JP3992996B2 - Wastewater treatment method and apparatus - Google Patents

Wastewater treatment method and apparatus Download PDF

Info

Publication number
JP3992996B2
JP3992996B2 JP2002048590A JP2002048590A JP3992996B2 JP 3992996 B2 JP3992996 B2 JP 3992996B2 JP 2002048590 A JP2002048590 A JP 2002048590A JP 2002048590 A JP2002048590 A JP 2002048590A JP 3992996 B2 JP3992996 B2 JP 3992996B2
Authority
JP
Japan
Prior art keywords
activated carbon
ion exchange
water
hydrogen peroxide
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002048590A
Other languages
Japanese (ja)
Other versions
JP2003245659A (en
Inventor
徹 天谷
俊和 阿部
徹 草野
信介 佐藤
由孝 八巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2002048590A priority Critical patent/JP3992996B2/en
Publication of JP2003245659A publication Critical patent/JP2003245659A/en
Application granted granted Critical
Publication of JP3992996B2 publication Critical patent/JP3992996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、過酸化水素を含有する酸性の排水を高性能活性炭により処理する方法及び排水処理装置に係り、特に、高性能の活性炭に対する負荷を軽減して過酸化水素分解能を向上させるとともに高性能の活性炭の使用寿命を長くした排水処理方法及びこの方法に用いる排水処理装置に関する。
【0002】
【従来の技術】
半導体製造工程等に使用される超純水は、一般に一次純水システムと二次純水システムを経て製造される。一次純水システムは、ろ過分離処理装置、吸着処理装置、逆浸透膜(RO)装置、紫外線酸化装置、脱気装置、イオン交換処理装置等で構成され、二次純水システムは、紫外線酸化装置、イオン交換処理装置、限外濾過装置等から構成されている。
【0003】
一次純水システムには、原水として市水、井水、工業用水等が供給されるが、半導体製造工場等においては、半導体製造工程等で排出される排水も回収して原水として用いられている。
【0004】
また、近年の傾向では、より水質の悪い排水でも回収して再利用して原水の市水、井水、工業用水等の使用量を可能な限り減少させた超純水システム(クローズドシステムという)が次第に用いられるようになってきており、原水中に占める半導体製造工程等で排出される排水の割合が高くなってきている。
【0005】
一方、半導体製造工程等から排出され再使用される回収水は、半導体製造工程等で使用される各種の薬品や溶解成分が混入しているため市水、井水、工業用水とは含まれる成分が異なっている。通常、ふっ酸、硫酸、塩酸等の酸に含まれるアニオンとアンモニア等のカチオンともに、過酸化水素等の酸化剤および界面活性剤等の有機物成分(TOC成分)が含有されている。
【0006】
このため、この排水を回収して超純水システムの原水として用いる場合には、通常、排水処理工程を経てこれらの成分を取り除いたのち、原水として一次純水システムに供給している。
【0007】
従来の一次純水システムの原水として用いるための排水処理装置は、主に、活性炭処理装置とイオン交換処理装置とから構成されている。
【0008】
この排水処理において、過酸化水素等の酸化剤は活性炭処理装置で分解除去され、カチオンやアニオンのイオン成分はイオン交換処理装置で取り除かれ、TOC成分も活性炭処理装置とイオン交換処理装置にて取り除かれる。
【0009】
しかし、たとえば10mg/lを越えるような高濃度の過酸化水素を処理する場合には、過酸化水素は活性炭処理装置で十分処理しきれず、1mg/l(1ppm)程度の過酸化水素が処理水に残留してしまうという問題があった。
【0010】
このように過酸化水素等の酸化剤を含む処理水をそのまま原水として利用した場合、酸化剤は、一次純水システム、二次純水システムに設置されたRO装置、イオン交換処理装置、限外濾過装置等の膜やイオン交換樹脂の酸化劣化を起こす上に、一次純水システム、二次純水システムを経てその末端に到達し、製造される超純水の水質(末端水質という)を悪化させる可能性があった。
【0011】
このため、最近、このような排水処理装置に用いる活性炭として、酸化剤の分解性能の高い活性炭が用いられるようになってきている。
【0012】
しかしながら、このような高性能の活性炭は、他の溶解成分に対しても優れた吸着能を有するため、使用寿命が非常に短く、逆洗再生を頻繁に繰り返す必要があって、排水量が増加し、ランニングコストも高くなってしまうという問題があった。
【0013】
高性能活性炭による処理の前段で、これより分解能の低い汎用の活性炭により処理することも考えられる。
【0014】
しかしながら、このように、高性能の活性炭の処理の前段に汎用の活性炭による処理を行った場合でも、通水につれて処理水中の過酸化水素濃度が増加して24時間後には40μg/l(40ppb)を越えてしまうという問題があった。
【0015】
このように過酸化水素の分解能が低下した場合でも高性能活性炭の逆洗再生を行えば過酸化水素処理性能は通水開始当初と同等に回復するが、過酸化水素処理性能を維持するためには逆洗再生を頻繁に行なわなければならないため洗浄排水が増加し、ランニングコストも増加してしまうという問題があった。
【0016】
なお、酸化剤を処理する方法としては、亜硫酸水素ナトリウム等の還元剤を用いる処理方法も考えられるが、このような還元剤を使用した処理方法では酸化剤を完全に分解することは困難であり、処理水中に酸化剤が残留してしまう上に、多量の試薬が必要となり、さらに還元剤注入によるイオン成分の増加で末端水質が悪化してしまうという問題があった。
【0017】
【発明が解決しようとする課題】
本発明は、上記した従来の問題を解決すべくなされたもので、過酸化水素等の酸化剤の処理性能を向上させて、回収水中の酸化剤をほぼ完全になくするとともに、活性炭処理装置の逆洗頻度を少なくして、排水を減少させ、ランニングコストも低減させた排水処理方法及び排水処理装置を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、高性能活性炭で排水を処理する際に、排水を高性能活性炭より酸化剤に対する分解能の低い通常の活性炭で処理し、次いでイオン交換処理を行った後に、高性能の活性炭で処理するようにすると、過酸化水素等の酸化剤の分解性能が著しく向上するともに酸化剤処理性能をより長時間維持させることができることを見出した。
【0019】
本発明は、かかる知見に基づいてなされたもので、本発明の排水処理装置は、過酸化水素その他の酸化剤を含有する酸性の排水を高性能活性炭により処理する方法において、前記排水を前記高性能活性炭より酸化剤に対する分解能の低い活性炭により処理する第1の活性炭処理工程と、前記第1の活性炭処理工程で処理した処理水を、イオン交換装置により処理するイオン交換処理工程と、前記イオン交換処理工程で処理された処理水を、前記高性能活性炭で処理する第2の活性炭処理工程と含むことを特徴としている。
【0020】
本発明の処理対象である排水は再度原水として使用される排水であって、例えば、半導体製造工程において排出される1〜30mg/lの過酸化水素、次亜塩素酸、クロラミン、オゾン等の酸化剤を含有し、ふっ酸、硫酸、塩酸等の酸を含有するpH2〜5の酸性のものであるが、半導体製造工程に限らず、ほぼ同等の組成の排水であれば処理可能である。
【0021】
本発明の第1の活性炭処理工程で使用される高性能の活性炭よりも酸化剤に対する分解能の低い活性炭は、通常の水処理に用いられているもので、例えばやし殻活性炭、石炭系活性炭等が例示される。これらの活性炭は、内部に10〜10000A程度(その大半は10〜20Aである)の細孔が無数に形成されており、500〜1500m2 程度の比表面積を有している。なお、本明細書における活性炭の細孔分布及び比表面積は、窒素ガス(N2 )、アルゴンガス(Ar)等による吸着法もしくは水銀圧入法により測定した値である。
【0022】
これら通常の水処理に用いられている活性炭は、純水中10mg/lの過酸化水素をSV=10 h-1で通水したとき処理水中の過酸化水素を0.1〜1mg/l(=×1000μg/l)程度にまで減少させる分解能をもっている。なお、上記のSVは、空間速度(Space Velocity)の意味であり、SV=流速(l(リットル)/h(時間))/充填活性炭量(l)で表される。
【0023】
本発明の第2の活性炭処理工程で用いられる活性炭は、20〜1000Aの細孔の割合を10 Vol%以上、好ましくは20 Vol%以上に高くするか、又は白金、パラジウム、銀のような分解触媒を担持させて酸化剤に対する分解能を高くしたもので、純水中10mg/lの過酸化水素をSV=10 h-1で通水したとき、処理水中の過酸化水素を50μg/l、好ましくは10μg/l、より好ましくは5μg/l未満にまで分解する性能を有るものである。
【0024】
細孔分布を変えて酸化剤に対する分解能を高めた活性炭としては、例えば、東洋カルゴンや米国カルゴン カーボン コーポレーション(Calgon Carbon Corporation) から販売されているセンタウ(CENTAUR)(商品名)が例示される。また、過酸化水素高分解触媒を担持させた活性炭としては、クラレケミカル株式会社製 T−SB(商品名)が例示される。
【0025】
本発明のイオン交換処理に用いられるイオン交換装置としては、カチオン・アニオン交換樹脂を用いた混床式イオン交換塔もしくはカチオン交換樹脂を用いた単床塔とアニオン交換樹脂を用いた単床塔の組み合わせ、イオンの吸着と再生を連続的に行う電気式イオン交換樹脂装置が例示される。
【0026】
なお、高性能活性炭の酸化剤分解性能は、被処理水のpHに依存し、酸性よりも中性やアルカリ性のほうが酸化剤の分解性能が高くなる。一般に、イオン交換装置として、カチオン・アニオン交換樹脂もしくはアニオン交換樹脂を用いたイオン交換処理装置の処理水のpHは6〜7、もしくはそれ以上になるため、高性能の活性炭装置の上流にカチオン・アニオン交換樹脂もしくはアニオン交換樹脂を用いたイオン交換処理装置を配置するようにすることによって、過酸化水素分解性能が向上する。
【0027】
さらに、第1の活性炭処理工程、イオン交換処理工程、第2の活性炭処理工程は、必ずしも連続して行う必要は無く、他の処理工程、たとえば溶解する炭酸ガスや酸素を脱気する脱気工程、逆浸透膜等による膜処理工程、TOC(有機質不純物等を分解するための紫外線(UV)照射工程等を上記の処理工程の間に設けることも可能である。
【0028】
本発明の排水処理方法は、高性能活性炭を用いた排水処理装置であって、前記高性能活性炭より酸化剤に対する分解能の低い活性炭を用いた第1の活性炭処理装置と、前記第1の活性炭処理装置の下流に配置されたイオン交換処理装置と、前記イオン交換処理装置の下流に配置された前記高性能活性炭を用いた第2の活性炭処理装置とからなる排水処理装置を用いて実行される。
【0029】
本発明においては、第1の活性炭処理工程において、過酸化水素の相当部分が水と酸素に分解されるとともに、次段のイオン交換工程において、第2の活性炭処理工程に用いられる高性能の活性炭に対して負荷となる有機酸のようなイオン成分が除去されるので、高性能活性炭は、第1の活性炭処理工程において分解されなかった酸化剤に対して長期にわたり効果的に作用する。
【0030】
【発明の実施の形態】
次に、本発明の実施例について詳細に説明する。
【0031】
【実施例1】
図1は、本発明の排水処理装置の実施例である。この装置は、第1の活性炭処理装置(AC(1))11、イオン交換処理装置(混床式イオン交換樹脂装置)12、第2の活性炭処理装置(AC(2))13を、それぞれ配管系14で接続して構成されている。なお、第1の活性炭処理装置11、イオン交換処理装置12、第2の活性炭処理装置13には、それぞれ次の活性炭又はイオン交換樹脂が用いられている。
第1の活性炭処理装置:F400(商品名)(東洋カルゴン社製)200lを充填イオン交換処理装置:アニオン交換樹脂:弱塩基性アニオン交換樹脂デュオライトA378D(住友化学工業株式会社製)40 l、カチオン交換樹脂:強酸性カチオン交換樹脂デュオライトC−20(ローム&ハース社)20 l、これらの樹脂を予め再生してH型とOH型に変換した後に混合充填したもの第2の活性炭処理装置:センタウ(商品名)(東洋カルゴン社製)を200 l充填
【0032】
なお、上記活性炭(F400及びセンタウ)は、純水中10mg/lの過酸化水素をSV=10 h-1で通水したとき、F400は110μg/l、センタウは0μg/lの過酸化水素分解能を有している。
【0033】
このように構成され排水処理装置を用いて、半導体製造工程排水を模擬した次の組成の模擬排水について実験を行った。
【0034】
模擬排水:純水に硫酸290mg/l、フッ酸9mg/l、炭酸アンモニウム2mg/l、過酸化水素10mg/l、界面活性剤(ノニオン系:和光純薬(株)製 NCW−601A)0.15mg/lを添加した水(pH2.3、導電率1800μS/cm)上記の超純水製造装置に、上記の模擬排水を、2m3 /hの流量で通水して第2の活性炭装置13の入口のpH及びTOC濃度を測定したところ、それぞれpHは6.5、TOC濃度は0.1mg/lであった。また、通水45分後の最終処理水の過酸化水素濃度を測定したところ、過酸化水素濃度は0 μg/lであった。さらに、最終処理水の過酸化水素濃度を経時的に測定したところ、表1に示す通りの結果が得られた。
【0035】
【実施例2】
実施例1の超純水製造装置の混床型イオン交換装置12の代わりに2塔の単床式イオン交換装置(実施例1で使用したカチオン交換樹脂の単床とアニオン交換樹脂の単床)を用いた以外は、実施例1と同一構成とした排水処理装置を用いて、実施例1と同一条件で模擬排水を通水して第2の活性炭装置の入口のpH及びTOC濃度を測定したところ、それぞれpHは7.5、TOC濃度は0.1 mg/lであった。また、通水45分後の最終処理水の過酸化水素濃度を測定したところ、過酸化水素濃度は0 μg/lであった。さらに、最終処理水の過酸化水素濃度を経時的に測定したところ、表1に示す結果が得られた。
【0036】
【比較例1】
実施例1で使用した装置から、活性炭処理装置2を除去した以外は、実施例1と同一構成とした装置を用いて、実施例1と同様の条件で模擬排水の処理を行い、通水45分後の最終処理水の過酸化水素濃度を測定したところ、過酸化水素濃度は130 μg/lであった。さらに、最終処理水の過酸化水素濃度を経時的に測定したところ、表1に示す結果が得られた。
【0037】
【比較例2】
実施例1で使用した装置におけるイオン交換処理装置12と第2の活性炭処理装置13の通水順序を逆にした点を除いて、実施例1と同一構成とした装置を用いて、実施例1と同様の条件で模擬排水を通水して第2の活性炭装置の入口のpH及びTOC濃度を測定したところ、それぞれpHは2.4、TOC濃度は0.16 mg/lであった。また、通水45分後の最終処理水の過酸化水素濃度を測定したところ、過酸化水素濃度は7 μg/lであった。さらに、最終処理水の過酸化水素濃度を経時的に測定したところ、表1に示す結果が得られた。
【0038】
【表1】

Figure 0003992996
【0039】
【発明の効果】
以上の実施例及び比較例の結果からも明らかなように、本発明によれば、回収した排水中の酸化剤濃度を著しく低減することができ、一次純水システムへ流入する酸化剤濃度を抑制して一次純水システムへの負担を軽減することができる。
【0040】
また、回収水中に残留した酸化剤は、一次純水装置、二次純水装置を経て末端に到達するので、この方法を用いることによって末端水質の悪化も抑制することができる。さらに、高性能活性炭の逆洗間隔が長くなるので、逆洗による排水量の抑制およびコストダウンをはかることができる。
【図面の簡単な説明】
【図1】 本発明の一実施例の排水処理装置の構成を概略的に示す図である。
【符号の説明】
11………第1の活性炭処理装置、12………イオン交換処理装置、13………第2の活性炭処理装置、 14………配管系[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and a wastewater treatment apparatus for treating acidic wastewater containing hydrogen peroxide with high-performance activated carbon, and in particular, reduces the load on high-performance activated carbon to improve hydrogen peroxide resolution and high performance. The present invention relates to a wastewater treatment method having a longer service life of activated carbon and a wastewater treatment apparatus used in this method.
[0002]
[Prior art]
Ultrapure water used in semiconductor manufacturing processes and the like is generally manufactured through a primary pure water system and a secondary pure water system. The primary pure water system is composed of a filtration separation treatment device, an adsorption treatment device, a reverse osmosis membrane (RO) device, an ultraviolet oxidation device, a deaeration device, an ion exchange treatment device, etc., and the secondary pure water system is an ultraviolet oxidation device. , An ion exchange treatment device, an ultrafiltration device, and the like.
[0003]
City water, well water, industrial water, etc. are supplied to the primary pure water system as raw water, but wastewater discharged from semiconductor manufacturing processes etc. is also collected and used as raw water in semiconductor manufacturing factories, etc. .
[0004]
Also, in recent trends, ultrapure water systems (called closed systems) that reduce the amount of municipal water, well water, industrial water, etc. used as much as possible by collecting and reusing wastewater with poor water quality. Is increasingly used, and the proportion of wastewater discharged in the semiconductor manufacturing process and the like in the raw water is increasing.
[0005]
On the other hand, the recovered water that is discharged from the semiconductor manufacturing process, etc. and reused contains various chemicals and dissolved components used in the semiconductor manufacturing process, etc., and is included in city water, well water, and industrial water. Is different. Usually, both an anion contained in an acid such as hydrofluoric acid, sulfuric acid, and hydrochloric acid and a cation such as ammonia contain an oxidant such as hydrogen peroxide and an organic component (TOC component) such as a surfactant.
[0006]
For this reason, when this waste water is recovered and used as raw water of an ultrapure water system, these components are usually removed through a waste water treatment process and then supplied to the primary pure water system as raw water.
[0007]
A waste water treatment device for use as raw water of a conventional primary pure water system is mainly composed of an activated carbon treatment device and an ion exchange treatment device.
[0008]
In this wastewater treatment, the oxidizing agent such as hydrogen peroxide is decomposed and removed by the activated carbon treatment device, the cation and anion ion components are removed by the ion exchange treatment device, and the TOC component is also removed by the activated carbon treatment device and the ion exchange treatment device. It is.
[0009]
However, when high-concentration hydrogen peroxide, for example, exceeding 10 mg / l is treated, hydrogen peroxide cannot be sufficiently treated by the activated carbon treatment apparatus, and about 1 mg / l (1 ppm) of hydrogen peroxide is treated water. There was a problem that it remained.
[0010]
In this way, when treated water containing an oxidizing agent such as hydrogen peroxide is used as raw water as it is, the oxidizing agent is used for the primary pure water system, the RO device installed in the secondary pure water system, the ion exchange treatment device, the limit In addition to causing oxidative degradation of membranes such as filtration devices and ion exchange resins, the quality of the ultrapure water produced (called terminal water quality) is deteriorated by reaching the end through the primary pure water system and the secondary pure water system. There was a possibility of letting.
[0011]
For this reason, recently, activated carbon having a high ability to decompose an oxidant has been used as the activated carbon used in such a wastewater treatment apparatus.
[0012]
However, such high-performance activated carbon has an excellent adsorption capacity for other dissolved components, so the service life is very short, and it is necessary to repeat backwash regeneration frequently. There was a problem that the running cost also became high.
[0013]
It is conceivable to treat with general-purpose activated carbon having a lower resolution than the treatment with high-performance activated carbon.
[0014]
However, even when the treatment with general-purpose activated carbon is performed before the treatment of the high-performance activated carbon in this way, the hydrogen peroxide concentration in the treated water increases as the water flows, and after 24 hours, 40 μg / l (40 ppb) There was a problem of going over.
[0015]
In this way, even if the resolution of hydrogen peroxide is reduced, the performance of hydrogen peroxide treatment recovers to the same level as the beginning of water flow if backwashing of high-performance activated carbon is performed. However, there is a problem that the drainage of washing increases and the running cost also increases because backwash regeneration must be performed frequently.
[0016]
As a method for treating the oxidizing agent, a treating method using a reducing agent such as sodium hydrogen sulfite is also conceivable, but it is difficult to completely decompose the oxidizing agent by such a treating method using a reducing agent. In addition, the oxidizing agent remains in the treated water, and a large amount of reagent is required. Further, there is a problem that the quality of the terminal water is deteriorated due to an increase in ion components due to the injection of the reducing agent.
[0017]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described conventional problems, improves the treatment performance of oxidants such as hydrogen peroxide, eliminates oxidants in recovered water almost completely, An object of the present invention is to provide a wastewater treatment method and a wastewater treatment apparatus that reduce the frequency of backwashing, reduce wastewater, and reduce running costs.
[0018]
[Means for Solving the Problems]
As a result of intensive research to solve the above-mentioned problems, the present inventor treated wastewater with ordinary activated carbon having a lower resolution to oxidizing agents than high-performance activated carbon when treating wastewater with high-performance activated carbon, It was found that, after ion exchange treatment, treatment with high-performance activated carbon significantly improved the decomposition performance of oxidants such as hydrogen peroxide and maintained the oxidizer treatment performance for a longer time. .
[0019]
The present invention has been made based on such knowledge, and the waste water treatment apparatus of the present invention is a method for treating acidic waste water containing hydrogen peroxide and other oxidizing agents with high-performance activated carbon, wherein A first activated carbon treatment step for treating with activated carbon having a lower resolution than an activated carbon, an ion exchange treatment step for treating the treated water treated in the first activated carbon treatment step with an ion exchange device, and the ion exchange The treatment water treated in the treatment step includes the second activated carbon treatment step of treating with the high-performance activated carbon.
[0020]
The wastewater to be treated according to the present invention is wastewater that is used again as raw water, for example, 1 to 30 mg / l of hydrogen peroxide, hypochlorous acid, chloramine, ozone, etc. discharged in the semiconductor manufacturing process. Although it is an acidic one having a pH of 2 to 5 containing an agent such as hydrofluoric acid, sulfuric acid, hydrochloric acid, etc., it is not limited to the semiconductor manufacturing process and can be treated as long as it has substantially the same composition.
[0021]
The activated carbon having a lower resolution with respect to the oxidizing agent than the high-performance activated carbon used in the first activated carbon treatment step of the present invention is used for ordinary water treatment, such as coconut shell activated carbon, coal-based activated carbon, etc. Is exemplified. These activated carbons have innumerable pores of about 10 to 10000 A (most of which are 10 to 20 A) inside and have a specific surface area of about 500 to 1500 m 2 . In addition, the pore distribution and specific surface area of the activated carbon in this specification are values measured by an adsorption method using a nitrogen gas (N 2 ), an argon gas (Ar) or the like, or a mercury intrusion method.
[0022]
The activated carbon used for these normal water treatments is 0.1 to 1 mg / l of hydrogen peroxide in treated water when 10 mg / l of hydrogen peroxide in pure water is passed at SV = 10 h −1. = × 1000 μg / l). In addition, said SV is the meaning of space velocity (Space Velocity), and is represented by SV = flow velocity (l (liter) / h (time)) / filled activated carbon amount (l).
[0023]
The activated carbon used in the second activated carbon treatment step of the present invention increases the proportion of pores of 20 to 1000 A to 10 Vol% or more, preferably 20 Vol% or more, or like platinum, palladium, silver, etc. The decomposition catalyst is supported to increase the resolution with respect to the oxidizing agent. When 10 mg / l of hydrogen peroxide in pure water is passed at SV = 10 h −1 , the hydrogen peroxide in the treated water is 50 μg / l, It preferably has the ability to decompose to 10 μg / l, more preferably to less than 5 μg / l.
[0024]
Examples of the activated carbon that has improved pore resolution and improved resolution to the oxidizing agent include CENTAUR (trade name) sold by Toyo Calgon and Calgon Carbon Corporation. Moreover, as activated carbon which carried | supported the hydrogen peroxide high decomposition catalyst, Kuraray Chemical Co., Ltd. T-SB (brand name) is illustrated.
[0025]
The ion exchange apparatus used for the ion exchange treatment of the present invention includes a mixed bed type ion exchange tower using a cation / anion exchange resin or a single bed tower using a cation exchange resin and a single bed tower using an anion exchange resin. An electric ion exchange resin apparatus that continuously performs combination, ion adsorption and regeneration is exemplified.
[0026]
In addition, the oxidizing agent decomposition performance of high-performance activated carbon depends on the pH of the water to be treated, and neutral and alkaline decomposition performance of oxidizing agent is higher than acidic. In general, as an ion exchange apparatus, the pH of treated water of a cation / anion exchange resin or an ion exchange treatment apparatus using an anion exchange resin is 6 to 7 or more, so that a cation / anion exchange resin is placed upstream of a high-performance activated carbon apparatus. By disposing an anion exchange resin or an ion exchange treatment apparatus using an anion exchange resin, the hydrogen peroxide decomposition performance is improved.
[0027]
Furthermore, the first activated carbon treatment step, the ion exchange treatment step, and the second activated carbon treatment step are not necessarily performed continuously, and other treatment steps, for example, a deaeration step for degassing dissolved carbon dioxide and oxygen. It is also possible to provide a membrane processing step using a reverse osmosis membrane or the like, an ultraviolet (UV) irradiation step for decomposing TOC (organic impurities, etc. ) , etc. between the above processing steps.
[0028]
The waste water treatment method of the present invention is a waste water treatment apparatus using high-performance activated carbon, and includes a first activated carbon treatment apparatus using activated carbon having a lower resolution against an oxidizing agent than the high-performance activated carbon, and the first activated carbon treatment. This is carried out using a wastewater treatment device comprising an ion exchange treatment device arranged downstream of the device and a second activated carbon treatment device using the high-performance activated carbon arranged downstream of the ion exchange treatment device.
[0029]
In the present invention, in the first activated carbon treatment step, a substantial portion of hydrogen peroxide is decomposed into water and oxygen, and in the next ion exchange step, high-performance activated carbon used in the second activated carbon treatment step. Since an ionic component such as an organic acid serving as a load is removed, the high-performance activated carbon effectively acts over a long period against an oxidizing agent that has not been decomposed in the first activated carbon treatment step.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Next, examples of the present invention will be described in detail.
[0031]
[Example 1]
FIG. 1 shows an embodiment of the waste water treatment apparatus of the present invention. In this apparatus, a first activated carbon treatment device (AC (1)) 11, an ion exchange treatment device (mixed bed ion exchange resin device) 12, and a second activated carbon treatment device (AC (2)) 13 are respectively piped. The system 14 is configured to be connected. In addition, the following activated carbon or ion exchange resin is used for the 1st activated carbon processing apparatus 11, the ion exchange processing apparatus 12, and the 2nd activated carbon processing apparatus 13, respectively.
First activated carbon treatment device: F400 (trade name) (made by Toyo Calgon Co., Ltd.) 200 l filled ; ion exchange treatment device: anion exchange resin: weakly basic anion exchange resin Duolite A378D (Sumitomo Chemical Co., Ltd.) 40 l Cation exchange resin: Strongly acidic cation exchange resin Duolite C-20 (Rohm & Haas) 20 l, mixed and filled with these resins after being regenerated in advance and converted to H type and OH type ; second activated carbon Processing equipment: 200 l of Centau (trade name) (manufactured by Toyo Calgon Co., Ltd.)
The activated carbon (F400 and Centau) has a hydrogen peroxide resolution of 110 μg / l for F400 and 0 μg / l for Centau when 10 mg / l hydrogen peroxide in pure water is passed at SV = 10 h −1. have.
[0033]
Using the wastewater treatment apparatus configured as described above, an experiment was conducted on simulated wastewater having the following composition simulating semiconductor manufacturing process wastewater.
[0034]
Simulated wastewater: 290 mg / l sulfuric acid in pure water, 9 mg / l hydrofluoric acid, 2 mg / l ammonium carbonate, 10 mg / l hydrogen peroxide, surfactant (nonionic: NCW-601A manufactured by Wako Pure Chemical Industries, Ltd.) Water added with 15 mg / l (pH 2.3, conductivity 1800 μS / cm) ; the simulated activated water was passed through the ultrapure water production device at a flow rate of 2 m 3 / h, and the second activated carbon device When the pH and TOC concentration at 13 inlets were measured, the pH was 6.5 and the TOC concentration was 0.1 mg / l, respectively. Further, when the hydrogen peroxide concentration of the final treated water after 45 minutes of water flow was measured, the hydrogen peroxide concentration was 0 μg / l. Furthermore, when the hydrogen peroxide concentration of the final treated water was measured over time, the results shown in Table 1 were obtained.
[0035]
[Example 2]
Single bed ion exchange apparatus 2 tower instead of the mixed bed ion exchanger of the ultrapure water production apparatus 12 Example 1 (single-bed single bed and an anion exchange resin of the cation exchange resin used in Example 1) The wastewater treatment equipment having the same configuration as in Example 1 was used, and simulated wastewater was passed under the same conditions as in Example 1 to measure the pH and TOC concentration at the inlet of the second activated carbon device. However, the pH was 7.5 and the TOC concentration was 0.1 mg / l, respectively. Further, when the hydrogen peroxide concentration of the final treated water after 45 minutes of water flow was measured, the hydrogen peroxide concentration was 0 μg / l. Furthermore, when the hydrogen peroxide concentration of the final treated water was measured over time, the results shown in Table 1 were obtained.
[0036]
[Comparative Example 1]
Except for removing the activated carbon treatment device 2 from the device used in the first embodiment, the simulated waste water is treated under the same conditions as in the first embodiment using a device having the same configuration as the first embodiment. When the hydrogen peroxide concentration of the final treated water after the minute was measured, the hydrogen peroxide concentration was 130 μg / l. Furthermore, when the hydrogen peroxide concentration of the final treated water was measured over time, the results shown in Table 1 were obtained.
[0037]
[Comparative Example 2]
Example 1 using an apparatus having the same configuration as Example 1 except that the water exchange order of the ion exchange treatment device 12 and the second activated carbon treatment device 13 in the device used in Example 1 was reversed. When the simulated waste water was passed under the same conditions as above and the pH and TOC concentration at the inlet of the second activated carbon device were measured, the pH was 2.4 and the TOC concentration was 0.16 mg / l, respectively. Further, when the hydrogen peroxide concentration of the final treated water after 45 minutes of water flow was measured, the hydrogen peroxide concentration was 7 μg / l. Furthermore, when the hydrogen peroxide concentration of the final treated water was measured over time, the results shown in Table 1 were obtained.
[0038]
[Table 1]
Figure 0003992996
[0039]
【The invention's effect】
As is clear from the results of the above examples and comparative examples, according to the present invention, the oxidant concentration in the recovered waste water can be significantly reduced, and the oxidant concentration flowing into the primary pure water system is suppressed. Thus, the burden on the primary pure water system can be reduced.
[0040]
Further, since the oxidant remaining in the recovered water reaches the end through the primary pure water device and the secondary pure water device, deterioration of the end water quality can be suppressed by using this method. Furthermore, since the backwashing interval of the high-performance activated carbon becomes long, the amount of drainage by backwashing and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a configuration of a wastewater treatment apparatus according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ......... 1st activated carbon processing apparatus, 12 ......... Ion exchange processing apparatus, 13 ......... 2nd activated carbon processing apparatus, 14 ...... Piping system

Claims (6)

過酸化水素その他の酸化剤を含有する酸性の排水を、純水中10mg/lの過酸化水素をSV=10 -1 で通水したとき処理水中の過酸化水素を10μg/l未満とする酸化剤に対する分解能を有する高性能活性炭により処理する方法において、
前記排水を前記高性能活性炭より酸化剤に対する分解能の低い活性炭により処理する第1の活性炭処理工程と、
前記第1の活性炭処理工程で処理した処理水を、イオン交換装置により処理するイオン交換処理工程と、
前記イオン交換処理工程で処理された処理水を、前記高性能活性炭で処理する第2の活性炭処理工程とを含むことを特徴とする排水処理方法。
Acid waste water containing hydrogen peroxide and other oxidizing agents is treated with 10 mg / l hydrogen peroxide in pure water at SV = 10 In a method of treating with high-performance activated carbon having a resolution for an oxidizing agent that reduces hydrogen peroxide in treated water to less than 10 μg / l when water is passed at h −1 ,
A first activated carbon treatment step in which the waste water is treated with activated carbon having a lower resolution with respect to an oxidizing agent than the high-performance activated carbon;
An ion exchange treatment step of treating the treated water treated in the first activated carbon treatment step with an ion exchange device;
A wastewater treatment method comprising: a second activated carbon treatment step of treating the treated water treated in the ion exchange treatment step with the high-performance activated carbon.
前記イオン交換装置が、混床式イオン交換装置、単床式イオン交換装置もしくは電気式イオン交換装置であることを特徴とする請求項1記載の排水処理方法。The waste water treatment method according to claim 1 , wherein the ion exchange device is a mixed bed type ion exchange device, a single bed type ion exchange device or an electric ion exchange device. 高性能活性炭は、20〜1000Aの細孔を10 Vol%以上有する活性炭又は分解触媒を担持する活性炭であることを特徴とする請求項1又は2記載の排水処理方法。The wastewater treatment method according to claim 1 or 2 , wherein the high-performance activated carbon is activated carbon having 20 to 1000 A pores of 10 Vol% or more or activated carbon supporting a decomposition catalyst. 純水中10mg/lの過酸化水素をSV=10 -1 で通水したとき処理水中の過酸化水素を10μg/l未満とする酸化剤に対する分解能を有する高性能活性炭を用いた排水処理装置であって、
前記高性能活性炭より酸化剤に対する分解能の低い活性炭を用いた第1の活性炭処理装置と、
前記第1の活性炭処理装置の下流に配置されたイオン交換処理装置と、
前記イオン交換処理装置の下流に配置された前記高性能活性炭を用いた第2の活性炭処理装置とからなることを特徴とする排水処理装置。
10 mg / l hydrogen peroxide in pure water with SV = 10 a wastewater treatment apparatus using high-performance activated carbon having a resolution with respect to an oxidizing agent that reduces hydrogen peroxide in treated water to less than 10 μg / l when water is passed at h −1 ;
A first activated carbon treatment apparatus using activated carbon having a lower resolution for oxidizing agents than the high-performance activated carbon;
An ion exchange treatment device disposed downstream of the first activated carbon treatment device;
A wastewater treatment apparatus comprising a second activated carbon treatment apparatus using the high-performance activated carbon disposed downstream of the ion exchange treatment apparatus.
前記イオン交換装置が、カチオン・アニオン交換樹脂もしくはアニオン交換樹脂を用いたイオン交換装置であることを特徴とする請求項4記載の排水処理装置。The waste water treatment apparatus according to claim 4 , wherein the ion exchange apparatus is a cation / anion exchange resin or an ion exchange apparatus using an anion exchange resin. 高性能活性炭は、20〜1000Aの細孔を10 Vol%以上有する活性炭又は分解触媒を担持する活性炭であることを特徴とする請求項4又は5記載の排水処理装置。The wastewater treatment apparatus according to claim 4 or 5 , wherein the high-performance activated carbon is activated carbon having 20 to 1000 A pores of 10 Vol% or more or activated carbon supporting a decomposition catalyst.
JP2002048590A 2002-02-25 2002-02-25 Wastewater treatment method and apparatus Expired - Lifetime JP3992996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048590A JP3992996B2 (en) 2002-02-25 2002-02-25 Wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048590A JP3992996B2 (en) 2002-02-25 2002-02-25 Wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2003245659A JP2003245659A (en) 2003-09-02
JP3992996B2 true JP3992996B2 (en) 2007-10-17

Family

ID=28661350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048590A Expired - Lifetime JP3992996B2 (en) 2002-02-25 2002-02-25 Wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3992996B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977970B2 (en) * 2005-06-22 2012-07-18 ダイキン工業株式会社 Method for producing nonionic surfactant aqueous composition
JP2007185581A (en) * 2006-01-12 2007-07-26 Nomura Micro Sci Co Ltd Purification method and purification apparatus for oxidizing agent
JP5232059B2 (en) * 2009-03-27 2013-07-10 日本錬水株式会社 Wastewater recovery method and wastewater recovery device
JP7065723B2 (en) * 2018-07-31 2022-05-12 オルガノ株式会社 Water treatment system, its operation method, and protection device

Also Published As

Publication number Publication date
JP2003245659A (en) 2003-09-02

Similar Documents

Publication Publication Date Title
EP0634364B1 (en) Pure water manufacturing method
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
JPH0790219B2 (en) Pure water production apparatus and production method
JP2003205299A (en) Hydrogen dissolved water manufacturing system
KR101476864B1 (en) Method and apparatus for removing organic matters
JP3864934B2 (en) Pure water production equipment
JP4447212B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP2000354729A5 (en)
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP3992996B2 (en) Wastewater treatment method and apparatus
JPH0649190B2 (en) High-purity water manufacturing equipment
JP4810757B2 (en) Ultrafiltration membrane for ultrapure water production and its pre-cleaning method
JP2000301005A (en) Method for reutilizing effluent in regeneration of ion exchange resin
US20060201882A1 (en) Method and system for treating wastewater containing hydrogen peroxide
JPH07313994A (en) Production of ultrapure water
WO2022024815A1 (en) Pure water production apparatus, ultrapure water production apparatus, pure water production method, and ultrapure water production method
JP2007098268A (en) Method and apparatus for disposing waste water
JPH10202296A (en) Ultrapure water producer
JP3259557B2 (en) How to remove organic matter
JP5782675B2 (en) Water treatment method and ultrapure water production method
JP3727156B2 (en) Desalination equipment
JP3304412B2 (en) Pure water production method
JP3528287B2 (en) Pure water production method
JP7171671B2 (en) Ultrapure water production system and ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Ref document number: 3992996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term