JP2008132492A - Electric demineralizer - Google Patents

Electric demineralizer Download PDF

Info

Publication number
JP2008132492A
JP2008132492A JP2007336391A JP2007336391A JP2008132492A JP 2008132492 A JP2008132492 A JP 2008132492A JP 2007336391 A JP2007336391 A JP 2007336391A JP 2007336391 A JP2007336391 A JP 2007336391A JP 2008132492 A JP2008132492 A JP 2008132492A
Authority
JP
Japan
Prior art keywords
chamber
water
fiber material
desalting
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007336391A
Other languages
Japanese (ja)
Inventor
Yohei Takahashi
洋平 高橋
Osamu Nakanishi
收 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2007336391A priority Critical patent/JP2008132492A/en
Publication of JP2008132492A publication Critical patent/JP2008132492A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric demineralizer having a novel construction with an excellent demineralization efficiency. <P>SOLUTION: This electric demineralizer comprises a demineralization chamber, a concentration chamber, and an electrode chamber in contact with an electrode, which have been partitioned by a plurality of ion exchange membranes, interposed between a cathode and an anode. In at least one of the demineralization chamber, the concentration chamber, and the electrode chamber, a plurality of layers of an anion exchange fiber material having an anion exchange function and/or layers of a cation exchange fiber material having a cation exchange function are stacked and disposed so as to cross each other in a water passing direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、いわゆる電気式脱塩装置に関する改良に関し、従来の電気式脱塩装置の性能を大きく上回る性能を持った電気式脱塩装置を提供するものである。   The present invention relates to an improvement related to a so-called electric desalination apparatus, and provides an electric desalination apparatus having performance far exceeding that of a conventional electric desalination apparatus.

電気式脱塩装置とは、陰極と陽極の電極間にカチオン交換膜及びアニオン交換膜を配列することによって濃縮室及び脱塩室を形成し、電位勾配を駆動源として、脱塩室内において被処理水中のイオンをイオン交換膜を通して濃縮室へ移動・分離させることによって、イオン成分を除去するものである。   The electric desalination equipment forms a concentrating chamber and a desalting chamber by arranging a cation exchange membrane and an anion exchange membrane between the cathode and anode electrodes, and uses a potential gradient as a driving source to treat the desalting chamber. Ion components are removed by moving and separating ions in the water through the ion exchange membrane to the concentration chamber.

図1に、従来の典型的な電気式脱塩装置の概念図を示す。図1に示す電気式脱塩装置は、陰極(−)と陽極(+)の間に、アニオン交換膜A、カチオン交換膜Cが交互に配列されて、脱塩室及び濃縮室が形成されている。アニオン交換膜とカチオン交換膜との交互配列を更に繰り返すことにより、複数の脱塩室及び濃縮室が交互に形成される。必要に応じて、脱塩室や濃縮室にはイオン交換体が充填され、これにより各室内でのイオンの移動が促進される。また、両端の陽極および陰極に接する区画は一般に陽極室および陰極室と称され、直流電流により印加される電流の電子を授受する機能を果たす。   In FIG. 1, the conceptual diagram of the conventional typical electric desalination apparatus is shown. In the electric desalination apparatus shown in FIG. 1, an anion exchange membrane A and a cation exchange membrane C are alternately arranged between a cathode (−) and an anode (+) to form a desalination chamber and a concentration chamber. Yes. By further repeating the alternating arrangement of the anion exchange membrane and the cation exchange membrane, a plurality of desalting chambers and concentration chambers are alternately formed. If necessary, the desalting chamber and the concentration chamber are filled with an ion exchanger, which promotes the movement of ions in each chamber. Further, the sections in contact with the anode and the cathode at both ends are generally called an anode chamber and a cathode chamber, and serve to exchange electrons of current applied by a direct current.

このような電気式脱塩装置の運転においては、陽極及び陰極に電圧を印加すると共に、脱塩室、濃縮室及び極室に通水を行う。脱塩室には、イオンを処理対象の被処理水が供給され、濃縮室及び極室には、それぞれ適当な水質の水が通水される。図1では、脱塩室、濃縮室、極室の全てにRO処理水を供給する例を示している。このように脱塩室及び濃縮室に通水を行うと、脱塩室において、被処理水中のカチオン及びアニオンはそれぞれ陰極側及び陽極側に引かれるが、アニオン交換膜及びカチオン交換膜はそれぞれアニオン又はカチオンのみを選択的に透過するため、被処理水中のカチオン(Ca2+,Na,Mg2+,Hなど)は、カチオン交換膜Cを通して陰極側濃縮室へ、またアニオン(Cl,SO 2−,HSiO 2−,HCO ,OHなど)は、アニオン交換膜Aを通して陽極側の濃縮室へ移動する。一方、陰極側濃縮室から脱塩室へのアニオンの移動および陽極側濃縮室から脱塩室へのカチオンの移動はイオン交換膜の異符号イオン遮断性のために阻止される。この結果、脱塩室からはイオン濃度の低められた脱塩水が得られ、濃縮室からはイオン濃度の高められた濃縮水が得られる。 In the operation of such an electric desalination apparatus, a voltage is applied to the anode and the cathode, and water is passed through the desalination chamber, the concentration chamber, and the electrode chamber. Water to be treated for ions is supplied to the desalting chamber, and water of appropriate water quality is passed through the concentration chamber and the polar chamber, respectively. FIG. 1 shows an example in which RO treated water is supplied to all of the desalting chamber, the concentration chamber, and the polar chamber. When water is passed through the desalting chamber and the concentrating chamber in this way, cations and anions in the water to be treated are attracted to the cathode side and the anode side, respectively, but the anion exchange membrane and the cation exchange membrane are each anion. Alternatively, in order to selectively permeate only cations, cations (Ca 2+ , Na + , Mg 2+ , H +, etc.) in the water to be treated pass through the cation exchange membrane C to the cathode side concentrating chamber and anions (Cl , SO 4 2− , HSiO 3 2− , HCO 3 , OH −, etc.) move to the concentration chamber on the anode side through the anion exchange membrane A. On the other hand, the movement of the anion from the cathode side concentration chamber to the desalting chamber and the movement of the cation from the anode side concentration chamber to the desalting chamber are blocked by the different sign ion blocking property of the ion exchange membrane. As a result, desalted water having a reduced ion concentration is obtained from the desalting chamber, and concentrated water having an increased ion concentration is obtained from the concentrating chamber.

このような電気式脱塩装置によれば、被処理水として例えばRO(逆浸透膜)処理水相当の不純物の少ない水を用いることで、脱塩水として、さらに純度の高い純水が得られる。最近では、例えば半導体製造用超純水など、より高度な超純水が要求されるようになった。そこで、最近の電気式脱塩装置においては、脱塩室及び/又は濃縮室及び/又は極室に、イオン交換体としてカチオン交換樹脂ビーズとアニオン交換樹脂ビーズを混合して充填することにより、これらの室内におけるイオンの移動を促進させるという方法が知られている。さらに、イオン交換体として、脱塩室内において、カチオン交換膜側にカチオン交換繊維材料(不織布など)、アニオン交換膜側にアニオン交換繊維材料を、それぞれ向かい合わせて配置したり、これらイオン交換繊維材料の間にスペーサもしくはイオン伝導性を付与したイオン伝導スペーサを充填するという方法も提案されている(例えば、特開平5−64726号公報及び国際公開W099/48820号パンフレットを参照)。   According to such an electrical desalting apparatus, pure water with higher purity can be obtained as desalted water by using water with less impurities equivalent to, for example, RO (reverse osmosis membrane) treated water as the treated water. Recently, more advanced ultrapure water, such as ultrapure water for semiconductor manufacturing, has been required. Therefore, in a recent electric desalination apparatus, a desalination chamber and / or a concentration chamber and / or a polar chamber are mixed with cation exchange resin beads and anion exchange resin beads as an ion exchanger, and these are filled. A method of promoting the movement of ions in the room is known. Furthermore, as an ion exchanger, a cation exchange fiber material (nonwoven fabric, etc.) is placed on the cation exchange membrane side and an anion exchange fiber material on the anion exchange membrane side in the desalting chamber. A method of filling a spacer or an ion conductive spacer imparted with ion conductivity between them is also proposed (see, for example, JP-A-5-64726 and International Publication W099 / 48820 pamphlet).

上記のように、イオン交換体を充填した脱塩室に被処理水を通水すると、被処理水中の除去対象塩とイオン交換体のイオン交換基とがイオン交換反応を起こして塩が除去される。例えば、除去対象塩としてNaCl、カチオン交換基としてスルホン酸基、アニオン交換基として第4級アンモニウム塩を用いた場合は、以下のように説明することができる。   As described above, when water to be treated is passed through a desalination chamber filled with an ion exchanger, the salt to be removed is caused by an ion exchange reaction between the salt to be removed in the water to be treated and the ion exchange group of the ion exchanger. The For example, when NaCl is used as the salt to be removed, a sulfonic acid group is used as the cation exchange group, and a quaternary ammonium salt is used as the anion exchange group, it can be explained as follows.

除去対象塩(NaCl)が溶解した被処理水がカチオン交換体と接触すると、被処理水中のカチオン(Na)がカチオン交換基によってイオン交換され、固相(カチオン交換体)に吸着されて除去される(式1)。 When the treated water in which the salt to be removed (NaCl) is dissolved comes into contact with the cation exchanger, the cation (Na + ) in the treated water is ion-exchanged by the cation exchange group and adsorbed on the solid phase (cation exchanger) to be removed. (Equation 1).

Figure 2008132492
Figure 2008132492

カチオン交換体と接触してある程度のカチオンが除去された被処理水は、次にアニオン交換体と接触する。このとき、カチオン交換基によるイオン交換反応(式1)によって生成した酸(HCl)は、式2に示すように、完全に中和される。   The water to be treated from which a certain amount of cations has been removed by contacting with the cation exchanger is then contacted with the anion exchanger. At this time, the acid (HCl) produced by the ion exchange reaction (formula 1) by the cation exchange group is completely neutralized as shown in formula 2.

Figure 2008132492
Figure 2008132492

一方、カチオン交換体と反応しなかった被処理水中の除去対象塩は、アニオン交換体と接触し、式3に示すようにアニオン交換基によってアニオン(Cl)がイオン交換され、固相(アニオン交換体)に吸着されて除去される。 On the other hand, the salt to be removed in the water to be treated that has not reacted with the cation exchanger comes into contact with the anion exchanger, and as shown in Formula 3, the anion (Cl ) is ion-exchanged by the anion exchange group, and the solid phase (anion It is adsorbed and removed by the exchanger.

Figure 2008132492
Figure 2008132492

次に、被処理水はカチオン交換体と接触し、アニオン交換基によるイオン交換反応(式3)によって生成したアルカリ(NaOH)が、式4に示すように中和される。   Next, the water to be treated comes into contact with the cation exchanger, and the alkali (NaOH) generated by the ion exchange reaction (Formula 3) by the anion exchange group is neutralized as shown in Formula 4.

Figure 2008132492
Figure 2008132492

上記式1及び3は平衡反応であり、従って、被処理水中に含まれる除去対象塩は、アニオン交換体及びカチオン交換体への1回の接触では、完全にはイオン交換されて除去されず、被処理水中にある程度残留してしまう。従って、効率よくイオンを除去するためには、上記式1〜式4の反応を繰り返し行うことが必要であり、そのためには、被処理水をカチオン交換体およびアニオン交換体に交互にできるだけ多くの回数接触させ、式1〜式4の反応により、除去対象塩を固相に移動させることが重要である。   The above formulas 1 and 3 are equilibrium reactions, and therefore the salt to be removed contained in the water to be treated is not completely ion-exchanged and removed by one contact with the anion exchanger and the cation exchanger, It remains to some extent in the treated water. Therefore, in order to efficiently remove ions, it is necessary to repeatedly perform the reactions of the above formulas 1 to 4, and for that purpose, water to be treated is alternately exchanged into a cation exchanger and an anion exchanger as much as possible. It is important that the salt to be removed is moved to the solid phase by the reaction of Formula 1 to Formula 4 after contact with a number of times.

上記のように被処理水中の除去対象イオンがイオン交換反応および中和反応を起こすためには、除去対象イオンが官能基の近傍まで移動し、次にイオン交換反応を受けるという2段階の過程が必要である。電気式脱塩装置においては、被処理水は脱塩室に連続的に供給され、短時間で脱塩室を通過する間にイオン交換反応および中和反応を起こす必要があるため、被処理水中の除去対象イオンが短時間でイオン交換体の官能基近傍に拡散して、官能基とイオンとの接触頻度が高く保持されることが望ましい。   In order for the ions to be removed in the water to be treated to cause an ion exchange reaction and a neutralization reaction as described above, the removal target ions move to the vicinity of the functional group and then undergo an ion exchange reaction. is necessary. In an electric desalination apparatus, the water to be treated is continuously supplied to the desalting chamber, and it is necessary to cause an ion exchange reaction and a neutralization reaction while passing through the desalting chamber in a short time. It is desirable that the ions to be removed be diffused in the vicinity of the functional group of the ion exchanger in a short time and the contact frequency between the functional group and the ion is kept high.

また、電気式脱塩装置においては、上式1〜4のイオン交換反応および中和反応によって固相(イオン交換体)に吸着された除去対象イオンを、通電運転により脱塩室から濃縮室又は極室に移動させる必要がある。またその際には、イオン交換体に吸着された除去対象イオンが液相中に脱離することなく、固相(イオン交換体)上を連続して、脱塩室と濃縮室との間のイオン交換膜まで移動することが望ましい。すなわち、脱塩室において、カチオン交換膜およびアニオン交換膜間に、カチオン交換膜に接するカチオン交換体、および、アニオン交換膜に接するアニオン交換体が、それぞれ連続相を形成して充填されていることが望ましい。   In the electric desalting apparatus, the ions to be removed adsorbed on the solid phase (ion exchanger) by the ion exchange reaction and neutralization reaction of the above formulas 1 to 4 are passed from the desalting chamber to the concentrating chamber or It is necessary to move to the polar chamber. In this case, the ions to be removed adsorbed on the ion exchanger are not continuously desorbed in the liquid phase, but continuously on the solid phase (ion exchanger) between the desalting chamber and the concentration chamber. It is desirable to move to the ion exchange membrane. That is, in the desalination chamber, the cation exchanger in contact with the cation exchange membrane and the anion exchanger in contact with the anion exchange membrane are filled between the cation exchange membrane and the anion exchange membrane, respectively, forming a continuous phase. Is desirable.

更に、上記のように室内にイオン交換体を充填した電気式脱塩装置においては、イオン交換体を充填した脱塩室及び/又は濃縮室内において、カチオン交換基とアニオン交換基とが接触する部位が存在する。特に脱塩室内のカチオン交換基とアニオン交換基とが接触する部位においては、急激な電位勾配下で水の解離(式5):   Further, in the electric desalination apparatus in which the ion exchanger is filled in the chamber as described above, the portion where the cation exchange group and the anion exchange group come into contact in the desalination chamber and / or the concentration chamber filled with the ion exchanger. Exists. In particular, at the site where the cation exchange group and the anion exchange group in the desalting chamber come into contact, dissociation of water under a rapid potential gradient (Equation 5):

Figure 2008132492
Figure 2008132492

が起こり、この解離(水解)によって生成するHイオンおよびOHイオンによって脱塩室内のイオン交換体が再生されることにより、高純度な純水を得ることを可能にしている。従って、効率の良い脱塩のためには、水解の発生場、即ちアニオン交換体とカチオン交換体との接触部位を多くすることが望ましい。更に、水解によって生成するHイオンおよびOHイオンは、それぞれ隣接するカチオン交換体及びアニオン交換体のイオン交換基を次々に連続して再生していく。このような構造において、通電運転を続けるとカチオン交換体とアニオン交換体の接触部位で局所的に官能基の対イオンが不足することとなり、この不足した対イオンを補償すべく官能基近傍の水が解離し、カチオン交換基及びアニオン交換基にHイオン及びOHイオンを連続的に供給できるようになる。また、水だけでなくアルコールなど非電解質においても、強力な電場により分極及び解離しアニオン及びカチオンとなることで官能基に吸着し、除去することが可能となると考えられる。従って、アニオン交換体とカチオン交換体との接触部位(水解場)が、特に脱塩室内において全体に亘って分散して数多く存在していることが望ましく、更に当該接触部位から、アニオン交換体及びカチオン交換体がそれぞれ連続相を形成して配置されていることが望ましい。 And the ion exchanger in the desalting chamber is regenerated by H + ions and OH ions generated by this dissociation (hydrolysis), thereby making it possible to obtain high-purity pure water. Therefore, for efficient desalting, it is desirable to increase the hydrolytic site, that is, the number of contact sites between the anion exchanger and the cation exchanger. Furthermore, the H + ions and OH ions generated by the hydrolysis continuously regenerate the ion exchange groups of the adjacent cation exchanger and anion exchanger one after another. In such a structure, if the energization operation is continued, the functional group counter ions will be insufficient locally at the contact site between the cation exchanger and the anion exchanger, and water in the vicinity of the functional group will be compensated for. Dissociates, and H + ions and OH ions can be continuously supplied to the cation exchange group and the anion exchange group. Further, not only water but also non-electrolytes such as alcohols can be adsorbed and removed by functional groups by being polarized and dissociated by a strong electric field to become anions and cations. Therefore, it is desirable that a large number of contact sites (hydrolysis field) between the anion exchanger and the cation exchanger exist in a particularly dispersed manner throughout the desalting chamber. It is desirable that the cation exchangers are arranged to form a continuous phase.

更に、近年、純度のより高い純水が求められており、処理水に含まれるTOC(有機体炭素)成分の濃度が低いことが望まれる。電気式脱塩処理によって得られる処理水中に含まれるTOC成分は、内因性、即ち脱塩装置に充填されているイオン交換体からの溶出成分に由来するものと、外因性、即ち被処理水中に含まれるTOCに由来するものとがある。このうち、イオン交換体から溶出するTOC成分は、イオン交換体の合成時にイオン交換体に付着した未反応モノマーや或いは架橋されていない高分子電解質であることが多い。これらは、通水洗浄により徐々に液相に溶出してくるが、できるだけ短時間で洗浄可能な構造のイオン交換体とすることが望ましい。また、イオン交換体合成プロセス中から架橋反応を排除して、未架橋の高分子電解質がイオン交換体に混入することを防ぐことが望まれる。一方、被処理水中に含まれるTOC成分については、カチオン交換基とアニオン交換基との間での水の解離反応と同様に強力な電位勾配下でイオン化させることによって除去可能である。従って、カチオン交換体とアニオン交換体の接触部位に、TOC成分を含んだ被処理水を均一に流通させることができることが望ましい。   Furthermore, in recent years, pure water with higher purity has been demanded, and it is desired that the concentration of the TOC (organic carbon) component contained in the treated water is low. The TOC component contained in the treated water obtained by the electric desalting treatment is endogenous, that is, derived from the elution component from the ion exchanger filled in the desalting apparatus, and exogenous, that is, in the treated water. Some are derived from the TOC included. Of these, the TOC component eluted from the ion exchanger is often an unreacted monomer attached to the ion exchanger during the synthesis of the ion exchanger or a polymer electrolyte that is not crosslinked. These gradually elute into the liquid phase by washing with water, but it is desirable to use an ion exchanger having a structure that can be washed in as short a time as possible. It is also desirable to eliminate the crosslinking reaction from the ion exchanger synthesis process and prevent the uncrosslinked polymer electrolyte from being mixed into the ion exchanger. On the other hand, the TOC component contained in the water to be treated can be removed by ionization under a strong potential gradient, similar to the water dissociation reaction between the cation exchange group and the anion exchange group. Therefore, it is desirable that the water to be treated containing the TOC component can be uniformly circulated through the contact site between the cation exchanger and the anion exchanger.

また、得られる処理水(純水)としては、更に、シリカ成分、炭酸などの弱電解質の濃度が低いことが望まれる。これらについても、カチオン交換基とアニオン交換基との間での水の解離反応と同様に強力な電位勾配下で弱電解質をイオン化させることが有効である。従って、この場合も同様に、カチオン交換体とアニオン交換体との接触部位に弱電解質を含んだ被処理水を均一に流通させることができることが望ましい。   Moreover, as treated water (pure water) obtained, it is further desired that the concentration of weak electrolytes such as silica components and carbonic acid is low. Also in these cases, it is effective to ionize the weak electrolyte under a strong potential gradient as in the dissociation reaction of water between the cation exchange group and the anion exchange group. Therefore, in this case as well, it is desirable that the water to be treated containing the weak electrolyte can be uniformly distributed at the contact portion between the cation exchanger and the anion exchanger.

以上に、電気式脱塩装置に要求される機能を列挙したが、従来の構成の電気式脱塩装置においては、これらの要求を全て満足するものは得られていなかった。
例えば、従来の電気式脱塩装置では、アニオン交換樹脂ビーズおよびカチオン交換樹脂ビーズを脱塩室に混合充填したものが多かった。この場合、樹脂の充填状態はランダムであり、また、室内での水の流れもランダムであるため、微視的に見ると被処理水とイオン交換体との接触は、必ずしもアニオン交換体及びカチオン交換体に交互に接触するというものではなかった。また、充填するイオン交換樹脂ビーズの粒径は、圧力損失を小さくするために一般的に500μm程度のものを用いるのが通常であるが、イオン交換樹脂ビーズの官能基の大部分は、ビーズ内部のマクロポアおよびミクロポア内に存在するため、除去対象イオンが官能基近傍まで拡散されにくく、除去対象イオンと官能基との接触頻度はあまり高くない。また、カチオン交換体及びアニオン交換体がランダムに充填されているので、カチオン交換体及びアニオン交換体がそれぞれ連続相を形成しにくく、除去対象イオンが脱塩室から濃縮室へ固相中を連続して移動することが難しく、TOC成分の除去性能および弱電解質除去性能も低い。更にイオン交換樹脂ビーズはTOC成分の溶出が多く、特にマクロポアおよびミクロポア内から溶出するTOC成分は、樹脂ビーズを長時間通水洗浄しても完全に除去することが難しいという問題点があった。
The functions required for the electric desalting apparatus have been listed above. However, no electric desalting apparatus having a conventional configuration has been obtained that satisfies all of these requirements.
For example, in many conventional electric desalting apparatuses, anion exchange resin beads and cation exchange resin beads are mixed and filled in a desalting chamber. In this case, since the filling state of the resin is random and the flow of water in the room is also random, when viewed microscopically, the contact between the water to be treated and the ion exchanger is not necessarily an anion exchanger and a cation. It was not an alternating contact with the exchanger. In addition, the particle size of the ion exchange resin beads to be filled is usually about 500 μm in order to reduce the pressure loss, but most of the functional groups of the ion exchange resin beads are inside the beads. Since the ions to be removed are not easily diffused to the vicinity of the functional group, the contact frequency between the ions to be removed and the functional group is not so high. In addition, since the cation exchanger and the anion exchanger are packed randomly, the cation exchanger and the anion exchanger are less likely to form a continuous phase, and the ions to be removed continue in the solid phase from the desalting chamber to the concentration chamber. Therefore, the TOC component removal performance and the weak electrolyte removal performance are also low. Furthermore, ion exchange resin beads have a large amount of elution of TOC components, and in particular, TOC components eluted from the macropores and micropores have a problem that it is difficult to completely remove the resin beads even if they are washed with water for a long time.

また、従来の電気式脱塩装置においては、イオン交換樹脂ビーズを層状に充填したものも提案されている。このような形態のものとしては、脱塩室内にアニオン交換樹脂ビーズとカチオン交換樹脂ビーズとを、必要に応じてプラスチックのメッシュスクリーンなどを介在させて交互に充填したもの、脱塩室を仕切りで分割し、分割した区画に、アニオン交換樹脂ビーズ単床およびカチオン交換樹脂ビーズ単床を交互に形成したもの、イオン交換樹脂ビーズをバインダーで結合したブロックを形成し、アニオン交換樹脂ビーズのブロックとカチオン交換樹脂ビーズのブロックとを交互に充填したものなどがある。しかしながら、脱塩室内にアニオン交換樹脂ビーズとカチオン交換樹脂ビーズとを、交互に層を形成させながら整然と充填することは、極めて困難である。また、層間にメッシュスクリーンなどを介在させたり、或いは脱塩室を仕切りで分割して交互に層を形成する場合は、アニオン交換基とカチオン交換基とが接触する部位(水解発生場)が、イオン交換膜と室内に充填するイオン交換体との接触面に限られてしまい、水解発生場を脱塩室内に多数形成することができない。また、脱塩室を仕切りで分割する場合には、形成できる樹脂層の数は、室の組み立て易さや、装置の全体の大きさから、数段から数十段に限られてしまう。また、イオン交換樹脂ビーズを用いている以上、上述したように、除去対象イオンとイオン交換基との接触頻度はあまり高くない。更に、イオン交換樹脂ビーズをバインダーで結合する場合には、バインダーによって水の流路が制限されるため、除去対象イオンとイオン交換基との接触頻度が著しく低下する。また、TOCの溶出量についても、イオン交換樹脂ビーズを用いているので、上述したように高く、特に、バインダーを用いる場合には、バインダー自体が溶出成分となるため、処理水のTOC濃度はより高くなる。更に、上述したように、アニオン交換基とカチオン交換基との接触部が、イオン交換膜と室内に充填するイオン交換体との接触面に限られてしまうので、被処理水の大部分はここを流れることがなく、TOC成分および弱電解質のイオン化は難しく、従って除去性能も低い。   In addition, a conventional electric desalination apparatus has been proposed in which ion-exchange resin beads are packed in layers. In such a form, an anion exchange resin bead and a cation exchange resin bead are alternately filled in a desalting chamber with a plastic mesh screen or the like interposed as necessary, and the desalting chamber is partitioned. The anion exchange resin bead single bed and the cation exchange resin bead single bed are alternately formed in the divided compartments, and a block in which the ion exchange resin beads are bound with a binder is formed. There are those in which blocks of exchange resin beads are alternately filled. However, it is extremely difficult to orderly fill the desalting chamber with anion exchange resin beads and cation exchange resin beads while alternately forming layers. In addition, when a mesh screen or the like is interposed between the layers, or when the layers are alternately formed by dividing the desalting chamber with partitions, the site where the anion exchange group and the cation exchange group are in contact (hydrolysis generation field) This is limited to the contact surface between the ion exchange membrane and the ion exchanger filled in the chamber, and a large number of hydrolytic sites cannot be formed in the desalting chamber. Further, when the desalting chamber is divided by partitions, the number of resin layers that can be formed is limited to several to several tens from the ease of assembly of the chamber and the overall size of the apparatus. Further, as long as ion exchange resin beads are used, as described above, the contact frequency between the ion to be removed and the ion exchange group is not so high. Furthermore, when ion-exchange resin beads are bound with a binder, the flow path of water is limited by the binder, so the contact frequency between the ions to be removed and the ion-exchange group is significantly reduced. Also, the amount of TOC eluted is high as described above because ion-exchange resin beads are used. In particular, when a binder is used, the binder itself becomes an elution component, so the TOC concentration of treated water is higher. Get higher. Furthermore, as described above, since the contact portion between the anion exchange group and the cation exchange group is limited to the contact surface between the ion exchange membrane and the ion exchanger filled in the room, most of the water to be treated is here. The ionization of the TOC component and the weak electrolyte is difficult and therefore the removal performance is low.

上記のようなイオン交換樹脂ビーズの使用に伴う各種の問題点を解消するために、織布、不織布などの繊維材料に放射線グラフト重合法などによってイオン交換基を導入したイオン交換繊維材料を、脱塩室への充填材料として用いることが提案されている(例えば、上述の特開平5−64726号公報)。イオン交換繊維材料は、イオン交換樹脂ビーズよりも比表面積が大きく、イオン交換樹脂ビーズのようにビーズ内部のミクロポア又はマクロポア内にイオン交換基が存在するというわけではないため、大多数のイオン交換基が繊維の表面上に配置されている。よって、被処理水中の除去対象イオンが容易にイオン交換基の近傍に流れにのって(対流により)輸送される。従って、イオン交換繊維材料を用いると、イオン交換樹脂ビーズを用いた場合と比べて、除去対象イオンとイオン交換基との接触頻度を格段に向上させることが可能になる。   In order to eliminate the various problems associated with the use of the above ion exchange resin beads, ion exchange fiber materials in which ion exchange groups are introduced into the fiber material such as woven fabric and nonwoven fabric by a radiation graft polymerization method are removed. It has been proposed to use it as a filling material for a salt chamber (for example, the above-mentioned JP-A-5-64726). The ion exchange fiber material has a larger specific surface area than the ion exchange resin beads, and the ion exchange groups are not present in the micropores or macropores inside the beads unlike the ion exchange resin beads. Is disposed on the surface of the fiber. Therefore, ions to be removed in the water to be treated are easily transported along the flow (by convection) in the vicinity of the ion exchange group. Therefore, when the ion exchange fiber material is used, the contact frequency between the ion to be removed and the ion exchange group can be remarkably improved as compared with the case where ion exchange resin beads are used.

しかし、織布、不織布などの繊維材料は、一般に通水性があまり高くないため、従来の薄型脱塩セルに繊維材料を充填したのでは、圧力損失があまりにも大きくて、十分な処理流量を得ることができないと考えられていた。   However, since fiber materials such as woven fabrics and nonwoven fabrics are generally not very water-permeable, filling a fiber material into a conventional thin desalting cell results in a pressure loss that is too large to obtain a sufficient treatment flow rate. It was considered impossible.

そこで、脱塩室において、カチオン交換膜側に不織布などのカチオン交換繊維材料、アニオン交換膜側にアニオン交換繊維材料を、それぞれ向かい合わせて配置し、これらイオン交換繊維材料の間に、例えば斜交網状のスペーサ、もしくはそれにイオン伝導性を付与したイオン伝導スペーサを充填した電気式脱塩装置が提案されている(例えば、上述の国際公開W099/48820号パンフレット)。このような構成の装置の場合には、被処理水は、斜交網状のスペーサ若しくはイオン伝導スペーサの中で乱流となり、カチオン交換繊維材料およびアニオン交換繊維材料に接する。従って、被処理水は、多少はカチオン交換繊維材料及びアニオン交換繊維材料に交互に接触することになるが、これでは十分に効率的に交互接触が行われているとは言えない。また、表面積が広く、利用可能なイオン交換基を多く有する繊維材料を用いてはいるものの、繊維材料とスペーサとの通水性の差のために被処理水の多くはスペーサ部を流れてしまい、不織布内部を貫いて流れることは極めて少ない。このため、除去対象イオンとイオン交換基との接触頻度は低い。
特開平5−64726号公報 国際公開W099/48820号パンフレット
Therefore, in the desalination chamber, a cation exchange fiber material such as a nonwoven fabric is disposed on the cation exchange membrane side, and an anion exchange fiber material is disposed on the anion exchange membrane side so as to face each other. There has been proposed an electric desalination apparatus filled with a net-like spacer or an ion conductive spacer imparted with ion conductivity (for example, the above-mentioned International Publication W099 / 48820 pamphlet). In the case of the apparatus having such a configuration, the water to be treated becomes a turbulent flow in the oblique mesh spacer or the ion conductive spacer, and comes into contact with the cation exchange fiber material and the anion exchange fiber material. Accordingly, the water to be treated comes into contact with the cation exchange fiber material and the anion exchange fiber material to some extent alternately, but it cannot be said that the alternate contact is performed sufficiently efficiently. In addition, although a fiber material having a large surface area and a large number of available ion exchange groups is used, most of the water to be treated flows through the spacer part due to the difference in water permeability between the fiber material and the spacer. There is very little flow through the nonwoven fabric. For this reason, the contact frequency of the ion to be removed and the ion exchange group is low.
Japanese Patent Laid-Open No. 5-64726 International publication W099 / 48820 pamphlet

本発明者らは、電気式脱塩装置に要求される機能を上記のように系統だてて考察した結果、脱塩性能およびTOC除去性能を高めるためには、被処理水をカチオン交換体及びアニオン交換体と多数段で交互に接触させること、被処理水中の除去対象イオンとイオン交換基との接触頻度を高めること、脱塩室において、アニオン交換膜とカチオン交換膜の間に、アニオン交換体及びカチオン交換体のそれぞれの連続相が形成されていること、カチオン交換基とアニオン交換基との接触部を脱塩室内全体に亘って多数形成すると共に、そこに被処理水を十分に流通させることが重要であることを想到した。そして、これらの条件を全て満たす電気式脱塩装置を提供すべく鋭意検討した結果、適切な材料の選定と充填方法の改良により、電気式脱塩装置の脱塩性能およびTOC除去性能を大幅に改善することに成功した。   As a result of considering the functions required for the electric desalination apparatus by systematic construction as described above, the present inventors have determined that the water to be treated is treated with a cation exchanger and a cation exchanger in order to enhance desalting performance and TOC removal performance. Contact with anion exchanger in multiple stages alternately, increase the contact frequency between ions to be removed and ion exchange groups in treated water, anion exchange between anion exchange membrane and cation exchange membrane in desalination chamber The continuous phase of each of the cation exchanger and the cation exchanger is formed, and a large number of contact portions between the cation exchange groups and the anion exchange groups are formed throughout the desalting chamber, and the treated water is sufficiently distributed there. I thought it was important to make it. And as a result of intensive studies to provide an electric desalination apparatus that satisfies all these conditions, the desalting performance and TOC removal performance of the electric desalination apparatus are greatly improved by selecting appropriate materials and improving the filling method. Successfully improved.

好ましい実施形態Preferred embodiment

以下、本発明の具体的な種々の態様に関して、図面を参照しながら説明する。
図2は、本発明の一態様に係る電気式脱塩装置の構成例を示す概念図である。陰極(−)と陽極(+)の間にアニオン交換膜(A)とカチオン交換膜(C)が配置されて、濃縮室及び脱塩室が画定されている。そして、両電極に接する室が極室と称される。当業者には明らかなように、両極室は脱塩室又は濃縮室のいずれかの機能を有する。一般には最も外側の濃縮室が極室として供されることが多い。なお、例えば、図2に示す装置で、中央の脱塩室の両側の濃縮室に電極が配置される場合、即ち、陽極と陰極との間に、濃縮室−脱塩室−濃縮室の3室しか形成されない場合には、両側の濃縮室が極室としての機能も果たす。したがって、このような構成の装置も、本願の特許請求の範囲において規定する「脱塩室及び濃縮室及び電極室を有する電気式脱塩装置」の範囲内に包含されることは当業者には明らかである。
Hereinafter, various specific embodiments of the present invention will be described with reference to the drawings.
FIG. 2 is a conceptual diagram illustrating a configuration example of an electrical desalination apparatus according to one embodiment of the present invention. An anion exchange membrane (A) and a cation exchange membrane (C) are disposed between the cathode (-) and the anode (+) to define a concentration chamber and a desalting chamber. A chamber in contact with both electrodes is called a polar chamber. As will be apparent to those skilled in the art, the bipolar chamber functions as either a desalting chamber or a concentrating chamber. In general, the outermost concentration chamber is often provided as a polar chamber. For example, in the apparatus shown in FIG. 2, when electrodes are disposed in the concentration chambers on both sides of the central desalting chamber, that is, between the anode and the cathode, the concentration chamber-desalination chamber-concentration chamber 3 When only chambers are formed, the concentration chambers on both sides also function as polar chambers. Accordingly, those skilled in the art will appreciate that such an apparatus is also included within the scope of the “electric desalination apparatus having a desalination chamber, a concentration chamber, and an electrode chamber” as defined in the claims of the present application. it is obvious.

陽極側のアニオン交換膜と陰極側のカチオン交換膜で画定された脱塩室には、カチオン交換機能を有する繊維材料(カチオン交換繊維材料という)とアニオン交換機能を有する繊維材料(アニオン交換繊維材料という)とが、被処理水の流通方向(通水方向)に対して交差して複数層積層されている。即ち、従来の電気式脱塩装置においては、脱塩室や濃縮室にイオン交換繊維材料やイオン伝導スペーサなどのシート材料を充填する際には、図8に示すように、被処理水の流通方向(通水方向)に沿って、つまり各室を構成するイオン交換膜と平行に充填していたが、本発明に係る電気式脱塩装置においては、脱塩室において、イオン交換繊維材料を、被処理水の流通方向(通水方向)に交差し、且つ室を構成するイオン交換膜と交差する方向に充填する。イオン交換繊維材料は、上述の方向に積層して配置することが好ましく、図2に示されるように、カチオン交換繊維材料の層とアニオン交換繊維材料の層とが交互に積層されていることが更に好ましい。   In the desalination chamber defined by the anion exchange membrane on the anode side and the cation exchange membrane on the cathode side, a fiber material having a cation exchange function (referred to as a cation exchange fiber material) and a fiber material having an anion exchange function (anion exchange fiber material) And a plurality of layers are stacked so as to intersect the flow direction (water flow direction) of the water to be treated. That is, in the conventional electric desalination apparatus, when filling a desalting chamber or a concentration chamber with a sheet material such as an ion exchange fiber material or an ion conducting spacer, as shown in FIG. In the electric desalination apparatus according to the present invention, the ion-exchange fiber material is filled in the desalting chamber. And filling in the direction crossing the flow direction (water flow direction) of the water to be treated and crossing the ion exchange membrane constituting the chamber. It is preferable that the ion exchange fiber material is laminated in the above-described direction, and as shown in FIG. 2, the layer of the cation exchange fiber material and the layer of the anion exchange fiber material are alternately laminated. Further preferred.

このような構成の電気式脱塩装置においては、アニオン交換繊維材料及びカチオン交換繊維材料を、被処理水の流通方向に交差して積層配置しているので、被処理水は全て繊維材料中を貫いて、一方の表面から他方の表面に通過して流れる。従って、利用可能なイオン交換基を多数有するイオン交換繊維材料の全体に、十分に被処理水を供給することができるので、これらのイオン交換基を有効に活用することができる。これにより、脱塩室の長さ(被処理水が流通する方向)あたりの利用可能なイオン交換基の数が大幅に増大するので、脱塩室の長さを従来のものと比べて短くすることができる。イオン交換繊維材料には、上述した圧力損失の問題があるが、このように本発明に係る電気式脱塩装置においては、脱塩室の被処理水の流通方向に沿った長さを従来のものよりも大幅に短くすることができるので、被処理水の圧力損失の増大は、実用上問題にならない。   In the electric desalination apparatus having such a configuration, the anion exchange fiber material and the cation exchange fiber material are laminated and disposed so as to intersect the flow direction of the water to be treated. It passes through and flows from one surface to the other. Therefore, since the water to be treated can be sufficiently supplied to the entire ion exchange fiber material having many usable ion exchange groups, these ion exchange groups can be effectively utilized. This greatly increases the number of ion exchange groups available per length of desalting chamber (the direction in which the water to be treated flows), so the length of the desalting chamber is reduced compared to the conventional one. be able to. The ion exchange fiber material has the above-mentioned pressure loss problem. Thus, in the electric desalination apparatus according to the present invention, the length along the flow direction of the water to be treated in the desalination chamber is set to the conventional value. Since it can be made much shorter than that, the increase in the pressure loss of the water to be treated is not a problem in practice.

また、本発明によれば、脱塩室内でのアニオン交換体とカチオン交換体との接触部位、即ち水解の発生場が、被処理水流の断面全体に亘って形成されるので、水解発生場に被処理水を多く供給して、水解によるイオン交換体の再生や、TOCやシリカなどの弱電解質の分解を促進させることができる。かかる目的を達成するためには、脱塩室内に充填するアニオン交換繊維材料とカチオン交換繊維材料とが互いに接触していることが好ましい。   In addition, according to the present invention, the contact portion between the anion exchanger and the cation exchanger in the desalting chamber, that is, the hydrolysis generation field is formed over the entire cross section of the water stream to be treated. A large amount of water to be treated can be supplied to promote regeneration of the ion exchanger by hydrolysis and decomposition of weak electrolytes such as TOC and silica. In order to achieve such an object, it is preferable that the anion exchange fiber material and the cation exchange fiber material filled in the desalting chamber are in contact with each other.

なお、本発明においては、アニオン交換繊維材料及びカチオン交換繊維材料の少なくとも一方が被処理水の流通方向に交差して配置されていればよい。例えば、アニオン交換繊維材料を被処理水の流通方向に交差して複数層配置すると共に、アニオン交換繊維材料の層の間にカチオン交換樹脂ビーズなどを充填することによっても、本発明の効果を奏することができ、このような形態も本発明に包含される。或いは、脱塩室内において、被処理水の流通方向に交差してアニオン交換繊維材料が複数層配置されると共にそのアニオン交換繊維材料の層の間にカチオン交換樹脂ビーズなどが充填されている部分と、被処理水の流通方向に交差してカチオン交換繊維材料が複数層配置されると共にそのカチオン交換繊維材料の層の間にアニオン交換樹脂ビーズなどが充填されている部分の両方が存在するように構成してもよい。   In the present invention, it is only necessary that at least one of the anion exchange fiber material and the cation exchange fiber material is disposed so as to intersect the flow direction of the water to be treated. For example, the effect of the present invention can also be obtained by arranging a plurality of anion exchange fiber materials so as to intersect the flow direction of the water to be treated and filling cation exchange resin beads between the layers of the anion exchange fiber material. Such forms are also encompassed by the present invention. Alternatively, in the desalination chamber, a portion in which a plurality of anion exchange fiber materials are arranged so as to cross the flow direction of the water to be treated and the cation exchange resin beads are filled between the layers of the anion exchange fiber material; In addition, a plurality of cation exchange fiber materials are arranged so as to cross the flow direction of the water to be treated, and there are both portions filled with anion exchange resin beads and the like between the cation exchange fiber material layers. It may be configured.

本発明においては、脱塩室において、被処理水の流通方向に交差して積層配置されているアニオン交換繊維材料と、当該脱塩室を画定するアニオン交換膜、或いは、積層配置されているカチオン交換繊維材料と、当該脱塩室を画定するカチオン交換膜、の少なくとも一方が接触するようにされていることが好ましい。即ち、図2に示す構成において、脱塩室内に配置されているアニオン交換繊維材料とアニオン交換膜(A)とが接触するか、或いは脱塩室内に配置されているカチオン交換繊維材料とカチオン交換膜(C)とが接触するか、或いはこの両方が接触していることが好ましい。このような構成にすることにより、イオン交換繊維材料によってイオン交換によって吸着された被処理水中の除去対象イオンが、イオン交換繊維材料上を伝ってイオン交換膜まで移動し、イオン交換膜を通過して隣接する濃縮室に移動する。従って、イオン交換体に吸着された除去対象イオンが、液相中に脱離することなく、固相(イオン交換体)上を連続してイオン交換膜まで移動することが可能になる。   In the present invention, in the desalting chamber, the anion exchange fiber material that is laminated and disposed so as to intersect the flow direction of the water to be treated, and the anion exchange membrane that defines the desalting chamber, or the cations that are laminated It is preferable that at least one of the exchange fiber material and the cation exchange membrane that defines the desalting chamber is in contact. That is, in the configuration shown in FIG. 2, the anion exchange fiber material arranged in the desalting chamber and the anion exchange membrane (A) are in contact with each other, or the cation exchange fiber material arranged in the desalting chamber and the cation exchange. It is preferred that the membrane (C) is in contact or both are in contact. With such a configuration, the ions to be removed in the water to be treated adsorbed by ion exchange by the ion exchange fiber material travel along the ion exchange fiber material to the ion exchange membrane and pass through the ion exchange membrane. Move to the adjacent concentration chamber. Therefore, the ions to be removed adsorbed on the ion exchanger can continuously move to the ion exchange membrane on the solid phase (ion exchanger) without being desorbed in the liquid phase.

また、本発明においては、脱塩室内に配置されているアニオン交換繊維材料及びカチオン交換繊維材料の少なくとも一方が、アニオン交換膜及びカチオン交換膜の両方に接触するように配置されていることが好ましい。図2に示す形態では、アニオン交換繊維材料及びカチオン交換繊維材料の両方が、脱塩室を画定するアニオン交換膜及びカチオン交換膜の両方に接触している。このような構成にすると、例えば、アニオン交換繊維材料とカチオン交換膜(C)との接触点が、水解の発生場として機能する。この部分で水解によって発生したOH-イオンは、陽極に向かってアニオン交換繊維材料のアニオン交換基を次々に再生しながら移動する。従って、水解によって発生したOH-イオンが、脱塩室の端から端まで移動して再生を行うので、極めて効率的である。アニオン交換膜(A)とカチオン交換繊維材料との接触点において発生するH+イオンについても同様である。 In the present invention, it is preferable that at least one of the anion exchange fiber material and the cation exchange fiber material disposed in the desalting chamber is disposed so as to contact both the anion exchange membrane and the cation exchange membrane. . In the configuration shown in FIG. 2, both the anion exchange fiber material and the cation exchange fiber material are in contact with both the anion exchange membrane and the cation exchange membrane that define the desalination chamber. With such a configuration, for example, the contact point between the anion exchange fiber material and the cation exchange membrane (C) functions as a hydrolytic field. The OH - ions generated by hydrolysis in this part move toward the anode while successively regenerating the anion exchange groups of the anion exchange fiber material. Therefore, OH 2 ions generated by hydrolysis are regenerated by moving from end to end of the desalting chamber, which is extremely efficient. The same applies to H + ions generated at the contact point between the anion exchange membrane (A) and the cation exchange fiber material.

更に本発明においては、図3に示すように、脱塩室内において、アニオン交換膜の表面に沿ってアニオン交換繊維材料を配置し、及び/又は、カチオン交換膜の表面に沿ってカチオン交換繊維材料を配置することが好ましい。このようなイオン交換膜の表面に沿ってイオン交換繊維材料の層を配置しない場合、被処理水の流通方向に交差して積層配置されたイオン交換繊維材料と、被処理水の流通方向に沿って配置されているイオン交換膜との間の接触は、イオン交換繊維材料の端部で行われるため、接触が密にならず、このためイオン伝導性が低くなるという問題が生じる可能性があり、このような問題は運転電圧の上昇につながるおそれがある。しかしながら、図3に示す形態によれば、このような問題を解消することができる。   Furthermore, in the present invention, as shown in FIG. 3, an anion exchange fiber material is disposed along the surface of the anion exchange membrane in the desalting chamber and / or the cation exchange fiber material along the surface of the cation exchange membrane. Is preferably arranged. When the layer of the ion exchange fiber material is not disposed along the surface of such an ion exchange membrane, the ion exchange fiber material that is laminated and disposed so as to intersect the flow direction of the water to be treated and the flow direction of the water to be treated The contact between the ion exchange membranes arranged in the same way is made at the end of the ion exchange fiber material, so that the contact does not become dense, which may cause a problem of low ion conductivity. Such a problem may lead to an increase in operating voltage. However, according to the embodiment shown in FIG. 3, such a problem can be solved.

また、本発明においては、脱塩室内において、被処理水の流通方向に交差して配置するアニオン交換繊維材料の層及びカチオン交換繊維材料の層は、交互に、且つできるだけ数多く配置することが好ましい。アニオン交換繊維材料の層とカチオン交換繊維材料の層とを交互に数多く配置すれば、上述した「被処理水をカチオン交換体及びアニオン交換体に交互にできるだけ多くの回数接触させる」という条件を満足することができ、イオン交換による被処理水からの除去対象イオンの除去をより完全に行うことができる。また、カチオン交換体の層とアニオン交換体の層とを交互に数多く積層すれば、アニオン交換体とカチオン交換体との接触する部位、即ち水解の発生場を脱塩室の全体に亘って数多く形成することができるので、イオン交換体の再生やTOC成分及びシリカなどの分解が極めて効率的に行われる。   In the present invention, it is preferable that the anion exchange fiber material layers and the cation exchange fiber material layers arranged so as to cross the flow direction of the water to be treated are alternately and as many as possible in the desalting chamber. . If a large number of anion exchange fiber material layers and cation exchange fiber material layers are alternately arranged, the above-mentioned condition that “the treated water is alternately brought into contact with the cation exchanger and the anion exchanger as many times as possible” is satisfied. It is possible to remove ions to be removed from the water to be treated by ion exchange more completely. In addition, if a large number of cation exchanger layers and anion exchanger layers are alternately laminated, a large number of sites where the anion exchanger and the cation exchanger come into contact, that is, a site where water hydrolysis occurs, throughout the desalting chamber. Since it can be formed, the regeneration of the ion exchanger and the decomposition of the TOC component and silica are performed very efficiently.

なお、本発明に係る電気式脱塩装置においては、濃縮室や電極室の構成は特に限定されないが、これら濃縮室及び/又は電極室にもイオン交換体を充填することが好ましい。濃縮室や電極室内に充填するイオン交換体としては、電気式脱塩装置において使用することが提案されている任意の材料を用いることができる。例えば、脱塩室に充填するものと同様のイオン交換機能を付与したイオン交換繊維材料などを電極室内に充填するイオン交換体として使用することができ、更に、特許文献2で開示されているイオン伝導性を付与した斜交網等の形態のイオン伝導スペーサなどを、濃縮室や電極室内に充填するイオン交換体として使用することができる。また、濃縮室や電極室には、イオン伝導性を付与していない斜交網等の形態のスペーサを充填することもできる。   In the electric desalting apparatus according to the present invention, the configuration of the concentration chamber and the electrode chamber is not particularly limited, but it is preferable that the concentration chamber and / or the electrode chamber are also filled with an ion exchanger. As the ion exchanger filled in the concentration chamber or the electrode chamber, any material proposed to be used in an electric desalting apparatus can be used. For example, it can be used as an ion exchanger for filling the electrode chamber with an ion exchange fiber material or the like having the same ion exchange function as that for filling the desalting chamber. Further, the ion disclosed in Patent Document 2 can be used. An ion conductive spacer in the form of a slanted net or the like imparted with conductivity can be used as an ion exchanger that fills the concentration chamber or the electrode chamber. In addition, the concentrating chamber and the electrode chamber can be filled with a spacer in the form of an oblique network that is not imparted with ion conductivity.

また、本発明に関する電気式脱塩装置の構造としては、次のような構造のものも含まれる。i)脱塩室および濃縮室が複数交互に配置された電気式脱塩装置において、本発明の基本構造をもった脱塩室が設けられたもの。ii)脱塩室内に、アニオン交換繊維材料の層及び/又はカチオン交換繊維材料の層が被処理水の流通方向に交差して積層配置されており、それらの層の間に、その他のイオン交換体によって構成された層が少なくとも一層挿入されたもの。iii)脱塩室内に、アニオン交換繊維材料の層及び/又はカチオン交換繊維材料の層が積層されており、少なくともその一層がアニオン交換繊維材料又はカチオン交換機能を有する繊維材料とその他のイオン交換体との複合によって構成されたもの。   Further, the structure of the electric desalting apparatus according to the present invention includes the following structure. i) In an electric desalination apparatus in which a plurality of desalting chambers and concentration chambers are alternately arranged, a desalting chamber having the basic structure of the present invention is provided. ii) In the desalting chamber, a layer of anion exchange fiber material and / or a layer of cation exchange fiber material is laminated and arranged in a direction crossing the flow direction of the water to be treated, and other ion exchanges between these layers. A structure in which at least one layer composed of the body is inserted. iii) A layer of anion exchange fiber material and / or a layer of cation exchange fiber material is laminated in the desalting chamber, at least one layer of which is an anion exchange fiber material or a fiber material having a cation exchange function and other ion exchangers. Consists of a composite with.

また、電気式脱塩装置の脱塩室内のカチオン交換体とアニオン交換体との接触部においては、カチオン交換基とアニオン交換基との結合が起こり、運転時間の経過と共に、アニオン交換体とカチオン交換体とがより強固に結合するようになる。本発明に係る電気式脱塩装置のように、脱塩室内でイオン交換体を被処理水の流通方向に交差して配置する、即ち脱塩室を画定するイオン交換膜に交差してイオン交換体を配置するような形態の場合、被処理水がイオン交換膜と、充填されているイオン交換体との間を優先して流れることを防ぐために、イオン交換膜とイオン交換体との接触部をより強固に密着させる必要がある。そこで、本発明に係る電気式脱塩装置においては、運転初期においては低流速(例えばSV<100h-1)で通電運転を行って、脱塩室のカチオン交換膜とアニオン交換体、及びアニオン交換膜とカチオン交換体との結合を通電運転によって形成した後に、流速を上昇させて通常の運転を行うことが望ましい。更に、長期間に亘って脱塩室のイオン交換膜とイオン交換体との間の結合を保持するために、各濃縮室の圧力と各脱塩室の圧力とを同じ程度に保ち、イオン交換膜とイオン交換体とが剥離しないようにすることが更に望ましい。 In addition, in the contact portion between the cation exchanger and the anion exchanger in the desalting chamber of the electric desalination apparatus, a bond between the cation exchange group and the anion exchange group occurs. The exchanger becomes more firmly bonded. As in the electric desalination apparatus according to the present invention, the ion exchanger is disposed in the desalting chamber so as to intersect with the flow direction of the water to be treated, that is, the ion exchange is performed so as to intersect with the ion exchange membrane defining the desalting chamber. In the case where the body is arranged, in order to prevent the water to be treated from preferentially flowing between the ion exchange membrane and the filled ion exchanger, the contact portion between the ion exchange membrane and the ion exchanger Need to be more firmly attached. Therefore, in the electric desalination apparatus according to the present invention, in the initial stage of operation, the energization operation is performed at a low flow rate (for example, SV <100 h −1 ), and the cation exchange membrane, anion exchanger, and anion exchange in the desalination chamber are performed. It is desirable to perform normal operation by increasing the flow rate after forming the bond between the membrane and the cation exchanger by energization operation. Furthermore, in order to maintain the bond between the ion exchange membrane and the ion exchanger in the desalting chamber over a long period of time, the pressure in each concentrating chamber and the pressure in each desalting chamber are maintained at the same level, and ion exchange is performed. It is further desirable to prevent the membrane and ion exchanger from peeling off.

本発明に係る電気式脱塩装置において使用することのできるイオン交換繊維材料としては、高分子繊維基材にイオン交換基をグラフト重合法によって導入したものが好ましく用いられる。高分子繊維よりなるグラフト化基材は、ポリオレフィン系高分子、例えばポリエチレンやポリプロピレンなどの一種の単繊維であってもよく、また、軸芯と鞘部とが異なる高分子によって構成される複合繊維であってもよい。用いることのできる複合繊維の例としては、ポリオレフィン系高分子、例えばポリエチレンを鞘成分とし、鞘成分として用いたもの以外の高分子、例えばポリプロピレンを芯成分とした芯鞘構造の複合繊維が挙げられる。かかる複合繊維材料に、イオン交換基を、放射線グラフト重合法を利用して導入したものが、イオン交換能力に優れ、厚みが均一に製造できるので、本発明において用いられるイオン交換繊維材料として好ましい。イオン交換繊維材料の形態としては、織布、不織布などを挙げることができる。   As the ion exchange fiber material that can be used in the electric desalination apparatus according to the present invention, a material obtained by introducing an ion exchange group into a polymer fiber base material by a graft polymerization method is preferably used. The grafted substrate made of polymer fibers may be a polyolefin-based polymer, for example, a kind of single fiber such as polyethylene or polypropylene, or a composite fiber composed of a polymer having a different core and sheath. It may be. Examples of the composite fibers that can be used include core-sheath composite fibers having a polyolefin-based polymer, for example, polyethylene as a sheath component, and polymers other than those used as the sheath component, for example, polypropylene as a core component. . A material obtained by introducing an ion exchange group into such a composite fiber material using a radiation graft polymerization method is preferable as the ion exchange fiber material used in the present invention because it has excellent ion exchange capability and can be produced with a uniform thickness. Examples of the form of the ion exchange fiber material include woven fabric and nonwoven fabric.

また、本発明に係る電気式脱塩装置において使用することのできるイオン伝導スペーサとしては、ポリオレフィン系高分子製樹脂、例えば、従来電気透析槽において使用されていたポリエチレン製の斜交網(ネット)を基材として、これに、放射線グラフト法を用いてイオン交換機能を付与したものが、イオン伝導性に優れ、被処理水の分散性に優れているので、好ましい。   Further, as an ion conductive spacer that can be used in the electric desalination apparatus according to the present invention, polyolefin polymer resin, for example, a polyethylene oblique network (net) conventionally used in an electrodialysis tank It is preferable to use a base material having an ion exchange function using a radiation graft method because it has excellent ion conductivity and dispersibility of water to be treated.

本発明に係る電気式脱塩装置において使用するイオン交換繊維材料やイオン伝導スペーサなどは、放射線グラフト重合法を利用して製造することが好ましい。放射線グラフト重合法とは、高分子基材に放射線を照射してラジカルを形成させ、これにモノマーを反応させることによってモノマーを基材中に導入するという技法である。   The ion exchange fiber material and ion conductive spacer used in the electric desalination apparatus according to the present invention are preferably manufactured using a radiation graft polymerization method. The radiation graft polymerization method is a technique in which a monomer is introduced into a substrate by irradiating a polymer substrate with radiation to form radicals and reacting the monomer with this.

放射線グラフト重合法に用いることができる放射線としては、α線、β線、ガンマ線、電子線、紫外線等を挙げることができるが、本発明においてはガンマ線や電子線を好ましく用いる。放射線グラフト重合法には、グラフト基材に予め放射線を照射した後、グラフトモノマーと接触させて反応させる前照射グラフト重合法と、基材とモノマーの共存下に放射線を照射する同時照射グラフト重合法とがあるが、本発明においては、いずれの方法も用いることができる。また、モノマーと基材との接触方法により、モノマー溶液に基材を浸漬させたまま重合を行う液相グラフト重合法、モノマーの蒸気に基材を接触させて重合を行う気相グラフト重合法、基材をモノマー溶液に浸漬した後モノマー溶液から取り出して気相中で反応を行わせる含浸気相グラフト重合法などを挙げることができるが、いずれの方法も本発明において用いることができる。   Examples of radiation that can be used in the radiation graft polymerization method include α rays, β rays, gamma rays, electron beams, ultraviolet rays, and the like. In the present invention, gamma rays and electron beams are preferably used. The radiation graft polymerization method includes pre-irradiation graft polymerization method in which a graft substrate is irradiated with radiation in advance and then brought into contact with the graft monomer and reacted, and simultaneous irradiation graft polymerization method in which radiation is irradiated in the presence of the substrate and the monomer. However, in the present invention, any method can be used. In addition, by the contact method of the monomer and the base material, a liquid phase graft polymerization method for performing polymerization while the base material is immersed in the monomer solution, a vapor phase graft polymerization method for performing the polymerization by bringing the base material into contact with the vapor of the monomer, Examples of the method include an impregnation gas phase graft polymerization method in which the base material is immersed in the monomer solution and then taken out from the monomer solution and reacted in the gas phase, and any method can be used in the present invention.

不織布などの繊維基材やスペーサ基材に導入するイオン交換基としては、特に限定されることなく種々のカチオン交換基又はアニオン交換基を用いることができる。例えば、カチオン交換基としては、スルホン酸基などの強酸性カチオン交換基、リン酸基などの中酸性カチオン交換基、カルボキシル基などの弱酸性カチオン交換基、アニオン交換基としては、第1級〜第3級アミノ基などの弱塩基性アニオン交換基、第4級アンモニウム基などの強塩基性アニオン交換基を用いることができ、或いは、上記カチオン交換基及びアニオン交換基の両方を併有するイオン交換体を用いることもできる。   As an ion exchange group introduce | transduced into fiber base materials, such as a nonwoven fabric, and a spacer base material, various cation exchange groups or anion exchange groups can be used without being specifically limited. For example, as the cation exchange group, a strong acid cation exchange group such as a sulfonic acid group, a neutral acid cation exchange group such as a phosphate group, a weak acid cation exchange group such as a carboxyl group, and the anion exchange group include primary to Weakly basic anion exchange groups such as tertiary amino groups, strong basic anion exchange groups such as quaternary ammonium groups can be used, or ion exchange having both of the above cation exchange groups and anion exchange groups The body can also be used.

これらの各種イオン交換基は、これらのイオン交換基を有するモノマーを用いてグラフト重合、好ましくは放射線グラフト重合を行うか、又はこれらのイオン交換基に転換可能な基を有する重合性モノマーを用いてグラフト重合を行った後に当該基をイオン交換基に転換することによって、繊維基材又はスペーサ基材に導入することができる。この目的で用いることのできるイオン交換基を有するモノマーとしては、アクリル酸(AAc)、メタクリル酸、スチレンスルホン酸ナトリウム(SSS)、メタリルスルホン酸ナトリウム、アリルスルホン酸ナトリウム、ビニルスルホン酸ナトリウム、ビニルベンジルトリメチルアンモニウムクロライド(VBTAC)、ジエチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリルアミドなどを挙げることができる。例えば、スチレンスルホン酸ナトリウムをモノマーとして用いて放射線グラフト重合を行うことにより、基材に直接、強酸性カチオン交換基であるスルホン酸基を導入することができ、また、ビニルベンジルトリメチルアンモニウムクロライドをモノマーとして用いて放射線グラフト重合を行うことにより、基材に直接、強塩基性アニオン交換基である第4級アンモニウム基を導入することができる。また、イオン交換基に転換可能な基を有するモノマーとしては、アクリロニトリル、アクロレイン、ビニルピリジン、スチレン、クロロメチルスチレン、メタクリル酸グリシジル(GMA)などが挙げられる。例えば、メタクリル酸グリシジルを放射線グラフト重合によって基材に導入し、次に亜硫酸ナトリウムなどのスルホン化剤を反応させることによって強酸性カチオン交換基であるスルホン酸基を基材に導入したり、又はクロロメチルスチレンをグラフト重合した後に、基材をトリメチルアミン水溶液に浸漬して第4級アンモニウム化を行うことによって、強塩基性アニオン交換基である第4級アンモニウム基を基材に導入することができる。   These various ion exchange groups are graft-polymerized using monomers having these ion-exchange groups, preferably radiation graft polymerization, or using polymerizable monomers having groups convertible to these ion-exchange groups. By converting the group into an ion exchange group after graft polymerization, it can be introduced into the fiber substrate or spacer substrate. Examples of monomers having ion exchange groups that can be used for this purpose include acrylic acid (AAc), methacrylic acid, sodium styrenesulfonate (SSS), sodium methallylsulfonate, sodium allylsulfonate, sodium vinylsulfonate, vinyl Examples thereof include benzyltrimethylammonium chloride (VBTAC), diethylaminoethyl methacrylate, dimethylaminopropylacrylamide and the like. For example, by performing radiation graft polymerization using sodium styrenesulfonate as a monomer, a sulfonic acid group that is a strongly acidic cation exchange group can be directly introduced into the substrate, and vinylbenzyltrimethylammonium chloride is used as a monomer. The quaternary ammonium group, which is a strongly basic anion exchange group, can be directly introduced into the base material by carrying out radiation graft polymerization. Examples of the monomer having a group that can be converted into an ion exchange group include acrylonitrile, acrolein, vinylpyridine, styrene, chloromethylstyrene, and glycidyl methacrylate (GMA). For example, glycidyl methacrylate is introduced into a substrate by radiation graft polymerization, and then a sulfonic acid group, which is a strongly acidic cation exchange group, is introduced into the substrate by reacting with a sulfonating agent such as sodium sulfite, or chloro After graft polymerization of methylstyrene, a quaternary ammonium group that is a strongly basic anion exchange group can be introduced into the substrate by immersing the substrate in an aqueous trimethylamine solution to perform quaternary ammonium formation.

なお、図2及び図3においては、シート状のイオン交換繊維材料を脱塩室内に被処理水の流通方向に交差する方向、即ち横置きに積層することによって本発明に係る電気式脱塩装置を構成する例を示しているが、その他にも下記に示すようなイオン交換繊維材料の充填方法によって本発明に係る電気式脱塩装置を構成することができる。   2 and 3, the sheet-type ion exchange fiber material is laminated in a direction crossing the flow direction of the water to be treated in the desalting chamber, that is, horizontally, and is stacked horizontally. In addition, the electrical desalination apparatus according to the present invention can be configured by a filling method of an ion exchange fiber material as described below.

まず、図4に示すように、長尺シート状のアニオン交換繊維材料及びカチオン交換繊維材料を重ね合わせ、これを脱塩室の寸法に合わせて折り畳んでプリーツ状のイオン交換繊維材料構造体を形成し、このプリーツ状構造体を、プリーツの面が通水方向に交差し、且つ構造体の両断面が脱塩室を画定するカチオン交換膜及びアニオン交換膜にそれぞれ接するように脱塩室内に充填することによって、本発明に係る電気式脱塩装置を構成することができる。また、図5に示すように、長尺シート状のアニオン交換繊維材料及びカチオン交換繊維材料を重ね合わせてロール状に巻回し、このロールを、両断面が脱塩室を画定するカチオン交換膜及びアニオン交換膜にそれぞれ接するように脱塩室内に1個又は複数個充填することによっても、本発明に係る電気式脱塩装置を構成することができる。このような図4及び図5に示すような形態のものも、アニオン交換繊維材料の層及びカチオン交換繊維材料の層が被処理水の流通方向に交差して積層配置されており、したがって、本発明の電気式脱塩装置の範囲に包含される。なお、これらの形態においても、図3に示すように、脱塩室を画定するアニオン交換膜の表面に沿ってアニオン交換繊維材料を配置し、及び/又は、カチオン交換膜の表面に沿ってカチオン交換繊維材料を配置して、脱塩室内に充填されるイオン交換体と、脱塩室を画定するイオン交換膜との接触をより強固にすることができる。   First, as shown in FIG. 4, a long sheet-like anion exchange fiber material and a cation exchange fiber material are overlapped and folded according to the dimensions of the desalting chamber to form a pleated ion exchange fiber material structure. The pleated structure is filled in the desalting chamber so that the surface of the pleats intersects the direction of water flow and both cross sections of the structure are in contact with the cation exchange membrane and the anion exchange membrane that define the desalination chamber. By doing so, the electric desalination apparatus according to the present invention can be configured. In addition, as shown in FIG. 5, a long sheet-like anion exchange fiber material and a cation exchange fiber material are overlapped and wound into a roll, and this roll is divided into a cation exchange membrane in which both cross sections define a desalination chamber, The electric desalting apparatus according to the present invention can also be configured by filling one or more in the desalting chamber so as to be in contact with the anion exchange membrane. 4 and 5, the anion exchange fiber material layer and the cation exchange fiber material layer are laminated and arranged so as to intersect the flow direction of the water to be treated. It is included in the scope of the electric desalination apparatus of the invention. Also in these forms, as shown in FIG. 3, the anion exchange fiber material is arranged along the surface of the anion exchange membrane that defines the desalting chamber, and / or the cation is exchanged along the surface of the cation exchange membrane. By arranging the exchange fiber material, the contact between the ion exchanger filled in the desalting chamber and the ion exchange membrane defining the desalting chamber can be made stronger.

本発明に係る電気式脱塩装置を構成するのに用いられるイオン交換膜としては、陽イオン交換膜としては例えば、NEOSEPTA CMX(トクヤマ)などを、陰イオン交換膜としては例えばNEOSEPTA AMX(トクヤマ)などを使用することができる。   Examples of the ion exchange membrane used to constitute the electric desalination apparatus according to the present invention include NEOSEPTA CMX (Tokuyama) as the cation exchange membrane, and NEOSEPTA AMX (Tokuyama) as the anion exchange membrane. Etc. can be used.

以上のような構成のために、本発明に係る電気式脱塩装置によれば、次のような効果が得られ、電気式脱塩装置の脱塩効率を大幅に向上させ、電気式脱塩装置を小型化することができる。被処理水をカチオン交換体とアニオン交換体に完全に交互に多数段接触させることが可能となる。   Due to the configuration as described above, according to the electric desalination apparatus according to the present invention, the following effects can be obtained, and the desalination efficiency of the electric desalination apparatus can be greatly improved. The apparatus can be miniaturized. It becomes possible to make the water to be treated contact the cation exchanger and the anion exchanger completely and alternately in multiple stages.

1.イオン交換機能を持った繊維材料層は、繊維で構成され繊維径が小さいため、イオンの固相移動拡散距離が短く、また表面積が広く、除去対象イオンと官能基の接触頻度が高いためイオン交換反応が平衡状態に達するまでの時間が短く、さらに中和反応が完結しやすい。   1. The fiber material layer with ion exchange function is composed of fibers and has a small fiber diameter, so the solid phase migration diffusion distance of ions is short, the surface area is large, and the contact frequency between ions to be removed and functional groups is high, so ion exchange The time until the reaction reaches an equilibrium state is short, and the neutralization reaction is likely to be completed.

2.カチオン交換機能を有する繊維材料層およびアニオン交換機能を有する繊維材料層は、それぞれカチオン交換膜およびアニオン交換膜に密着しており、脱塩室を横切るように同種のイオン交換体が連続して電極方向に充填されているため、イオン交換により固相に吸着した除去対象イオンおよび水解で発生したH+イオン及びOH-イオンは容易に固相中を移動し、水相中に脱離することなく濃縮室に運ばれる。 2. The fiber material layer having a cation exchange function and the fiber material layer having an anion exchange function are in close contact with the cation exchange membrane and the anion exchange membrane, respectively. The ions to be removed adsorbed on the solid phase by ion exchange and the H + ions and OH ions generated in the hydrolysis easily move in the solid phase and are not desorbed in the aqueous phase. It is carried to the concentration chamber.

3.カチオン交換体とアニオン交換体の接触部として、カチオン交換膜とアニオン交換繊維材料層との接触部、アニオン交換膜とカチオン交換繊維材料層との接触部、及びカチオン交換繊維材料層とアニオン交換繊維材料層との接触部が設けられる。また、イオン交換繊維材料を多層交互に充填する場合には、大半の水解はカチオン交換繊維材料層とアニオン交換繊維材料層との接触部で起こると考えられる。したがって、被処理水は水解の発生場に多く流通し、水解場においてTOC成分および弱電解質のイオン化が促進され、TOC成分および弱電解質成分の除去率が向上する。   3. As a contact portion between the cation exchanger and the anion exchanger, a contact portion between the cation exchange membrane and the anion exchange fiber material layer, a contact portion between the anion exchange membrane and the cation exchange fiber material layer, and a cation exchange fiber material layer and the anion exchange fiber A contact portion with the material layer is provided. In addition, when the ion exchange fiber material is alternately packed in multiple layers, most of the hydrolysis is considered to occur at the contact portion between the cation exchange fiber material layer and the anion exchange fiber material layer. Therefore, a large amount of the water to be treated flows in the place where the hydrolysis occurs, and the ionization of the TOC component and the weak electrolyte is promoted in the hydrolysis field, and the removal rate of the TOC component and the weak electrolyte component is improved.

以上の原理により、本発明に係る電気式脱塩装置によれば、例えば、RO処理水相当の水を被処理水として10Lh-1で供給した場合、SV(空間速度:被処理水供給速度/総脱塩室体積)=200h-1、運転電流0.4Aで、比抵抗値18.0MΩcm程度、TOC濃度10ppb以下、シリカ濃度30ppb以下の処理水を安定して得ることができる。 Based on the above principle, according to the electric desalination apparatus according to the present invention, for example, when water equivalent to RO treated water is supplied as treated water at 10 Lh −1 , SV (space velocity: treated water supply speed / It is possible to stably obtain treated water having a total desalting chamber volume) = 200 h −1 , an operating current of 0.4 A, a specific resistance of about 18.0 MΩcm, a TOC concentration of 10 ppb or less, and a silica concentration of 30 ppb or less.

上記に説明した、脱塩室においてアニオン交換繊維材料の層及びカチオン交換繊維材料の層の少なくとも一方を被処理水の流通方向に交差して積層配置するという本発明の構成を採用することにより、脱塩室体積あたりの脱塩効率を大幅に向上することができるため、電気式脱塩装置の寸法を従来のものよりも大幅に小型化することが可能になる。   By adopting the configuration of the present invention in which at least one of the layer of the anion exchange fiber material and the layer of the cation exchange fiber material intersects the flow direction of the water to be treated in the desalination chamber, as described above, Since the desalination efficiency per volume of the desalination chamber can be greatly improved, the size of the electric desalination apparatus can be significantly reduced as compared with the conventional one.

しかしながら、本発明者らのその後の研究により、上記のように小型化した電気式脱塩装置を長時間運転すると、特に被処理水がカルシウム分や炭酸分を多く含む、すなわち硬度の高い水である場合には、運転電圧が時間と共に上昇する傾向が強くみられる場合があることが判明した。これは、被処理水中のカルシウムイオン及び炭酸イオンが隣接する脱塩室から濃縮室に導入されて濃縮室内で濃縮されるために炭酸カルシウムが生成して結晶となって析出し、これが絶縁体として電気の流通を阻害するために、運転電圧が上昇するためであると考えられる。従来の電気式脱塩装置においても、この現象が起こっていることは確認されているが、装置が大型であるために、電極面積が広く、電流密度が低いので、炭酸カルシウムが全体に薄く生成するために水に溶解し、このため炭酸カルシウム結晶の析出による重大な問題を引き起こすことが少なかったと考えられる。しかしながら、本発明によって脱塩装置が大幅に小型化したことに伴って、この問題が顕在化する場合があると考えられる。   However, when the electric desalination apparatus reduced in size as described above is operated for a long time by the subsequent studies of the present inventors, the water to be treated contains a large amount of calcium and carbonate, that is, water with high hardness. In some cases, it has been found that there is a strong tendency for the operating voltage to increase over time. This is because calcium ions and carbonate ions in the water to be treated are introduced into the concentration chamber from the adjacent desalting chamber and concentrated in the concentration chamber, so that calcium carbonate is generated and precipitated as crystals, and this is used as an insulator. This is considered to be because the operating voltage rises in order to hinder the flow of electricity. This phenomenon has also been confirmed in the conventional electric desalination equipment, but because the equipment is large, the electrode area is large and the current density is low, so that calcium carbonate is formed thin overall. Therefore, it is considered that it was less likely to cause serious problems due to precipitation of calcium carbonate crystals. However, it is considered that this problem may become apparent as the desalination apparatus is greatly reduced in size according to the present invention.

この濃縮室内における炭酸カルシウムの結晶の析出という現象について考察すると、まず、濃縮室内におけるアニオン交換体/カチオン交換体の接触界面で炭酸カルシウムが生成する。生成した炭酸カルシウムは溶解度が低いために、これが結晶となって析出し、生成した結晶粒子が種核となって結晶析出が進行していく。本発明者は、このような炭酸カルシウム結晶析出のメカニズムに注目し、炭酸カルシウムが生成する場であるアニオン交換体/カチオン交換体の接触界面を濃縮室全体にわたって分散させることで、炭酸カルシウムが生成しても結晶として析出することなく、脱塩運転を安定して行うことができることに着目した。そして、上記に説明した脱塩室内における本発明の構成を濃縮室にも採用することで、濃縮室内におけるアニオン交換体/カチオン交換体の接触界面を室全体にわたって分散させることができることに想到し、本発明の好ましい第2の態様を完成するに至った。   Considering the phenomenon of precipitation of calcium carbonate crystals in the concentration chamber, first, calcium carbonate is generated at the anion exchanger / cation exchanger contact interface in the concentration chamber. Since the produced calcium carbonate has low solubility, it precipitates as crystals, and the produced crystal particles act as seed nuclei, and the crystal precipitation proceeds. The present inventor pays attention to such a calcium carbonate crystal precipitation mechanism, and the calcium carbonate is generated by dispersing the contact interface of the anion exchanger / cation exchanger, where calcium carbonate is generated, throughout the concentration chamber. Even so, attention was paid to the fact that the desalting operation can be performed stably without precipitation as crystals. Then, by adopting the configuration of the present invention in the desalination chamber described above also in the concentration chamber, it was conceived that the contact interface of the anion exchanger / cation exchanger in the concentration chamber can be dispersed throughout the chamber, The second preferred embodiment of the present invention has been completed.

すなわち、本発明の好ましい第2の態様は、電気式脱塩装置の濃縮室内において、アニオン交換繊維材料の層及びカチオン交換繊維材料の層の少なくとも一方を、通水方向に交差して積層配置することを特徴とするものである。   That is, in the second preferred embodiment of the present invention, at least one of the anion exchange fiber material layer and the cation exchange fiber material layer is laminated and disposed in the water passing direction in the concentration chamber of the electric desalination apparatus. It is characterized by this.

本発明の第2の態様において、濃縮室内へのイオン交換繊維材料の充填方法及び通水方法は、脱塩室へのイオン交換繊維材料の充填方法及び通水方法に関して、図2〜図5を参照して上記に説明した各種形態を採用することができる。   In the second aspect of the present invention, the ion exchange fiber material filling method and water flow method into the concentration chamber are shown in FIGS. 2 to 5 with respect to the ion exchange fiber material filling method and water flow method into the desalting chamber. Various forms described above with reference to the drawings can be employed.

更に、本発明者の更なる研究により、電極室においても、イオン交換繊維材料を通水方向に交差して積層配置することによって、脱塩運転の運転電圧をより安定化させることができることが分かった。電極室、特に陰極室においては、脱塩運転の時間経過に伴って室の両端にかかる電圧が上昇することが知られている。本発明者らが考察した結果、この現象は、電極表面において水の電気分解によってOHイオンが生成し、これが通水中のカルシウムイオンと結合して水酸化カルシウムが生成して、電極の表面で析出して絶縁体の膜を形成することによって、電気抵抗が上昇するためであるとの結論に達した。よって、電極室内、特に陰極室内においても、イオン交換繊維材料を通水方向に交差する方向に積層して配置することにより、電極と通水との接触面積が格段に増大し、生成する水酸化カルシウムが局在化することが抑制されて、極室全体に分散されるため、極室内における水酸化カルシウムの結晶の析出を抑制することができ、その結果、極室における電圧差の上昇を抑えることができる。また、陰極室両端にかかる電圧の上昇は、次のような原因によっても起こると考えられる。陰極室にイオン交換体を充填する場合には、通常はアニオン交換体を用いる。アニオン交換基、例えば第4級アンモニウム基(R−N(CH))は正に帯電しているため、電極(陰極)に引き寄せられる。電極では、通常、水の還元反応: Furthermore, further research by the present inventor has shown that the operation voltage of the desalting operation can be further stabilized in the electrode chamber by arranging the ion-exchange fiber materials so as to cross the water direction. It was. In an electrode chamber, particularly a cathode chamber, it is known that the voltage applied to both ends of the chamber increases with the passage of time for the desalting operation. As a result of the study by the present inventors, this phenomenon is caused by electrolysis of water on the electrode surface, which generates OH ions, which are combined with calcium ions in the water flow to generate calcium hydroxide. It was concluded that the electrical resistance was increased by depositing and forming an insulator film. Therefore, in the electrode chamber, particularly in the cathode chamber, the contact area between the electrode and the water flow is remarkably increased by stacking and arranging the ion exchange fiber materials in the direction crossing the water flow direction, and the generated hydroxylation. Since calcium is suppressed from being localized and dispersed throughout the polar chamber, precipitation of calcium hydroxide crystals in the polar chamber can be suppressed, and as a result, an increase in voltage difference in the polar chamber can be suppressed. be able to. In addition, it is considered that the voltage applied to both ends of the cathode chamber also occurs due to the following causes. When filling the cathode chamber with an ion exchanger, an anion exchanger is usually used. Anion exchange groups such as quaternary ammonium groups (R—N + (CH 3 ) 3 ) are positively charged and are attracted to the electrode (cathode). At the electrode, usually water reduction reaction:

Figure 2008132492
Figure 2008132492

即ち水の電気分解が起こるが、これと同時に第4級アンモニウム基も還元されると考えられる。 That is, water electrolysis occurs, but at the same time, the quaternary ammonium group is considered to be reduced.

Figure 2008132492
Figure 2008132492

第4アンモニウム基は、還元されるとイオン交換機能を失い、絶縁体となってしまうため、極室の両端にかかる電圧が上昇する。従来の電気式脱塩装置においては、極室にイオン交換体を充填する場合にはイオン伝導スペーサを使用していたので、電極とイオン交換体とがいわば点で接触しており、上記のアニオン交換基の絶縁化によって電気の流通が阻害されて、極室の両端にかかる電圧の上昇が顕著化していたと考えられる。しかしながら、本発明の第3の態様によれば、特に陰極室にアニオン交換繊維材料を通水方向に交差する方向に積層して配置することにより、陰電極と陰電極室内のアニオン交換体との接触面積が格段に増大していわば面で接触するようになるため、その一部で発生するアニオン交換基の絶縁化が、極室の両端にかかる電圧の上昇を引き起こすほどの影響を与えず、その結果、極室の両端にかかる電圧の上昇を抑えることができる。したがって、本発明の更に好ましい第3の態様は、電気式脱塩装置の電極室内において、アニオン交換繊維材料の層及びカチオン交換繊維材料の層の少なくとも一方を、通水方向に交差して積層配置することを特徴とするものである。本発明の第3の態様においては、陰極室にアニオン交換繊維材料を通水方向に交差して積層配置することが特に好ましい。   When the quaternary ammonium group is reduced, it loses the ion exchange function and becomes an insulator, so that the voltage applied to both ends of the polar chamber increases. In the conventional electric desalination apparatus, when the electrode chamber is filled with an ion exchanger, an ion conductive spacer is used. Therefore, the electrode and the ion exchanger are in contact with each other at a point, and the above-mentioned anion It is considered that the increase in the voltage applied to both ends of the polar chamber was conspicuous because the electrical flow was hindered by the insulation of the exchange group. However, according to the third aspect of the present invention, the negative electrode and the anion exchanger in the negative electrode chamber are particularly arranged by laminating and arranging the anion exchange fiber material in the cathode chamber in a direction intersecting the water direction. If the contact area has increased dramatically, it will come in contact with the surface, so that the insulation of the anion exchange group generated in a part of it does not affect the voltage rise across the polar chamber, As a result, an increase in voltage applied to both ends of the polar chamber can be suppressed. Accordingly, a further preferred third aspect of the present invention is that at least one of the anion exchange fiber material layer and the cation exchange fiber material layer is laminated in the water passage direction in the electrode chamber of the electric desalination apparatus. It is characterized by doing. In the third aspect of the present invention, it is particularly preferable that the anion exchange fiber material is laminated in the cathode chamber so as to intersect the water direction.

なお、本発明の第3の態様においては、特に、陰極室内においてイオン交換繊維材料を通水方向に交差して積層配置することが好ましく、カチオン交換繊維材料を通水方向に交差して積層配置することがより好ましい。その他のイオン交換繊維材料の充填方法及び通水方法は、脱塩室へのイオン交換繊維材料の充填方法及び通水方法に関して、図2〜図5を参照して上記に説明した各種形態を採用することができる。但し、陰極室の場合には、陰極と、通常はアニオン交換膜によって室が画定されており、陰極室内に積層配置されているアニオン交換繊維材料と、当該室を画定するアニオン交換膜及び陰電極の少なくとも一方が接触するように配置することができ、また、陰極室内に積層配置されているアニオン交換繊維材料が、当該室を画定するアニオン交換膜及び陰電極の両方に接触するように配置することもでき、さらには、陰極室において、当該室を画定するアニオン交換膜及び/又は陰電極の表面に沿ってアニオン交換繊維材料が配置されていることもできる。   Note that, in the third aspect of the present invention, it is particularly preferable that the ion exchange fiber material is laminated in the cathode direction so as to cross the water direction in the cathode chamber, and the cation exchange fiber material is laminated in the water direction so as to be laminated. More preferably. The other ion exchange fiber material filling method and water flow method adopt the various forms described above with reference to FIGS. 2 to 5 with respect to the ion exchange fiber material filling method and water flow method to the desalination chamber. can do. However, in the case of the cathode chamber, the chamber is defined by the cathode, usually an anion exchange membrane, and the anion exchange fiber material laminated in the cathode chamber, and the anion exchange membrane and the negative electrode that define the chamber The anion exchange fiber material laminated in the cathode chamber is arranged so as to contact both the anion exchange membrane and the negative electrode that define the chamber. Further, in the cathode chamber, an anion exchange fiber material can be disposed along the surface of the anion exchange membrane and / or the negative electrode that defines the chamber.

上記の本発明の各種態様の特徴は、それぞれを組み合わせても、あるいはそれぞれ単独で採用してもよい。すなわち、本発明にかかる電気式脱塩装置においては、イオン交換繊維材料を通水方向に交差して積層配置する室は、脱塩室、濃縮室及び極室のいずれか一つでもよく、あるいは脱塩室と濃縮室、あるいは脱塩室と極室、あるいは濃縮室と極室、あるいは脱塩室、濃縮室及び極室の全てであってもよい。また、上記にすでに説明したように、脱塩室の一部、濃縮室の一部、あるいは極室の一方においてイオン交換繊維材料を通水方向に交差して積層配置することもできる。   The features of the various aspects of the present invention described above may be combined with each other or may be employed independently. That is, in the electric desalination apparatus according to the present invention, the chamber in which the ion-exchange fiber material is laminated and disposed so as to cross the water direction may be any one of the desalting chamber, the concentrating chamber, and the polar chamber, or The desalting chamber and the concentrating chamber, or the desalting chamber and the polar chamber, or the concentrating chamber and the polar chamber, or all of the desalting chamber, the concentrating chamber, and the polar chamber may be used. Further, as already described above, the ion-exchange fiber material can be laminated and disposed so as to intersect the water direction in one of the desalting chamber, the concentrating chamber, or the polar chamber.

なお、上記の説明は、脱塩室及び濃縮室の少なくとも一つの室においてイオン交換繊維材料を被処理水の流通方向に交差して積層配置する態様について説明したが、イオン交換繊維材料と比較して、同等程度の利用可能なイオン交換基量を有し、同等程度の通水性を有する、イオン交換性が付与された通水性の多孔質材料であれば、イオン交換繊維材料に代えて若しくはこれと組み合わせて脱塩室内に配置することができ、かかる形態によっても本発明の効果を奏することができる。即ち、本発明の他の形態は、陰極と陽極の間に、複数のイオン交換膜で仕切られた脱塩室及び濃縮室を有する電気式脱塩装置であって、脱塩室及び濃縮室の少なくとも一つの室において、イオン交換機能が付与された通水性多孔性材料層が、被処理水の流通方向に交差して積層配置されていることを特徴とする電気式脱塩装置に関する。   In addition, although said description demonstrated the aspect which laminates | stacks and arrange | positions an ion exchange fiber material in the flow direction of to-be-processed water in at least one chamber of a desalination chamber and a concentration chamber, compared with an ion exchange fiber material. In other words, any ion-exchange fiber material can be used instead of the ion-exchange fiber material as long as it has an equivalent amount of usable ion-exchange groups, has an equivalent amount of water permeability, and is a water-permeable porous material imparted with ion exchange properties. And can be arranged in a desalting chamber, and the effect of the present invention can be achieved by such a configuration. That is, another embodiment of the present invention is an electric desalination apparatus having a desalination chamber and a concentration chamber partitioned by a plurality of ion exchange membranes between a cathode and an anode, The present invention relates to an electrical desalting apparatus characterized in that, in at least one chamber, a water-permeable porous material layer provided with an ion exchange function is laminated and disposed so as to intersect with a flow direction of water to be treated.

本発明のかかる態様において用いることのできる通水性多孔性材料としては、例えば、連通空孔を有する多孔性基材などを挙げることができる。「連通空孔を有する多孔性基材」とは、基材の一面側から反対側の他面側まで内部を貫通して連続してつながった空孔を有する構造体全般を意味し、例えば、ポリエチレン、ポリプロピレンなどオレフィン性合成樹脂からなる連続気泡発泡体、海綿など天然の連続気泡発泡体、縦方向及び横方向に繊維を織ってなる平面織りにさらに厚み方向にも繊維が織られてなる三次元織布などを含む。これらのうち、ポリエチレン系多孔体、ポリプロピレン系多孔体などのポリオレフィン系連続気泡発泡体を好ましく用いることができ、三次元織布としては、ポリエチレン繊維、ポリプロピレン繊維などが三次元に織られてなるポリオレフィン系三次元織布を好ましく用いることができる。これらの材料にイオン交換基を導入したものを、脱塩室内に、流通方向に交差する方向に積層して配置することができる。   Examples of the water-permeable porous material that can be used in this aspect of the present invention include a porous substrate having continuous pores. “Porous substrate having communicating pores” means a general structure having pores continuously connected through the inside from one side of the substrate to the other side of the opposite side, for example, An open cell foam made of olefinic synthetic resin such as polyethylene and polypropylene, a natural open cell foam such as sponge, a flat weave in which fibers are woven in the vertical and horizontal directions, and a tertiary in which fibers are also woven in the thickness direction. Including original woven fabrics. Among these, polyolefin-based open-cell foams such as polyethylene-based porous bodies and polypropylene-based porous bodies can be preferably used, and three-dimensional woven fabrics are polyolefins in which polyethylene fibers, polypropylene fibers, etc. are woven three-dimensionally. A three-dimensional woven fabric can be preferably used. A material obtained by introducing an ion exchange group into these materials can be stacked in the desalting chamber in a direction crossing the flow direction.

この目的で用いることのできる連通空孔を有する多孔性基材としては、空隙率:93〜96%、平均孔径:0.6〜2.6mm、比表面積:21000〜38000m2/m3、特に約30000m2/m3を有することが好ましい。また、イオン交換基を導入する基材として機能することが必要であり、ポリオレフィン系高分子、例えばポリエチレン、ポリプロピレン及びこれらの複合体からなることが好ましい。具体的には、空隙率:93〜96%、平均孔径:0.6〜2.6mm、比表面積:約30000m2/m3のポリエチレン系多孔体(積水化学工業(株)製)を特に好ましく用いることができる。本発明においては、このような連通空孔を有する多孔性基材にイオン交換基を導入してなるイオン交換体を用い、これを被処理水の流通方向に交差して積層配置することにより、被処理水の流通を阻害せずにイオン交換体中を通過させ、被処理液の流入圧力を高く保持する必要なく、被処理液をイオン交換体と充分に接触させることができる。 As a porous substrate having continuous pores that can be used for this purpose, porosity: 93 to 96%, average pore diameter: 0.6 to 2.6 mm, specific surface area: 21000 to 38000 m 2 / m 3 , especially Preferably it has about 30000 m 2 / m 3 . Moreover, it needs to function as a base material which introduce | transduces an ion exchange group, and it is preferable to consist of polyolefin polymer, for example, polyethylene, a polypropylene, and these composites. Specifically, a polyethylene porous body (manufactured by Sekisui Chemical Co., Ltd.) having a porosity of 93 to 96%, an average pore diameter of 0.6 to 2.6 mm, and a specific surface area of about 30000 m 2 / m 3 is particularly preferable. Can be used. In the present invention, by using an ion exchanger obtained by introducing an ion exchange group into a porous base material having such communicating pores, this is laminated and disposed so as to intersect the flow direction of the water to be treated. The liquid to be treated can be sufficiently brought into contact with the ion exchanger without passing through the ion exchanger without obstructing the flow of the water to be treated and maintaining the inflow pressure of the liquid to be treated at a high level.

上記のような通水性多孔質材料へのイオン交換基の導入は、上記に説明した放射線グラフト重合法を用いることによって行うことができる。イオン交換基の導入は、アニオン交換体の場合には中性塩分解容量が2.8〜3.3meq/g、カチオン交換体の場合には中性塩分解容量が2.7〜3.0meq/gとなるように行うことが好ましい。イオン交換体の中性塩分解容量が上述の範囲にあれば、被処理水中のイオンと接触可能なイオン交換基が多く、良好なイオン交換機能を奏することができる。   The introduction of ion exchange groups into the water-permeable porous material as described above can be performed by using the radiation graft polymerization method described above. In the case of anion exchanger, the ion exchange group is introduced with a neutral salt decomposition capacity of 2.8 to 3.3 meq / g, and with a cation exchanger of neutral salt decomposition capacity of 2.7 to 3.0 meq. It is preferable to carry out so that it becomes / g. If the neutral salt decomposition capacity of the ion exchanger is in the above range, there are many ion exchange groups that can come into contact with ions in the water to be treated, and a good ion exchange function can be achieved.

上記に説明したイオン交換機能が付与された通水性多孔性材料に関しても、これを配置する室は、脱塩室、濃縮室及び極室のいずれか一つでもよく、あるいは脱塩室と濃縮室、あるいは脱塩室と極室、あるいは濃縮室と極室、あるいは脱塩室、濃縮室及び極室の全てであってもよい。また、上記にすでに説明したように、脱塩室の一部、濃縮室の一部、あるいは極室の一方においてイオン交換機能が付与された通水性多孔性材料を配置することもできる。   Regarding the water-permeable porous material provided with the ion exchange function described above, the chamber in which it is disposed may be any one of a desalting chamber, a concentrating chamber, and a polar chamber, or a desalting chamber and a concentrating chamber. Alternatively, the desalting chamber and the polar chamber, or the concentrating chamber and the polar chamber, or all of the desalting chamber, the concentrating chamber, and the polar chamber may be used. Further, as already described above, a water-permeable porous material provided with an ion exchange function may be disposed in a part of the desalting chamber, a part of the concentration chamber, or one of the polar chambers.

本発明の各種態様は、以下の通りである。
1. 陰極と陽極の間に、複数のイオン交換膜で仕切られた脱塩室及び濃縮室及び電極室を有する電気式脱塩装置であって、脱塩室及び濃縮室及び電極室の少なくとも一つの室において、アニオン交換繊維材料の層及びカチオン交換繊維材料の層の少なくとも一方が、通水方向に交差して積層配置されていることを特徴とする電気式脱塩装置。
Various aspects of the present invention are as follows.
1. An electrical desalination apparatus having a desalting chamber, a concentrating chamber, and an electrode chamber partitioned between a cathode and an anode by a plurality of ion exchange membranes, wherein the desalting chamber, the concentrating chamber, and the electrode chamber are at least one chamber In addition, at least one of the layer of anion exchange fiber material and the layer of cation exchange fiber material is laminated | stacked and arrange | positioned so that a water flow direction may cross | intersect.

2. 脱塩室及び濃縮室の少なくとも一つの室において、当該室内に積層配置されているアニオン交換繊維材料と、当該室を画定するアニオン交換膜とが接触するように配置され、及び/又は、当該室内に積層配置されているカチオン交換繊維材料と、当該室を画定するカチオン交換膜とが接触するように配置されている上記第1項に記載の電気式脱塩装置。   2. In at least one of the desalting chamber and the concentrating chamber, the anion exchange fiber material stacked in the chamber and the anion exchange membrane defining the chamber are arranged in contact with each other and / or the chamber 2. The electric desalination apparatus according to claim 1, wherein the cation exchange fiber material laminated on the cation exchange membrane and the cation exchange membrane defining the chamber are in contact with each other.

3. 脱塩室及び濃縮室の少なくとも一つの室において、当該室内に積層配置されているアニオン交換繊維材料、及び当該室内に積層配置されているカチオン交換繊維材料の一方若しくは両方が、当該室を画定するアニオン交換膜及びカチオン交換膜の両方に接触するように配置されている上記第1項に記載の電気式脱塩装置。   3. In at least one of the desalting chamber and the concentration chamber, one or both of the anion exchange fiber material stacked in the chamber and the cation exchange fiber material stacked in the chamber define the chamber. The electrical desalting apparatus according to claim 1, which is disposed so as to be in contact with both the anion exchange membrane and the cation exchange membrane.

4. 脱塩室及び濃縮室の少なくとも一つの室において、アニオン交換膜の表面に沿ってアニオン交換繊維材料が配置され、及び/又は、カチオン交換膜の表面に沿ってカチオン交換繊維材料が配置されている上記第1項に記載の電気式脱塩装置。   4). In at least one of the desalting chamber and the concentration chamber, the anion exchange fiber material is disposed along the surface of the anion exchange membrane and / or the cation exchange fiber material is disposed along the surface of the cation exchange membrane. The electric desalination apparatus according to the above item 1.

5. 脱塩室及び濃縮室の少なくとも一つの室において、アニオン交換繊維材料の層及びカチオン交換繊維材料の層が、通水方向に交差して交互に積層して複数層配置されている上記第1項〜第4項のいずれかに記載の電気式脱塩装置。   5. In the first item, the layers of the anion exchange fiber material and the layer of the cation exchange fiber material are alternately laminated so as to cross the water flow direction in at least one of the desalting chamber and the concentration chamber. ~ Electrical desalination apparatus according to any one of items 4 to 4.

6. アニオン交換繊維材料及びカチオン交換繊維材料は、織布又は不織布材料である上記第1項〜第5項のいずれかに記載の電気式脱塩装置。
7. アニオン交換繊維材料及びカチオン交換繊維材料層の少なくとも一方は、放射線グラフト重合法を利用して基材にイオン交換基を導入したものである上記第1項〜第6項のいずれかに記載の電気式脱塩装置。
6). The anion exchange fiber material and the cation exchange fiber material are electrical desalination apparatuses according to any one of Items 1 to 5 which are woven fabrics or nonwoven fabric materials.
7). At least one of an anion exchange fiber material and a cation exchange fiber material layer introduces an ion exchange group into a substrate using a radiation graft polymerization method. Type desalination equipment.

8. 当該アニオン交換繊維材料又は当該カチオン交換繊維材料が、脱塩室の少なくとも一部に配置されている上記第1項〜第7項のいずれかに記載の電気式脱塩装置。
9. 当該アニオン交換繊維材料又は当該カチオン交換繊維材料が、濃縮室の少なくとも一部に配置されている上記第1項〜第7項のいずれかに記載の電気式脱塩装置。
8). The electric desalination apparatus according to any one of the first to seventh aspects, wherein the anion exchange fiber material or the cation exchange fiber material is disposed in at least a part of the desalting chamber.
9. The electric desalination apparatus according to any one of the first to seventh aspects, wherein the anion exchange fiber material or the cation exchange fiber material is disposed in at least a part of the concentration chamber.

10. 当該アニオン交換繊維材料又は当該カチオン交換繊維材料が、電極室の少なくとも一方に配置されている上記第1項〜第9項のいずれかに記載の電気式脱塩装置。
11.当該アニオン交換繊維材料又は当該カチオン交換繊維材料が、脱塩室の少なくとも一部及び濃縮室の少なくとも一部に配置されている上記第1項〜第7項のいずれかに記載の電気式脱塩装置。
10. The electric desalination apparatus according to any one of the first to ninth aspects, wherein the anion exchange fiber material or the cation exchange fiber material is disposed in at least one of the electrode chambers.
11. The electrical desalination according to any one of the above items 1 to 7, wherein the anion exchange fiber material or the cation exchange fiber material is disposed in at least a part of the desalting chamber and at least a part of the concentration chamber. apparatus.

12. 当該アニオン交換繊維材料又は当該カチオン交換繊維材料が、電極室の少なくとも一方に配置されている上記第11項に記載の電気式脱塩装置。
13.当該アニオン交換繊維材料の層が、陰極室に配置されている上記第10項又は第12項に記載の電気式脱塩装置。
12 12. The electric desalination apparatus according to item 11, wherein the anion exchange fiber material or the cation exchange fiber material is disposed in at least one of the electrode chambers.
13. 13. The electric desalination apparatus according to item 10 or 12 above, wherein the layer of the anion exchange fiber material is disposed in the cathode chamber.

14.陰極室において、当該室内に積層配置されているアニオン交換繊維材料と、当該室を画定するアニオン交換膜及び陰電極の少なくとも一方が接触するように配置されている上記第13項に記載の電気式脱塩装置。   14 14. The electrical type according to item 13, wherein the cathode chamber is disposed so that at least one of the anion exchange fiber material laminated in the chamber and the anion exchange membrane and the negative electrode defining the chamber are in contact with each other. Desalination equipment.

15. 陰極室において、当該室内に積層配置されているアニオン交換繊維材料が、当該室を画定するアニオン交換膜及び陰電極の両方に接触するように配置されている上記第13項に記載の電気式脱塩装置。   15. In the cathode chamber, the anionic exchange fiber material laminated in the chamber is disposed so as to come into contact with both the anion exchange membrane and the negative electrode that define the chamber. Salt equipment.

16. 陰極室において、当該室を確定するアニオン交換膜及び/又は陰電極の表面に沿ってアニオン交換繊維材料が配置されている上記第13項に記載の電気式脱塩装置。
17. 陰極と陽極の間に、複数のイオン交換膜で仕切られた脱塩室及び濃縮室及び電極室を有する電気式脱塩装置であって、脱塩室内及び濃縮室及び電極室の少なくとも一つの室において、イオン交換機能が付与された通水性多孔性材料層が、通水の流通方向に交差して積層配置されていることを特徴とする電気式脱塩装置。
16. 14. The electrical desalination apparatus according to item 13, wherein an anion exchange fiber material is disposed along the surface of the anion exchange membrane and / or the negative electrode defining the chamber in the cathode chamber.
17. An electrical desalination apparatus having a desalination chamber, a concentration chamber, and an electrode chamber partitioned by a plurality of ion exchange membranes between a cathode and an anode, wherein the desalting chamber, the concentration chamber, and the electrode chamber are at least one chamber In this, the water-permeable porous material layer to which the ion exchange function is imparted is laminated and disposed so as to intersect the direction of water flow.

18. イオン交換機能が付与された通水性多孔性材料が、放射線グラフト重合法を利用して基材にイオン交換基を導入したものである上記第17項に記載の電気式脱塩装置。
19. イオン交換機能が付与された通水性多孔性材料が、脱塩室の少なくとも一部に配置されている上記第17項又は第18項に記載の電気式脱塩装置。
18. 18. The electric desalting apparatus according to item 17, wherein the water-permeable porous material provided with an ion exchange function is obtained by introducing an ion exchange group into a substrate using a radiation graft polymerization method.
19. 19. The electric desalination apparatus according to item 17 or 18 above, wherein the water-permeable porous material provided with an ion exchange function is disposed in at least a part of the desalination chamber.

20. イオン交換機能が付与された通水性多孔性材料が、濃縮室の少なくとも一部に配置されている上記第17項又は第18項に記載の電気式脱塩装置。
21. イオン交換機能が付与された通水性多孔性材料が、電極室の少なくとも一方に配置されている上記第17項〜第20項のいずれかに記載の電気式脱塩装置。
20. 19. The electric desalting apparatus according to item 17 or 18, wherein the water-permeable porous material to which an ion exchange function is imparted is disposed in at least a part of the concentration chamber.
21. 21. The electrical desalination apparatus according to any one of items 17 to 20, wherein the water-permeable porous material provided with an ion exchange function is disposed in at least one of the electrode chambers.

22.イオン交換機能が付与された通水性多孔性材料が、脱塩室の少なくとも一部及び濃縮室の少なくとも一部に配置されている上記第17項又は第18項に記載の電気式脱塩装置。   22. 19. The electric desalting apparatus according to item 17 or 18, wherein the water-permeable porous material to which an ion exchange function is imparted is disposed in at least a part of the desalting chamber and at least a part of the concentration chamber.

23. イオン交換機能が付与された通水性多孔性材料が、電極室の少なくとも一方に配置されている上記第22項に記載の電気式脱塩装置。
24. カチオン交換機能が付与された通水性多孔性材料が、陰極室に配置されている上記第21項又は第23項に記載の電気式脱塩装置。
23. 23. The electrical desalting apparatus according to the above item 22, wherein the water-permeable porous material provided with an ion exchange function is disposed in at least one of the electrode chambers.
24. 24. The electrical desalination apparatus according to item 21 or 23, wherein the water-permeable porous material provided with a cation exchange function is disposed in the cathode chamber.

25. 陰極と陽極の間に、複数のイオン交換膜で仕切られた脱塩室及び濃縮室及び電極室を有する電気式脱塩装置であって、脱塩室内及び濃縮室及び電極室の少なくとも一つの室において、長尺シート状のアニオン交換繊維材料及びカチオン交換繊維材料を重ね合わせ、これを当該室の寸法に合わせて折り畳んで形成されているプリーツ状のイオン交換繊維材料構造体を、プリーツの面が通水方向に交差し、且つ構造体の両断面が当該室を画定するカチオン交換膜及びアニオン交換膜にそれぞれ接するように充填されていることを特徴とする電気式脱塩装置。   25. An electrical desalination apparatus having a desalination chamber, a concentration chamber, and an electrode chamber partitioned by a plurality of ion exchange membranes between a cathode and an anode, wherein the desalting chamber, the concentration chamber, and the electrode chamber are at least one chamber The pleated surface of the pleated ion exchange fiber material structure is formed by stacking an anion exchange fiber material and a cation exchange fiber material in the form of a long sheet and folding them in accordance with the dimensions of the chamber. An electrical desalination apparatus characterized in that it is filled so as to intersect with the direction of water flow and both cross sections of the structure are in contact with a cation exchange membrane and an anion exchange membrane that define the chamber.

26. 陰極と陽極の間に、複数のイオン交換膜で仕切られた脱塩室及び濃縮室及び電極室を有する電気式脱塩装置であって、脱塩室内及び濃縮室及び電極室の少なくとも一つの室において、長尺シート状のアニオン交換繊維材料及びカチオン交換繊維材料を重ね合わせて巻回して形成したロール状構造体を、構造体の両断面が当該室を画定するカチオン交換膜及びアニオン交換膜にそれぞれ接するように1個又は複数個充填されていることを特徴とする電気式脱塩装置。   26. An electrical desalination apparatus having a desalination chamber, a concentration chamber, and an electrode chamber partitioned by a plurality of ion exchange membranes between a cathode and an anode, wherein the desalting chamber, the concentration chamber, and the electrode chamber are at least one chamber A roll-like structure formed by overlapping and winding a long sheet-like anion exchange fiber material and a cation exchange fiber material into a cation exchange membrane and an anion exchange membrane in which both cross sections of the structure define the chamber An electric desalination apparatus, wherein one or more are filled so as to contact each other.

27. 陰極室に、アニオン交換繊維材料が通水方向に交差して積層配置されている上記第1項〜第5項のいずれかに記載の電気式脱塩装置。
28. 当該アニオン交換繊維材料が、当該陰極室を画定するアニオン交換膜及び陰電極の少なくとも一方と接触するように配置されている上記第27項に記載の電気式脱塩装置。
27. The electrical desalting apparatus according to any one of the first to fifth aspects, wherein an anion exchange fiber material is laminated and disposed in the cathode chamber so as to intersect the water flow direction.
28. 28. The electrical desalting apparatus according to item 27, wherein the anion exchange fiber material is disposed so as to be in contact with at least one of an anion exchange membrane and a negative electrode that define the cathode chamber.

29. 当該アニオン交換繊維材料が、当該陰極室を画定するアニオン交換膜及び陰電極の両方に接触するように配置されている上記第27項に記載の電気式脱塩装置。
30. 陰極室において、当該室を確定するアニオン交換膜及び/又は陰電極の表面に沿ってアニオン交換繊維材料が配置されている上記第27項に記載の電気式脱塩装置。
29. 28. The electrical desalting apparatus according to item 27, wherein the anion exchange fiber material is disposed so as to contact both the anion exchange membrane and the negative electrode that define the cathode chamber.
30. 28. The electrical desalting apparatus according to the above 27th aspect, wherein an anion exchange fiber material is disposed along the surface of the anion exchange membrane and / or the negative electrode defining the chamber in the cathode chamber.

以下、具体的な実施例を用いて本発明をさらに詳細に説明する。以下の記載は、本発明の一具体例を示すものであり、本発明はこれらの記載によって限定されるものではない。
[製造例1:カチオン交換不織布の製造]
基材として、繊維径17μmのポリエチレン(鞘)/ポリプロピレン(芯)の複合繊維からなる目付55g/m2、厚さ0.35mmの熱融着不織布を用いた。不織布基材に、窒素雰囲気下で電子線(150kGy)を照射した。照射済みの不織布基材を、メタクリル酸グリシジルの10%メタノール溶液中に浸漬し、45℃で4時間反応させた。反応後の不織布基材を60℃のジメチルホルムアミド溶液に5時間浸漬して、基材に結合していないモノマー重合体(ホモポリマー)を除去して、メタクリル酸グリシジルによってグラフト重合された不織布材料(グラフト率131%)を得た。このグラフト不織布を、亜硫酸ナトリウム:イソプロピルアルコール:水=1:1:8(重量比)の溶液に浸漬し、80℃で10時間反応させて、スルホン酸基を導入した後、塩酸(5重量%)で再生処理をして、強酸性カチオン交換不織布(中性塩分解容量471meq/m2)を得た。これを「カチオン交換不織布」とした。
Hereinafter, the present invention will be described in more detail using specific examples. The following description shows specific examples of the present invention, and the present invention is not limited to these descriptions.
[Production Example 1: Production of cation exchange nonwoven fabric]
As a base material, a heat-sealed nonwoven fabric having a basis weight of 55 g / m 2 and a thickness of 0.35 mm made of a composite fiber of polyethylene (sheath) / polypropylene (core) having a fiber diameter of 17 μm was used. The nonwoven fabric substrate was irradiated with an electron beam (150 kGy) in a nitrogen atmosphere. The irradiated nonwoven substrate was immersed in a 10% methanol solution of glycidyl methacrylate and reacted at 45 ° C. for 4 hours. After the reaction, the nonwoven fabric base material is immersed in a dimethylformamide solution at 60 ° C. for 5 hours to remove the monomer polymer (homopolymer) not bonded to the base material, and the nonwoven fabric material graft-polymerized with glycidyl methacrylate ( A graft ratio of 131%) was obtained. This grafted nonwoven fabric was immersed in a solution of sodium sulfite: isopropyl alcohol: water = 1: 1: 8 (weight ratio) and reacted at 80 ° C. for 10 hours to introduce sulfonic acid groups, and then hydrochloric acid (5 wt% ) To obtain a strongly acidic cation exchange nonwoven fabric (neutral salt decomposition capacity 471 meq / m 2 ). This was designated as “cation exchange nonwoven fabric”.

[製造例2:アニオン交換不織布の製造]
製造例1と同じ不織布基材に、窒素雰囲気下で電子線(150kGy)を照射した。クロロメチルスチレン(セイミケミカル製、商品名CMS−AM)を活性アルミナ充填層に通液して重合禁止剤を取り除き、窒素曝気を行った。脱酸素処理後のクロロメチルスチレン溶液中に、電子線照射済みの不織布基材を浸漬して、50℃で6時間反応させた。その後、クロロメチルスチレン溶液から不織布を取り出し、トルエン中に3時間浸漬してホモポリマーを除去して、クロロメチルスチレンによってグラフト重合された不織布材料(グラフト率161%)を得た。このグラフト不織布を、トリメチルアミン溶液(10重量%)中で4級アンモニウム化させた後、水酸化ナトリウム水溶液(5重量%)で再生処理をして、4級アンモニウム基を有する強塩基性アニオン交換不織布(中性塩分解容量350meq/m2)を得た。これを「アニオン交換不織布」とした。
[Production Example 2: Production of anion exchange nonwoven fabric]
The same nonwoven fabric substrate as in Production Example 1 was irradiated with an electron beam (150 kGy) in a nitrogen atmosphere. Chloromethylstyrene (product name: CMS-AM, manufactured by Seimi Chemical Co., Ltd.) was passed through the activated alumina packed bed to remove the polymerization inhibitor, and nitrogen aeration was performed. The nonwoven fabric substrate that had been irradiated with the electron beam was immersed in the chloromethylstyrene solution after the deoxygenation treatment and reacted at 50 ° C. for 6 hours. Thereafter, the nonwoven fabric was taken out from the chloromethylstyrene solution, immersed in toluene for 3 hours to remove the homopolymer, and a nonwoven fabric material grafted with chloromethylstyrene (grafting rate 161%) was obtained. This graft nonwoven is quaternized in a trimethylamine solution (10% by weight) and then regenerated with an aqueous sodium hydroxide solution (5% by weight) to give a strongly basic anion exchange nonwoven having a quaternary ammonium group. (Neutral salt decomposition capacity 350 meq / m 2 ) was obtained. This was designated as “anion exchange nonwoven fabric”.

[製造例3:カチオン伝導スペーサの製造]
イオン伝導スペーサの基材として、厚さ1.2mm、ピッチ3mmのポリエチレン製斜交網を用い、グラフトモノマーとしてスチレンスルホン酸ナトリウムと補助モノマーとしてアクリル酸を用いた。
[Production Example 3: Production of cation conductive spacer]
As the base material of the ion conductive spacer, a polyethylene oblique network having a thickness of 1.2 mm and a pitch of 3 mm was used, sodium styrenesulfonate as a graft monomer and acrylic acid as an auxiliary monomer.

ドライアイスで冷却しながら、ポリエチレン製斜交網に窒素雰囲気中でγ線(150kGy)を照射した。この照射済み斜交網をスルホン酸ナトリウムとアクリル酸の混合モノマー溶液中に浸漬し、75℃で3時間反応させて、スルホン酸基及びカルボキシル基を有するグラフト斜交網材料(カチオン伝導スペーサ)を得た(グラフト率153%)。中性塩分解容量は189meq/m2、総交換容量は834meq/m2であった。これを「カチオン伝導スペーサ」とした。 While cooling with dry ice, γ-rays (150 kGy) were irradiated to a polyethylene oblique mesh in a nitrogen atmosphere. This irradiated oblique network is immersed in a mixed monomer solution of sodium sulfonate and acrylic acid and reacted at 75 ° C. for 3 hours to obtain a graft oblique network material (cation conducting spacer) having a sulfonic acid group and a carboxyl group. Obtained (graft rate 153%). The neutral salt decomposition capacity was 189 meq / m 2 and the total exchange capacity was 834 meq / m 2 . This was designated as “cation conductive spacer”.

[製造例4:アニオン伝導スペーサの製造]
ドライアイスで冷却しながら、製造例3と同じポリエチレン製斜交網に窒素雰囲気下でγ線(150kGy)を照射した。この照射済み斜交網をVBTAC(ビニルベンジルトリメチルアンモニウム)及びDMAA(ジメチルアクリルアミド)の混合モノマー中に浸漬し、50℃で3時間反応させて、VBTAC及びDMAAのグラフト斜交網を得た。グラフト率を算出したところ156%であった。得られたグラフト斜交網の中性塩分解容量を算出したところ198meq/m2であった。これを「アニオン伝導スペーサ」とした。
[Production Example 4: Production of anion conducting spacer]
While cooling with dry ice, the same polyethylene oblique mesh as in Production Example 3 was irradiated with γ rays (150 kGy) in a nitrogen atmosphere. This irradiated oblique network was immersed in a mixed monomer of VBTAC (vinylbenzyltrimethylammonium) and DMAA (dimethylacrylamide) and reacted at 50 ° C. for 3 hours to obtain a grafted oblique network of VBTAC and DMAA. The graft ratio was calculated to be 156%. The neutral salt decomposition capacity of the obtained grafted oblique network was calculated to be 198 meq / m 2 . This was designated as “anion conducting spacer”.

[実施例1]
図6の構成の電気式脱塩装置を組み立てた。陰極および陽極の間に、カチオン交換膜C(トクヤマ製:NEOSEPTA CMB)とアニオン交換膜A(トクヤマ製:NEOSEPTA AHA)とを図6に示すように配列することにより、陽極側から陽極室、濃縮室、脱塩室、濃縮室、陰極室の順で配列されている電気式脱塩装置を構成した。脱塩室の厚さは20mm、電極の大きさは縦50mm×横50mmであり、濃縮室および電極室の厚さは3mmとした。脱塩室には製造例1により製造し、塩酸により再生したカチオン交換不織布、及び製造例2により製造し、アルカリにより再生したアニオン交換不織布を、図6に示すように被処理水の流通方向に対して交差する方向(即ち横置き)に、それぞれ25枚交互に積層充填した。両濃縮室においては、アニオン交換膜上に製造例4で製造したアニオン伝導スペーサを2枚、アニオン交換膜に平行に配置し、カチオン交換膜面上に製造例3で製造したカチオン伝導スペーサを2枚、カチオン交換膜に平行に配置した。また、陽極室には製造例3で製造したカチオン伝導スペーサを、カチオン交換膜に平行に4枚配置し、陰極室には製造例4で製造したアニオン伝導スペーサを、アニオン交換膜に平行に4枚配置した。
[Example 1]
An electric desalination apparatus having the configuration shown in FIG. 6 was assembled. By arranging a cation exchange membrane C (manufactured by Tokuyama: NEOSEPTA CMB) and an anion exchange membrane A (manufactured by Tokuyama: NEOSEPTA AHA) as shown in FIG. 6 between the cathode and the anode, the anode chamber is concentrated from the anode side. An electric desalination apparatus arranged in the order of a chamber, a desalting chamber, a concentration chamber, and a cathode chamber was constructed. The thickness of the desalting chamber was 20 mm, the size of the electrode was 50 mm long × 50 mm wide, and the thickness of the concentration chamber and the electrode chamber was 3 mm. In the desalting chamber, the cation exchange nonwoven fabric produced by Production Example 1 and regenerated with hydrochloric acid, and the anion exchange nonwoven fabric produced by Production Example 2 and regenerated by alkali, as shown in FIG. On the other hand, 25 sheets were alternately stacked and filled in the crossing direction (that is, horizontally). In both concentrating chambers, two anion conducting spacers produced in Production Example 4 are arranged on the anion exchange membrane in parallel with the anion exchange membrane, and 2 cation conducting spacers produced in Production Example 3 are placed on the cation exchange membrane surface. The plates were placed in parallel with the cation exchange membrane. Further, four cation conductive spacers manufactured in Production Example 3 are arranged in the anode chamber in parallel to the cation exchange membrane, and four anion conductive spacers manufactured in Production Example 4 are arranged in the cathode chamber in parallel to the anion exchange membrane. Placed.

両電極間に0.4Aの直流電流を印加して、0.2MΩcmのRO処理水(逆浸透膜処理水:シリカ濃度0.1〜0.3ppm、水温14℃〜26℃、TOC濃度120ppb)を、流量10Lh-1(SV=200h-1)で脱塩室に通水し、濃縮室および電極室については、0.2MΩcmのRO処理水を陰極側極室から陰極側濃縮室へ直列に、陽極側極室から陽極側濃縮室へ直列に,それぞれ2.5Lh-1で通水した。その結果、運転1分後に脱塩水として18.2MΩcmの水が脱塩室より得られ、1000時間運転後も18.0MΩcm以上の水が安定して得られた。図7に、1200時間運転までの処理水の比抵抗の経時変化をグラフで示す。また、処理水のTOCの濃度も25時間後に7.2ppbとなり、5.3ppbで平衡値に達した。脱塩室の圧力損失は、1000時間運転後において0.5kgf/cm2となった。 Applying 0.4A direct current between both electrodes, 0.2MΩcm RO treated water (reverse osmosis membrane treated water: silica concentration 0.1-0.3ppm, water temperature 14 ° C-26 ° C, TOC concentration 120ppb) Is passed through the desalting chamber at a flow rate of 10 Lh −1 (SV = 200 h −1 ), and 0.2 MΩcm of RO-treated water is serially connected from the cathode side electrode chamber to the cathode side concentration chamber for the concentration chamber and electrode chamber. Water was passed through the anode side electrode chamber in series from the anode side electrode chamber to the anode side concentrating chamber at 2.5 Lh- 1 . As a result, 18.2 MΩcm of water was obtained from the desalting chamber as demineralized water after 1 minute of operation, and 18.0 MΩcm or more of water was stably obtained even after 1000 hours of operation. FIG. 7 is a graph showing the change over time in the specific resistance of the treated water up to 1200 hours of operation. Further, the TOC concentration of the treated water was 7.2 ppb after 25 hours, and reached the equilibrium value at 5.3 ppb. The pressure loss in the desalination chamber was 0.5 kgf / cm 2 after 1000 hours of operation.

[比較例1]
脱塩室/濃縮室にイオン交換繊維材料及びイオン伝導スペーサを被処理水の流通方向に平行に充填した従来の電気式脱塩装置による通水試験を行った。図8に示すように、電極間にアニオン交換膜(A)及びカチオン交換膜(C)を交互に配列することにより、脱塩室を3室とする従来公知のタイプの電気式脱塩装置を組み立てた。各脱塩室セル及び各極室の厚さ2.5mmであり、各濃縮室の厚さ1.5mm、電極の大きさは縦240mm×横50mmとした。イオン交換膜は実施例1と同様の物を用いた。各脱塩室においては、アニオン交換膜面に製造例2で製造したアニオン交換不織布を、カチオン交換膜面に製造例1で製造したカチオン交換不織布を1枚ずつ配置し、両不織布間には製造例4で製造したアニオン伝導スペーサを2枚充填した。各濃縮室においては、アニオン交換膜面に製造例4で製造したアニオン伝導スペーサを、カチオン交換膜面に製造例3で製造したカチオン伝導スペーサを、それぞれ1枚ずつ充填した。また、陽極室においては、製造例3で製造したカチオン伝導スペーサを4枚配置し、陰極室においては、製造例4で製造したアニオン伝導スペーサを4枚配置した。
[Comparative Example 1]
A water passage test was conducted using a conventional electric desalination apparatus in which the ion exchange fiber material and the ion conductive spacer were filled in the desalting chamber / concentration chamber in parallel with the flow direction of the water to be treated. As shown in FIG. 8, a conventionally known type of electric desalination apparatus having three desalination chambers by alternately arranging an anion exchange membrane (A) and a cation exchange membrane (C) between electrodes. Assembled. The thickness of each desalting chamber cell and each electrode chamber was 2.5 mm, the thickness of each concentrating chamber was 1.5 mm, and the electrode size was 240 mm long × 50 mm wide. The same ion exchange membrane as in Example 1 was used. In each desalting chamber, the anion exchange nonwoven fabric produced in Production Example 2 is placed on the anion exchange membrane surface, and the cation exchange nonwoven fabric produced in Production Example 1 is placed on the cation exchange membrane surface one by one. Two anion conducting spacers prepared in Example 4 were filled. In each concentrating chamber, one anion conducting spacer produced in Production Example 4 was filled on the anion exchange membrane surface, and one cation conducting spacer produced in Production Example 3 on the cation exchange membrane surface. In the anode chamber, four cation conducting spacers produced in Production Example 3 were arranged, and in the cathode chamber, four anion conducting spacers produced in Production Example 4 were arranged.

両電極間に0.13Aの直流電流を印加して、0.2MΩcmのRO処理水(逆浸透膜処理水:シリカ濃度0.1〜0.3ppm、水温14℃〜26℃、TOC濃度120ppb)を、流量5Lh-1(SV=55.6h-1)で、脱塩室D1,D2,D3に直列に通水し、濃縮室および電極室については、0.2MΩcmのRO処理水を、陰極側極室(K2)から濃縮室C2,C1を経由して陽極側極室(K1)へ、直列に2.5Lh-1で通水した。その結果、100時間後に脱塩水として17.9MΩcmの水が得られ、1000時間運転後も17.6MΩcmの水が得られた。また処理水のTOCの濃度は200時間後に10ppbとなり、9.2ppbでほぼ平衡値に達した。1000時間運転後、脱塩室圧力損失は3室当たり0.5kgf/cm2となった。 Applying a direct current of 0.13 A between both electrodes, 0.2 MΩcm RO treated water (reverse osmosis membrane treated water: silica concentration 0.1 to 0.3 ppm, water temperature 14 ° C. to 26 ° C., TOC concentration 120 ppb) At a flow rate of 5 Lh −1 (SV = 55.6 h −1 ) in series with the desalting chambers D1, D2 and D3, and for the concentration chamber and the electrode chamber, 0.2 MΩcm RO-treated water is used as the cathode. Water was passed in series from the side electrode chamber (K2) through the concentration chambers C2 and C1 to the anode side electrode chamber (K1) at 2.5 Lh- 1 . As a result, 17.9 MΩcm water was obtained as demineralized water after 100 hours, and 17.6 MΩcm water was obtained even after 1000 hours of operation. Further, the TOC concentration of treated water became 10 ppb after 200 hours, and reached an almost equilibrium value at 9.2 ppb. After 1000 hours of operation, the desalination chamber pressure loss was 0.5 kgf / cm 2 per three chambers.

同じ装置で、脱塩室への流量を20Lh-1(SV=222h-1)、濃縮室への流量を10Lh-1に上げて同様の実験を行ったところ、水質は運転時間の経過と共に上昇するものの1000時間運転後においても1.3MΩcmの水質が得られるに留まった。1000時間運転後においては、脱塩室の圧力損失は3室当たりで2.3kgf/cm2となった。 When the same experiment was conducted with the same equipment, increasing the flow rate to the desalination chamber to 20 Lh -1 (SV = 222 h -1 ) and increasing the flow rate to the concentration chamber to 10 Lh -1 , the water quality increased with the passage of operating time. However, the water quality of 1.3 MΩcm was obtained even after 1000 hours of operation. After 1000 hours of operation, the pressure loss in the desalting chamber was 2.3 kgf / cm 2 per three chambers.

[比較例2]
脱塩室/濃縮室にイオン交換樹脂ビーズを充填した従来の電気式脱塩装置による通水試験を行った。図9に示すように、脱塩室を9室とする従来公知のタイプの電気式脱塩装置を組み立てた。脱塩室セルの厚さ3mmであり、濃縮室および電極室の厚さは3mm、電極の大きさは縦220mm×横35mmとした。イオン交換膜は実施例1と同様のものを用い、各脱塩室、各濃縮室及び両極室に、カチオン樹脂ビーズ(ダウケミカル製 Dowex MONOSPHERE 650C)およびアニオン交換樹脂(ダウケミカル製 Dowex MONOSPHERE 550A)を混床充填した。両電極間に0.1Aの直流電流を印加して、0.2MΩcmのRO処理水(逆浸透膜処理水:シリカ濃度0.1〜0.3ppm、水温14℃〜26℃、TOC濃度120ppb)を、流量12Lh-1(SV=57.7h-1)で、図9に示すように脱塩室に通水し、濃縮室および電極室については、0.2MΩcmのRO処理水を、陰極側極室(K2)から図9に示すように各濃縮室を経由して陽極側極室(K1)へ6Lh-1で通水した。その結果、水質は1000時間運転後において4.3MΩcmの水質が得られ、処理水のTOCの濃度は1000時間後において20ppbであった。1000時間運転後、脱塩室の圧力損失は0.8kgf/cm2となった。
[Comparative Example 2]
A water passage test was conducted using a conventional electric desalting apparatus in which a desalting chamber / concentration chamber was filled with ion-exchange resin beads. As shown in FIG. 9, a conventionally known type electric desalination apparatus having nine desalination chambers was assembled. The thickness of the desalination chamber cell was 3 mm, the thickness of the concentration chamber and the electrode chamber was 3 mm, and the electrode size was 220 mm long × 35 mm wide. The same ion exchange membrane as in Example 1 was used. In each desalting chamber, each concentrating chamber, and both electrode chambers, cation resin beads (Dow Chemical Dowex MONOSPHERE 650C) and anion exchange resin (Dow Chemical Dowex MONOSPHERE 550A) were used. The mixed bed was filled. Applying a direct current of 0.1 A between both electrodes, 0.2 MΩcm RO treated water (reverse osmosis membrane treated water: silica concentration 0.1 to 0.3 ppm, water temperature 14 ° C. to 26 ° C., TOC concentration 120 ppb) At a flow rate of 12 Lh −1 (SV = 57.7 h −1 ), water was passed through the desalting chamber as shown in FIG. 9, and 0.2 MΩcm RO treated water was added to the cathode side for the concentration chamber and the electrode chamber. As shown in FIG. 9, water was passed from the polar chamber (K2) through the concentration chambers to the anode-side polar chamber (K1) at 6 Lh −1 . As a result, a water quality of 4.3 MΩcm was obtained after 1000 hours of operation, and the TOC concentration of treated water was 20 ppb after 1000 hours. After 1000 hours of operation, the pressure loss in the desalting chamber was 0.8 kgf / cm 2 .

同じ装置で、脱塩室への流量を36Lh-1(SV=173h-1)、濃縮室への流量を18Lh-1に上げて同様の実験を行ったところ、水質は運転時間の経過と共に上昇するものの1000時間運転後においても0.5MΩcmの水質が得られるに留まった。処理水のTOCの濃度は1000時間後において15ppbであり、脱塩室圧力損失は2.5kgf/cm2であった。 When the same experiment was conducted with the same equipment, increasing the flow rate to the desalination chamber to 36 Lh -1 (SV = 173h -1 ) and increasing the flow rate to the concentration chamber to 18 Lh -1 , the water quality increased with the passage of operating time. However, water quality of 0.5 MΩcm was obtained even after 1000 hours of operation. The TOC concentration of the treated water was 15 ppb after 1000 hours, and the pressure loss in the desalting chamber was 2.5 kgf / cm 2 .

以上の実施例1及び比較例1,2から明らかなように、本発明の電気式脱塩装置によれば、従来の電気式脱塩装置と比べて遙かに高い原水流量で良好な処理水質を得ることができた。また、装置が小型化されたために、脱塩室の圧力損失も問題にはならなかった。   As is clear from Example 1 and Comparative Examples 1 and 2 described above, according to the electric desalination apparatus of the present invention, the quality of treated water is excellent at a raw water flow rate much higher than that of the conventional electric desalination apparatus. Could get. Moreover, since the apparatus was downsized, the pressure loss in the desalination chamber was not a problem.

[実施例2]
図10に示す構成の電気式脱塩装置を組み立てた。陰極及び陽極の間に、カチオン交換膜C(トクヤマ製:NEOSEPTA CMB)とアニオン交換膜A(トクヤマ製:NEOSEPTA AHA)とを図10に示すように配列することにより、陽極側から、陽極室、濃縮室、脱塩室、濃縮室、陰極室の順で配列されている電気式脱塩装置を構成した。脱塩室及び濃縮室の厚さは20mm、電極の大きさは縦50mm×横50mmであり、極室の厚さは3mmとした。脱塩室及び濃縮室に、製造例1により製造し、塩酸により再生したカチオン交換不織布、及び製造例2により製造し、アルカリにより再生したアニオン交換不織布を、図10に示すように被処理水の通水方向に対して交差する方向(即ち横置き)に、それぞれ25枚交互に積層充填した。また、陽極室には、製造例3で製造したカチオン伝導スペーサをカチオン交換膜に平行に4枚配置し、陰極室には製造例4で製造したアニオン伝導スペーサをアニオン交換膜に平行に4枚配置した。
[Example 2]
An electric desalination apparatus having the configuration shown in FIG. 10 was assembled. By arranging a cation exchange membrane C (manufactured by Tokuyama: NEOSEPTA CMB) and an anion exchange membrane A (manufactured by Tokuyama: NEOSEPTA AHA) as shown in FIG. 10 between the cathode and the anode, the anode chamber, An electric desalination apparatus arranged in the order of a concentration chamber, a desalting chamber, a concentration chamber, and a cathode chamber was constructed. The thickness of the desalting chamber and the concentration chamber was 20 mm, the size of the electrode was 50 mm long × 50 mm wide, and the thickness of the electrode chamber was 3 mm. In the desalination chamber and the concentration chamber, the cation exchange nonwoven fabric produced by Production Example 1 and regenerated with hydrochloric acid, and the anion exchange nonwoven fabric produced by Production Example 2 and regenerated by alkali, as shown in FIG. 25 sheets were stacked and filled alternately in a direction crossing the water flow direction (that is, horizontally). In the anode chamber, four cation conducting spacers produced in Production Example 3 are arranged in parallel to the cation exchange membrane, and in the cathode chamber, four anion conducting spacers produced in Production Example 4 are arranged in parallel to the anion exchange membrane. Arranged.

両電極間に0.4Aの直流電流を印加して、0.2MΩcmのRO処理水(逆浸透膜処理水:シリカ濃度0.1〜0.3ppm、水温14℃〜26℃、TOC濃度120ppb、炭酸濃度6.5ppm、カルシウム濃度208ppb)を、流量20Lh-1(SV=400h-1)で脱塩室に通水し、両濃縮室については0.2MΩcmのRO処理水を12Lh-1で通水し、両極室については0.2MΩcmのRO処理水を8Lh-1で通水した。その結果、運転1分後に脱塩水として18.2MΩcmの水が脱塩室より得られた。30時間後の運転電圧は40.75Vであった。また、この時点での陰極側濃縮室及び陽極室の両端にかかる電圧は、それぞれ4.87V、2.71Vであった。引き続いて2000時間の連続運転を行い、運転電圧及び両濃縮室並びに脱塩室の両端にかかる電圧の経時変化を測定した。結果を図12に示す。運転開始当初は徐々に運転電圧及び濃縮室の両端にかかる電圧が上昇したが、200時間程度で濃縮室の両端にかかる電圧はほぼ一定となり、また運転電圧の上昇率は500時間程度で極めて小さくなった。2000時間後の運転電圧は130V、陰極側濃縮室の両端にかかる電圧は8.0Vであった。運転後、装置を分解して濃縮室内のイオン交換不織布を観察したが、特にスケールの析出はみられなかった。 A 0.4 A direct current was applied between both electrodes, and 0.2 MΩcm RO-treated water (reverse osmosis membrane treated water: silica concentration 0.1 to 0.3 ppm, water temperature 14 ° C. to 26 ° C., TOC concentration 120 ppb, carbonate concentration 6.5 ppm, a calcium concentration 208ppb), Rohm & desalting compartment at a flow rate 20Lh -1 (SV = 400h -1) , for both concentrating chambers of RO treated water 0.2MΩcm in 12Lh -1 through In each of the polar chambers, 0.2 MΩcm RO-treated water was passed at 8 Lh −1 . As a result, after 1 minute of operation, 18.2 MΩcm water was obtained from the desalting chamber as desalted water. The operating voltage after 30 hours was 40.75V. Further, the voltages applied to both ends of the cathode side concentrating chamber and the anode chamber at this time were 4.87 V and 2.71 V, respectively. Subsequently, continuous operation was performed for 2000 hours, and the operating voltage and the change with time of the voltage applied to both ends of both the concentrating chamber and the desalting chamber were measured. The results are shown in FIG. At the beginning of operation, the operating voltage and the voltage applied to both ends of the concentrating chamber gradually increased, but the voltage applied to both ends of the concentrating chamber became almost constant after about 200 hours, and the rate of increase in operating voltage was extremely small at about 500 hours. became. The operating voltage after 2000 hours was 130V, and the voltage applied to both ends of the cathode side concentrating chamber was 8.0V. After the operation, the apparatus was disassembled and the ion exchange nonwoven fabric in the concentration chamber was observed, but no precipitation of scale was observed.

なお、濃縮室の両端にかかる電圧は、図10の構成の脱塩装置において、陽極室内のカチオン交換膜側、陽極側濃縮室のアニオン交換膜側、陰極側濃縮室のカチオン交換膜側及び陰極室のアニオン交換膜側に白金製の電極線(径0.4mm)を装填してそれぞれの電極間の電位差を測定することによって測定した。   Note that the voltage applied to both ends of the concentrating chamber is the same as that in the desalination apparatus having the configuration shown in FIG. 10, the cation exchange membrane side in the anode chamber, the anion exchange membrane side in the anode concentrating chamber, the cation exchange membrane side in the cathode concentrating chamber, Measurement was performed by loading a platinum electrode wire (0.4 mm in diameter) on the anion exchange membrane side of the chamber and measuring the potential difference between the electrodes.

[比較例3]
図11の構成の電気式脱塩装置を組み立てた。陰極および陽極の間に、カチオン交換膜C(トクヤマ製:NEOSEPTA CMB)とアニオン交換膜A(トクヤマ製:NEOSEPTA AHA)とを図11に示すように配列することにより、陽極側から、陽極室、濃縮室、脱塩室、濃縮室、陰極室の順で配列されている電気式脱塩装置を構成した。脱塩室の厚さは20mm、電極の大きさは縦50mm×横50mmであり、濃縮室および電極室の厚さは3mmとした。脱塩室には、製造例1により製造し、塩酸により再生したカチオン交換不織布、及び製造例2により製造し、アルカリにより再生したアニオン交換不織布を、図11に示すように被処理水の流通方向に対して交差する方向(即ち横置き)に、それぞれ25枚交互に積層充填した。両濃縮室においては、アニオン交換膜上に製造例4で製造したアニオン伝導スペーサを1枚、アニオン交換膜に平行に配置し、カチオン交換膜面上に製造例3で製造したカチオン伝導スペーサを1枚、カチオン交換膜に平行に配置した。また、陽極室には製造例3で製造したカチオン伝導スペーサを、カチオン交換膜に平行に4枚配置し、陰極室には製造例4で製造したアニオン伝導スペーサを、アニオン交換膜に平行に4枚配置した。
[Comparative Example 3]
An electric desalination apparatus having the configuration shown in FIG. 11 was assembled. By arranging a cation exchange membrane C (manufactured by Tokuyama: NEOSEPTA CMB) and an anion exchange membrane A (manufactured by Tokuyama: NEOSEPTA AHA) as shown in FIG. 11 between the cathode and the anode, the anode chamber, An electric desalination apparatus arranged in the order of a concentration chamber, a desalting chamber, a concentration chamber, and a cathode chamber was constructed. The thickness of the desalting chamber was 20 mm, the size of the electrode was 50 mm long × 50 mm wide, and the thickness of the concentration chamber and the electrode chamber was 3 mm. In the desalting chamber, the cation exchange nonwoven fabric produced by Production Example 1 and regenerated with hydrochloric acid, and the anion exchange nonwoven fabric produced by Production Example 2 and regenerated by alkali, as shown in FIG. Each of 25 sheets was stacked and filled alternately in a direction intersecting with (ie, horizontally). In both concentrating chambers, one anion conducting spacer produced in Production Example 4 is disposed on the anion exchange membrane in parallel with the anion exchange membrane, and the cation conducting spacer produced in Production Example 3 is placed on the surface of the cation exchange membrane. The plates were placed in parallel with the cation exchange membrane. Further, four cation conductive spacers manufactured in Production Example 3 are arranged in the anode chamber in parallel to the cation exchange membrane, and four anion conductive spacers manufactured in Production Example 4 are arranged in the cathode chamber in parallel to the anion exchange membrane. Placed.

両電極間に0.4Aの直流電流を印加して、0.2MΩcmのRO処理水(逆浸透膜処理水:シリカ濃度0.1〜0.3ppm、水温14℃〜26℃、TOC濃度120ppb、炭酸濃度6.5ppm、カルシウム濃度208ppb)を、流量20Lh-1(SV=400h-1)で脱塩室に通水し、両濃縮室については、それぞれ0.2MΩcmのRO処理水を12Lh-1で通水し、両極室には、それぞれ0.2MΩcmのRO処理水を8Lh-1で通水した。その結果、運転1分後に脱塩水として18.2MΩcmの水が脱塩室より得られた。30時間後の運転電圧は81.2Vであった。また、この時点での陰極側濃縮室及び陽極側濃縮室の両端にかかる電圧は、それぞれ11.9V、13.1Vであった。引き続いて2000時間の連続運転を行い、運転電圧及び両濃縮室並びに脱塩室の両端にかかる電圧の経時変化を測定した。結果を図13に示す。図12に示す実施例2の結果と比較して、運転電圧及び両濃縮室の両端にかかる電圧の上昇の度合いが極めて大きく、1000時間運転後においてもなお上昇傾向にあった。2000時間後の運転電圧は293.9V、陰極側濃縮室の両端にかかる電圧は44.0V、陽極側濃縮室の両端にかかる電圧は82.7Vであった。 A 0.4 A direct current was applied between both electrodes, and 0.2 MΩcm RO-treated water (reverse osmosis membrane treated water: silica concentration 0.1 to 0.3 ppm, water temperature 14 ° C. to 26 ° C., TOC concentration 120 ppb, carbonate concentration 6.5 ppm, a calcium concentration 208Ppb), flow rate 20Lh -1 (SV = Rohm & desalting chamber 400h -1), for both concentration compartment, the RO treated water, respectively 0.2MΩcm 12Lh -1 In each chamber, 0.2 MΩcm RO-treated water was passed at 8 Lh −1 . As a result, after 1 minute of operation, 18.2 MΩcm water was obtained from the desalting chamber as desalted water. The operating voltage after 30 hours was 81.2V. At this time, the voltage applied to both ends of the cathode side enrichment chamber and the anode side enrichment chamber was 11.9V and 13.1V, respectively. Subsequently, continuous operation was performed for 2000 hours, and the operating voltage and the change with time of the voltage applied to both ends of both the concentrating chamber and the desalting chamber were measured. The results are shown in FIG. Compared with the result of Example 2 shown in FIG. 12, the degree of increase in the operating voltage and the voltage applied to both ends of both concentrating chambers was extremely large, and it was still on an increasing trend even after 1000 hours of operation. The operating voltage after 2000 hours was 293.9 V, the voltage applied to both ends of the cathode side enrichment chamber was 44.0 V, and the voltage applied to both ends of the anode side enrichment chamber was 82.7 V.

2000時間の運転後に装置を分解して濃縮室内のイオン伝導スペーサを観察したところ、スペーサ全体に炭酸カルシウムのスケールが激しく析出していた。まずアニオン伝導スペーサとカチオン伝導スペーサとの接触部分で炭酸カルシウムの結晶が析出し、これが種核となってスペーサ全体に結晶が析出したと考えられる。   When the apparatus was disassembled after 2000 hours of operation and the ion conductive spacer in the concentrating chamber was observed, the scale of calcium carbonate was vigorously precipitated throughout the spacer. First, it is considered that a crystal of calcium carbonate was precipitated at the contact portion between the anion conductive spacer and the cation conductive spacer, and this became a seed nucleus and crystal was precipitated on the entire spacer.

実施例2と比較例3とを比べると、濃縮室においてもアニオン交換不織布及びカチオン交換不織布を、液通方向に対して交差する方向に横置きに積層して充填した実施例2の方が、運転電圧の安定性に優れていることが分かる。長時間運転後の装置を分解して観察したところによれば、この運転電圧の安定性は、主として、濃縮室内における炭酸カルシウムのスケール析出が発生しにくいことによるものと考えられる。   Comparing Example 2 and Comparative Example 3, in Example 2 in which the anion exchange nonwoven fabric and the cation exchange nonwoven fabric were laminated and filled horizontally in the direction intersecting the liquid passage direction in the concentration chamber, It can be seen that the stability of the operating voltage is excellent. According to the observation after disassembling the apparatus after long-time operation, it is considered that the stability of the operation voltage is mainly due to the fact that calcium carbonate scale precipitation is unlikely to occur in the concentration chamber.

[実施例3]
図14の構成の電気式脱塩装置を組み立てた。陰極および陽極の間に、カチオン交換膜C(トクヤマ製:NEOSEPTA CMB)とアニオン交換膜A(トクヤマ製:NEOSEPTA AHA)とを図14に示すように配列することにより、陽極側から、陽極室、濃縮室、脱塩室、濃縮室、陰極室の順で配列されている電気式脱塩装置を構成した。脱塩室及び濃縮室の厚さは20mm、電極の大きさは縦50mm×横50mmであり、電極室の厚さは5mmとした。脱塩室及び濃縮室には、製造例1により製造し、塩酸により再生したカチオン交換不織布、及び製造例2により製造し、アルカリにより再生したアニオン交換不織布を、図14に示すように被処理水の流通方向に対して交差する方向(即ち横置き)に、それぞれ25枚交互に積層充填した。陽極室には、製造例1で製造したカチオン交換不織布を図14に示すように通水方向に対して交差する方向(横置き)に50枚積層充填した。陰極室には、製造例2で製造したアニオン交換不織布を、図14に示すように通水方向に対して交差する方向(横置き)に50枚積層充填した。
[Example 3]
An electric desalination apparatus having the configuration shown in FIG. 14 was assembled. A cation exchange membrane C (manufactured by Tokuyama: NEOSEPTA CMB) and an anion exchange membrane A (manufactured by Tokuyama: NEOSEPTA AHA) are arranged between the cathode and the anode as shown in FIG. An electric desalination apparatus arranged in the order of a concentration chamber, a desalting chamber, a concentration chamber, and a cathode chamber was constructed. The thickness of the desalting chamber and the concentration chamber was 20 mm, the size of the electrode was 50 mm long × 50 mm wide, and the thickness of the electrode chamber was 5 mm. In the desalination chamber and the concentration chamber, the cation exchange nonwoven fabric produced by Production Example 1 and regenerated with hydrochloric acid and the anion exchange nonwoven fabric produced by Production Example 2 and regenerated by alkali are treated water as shown in FIG. Each of 25 sheets was alternately stacked and filled in a direction intersecting with the flow direction (that is, horizontally placed). In the anode chamber, 50 cation exchange nonwoven fabrics produced in Production Example 1 were stacked and filled in a direction (horizontal placement) intersecting the water flow direction as shown in FIG. In the cathode chamber, 50 anion exchange nonwoven fabrics produced in Production Example 2 were stacked and filled in a direction intersecting the water passage direction (horizontal placement) as shown in FIG.

両電極間に0.4Aの直流電流を印加して、0.2MΩcmのRO処理水(逆浸透膜処理水:シリカ濃度0.1〜0.3ppm、水温14℃〜26℃、TOC濃度120ppb、炭酸濃度6.5ppm、カルシウム濃度208ppb)を、流量20Lh-1(SV=400h-1)で脱塩室に通水し、両濃縮室については、それぞれ0.2MΩcmのRO処理水を12Lh-1で通水し、両極室には、それぞれ0.2MΩcmのRO処理水を8Lh-1で通水した。その結果、運転1分後に脱塩水として18.2MΩcmの水が脱塩室より得られた。30時間後の運転電圧は36.6Vであった。また、この時点での陰極室及び陽極室の両端にかかる電圧は、それぞれ5.25V、2.71Vであった。引き続いて2000時間の連続運転を行い、運転電圧及び両極室の両端にかかる電圧の経時変化を測定した。結果を図16に示す。両極室の両端にかかる電圧は運転開始当初より安定して低い値を示しており、2000時間運転後において、運転電圧は76.6V、陰極室及び陽極室の両端にかかる電圧は、それぞれ5.33V及び1.65Vであった。一方、実施例2の電気式脱塩装置の運転において測定した両極室の両端にかかる電圧の経時変化を図17に示す。 A 0.4 A direct current was applied between both electrodes, and 0.2 MΩcm RO-treated water (reverse osmosis membrane treated water: silica concentration 0.1 to 0.3 ppm, water temperature 14 ° C. to 26 ° C., TOC concentration 120 ppb, carbonate concentration 6.5 ppm, a calcium concentration 208Ppb), flow rate 20Lh -1 (SV = Rohm & desalting chamber 400h -1), for both concentration compartment, the RO treated water, respectively 0.2MΩcm 12Lh -1 In each chamber, 0.2 MΩcm RO-treated water was passed at 8 Lh −1 . As a result, after 1 minute of operation, 18.2 MΩcm water was obtained from the desalting chamber as desalted water. The operating voltage after 30 hours was 36.6V. At this time, the voltages applied to both ends of the cathode chamber and the anode chamber were 5.25 V and 2.71 V, respectively. Subsequently, continuous operation for 2000 hours was performed, and the change over time of the operating voltage and the voltage applied to both ends of both electrode chambers was measured. The results are shown in FIG. The voltage applied to both ends of both electrode chambers shows a stable and low value from the beginning of operation. After 2000 hours of operation, the operating voltage is 76.6 V, and the voltages applied to both ends of the cathode chamber and anode chamber are 5. 33V and 1.65V. On the other hand, FIG. 17 shows the change with time of the voltage applied to both ends of the bipolar chamber measured in the operation of the electrical desalting apparatus of Example 2.

図17に示す実施例2の結果と比較して、陰極室においてアニオン交換不織布を横置きに積層配置した実施例3では、陰極室の両端にかかる電圧の上昇が大きく抑制されたことが分かる。   Compared with the results of Example 2 shown in FIG. 17, it can be seen that in Example 3 in which the anion exchange nonwoven fabrics were horizontally stacked in the cathode chamber, the increase in voltage applied to both ends of the cathode chamber was greatly suppressed.

[実施例4]
図15の構成の電気式脱塩装置を組み立てた。陰極および陽極の間に、カチオン交換膜C(トクヤマ製:NEOSEPTA CMB)とアニオン交換膜A(トクヤマ製:NEOSEPTA AHA)とを図15に示すように配列することにより、陽極側から、陽極室、濃縮室、脱塩室、濃縮室(兼陰極室)の順で配列されている電気式脱塩装置を構成した。脱塩室及び濃縮室並びに濃縮室兼陰極室の厚さは20mm、電極の大きさは縦50mm×横50mmであり、陽極室の厚さは5mmとした。脱塩室及び濃縮室並びに濃縮室兼陰極室には、製造例1により製造し、塩酸により再生したカチオン交換不織布、及び製造例2により製造し、アルカリにより再生したアニオン交換不織布を、図15に示すように被処理水の流通方向に対して交差する方向(即ち横置き)に、それぞれ25枚交互に積層充填した。陽極室には、製造例1で製造したカチオン交換不織布を図15に示すように通水方向に対して交差する方向(横置き)に50枚積層充填した。
[Example 4]
An electric desalination apparatus having the configuration shown in FIG. 15 was assembled. By arranging a cation exchange membrane C (manufactured by Tokuyama: NEOSEPTA CMB) and an anion exchange membrane A (manufactured by Tokuyama: NEOSEPTA AHA) as shown in FIG. 15 between the cathode and the anode, the anode chamber, An electric desalting apparatus arranged in the order of a concentrating chamber, a desalting chamber, and a concentrating chamber (also serving as a cathode chamber) was constructed. The thickness of the desalting chamber, the concentration chamber, and the concentration chamber / cathode chamber was 20 mm, the electrode size was 50 mm long × 50 mm wide, and the thickness of the anode chamber was 5 mm. In the desalination chamber, the concentration chamber, and the concentration chamber / cathode chamber, the cation exchange nonwoven fabric produced in Production Example 1 and regenerated with hydrochloric acid and the anion exchange nonwoven fabric produced in Production Example 2 and regenerated with alkali are shown in FIG. As shown, 25 sheets were alternately stacked and filled in a direction intersecting with the flow direction of the water to be treated (that is, horizontally). In the anode chamber, 50 cation exchange nonwoven fabrics produced in Production Example 1 were stacked and filled in a direction crossing the water flow direction (horizontal placement) as shown in FIG.

両電極間に0.4Aの直流電流を印加して、0.2MΩcmのRO処理水(逆浸透膜処理水:シリカ濃度0.1〜0.3ppm、水温14℃〜26℃、TOC濃度120ppb、炭酸濃度6.5ppm、カルシウム濃度208ppb)を、流量20Lh-1(SV=400h-1)で脱塩室に通水し、濃縮室については0.2MΩcmのRO処理水を12Lh-1で通水し、陽極室及び濃縮室兼陰極室には、それぞれ0.2MΩcmのRO処理水を8Lh-1で通水した。その結果、運転1分後に脱塩水として18.2MΩcmの水が脱塩室より得られた。30時間後の運転電圧は33.4Vであった。また、この時点での濃縮室兼陰極室及び陽極室の両端にかかる電圧は、それぞれ6.71V、1.71Vであった。引き続いて2000時間の連続運転を行い、運転電圧及び陽極室及び濃縮室兼陰極室の両端にかかる電圧の経時変化を測定した。結果を図18に示す。陽極室及び濃縮室兼陰極室の両端にかかる電圧は運転開始当初より安定して低い値を示しており、2000時間運転後において、運転電圧は73.9V、濃縮室兼陰極室及び陽極室の両端にかかる電圧は、それぞれ9.84V及び1.78Vであった。 A 0.4 A direct current was applied between both electrodes, and 0.2 MΩcm RO-treated water (reverse osmosis membrane treated water: silica concentration 0.1 to 0.3 ppm, water temperature 14 ° C. to 26 ° C., TOC concentration 120 ppb, Carbonate concentration 6.5ppm, calcium concentration 208ppb) was passed through the desalting chamber at a flow rate of 20Lh- 1 (SV = 400h- 1 ), and 0.2MΩcm RO treated water was passed through the concentration chamber at 12Lh- 1. Then, RO treated water of 0.2 MΩcm was passed through the anode chamber and the concentration chamber / cathode chamber at 8 Lh −1 , respectively. As a result, after 1 minute of operation, 18.2 MΩcm water was obtained from the desalting chamber as desalted water. The operating voltage after 30 hours was 33.4V. At this time, the voltages applied to both ends of the concentration chamber / cathode chamber and the anode chamber were 6.71 V and 1.71 V, respectively. Subsequently, continuous operation was performed for 2000 hours, and changes with time in the operating voltage and the voltage applied to both ends of the anode chamber and the concentration chamber / cathode chamber were measured. The results are shown in FIG. The voltage applied to both ends of the anode chamber and the concentration chamber / cathode chamber is stable and low from the beginning of the operation. After 2000 hours of operation, the operation voltage is 73.9 V, the concentration chamber / cathode chamber and the anode chamber are The voltages applied to both ends were 9.84V and 1.78V, respectively.

産業上の利用の可能性Industrial applicability

本発明によれば、脱塩室内において、イオン交換繊維材料を液通方向に対して交差する方向に横置きに積層して充填するという新規の脱塩室構造をとることで、従来の電気式脱塩装置に比べはるかに小型の装置によって、高純度(高比抵抗および低TOC)の純水を安定して得ることができる。また、装置を小型化することができるので、繊維材料のみを脱塩室に充填することによる圧力損失の問題もさほど大きくはならない。更に、濃縮室、及び更に極室においても、脱塩室と同様の構造を採用することにより、炭酸カルシウムの析出に起因する運転電圧の上昇の問題を抑制することが可能になる。   According to the present invention, in the desalting chamber, a conventional desalting chamber structure in which the ion exchange fiber material is horizontally stacked and filled in a direction crossing the liquid flow direction is used. Pure water with high purity (high specific resistance and low TOC) can be stably obtained by an apparatus much smaller than a desalting apparatus. Moreover, since the apparatus can be miniaturized, the problem of pressure loss due to filling only the fiber material into the desalting chamber is not so great. Further, in the concentrating chamber and further in the polar chamber, it is possible to suppress the problem of increase in operating voltage due to the precipitation of calcium carbonate by adopting the same structure as the desalting chamber.

図1は、電気式脱塩装置の原理を示す概念図である。FIG. 1 is a conceptual diagram showing the principle of an electric desalination apparatus. 図2は、本発明の一態様に係る電気式脱塩装置の構成を示す概念図である。FIG. 2 is a conceptual diagram illustrating a configuration of an electrical desalination apparatus according to one embodiment of the present invention. 図3は、本発明の他の態様に係る電気式脱塩装置の構成を示す概念図である。FIG. 3 is a conceptual diagram showing a configuration of an electrical desalination apparatus according to another aspect of the present invention. 図4は、本発明の他の態様に係る電気式脱塩装置の脱塩室の構成を示す概念図である。FIG. 4 is a conceptual diagram showing a configuration of a desalting chamber of an electric desalination apparatus according to another aspect of the present invention. 図5は、本発明の他の態様に係る電気式脱塩装置の脱塩室の構成を示す概念図である。FIG. 5 is a conceptual diagram showing a configuration of a desalting chamber of an electric desalination apparatus according to another aspect of the present invention. 図6は、実施例1で用いた本発明の電気式脱塩装置の構成を示す概念図である。FIG. 6 is a conceptual diagram showing the configuration of the electric desalting apparatus of the present invention used in Example 1. 図7は、実施例1の通水実験結果を示すグラフである。FIG. 7 is a graph showing the water flow experiment results of Example 1. 図8は、比較例1で用いた従来技術の電気式脱塩装置の構成を示す概念図である。FIG. 8 is a conceptual diagram showing a configuration of a conventional electric desalination apparatus used in Comparative Example 1. 図9は、比較例2で用いた従来技術の電気式脱塩装置の構成を示す概念図である。FIG. 9 is a conceptual diagram showing a configuration of a conventional electric desalination apparatus used in Comparative Example 2. 図10は、実施例2で用いた本発明の第2の態様にかかる電気式脱塩装置の構成を示す概念図である。FIG. 10 is a conceptual diagram showing the configuration of the electrical desalting apparatus according to the second aspect of the present invention used in Example 2. 図11は、比較例3で用いた電気式脱塩装置の構成を示す概念図である。FIG. 11 is a conceptual diagram showing the configuration of the electrical desalting apparatus used in Comparative Example 3. 図12は、実施例2の運転実験結果を示すグラフである。FIG. 12 is a graph showing the results of the operation experiment of Example 2. 図13は、比較例3の運転実験結果を示すグラフである。FIG. 13 is a graph showing the results of an operation experiment of Comparative Example 3. 図14は、実施例3で用いた本発明の第3の態様にかかる電気式脱塩装置の構成を示す概念図である。FIG. 14 is a conceptual diagram showing the configuration of the electrical desalting apparatus according to the third aspect of the present invention used in Example 3. 図15は、実施例4で用いた本発明の第3の態様にかかる電気式脱塩装置の構成を示す概念図である。FIG. 15 is a conceptual diagram showing the configuration of the electrical desalting apparatus according to the third aspect of the present invention used in Example 4. 図16は、実施例3の運転実験結果を示すグラフである。FIG. 16 is a graph showing the results of an operation experiment of Example 3. 図17は、実施例2の運転実験における両極室の両端にかかる電圧の経時変化を示すグラフである。FIG. 17 is a graph showing the change with time of the voltage applied to both ends of the bipolar chamber in the operation experiment of Example 2. 図18は、実施例4の運転実験結果を示すグラフである。FIG. 18 is a graph showing the results of the driving experiment of Example 4.

Claims (1)

陰極と陽極の間に、複数のイオン交換膜で仕切られた脱塩室及び濃縮室及び電極室を有する電気式脱塩装置であって、脱塩室及び濃縮室及び電極室の少なくとも一つの室において、アニオン交換繊維材料の層及びカチオン交換繊維材料の層の少なくとも一方が、通水方向に交差して積層配置されていることを特徴とする電気式脱塩装置。   An electrical desalination apparatus having a desalting chamber, a concentrating chamber, and an electrode chamber partitioned between a cathode and an anode by a plurality of ion exchange membranes, wherein the desalting chamber, the concentrating chamber, and the electrode chamber are at least one chamber In addition, at least one of the layer of anion exchange fiber material and the layer of cation exchange fiber material is laminated | stacked and arrange | positioned so that a water flow direction may cross | intersect.
JP2007336391A 2002-12-27 2007-12-27 Electric demineralizer Pending JP2008132492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336391A JP2008132492A (en) 2002-12-27 2007-12-27 Electric demineralizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002381262 2002-12-27
JP2007336391A JP2008132492A (en) 2002-12-27 2007-12-27 Electric demineralizer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004564561A Division JP4454502B2 (en) 2002-12-27 2003-12-26 Electric desalination equipment

Publications (1)

Publication Number Publication Date
JP2008132492A true JP2008132492A (en) 2008-06-12

Family

ID=39557703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336391A Pending JP2008132492A (en) 2002-12-27 2007-12-27 Electric demineralizer

Country Status (1)

Country Link
JP (1) JP2008132492A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226315A (en) * 2008-03-24 2009-10-08 Japan Organo Co Ltd Electric deionized water manufacturing device and manufacturing method of deionized water
JP2011000575A (en) * 2009-06-22 2011-01-06 Japan Organo Co Ltd Apparatus and method for electrically making deionized water
JP2013039510A (en) * 2011-08-12 2013-02-28 Japan Organo Co Ltd Electric deionized water production apparatus
JP2014087748A (en) * 2012-10-30 2014-05-15 Mitsui Eng & Shipbuild Co Ltd Inter-liquid ion transfer method and inter-liquid ion transfer device
JP2019115892A (en) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc removal device and toc removal method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471624A (en) * 1990-07-10 1992-03-06 Japan Organo Co Ltd Electrical deionized water producing device and frame used therefor
JP2001205270A (en) * 2000-01-27 2001-07-31 Ebara Corp Electric regeneration type desalting apparatus
JP2002205071A (en) * 2001-01-10 2002-07-23 Japan Organo Co Ltd Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP2002301478A (en) * 2001-04-03 2002-10-15 Ebara Corp Electric regeneration type desalting apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471624A (en) * 1990-07-10 1992-03-06 Japan Organo Co Ltd Electrical deionized water producing device and frame used therefor
JP2001205270A (en) * 2000-01-27 2001-07-31 Ebara Corp Electric regeneration type desalting apparatus
JP2002205071A (en) * 2001-01-10 2002-07-23 Japan Organo Co Ltd Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP2002301478A (en) * 2001-04-03 2002-10-15 Ebara Corp Electric regeneration type desalting apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226315A (en) * 2008-03-24 2009-10-08 Japan Organo Co Ltd Electric deionized water manufacturing device and manufacturing method of deionized water
JP2011000575A (en) * 2009-06-22 2011-01-06 Japan Organo Co Ltd Apparatus and method for electrically making deionized water
JP2013039510A (en) * 2011-08-12 2013-02-28 Japan Organo Co Ltd Electric deionized water production apparatus
JP2014087748A (en) * 2012-10-30 2014-05-15 Mitsui Eng & Shipbuild Co Ltd Inter-liquid ion transfer method and inter-liquid ion transfer device
JP2019115892A (en) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc removal device and toc removal method
JP7040008B2 (en) 2017-12-27 2022-03-23 栗田工業株式会社 TOC removal device

Similar Documents

Publication Publication Date Title
JP4454502B2 (en) Electric desalination equipment
JP4343105B2 (en) Electric desalination equipment
JP3773190B2 (en) Electric deionized water production equipment
JP4065664B2 (en) Electric desalination equipment
JP4303242B2 (en) Electric desalination module and apparatus equipped with the module
JP7224994B2 (en) Electrodeionized water production device and deionized water production method
JP2008132492A (en) Electric demineralizer
JP2003190820A (en) Electric demineralizing apparatus
JP2002001345A (en) Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor
KR100454093B1 (en) Ion exchange textile for electrodeionization process
JP3727585B2 (en) Electric desalination equipment
JPH05131120A (en) Electric regeneration type desalting apparatus
TWI388511B (en) Electric desalting device
JP2006026488A (en) Electric desalter
JP4291156B2 (en) Electric desalination equipment
JP6962774B2 (en) Electric deionized water production equipment
JP3727586B2 (en) Electric desalination equipment
JP2003190821A (en) Electric demineralizing apparatus
JP7077172B2 (en) Electric deionized water production equipment
JP2003190960A (en) Electric demineralizer
JP2003190963A (en) Ion exchanger and electric demineralizer
JP2002136971A (en) Electrodeionizing apparatus
JP2003190962A (en) Ion exchanger and electric demineralizer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110303