。 The TOC removal device according to any one of claims 1 to 4, further comprising a blow pipe for blowing the treated water treated by the second electrical regeneration type deionization device. 前記TOC除去装置の運転開始初期または再起動時に、前記第2の電気再生式脱イオン装置で処理された処理水が前記ブロー配管を介して15時間以上ブローされる、請求項5に記載のTOC除去装置。 The TOC according to claim 5, wherein the treated water treated by the second electric regenerative deionization device is blown for 15 hours or more through the blow piping at the beginning of operation or at the time of restart of the TOC removal device. removal device. 前記第1の電気再生式脱イオン装置を間欠運転とし、前記第2の電気再生式脱イオン装置を連続運転とする、請求項1~6のいずれか1項に記載のTOC除去装置。 The TOC removal device according to any one of claims 1 to 6, wherein the first electro-regenerative deionization device is operated intermittently, and the second electro-regeneration deionization device is operated continuously. 前記第2の電気再生式脱イオン装置の消費電力が、前記第1の電気再生式脱イオン装置の消費電力よりも低い、請求項1~7のいずれか1項に記載のTOC除去装置。 The TOC removal device according to any one of claims 1 to 7, wherein the power consumption of the second electrical regenerative deionization device is lower than the power consumption of the first electrical regenerative deionization device. 第1の電気再生式脱イオン装置と、紫外線酸化装置と、第2の電気再生式脱イオン装置と、を有する一次純水システムとしてのTOC除去装置を用いてTOCを除去するTOC除去方法であって、
(a)被処理水を前記第1の電気再生式脱イオン装置に供給して処理するステップと、
(b)前記第1の電気再生式脱イオン装置からの処理水を前記紫外線酸化装置に供給して処理するステップと、
(c)前記紫外線酸化装置からの処理水を前記第2の電気再生式脱イオン装置に供給して処理するステップと、
を有するTOC除去方法。
A TOC removal method that removes TOC using a TOC removal device as a primary pure water system having a first electrical regenerative deionization device, an ultraviolet oxidation device, and a second electrical regeneration deionization device. hand,
(a) supplying the water to be treated to the first electroregenerative deionization device for treatment;
(b) supplying the treated water from the first electrical regenerative deionization device to the ultraviolet oxidation device for treatment;
(c) supplying the treated water from the ultraviolet oxidation device to the second electroregenerative deionization device for treatment;
A TOC removal method having
前記ステップ(a)の前段に、前記紫外線酸化装置に供給される水のpHを1.0以上8.5未満に調整するステップをさらに有する、請求項9に記載のTOC除去方法。 The TOC removal method according to claim 9, further comprising the step of adjusting the pH of the water supplied to the ultraviolet oxidation device to 1.0 or more and less than 8.5, before the step (a ) .
JP2022524323A 2020-05-20 2021-04-08 TOC removal device and TOC removal method Active JP7383141B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020087983 2020-05-20
JP2020087983 2020-05-20
PCT/JP2021/014916 WO2021235130A1 (en) 2020-05-20 2021-04-08 Device for removing toc and method for removing toc

Publications (2)

Publication Number Publication Date
JPWO2021235130A1 JPWO2021235130A1 (en) 2021-11-25
JP7383141B2 true JP7383141B2 (en) 2023-11-17

Family

ID=78707923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022524323A Active JP7383141B2 (en) 2020-05-20 2021-04-08 TOC removal device and TOC removal method

Country Status (3)

Country Link
JP (1) JP7383141B2 (en)
TW (1) TW202146337A (en)
WO (1) WO2021235130A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260017A (en) 2001-12-11 2008-10-30 Nomura Micro Sci Co Ltd Method and apparatus for producing ultrapure water
JP2011110515A (en) 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin
WO2015068635A1 (en) 2013-11-11 2015-05-14 栗田工業株式会社 Method and apparatus for manufacturing pure water
US20190233314A1 (en) 2016-10-13 2019-08-01 Vws (Uk) Ltd. Method and apparatus for providing ultrapure water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260017A (en) 2001-12-11 2008-10-30 Nomura Micro Sci Co Ltd Method and apparatus for producing ultrapure water
JP2011110515A (en) 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin
WO2015068635A1 (en) 2013-11-11 2015-05-14 栗田工業株式会社 Method and apparatus for manufacturing pure water
US20190233314A1 (en) 2016-10-13 2019-08-01 Vws (Uk) Ltd. Method and apparatus for providing ultrapure water

Also Published As

Publication number Publication date
TW202146337A (en) 2021-12-16
JPWO2021235130A1 (en) 2021-11-25
WO2021235130A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
TWI648093B (en) Ultrapure water manufacturing device and method
US6991733B2 (en) Process for removing organics from ultrapure water
WO2020184045A1 (en) Apparatus for removing boron, method for removing boron, apparatus for producing pure water and method for producing pure water
JP4635827B2 (en) Ultrapure water production method and apparatus
WO2021131360A1 (en) Pure water production method, pure water production system, ultra-pure water production method, and ultra-pure water production system
JP2007307561A (en) High-purity water producing apparatus and method
JP4978275B2 (en) Primary pure water production process water treatment method and apparatus
JP3656458B2 (en) Pure water production method
JP7383141B2 (en) TOC removal device and TOC removal method
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JP2011045824A (en) Apparatus for producing pure water
JP3849766B2 (en) Apparatus and method for treating water containing organic matter
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
WO2021235107A1 (en) Boron removal device and boron removal method, and pure water production device and pure water production method
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
JPH1128482A (en) Production of pure water
JPH09253639A (en) Ultrapure water making apparatus
JP3849765B2 (en) Apparatus and method for treating water containing organic matter
WO2023149415A1 (en) Pure water production apparatus and operation method for pure water production apparatus
JP4264681B2 (en) Production equipment for ozone water for wet cleaning process of electronic materials
JP2019107631A (en) UV oxidation treatment method
JPH1094785A (en) Ultrapure water producing method and device therefor
JP4159823B2 (en) Ultrapure water production method
TW202304821A (en) Method for operating pure-water production system
TW202235380A (en) Water treatment method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231107

R150 Certificate of patent or registration of utility model

Ref document number: 7383141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150