JP2014087748A - Inter-liquid ion transfer method and inter-liquid ion transfer device - Google Patents

Inter-liquid ion transfer method and inter-liquid ion transfer device Download PDF

Info

Publication number
JP2014087748A
JP2014087748A JP2012239470A JP2012239470A JP2014087748A JP 2014087748 A JP2014087748 A JP 2014087748A JP 2012239470 A JP2012239470 A JP 2012239470A JP 2012239470 A JP2012239470 A JP 2012239470A JP 2014087748 A JP2014087748 A JP 2014087748A
Authority
JP
Japan
Prior art keywords
stock solution
channel
liquid
ion
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012239470A
Other languages
Japanese (ja)
Inventor
Osamu Hamamoto
修 濱本
Kimiaki Sugiura
公昭 杉浦
Hiroshi Seno
比呂司 瀬野
Yoko Miyazaki
陽子 宮崎
Yoshinori Hisayoshi
良則 久芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2012239470A priority Critical patent/JP2014087748A/en
Publication of JP2014087748A publication Critical patent/JP2014087748A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inter-liquid ion transfer method and an inter-liquid ion transfer device, excellent in applicability to a treatment process, and also excellent in removal/recovery efficiency of an ion, by enabling continuous treatment, by stabilizing the treatment, when an undiluted solution is an emulsion, a suspension liquid or a high viscosity liquid.SOLUTION: In the inter-liquid ion transfer method and the inter-liquid ion transfer device, when electrically transferring the ion via a diaphragm to an ion receiving liquid circulating in an ion receiving liquid flow passage from the undiluted solution circulating in an undiluted solution flow passage by an electric potential gradient, the undiluted solution is the emulsion and/or the suspension liquid including a particle of a diameter of 100 μm or more or having viscosity of 100 cp or more, and a flow passage width of the undiluted solution flow passage falls within a range of 1.5 mm-20 mm, and linear velocity of the undiluted solution circulating in the undiluted solution flow passage falls within a range of 10 mm/sec or less, or a staying time in the undiluted solution flow passage of the undiluted solution falls within a range of 10 minutes - several days.

Description

本発明は、液間イオン移送方法及び液間イオン移送装置に関し、より詳しくは、スラリー又は高粘性液である原液中に含まれるイオンをイオン受容液中へと移送する液間イオン移送方法及び液間イオン移送装置に関する。   TECHNICAL FIELD The present invention relates to a liquid ion transfer method and a liquid ion transfer device, and more specifically, a liquid ion transfer method and liquid for transferring ions contained in a stock solution that is a slurry or a highly viscous liquid into an ion receiving liquid. The present invention relates to an interion ion transfer device.

環境汚染の防止や省資源等の観点から、廃棄物を再利用することが試みられている。   Attempts have been made to reuse waste from the viewpoint of preventing environmental pollution and saving resources.

高含水率の流動性廃棄物は、従来、処理が困難なものとされており、これを再利用するためには、例えば、塩濃度の低減など、電荷を持つ物質の分離操作が重要な工程の一つとなることがある。   Conventionally, fluid waste with a high water content has been considered difficult to process, and in order to reuse it, for example, a process in which separation of charged substances such as reduction of salt concentration is important. May be one of the following.

現在、十分に流動性のある清澄な液体に対する塩類の除去は、逆浸透法や電気透析法が一般的な手法として用いられており、例えば、海水の淡水化や、半導体製造などに使われるイオン交換水や超純水の製造などに利用されている(特許文献1)。   Currently, reverse osmosis and electrodialysis methods are commonly used to remove salts from clear fluids with sufficient fluidity. For example, ions used in seawater desalination and semiconductor manufacturing It is used for the production of exchange water or ultrapure water (Patent Document 1).

また、従来の電気透析槽では、原液が流通する槽内の流路の幅(イオン交換膜と垂直方向における流路の幅)が、例えば2mm以下に設定され(特許文献2〜4)、これにより原液を乱流とすることにより物質移動性を高め、同時に電流効率の向上を図っていた。   In the conventional electrodialysis tank, the width of the flow path in the tank through which the stock solution flows (the width of the flow path in the direction perpendicular to the ion exchange membrane) is set to 2 mm or less, for example (Patent Documents 2 to 4). By making the stock solution turbulent, the mass mobility was improved and at the same time the current efficiency was improved.

特開平09−239245号公報JP 09-239245 A 特開昭58−112006号公報JP 58-112006 A 特開平2−290227号公報JP-A-2-290227 特開2003−24947号公報JP 2003-24947 A

本発明者は、例えば生ごみや家畜糞尿などのように、懸濁物や乳濁物を含む清澄でない液体や、固形分がなくても比較的粘度の大きい液体スラリー状の廃棄物を有効利用することについて研究し、これら原液中に高濃度で含まれる塩類(陽イオン及び又は陰イオン)が、有効利用の妨げになっていることに着目し、これを除去することを試みた。   The present inventor makes effective use of unclear liquids including suspensions and emulsions such as garbage and livestock manure, and liquid slurry-like wastes with relatively high viscosity even without solids. Researching what to do, we focused on the fact that salts (cations and / or anions) contained in these stock solutions at high concentrations hindered effective use, and tried to remove them.

しかし、従来の逆浸透法や電気透析法は、このような原液に対しては、処理が不安定となり、イオンの除去効率が十分に得られ難い問題があり、更に、高価な透析膜あるいはイオン交換膜が損傷し易いため高コストとなる問題があった。   However, the conventional reverse osmosis method and electrodialysis method have a problem that such a stock solution becomes unstable and it is difficult to obtain sufficient ion removal efficiency. Since the exchange membrane is easily damaged, there is a problem of high cost.

このような原液に対して、フィルタプレス型の電気透析槽によって、手間をかけてバッチ式でイオン除去を行うことも考えられるが、連続処理ができず、処理プロセスへの適用性に劣る問題がある。   For such stock solutions, it may be possible to remove ions in a batch process by using a filter press type electrodialysis tank, but continuous processing is not possible, and there is a problem inferior in applicability to the processing process. is there.

また、イオン交換樹脂によってイオンを吸着除去することも考えられるが、吸着後の樹脂の再生処理コストが問題となる。   In addition, it is conceivable that ions are removed by adsorption with an ion exchange resin, but the cost of regeneration treatment of the resin after adsorption becomes a problem.

そこで、本発明の課題は、原液が乳濁液、懸濁液あるいは高粘性液の場合において、処理が安定し、連続処理が可能であることにより処理プロセスへの適用性に優れ、更にイオンの除去/回収効率に優れる液間イオン移送方法及び液間イオン移送装置を提供することにある。   Therefore, the problem of the present invention is that when the stock solution is an emulsion, suspension or high-viscosity liquid, the treatment is stable and the continuous treatment is possible, so that the applicability to the treatment process is excellent, and further, An object of the present invention is to provide a liquid ion transfer method and liquid ion transfer apparatus that are excellent in removal / recovery efficiency.

また本発明の他の課題は、以下の記載によって明らかとなる。   Other problems of the present invention will become apparent from the following description.

上記課題は、以下の各発明によって解決される。   The above problems are solved by the following inventions.

1.
陽極及び陰極からなる1対の電極間に、除去対象となるイオンを含む原液が流通する原液流路と、該原液から除去された該イオンを受容するイオン受容液が流通する受容液流路とが、少なくとも該イオンが通過可能な隔膜を介して並設されており、
前記1対の電極間に設けられた電位勾配によって、前記原液流路を流通する前記原液から前記イオン受容液流路を流通する前記イオン受容液へと前記隔膜を介して前記イオンを電気的に移送する液間イオン移送方法であって、
前記原液は、直径100μm以上の粒子を含有しているか、あるいは粘度が100cp以上の乳濁液及び又は懸濁液であり、
前記原液流路の流路幅が1.5mm以上20mm以下の範囲であり、且つ該原液流路を流通する前記原液の線速が10mm/秒以下の範囲であるか、又は前記原液の前記原液流路における滞留時間が10分以上数日以下の範囲であることを特徴とする液間イオン移送方法。
1.
A stock solution channel through which a stock solution containing ions to be removed flows between a pair of electrodes consisting of an anode and a cathode, and a receiving solution channel through which an ion receiving solution that accepts the ions removed from the stock solution flows Are arranged side by side through a diaphragm through which at least the ions can pass,
Due to the potential gradient provided between the pair of electrodes, the ions are electrically passed through the diaphragm from the stock solution flowing through the stock solution channel to the ion receiving solution flowing through the ion acceptor channel. A method of transferring ions between liquids,
The stock solution is an emulsion and / or suspension containing particles having a diameter of 100 μm or more, or having a viscosity of 100 cp or more,
The flow path width of the stock solution channel is in the range of 1.5 mm or more and 20 mm or less, and the linear velocity of the stock solution flowing through the stock solution channel is in the range of 10 mm / second or less, or the stock solution of the stock solution A method for transferring ions between liquids, wherein the residence time in the channel is in the range of 10 minutes to several days.

2.
陽極及び陰極からなる1対の電極間に、除去対象となるイオンを含む原液が流通する原液流路と、該原液から除去された該イオンを受容するイオン受容液が流通する受容液流路とが、少なくとも該イオンが通過可能な隔膜を介して並設されており、
前記1対の電極間に設けられた電位勾配によって、前記原液流路を流通する前記原液から前記イオン受容液流路を流通する前記イオン受容液へと前記隔膜を介して前記イオンを電気的に移送するように構成された液間イオン移送装置であって、
前記原液は、直径100μm以上の粒子を含有しているか、あるいは粘度が100cp以上の乳濁液及び又は懸濁液であり、
前記原液流路の流路幅が1.5mm以上20mm以下の範囲であり、且つ該原液流路を流通する前記原液の線速が10mm/秒以下の範囲であるか、又は前記原液の前記原液流路における滞留時間が10分以上数日以下の範囲であることを特徴とする液間イオン移送装置。
2.
A stock solution channel through which a stock solution containing ions to be removed flows between a pair of electrodes consisting of an anode and a cathode, and a receiving solution channel through which an ion receiving solution that accepts the ions removed from the stock solution flows Are arranged side by side through a diaphragm through which at least the ions can pass,
Due to the potential gradient provided between the pair of electrodes, the ions are electrically passed through the diaphragm from the stock solution flowing through the stock solution channel to the ion receiving solution flowing through the ion acceptor channel. A liquid ion transfer device configured to transfer,
The stock solution is an emulsion and / or suspension containing particles having a diameter of 100 μm or more, or having a viscosity of 100 cp or more,
The flow path width of the stock solution channel is in the range of 1.5 mm or more and 20 mm or less, and the linear velocity of the stock solution flowing through the stock solution channel is in the range of 10 mm / second or less, or the stock solution of the stock solution A liquid ion transfer device characterized in that the residence time in the flow channel is in the range of 10 minutes to several days.

本発明によれば、原液が乳濁液、懸濁液あるいは高粘性液の場合において、処理が安定し、連続処理が可能であることにより処理プロセスへの適用性に優れ、更にイオンの除去/回収効率に優れる液間イオン移送方法及び液間イオン移送装置を提供することができる。   According to the present invention, when the stock solution is an emulsion, suspension or high-viscosity liquid, the treatment is stable and the continuous treatment is possible, so that it is excellent in applicability to the treatment process, and further the ion removal / It is possible to provide a liquid ion transfer method and liquid ion transfer apparatus that are excellent in recovery efficiency.

本発明に係る液間イオン移送装置の一例を示す要部断面図Sectional drawing of the principal part which shows an example of the liquid ion transfer apparatus which concerns on this invention 本発明に係る液間イオン移送装置の他の例を示す断面図Sectional drawing which shows the other example of the liquid ion transfer apparatus which concerns on this invention. 本発明に係る液間イオン移送装置の他の例を示す断面図Sectional drawing which shows the other example of the liquid ion transfer apparatus which concerns on this invention. 焼酎粕濃縮液の性状を説明する図Diagram explaining properties of shochu concentrate

以下に、図面を参照して本発明を実施するための形態について説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明に係る液間イオン移送装置の一例を示す要部断面図である。   FIG. 1 is a cross-sectional view of an essential part showing an example of a liquid ion transfer apparatus according to the present invention.

図1において、1は、液間イオン移送装置であり、液間イオン移送装置本体10内において、陽極C及び陰極Aからなる1対の電極C、A間に、原液が流通する原液流路11と、陽イオン受容液が流通する陽イオン受容液流路12Cと、陰イオン受容液が流通する陰イオン受容液流路12Aとを備えている。   In FIG. 1, reference numeral 1 denotes a liquid ion transfer device. In a liquid ion transfer device main body 10, a stock solution channel 11 through which a stock solution flows between a pair of electrodes C and A composed of an anode C and a cathode A. And a cation receiving liquid channel 12C through which the cation receiving liquid flows, and an anion receiving liquid channel 12A through which the anion receiving liquid flows.

本発明において、原液は、直径100μm以上の粒子を含有しているか、あるいは粘度が100cp以上の乳濁液及び又は懸濁液であり、ここでは、除去対象となるイオンとして、陽イオン及び陰イオンを含んでいる。   In the present invention, the stock solution is an emulsion or suspension containing particles having a diameter of 100 μm or more, or having a viscosity of 100 cp or more. Here, as ions to be removed, cations and anions Is included.

陽イオン受容液は、原液から除去された陽イオンを受容するための液であり、また、陰イオン受容液は、原液から除去された陰イオンを受容するための液である。   The cation receiving liquid is a liquid for receiving a cation removed from the stock solution, and the anion receiving liquid is a liquid for receiving an anion removed from the stock solution.

111は、原液を原液流路11に流入する流入口であり、112は、原液流路11から原液を流出する流出口である。   111 is an inflow port through which the stock solution flows into the stock solution channel 11, and 112 is an outflow port through which the stock solution flows out from the stock solution channel 11.

原液タンク21に貯留された原液は、定量ポンプ31によって所定の流量で流入口111から原液流路11に導入され、該原液流路11を流通した後、流出口112から流出され、処理後の原液(処理液)として処理液タンク23に移送される。   The stock solution stored in the stock solution tank 21 is introduced into the stock solution channel 11 from the inlet 111 at a predetermined flow rate by the metering pump 31, flows through the stock solution channel 11, flows out from the outlet 112, and is processed. It is transferred to the processing liquid tank 23 as a stock solution (processing liquid).

また、121Cは、陽イオン受容液を陽イオン受容液流路12Cに流入する流入口であり、122Cは、陽イオン受容液流路12Cから陽イオン受容液を流出する流出口である。   Further, 121C is an inflow port for flowing the cation accepting liquid into the cation accepting liquid channel 12C, and 122C is an outflow port for flowing out the cation accepting liquid from the cation receiving solution channel 12C.

陽イオン受容液は、循環タンク22Cから定量ポンプ32Cによって所定の流量で流入口121Cから陽イオン受容液流路12Cに導入され、該陽イオン受容液流路12Cを流通した後、流出口122Cから流出され、再び循環タンク22Cに返送される。   The cation receiving liquid is introduced from the circulation tank 22C to the cation receiving liquid channel 12C from the inlet 121C at a predetermined flow rate by the metering pump 32C, and after flowing through the cation receiving liquid channel 12C, from the outlet 122C. It flows out and is returned to the circulation tank 22C again.

一方、121Aは、陰イオン受容液を陰イオン受容液流路12Aに流入する流入口であり、122Aは、陰イオン受容液流路12Aから陰イオン受容液を流出する流出口である。   On the other hand, 121A is an inflow port through which the anion receptor liquid flows into the anion receptor liquid channel 12A, and 122A is an outflow port through which the anion receptor liquid flows out of the anion receptor liquid channel 12A.

陰イオン受容液は、循環タンク22Aから定量ポンプ32Aによって所定の流量で流入口121Aから陽イオン受容液流路12Aに導入され、該陽イオン受容液流路12Aを流通した後、流出口122Aから流出され、再び循環タンク22Aに返送される。   The anion accepting liquid is introduced from the circulation tank 22A to the cation accepting liquid flow path 12A from the inlet 121A at a predetermined flow rate by the metering pump 32A, and after flowing through the cation receiving liquid flow path 12A, from the outlet 122A. It flows out and is returned to the circulation tank 22A again.

原液流路11、陽イオン受容液流路12C及び陰イオン受容液流路12Aは、少なくとも除去対象となるイオンが通過可能な隔膜13A、13Cを介して並設されている。   The undiluted solution channel 11, the cation receiving solution channel 12C, and the anion receiving solution channel 12A are arranged in parallel via at least diaphragms 13A and 13C through which ions to be removed can pass.

つまり、原液流路11の陽極C側に、少なくとも陰イオンが通過可能な隔膜13Aを介して、陰イオン受容液流路12Aが並設され、一方、原液流路11の陰極A側に、少なくとも陽イオンCが通過可能な隔膜13Cを介して、陽イオン受容液流路12Cが並設されている。   That is, an anion receiving liquid channel 12A is arranged in parallel on the anode C side of the stock solution channel 11 via a diaphragm 13A through which at least anions can pass, while at least on the cathode A side of the stock solution channel 11 A cation receiving liquid channel 12C is arranged in parallel through a diaphragm 13C through which the cation C can pass.

このように、本発明において、隔膜13A、13Cは、少なくとも除去対象となるイオン(陰イオンあるいは陽イオン)が通過可能な膜であれば格別限定されない。例えば、イオン交換膜、透析膜のようなイオン選択透過性を有する膜を用いてもよいが、微多孔膜をより好ましく用いることができる。本発明においては、隔膜13Aと隔膜13Cとで、同じ膜を用いることも好ましいことである。   Thus, in the present invention, the diaphragms 13A and 13C are not particularly limited as long as at least ions (anions or cations) to be removed can pass therethrough. For example, a membrane having ion selective permeability such as an ion exchange membrane or a dialysis membrane may be used, but a microporous membrane can be more preferably used. In the present invention, it is also preferable to use the same membrane for the diaphragm 13A and the diaphragm 13C.

本発明において、微多孔膜としては、MF膜、UF膜又はNF膜等のようなイオン選択透過性を有さない膜を好ましく用いることができる。   In the present invention, as the microporous membrane, a membrane having no ion selective permeability such as an MF membrane, a UF membrane, or an NF membrane can be preferably used.

本発明において、原液流路11の流路幅Wは1.5mm以上であり、好ましくは2.1mm以上である。流路幅Wとは、隔膜13A、13Cの膜面と垂直方向における原液流路11の幅である。   In the present invention, the flow path width W of the stock solution flow path 11 is 1.5 mm or more, preferably 2.1 mm or more. The channel width W is the width of the stock solution channel 11 in the direction perpendicular to the membrane surfaces of the diaphragms 13A and 13C.

このように構成されたイオン除去装置1において、定量ポンプ31、32C、32Aを駆動すると共に、1対の電極C、A間に電位勾配を設けた状態で、原液流路11に形成された原液による液流を、隔膜13A、13Cを介して、受容液流路12A、12Cに形成されたイオン受容液による液流と平行に接触させる。   In the ion removing apparatus 1 configured as described above, the stock solution formed in the stock solution channel 11 in a state where the metering pumps 31, 32C, 32A are driven and a potential gradient is provided between the pair of electrodes C, A. The liquid flow is caused to contact in parallel with the liquid flow caused by the ion receiving liquid formed in the receiving liquid flow paths 12A and 12C through the diaphragms 13A and 13C.

その際、本発明では、原液流路11を流通する原液の線速が10mm/秒以下の範囲であるか、又は原液の原液流路11における滞留時間が10分以上数日以下の範囲となるように調整される。この調整は、定量ポンプ31の設定によって行うことができる。   At this time, in the present invention, the linear velocity of the stock solution flowing through the stock solution channel 11 is in the range of 10 mm / second or less, or the residence time of the stock solution in the stock solution channel 11 is in the range of 10 minutes to several days. To be adjusted. This adjustment can be performed by setting the metering pump 31.

原液流路11を流通する原液中のイオンは、電位勾配下において、電気的な泳動によって、隔膜13を介して原液からイオン受容液へと移動する。具体的には、原液中の陽イオンは、陰極A側に設けられた陽イオン受容液流路12Cを流通する陽イオン受容液中に移動し、一方、原液中の陰イオンは、陽極C側に設けられた陰イオン受容液流路12Aを流通する陰イオン受容液中に移動する。   Ions in the undiluted solution flowing through the undiluted solution channel 11 move from the undiluted solution to the ion receiving solution via the diaphragm 13 by electrophoretic migration under a potential gradient. Specifically, the cation in the stock solution moves into the cation acceptor flowing through the cation acceptor flow channel 12C provided on the cathode A side, while the anion in the stock solution is on the anode C side. It moves into the anion receptor liquid flowing through the anion receptor liquid channel 12A.

このようにして、原液中からのイオンの除去、及び、イオン受容液によるイオンの回収を可能にしている。   In this way, it is possible to remove ions from the stock solution and collect ions with the ion acceptor solution.

従来技術では、原液が流通する槽内の流路の幅が、例えば2mm以下に設定され、これにより原液を乱流とすることにより物質移動性を高め、同時に電流効率の向上を図っていたことは上述した。   In the prior art, the width of the flow path in the tank through which the stock solution circulates is set to 2 mm or less, for example, thereby increasing the material mobility by making the stock solution turbulent and at the same time improving the current efficiency. Was described above.

これに対して、本発明においては、原液が、直径100μm以上の粒子を含有しているか、あるいは粘度が100cp以上の乳濁液及び又は懸濁液である場合においては、逆に、原液流路11の流路幅Wを1.5mm以上200mm以下の範囲に設定し、且つ原液流路11を流通する原液の線速が10mm/秒以下の範囲であるか、又は原液の原液流路11における滞留時間が10分以上数日以下の範囲という低速(緩流)に調整することにより、従来法よりも処理が安定し、連続処理が可能であることにより処理プロセスへの適用性に優れ、更にイオンの除去効率に優れる効果が得られることを見出した。   On the other hand, in the present invention, when the stock solution contains particles having a diameter of 100 μm or more, or is an emulsion or suspension having a viscosity of 100 cp or more, the stock solution flow path is reversed. 11 is set in a range of 1.5 mm or more and 200 mm or less, and the linear velocity of the stock solution flowing through the stock solution channel 11 is in a range of 10 mm / second or less, or in the stock solution channel 11 of the stock solution By adjusting the residence time to a low speed (slow flow) in the range of 10 minutes or more and several days or less, the treatment is more stable than the conventional method, and continuous treatment is possible. It has been found that an effect of excellent ion removal efficiency can be obtained.

本発明において、イオン移送処理時における原液の原液流路11における滞留時間は、上述したように、数日に亘るものとすることが好ましいが、例えば20分以上10時間以下の範囲に調整されることがより好ましい。これにより、電極間に印加する電圧を低下させても、イオンの除去効率を保持することが可能となる効果が得られる。   In the present invention, the residence time of the undiluted solution in the undiluted solution channel 11 during the ion transfer treatment is preferably several days as described above, but is adjusted to a range of 20 minutes to 10 hours, for example. It is more preferable. As a result, even if the voltage applied between the electrodes is reduced, an effect of maintaining the ion removal efficiency can be obtained.

本発明においては、例えば処理量を増加する観点で、図2に示すように、1対の電極C、Aを複数対設けて、各1対の電極C、A間に、図1と同様に、隔膜13A、13Cを介して、原液流路11と、陰イオン受容液流路12A、陽イオン受容液流路12Cとを並設することも好ましい。   In the present invention, for example, from the viewpoint of increasing the throughput, as shown in FIG. 2, a plurality of pairs of electrodes C and A are provided, and between each pair of electrodes C and A, as in FIG. It is also preferable to arrange the stock solution channel 11, the anion receptor fluid channel 12A, and the cation receptor fluid channel 12C in parallel through the diaphragms 13A and 13C.

このとき、互いに隣接する陽極C及び陰極Aは、図2に示すように、それぞれ複極仕切板Bの各板面によって形成することが好ましい。   At this time, the anode C and the cathode A adjacent to each other are preferably formed by the plate surfaces of the bipolar partition plate B as shown in FIG.

また、本発明に係る液間イオン移送装置においては、図3に示すように、一対の電極C、A間に、隔膜13A、13Cを介して原液流路11と受容液流路12とを交互に複数積層することも好ましいことである。   Moreover, in the liquid ion transfer apparatus according to the present invention, as shown in FIG. 3, the stock solution channel 11 and the receiving solution channel 12 are alternately arranged between the pair of electrodes C and A via the diaphragms 13A and 13C. It is also preferable to stack a plurality of layers.

図3に示すように、液間イオン移送装置1において、1つの受容液流路12を流通する受容液は、両側に配された原液流路11、11を流通する原液から陽イオン及び陰イオンをそれぞれ受容するため、陰イオン受容液と陽イオン受容液とを兼ねている。   As shown in FIG. 3, in the inter-liquid ion transfer device 1, the receiving liquid flowing through one receiving liquid channel 12 is a cation and an anion from the raw solution flowing through the raw liquid channels 11, 11 arranged on both sides. In order to receive each, it serves as both an anion receptor liquid and a cation receptor liquid.

図3の態様においては、原液流路11の陽極C側の隔膜13Aを陰イオン交換膜とし、陰極A側の隔膜13Cを陽イオン交換膜とすることによって、当該原液流路11から隣接する受容液流路12に除去されたイオンが、他の原液流路11まで移動(図中破線矢印で示したイオン移動)してしまうことを、隔膜13A、13Cのイオン選択透過性により防止できる。   In the embodiment of FIG. 3, the membrane 13A on the anode C side of the stock solution channel 11 is an anion exchange membrane, and the membrane 13C on the cathode A side is a cation exchange membrane, so that the adjoining from the stock solution channel 11 is received. It is possible to prevent ions removed to the liquid flow path 12 from moving to other stock solution flow paths 11 (ion movement indicated by broken line arrows in the figure) by the ion selective permeability of the diaphragms 13A and 13C.

しかし、このようにイオン交換膜を用いなくても、本発明においては、原液が、上述した乳濁液、懸濁液であり、原液流路11の流路幅Wを1.5mm以上200mm以下の範囲に設定し、且つ原液流路11を流通する原液の線速が10mm/秒以下の範囲であるか、又は原液の原液流路11における滞留時間が10分以上数日以下の範囲に調整されることにより、図中破線矢印で示したイオン移動を好適に防止することができる効果が得られる。   However, even if an ion exchange membrane is not used in this way, in the present invention, the stock solution is the above-described emulsion or suspension, and the flow passage width W of the stock solution passage 11 is 1.5 mm or more and 200 mm or less. And the linear velocity of the stock solution flowing through the stock solution channel 11 is in the range of 10 mm / second or less, or the residence time of the stock solution in the stock solution channel 11 is adjusted in the range of 10 minutes to several days. As a result, the effect of suitably preventing the ion movement indicated by the broken-line arrow in the figure can be obtained.

従って、図3の態様においても、隔膜13A、13Cとして、MF膜、UF膜、NF膜のようなイオン選択透過性を有さない膜を好適に用いることができ、また、隔膜13Aと隔膜13Cとで、同じ膜を好ましく用いることができる。   Therefore, also in the embodiment of FIG. 3, as the diaphragms 13A and 13C, a film having no ion selective permeability such as an MF film, a UF film, and an NF film can be suitably used. Also, the diaphragms 13A and 13C can be used. The same film can be preferably used.

以上の説明では、1対の電極C、A間において、原液流路11の両側に、隔膜13(13A、13C)を介して受容液流路12(12A、12C)が設けられる場合について説明したが、本発明はこれに限定されるものではなく、1対の電極C、A間において、原液流路11の陽極C側又は陰極A側の何れか片側のみに、隔膜13を介して受容液流路12を並設してもよい。陽極C側のみに、隔膜13を介して受容液流路12が設けられる場合は、原液流路11から除去される陰イオンを受容液流路12で受容することができ、陰極A側のみに、隔膜13を介して受容液流路12が設けられる場合は、原液流路11から除去される陽イオンを受容液流路12で受容することができる。原液中の除去対象となるイオンが、陰イオン又は陽イオンの何れかである場合は、上記のような方法により好適に除去することができる。   In the above description, the case where the receiving liquid channel 12 (12A, 12C) is provided between the pair of electrodes C, A on both sides of the stock solution channel 11 via the diaphragm 13 (13A, 13C) has been described. However, the present invention is not limited to this, and between the pair of electrodes C and A, the receiving liquid is passed through the diaphragm 13 only on either the anode C side or the cathode A side of the stock solution flow path 11. The flow paths 12 may be provided side by side. When the receiving liquid channel 12 is provided only on the anode C side via the diaphragm 13, the anion removed from the stock solution channel 11 can be received by the receiving liquid channel 12, and only on the cathode A side. When the receiving liquid channel 12 is provided via the diaphragm 13, the cation removed from the stock solution channel 11 can be received by the receiving liquid channel 12. When the ions to be removed in the stock solution are either anions or cations, they can be suitably removed by the method as described above.

本発明に供される原液は、上述したように、直径100μm以上の粒子を含有しているか、あるいは粘度が100cp以上の乳濁液及び又は懸濁液であり、且つ除去対象となるイオンとして陽イオン及び又は陰イオンを含んでいるものであれば格別限定されない。   As described above, the stock solution used in the present invention is an emulsion or suspension containing particles having a diameter of 100 μm or more, or having a viscosity of 100 cp or more, and is positive as ions to be removed. There is no particular limitation as long as it contains ions and / or anions.

原液として、具体的には、バイオマス由来成分を含むスラリーを好ましく例示できる。   Specifically, a slurry containing a biomass-derived component can be preferably exemplified as the stock solution.

例えば、バイオマス由来成分を含むスラリーとしては、スラリー化した生ごみ(生ごみペースト)、家畜糞尿等を好ましく例示できる。   For example, as a slurry containing a biomass-derived component, slurryed food waste (food waste paste), livestock manure, etc. can be preferably exemplified.

また、バイオマス由来成分を含むスラリーをメタン発酵させた後の消化液も原液として好ましく用いることができる。   Moreover, the digestive liquid after carrying out the methane fermentation of the slurry containing a biomass origin component can also be preferably used as a stock solution.

更に、バイオマス由来成分を含むスラリーをメタン発酵に供する前の前処理としても、本発明を好ましく適用できる。   Furthermore, the present invention can be preferably applied as a pretreatment before subjecting a slurry containing biomass-derived components to methane fermentation.

例えば、豚は、給餌に際して飼料に亜鉛を添加する場合があるため、家畜糞尿が豚の糞尿を含む場合は、比較的多量の亜鉛が含まれ、農地還元等の再利用に際して環境上の問題が大きいが、本発明によれば、このような重金属イオンも好適に除去できる。   For example, since pigs sometimes add zinc to their feed during feeding, if livestock manure contains swine manure, they contain a relatively large amount of zinc, which causes environmental problems when reusing such as agricultural land returns. Although it is large, according to the present invention, such heavy metal ions can also be suitably removed.

また、本発明は、例えば、梅発酵残液等の食品加工残渣からの食塩除去や、焼酎粕濃縮液等の食品加工残渣からのカリウム塩除去にも好ましく用いることができる。もちろん、食品加工残渣に限らず、食品からの減塩等にも好適に用いることができる。   Moreover, this invention can be preferably used also for removal of the salt from food processing residues, such as a plum fermentation residual liquid, and the potassium salt removal from food processing residues, such as a shochu concentrate, for example. Of course, it can be suitably used not only for food processing residues but also for reducing salt from foods.

例えば、焼酎粕濃縮液としては、スクリュープレス等により夾雑物を除去した後の焼酎粕を、多重効用蒸発缶等により濃縮したものを好ましく例示でき、その性状は、図4に示すように、麦焼酎粕濃縮液、米焼酎粕濃縮液、黒糖焼酎粕濃縮液等ではゾル状であり、芋焼酎粕濃縮液等ではゲル状である。   For example, as the shochu concentrate, a shochu obtained after removing contaminants by a screw press or the like can be preferably exemplified by concentrating it with a multi-effect evaporator or the like. A shochu concentrate, a rice shochu concentrate, a brown sugar shochu concentrate or the like is in a sol form, and a shochu shochu concentrate or the like is in a gel form.

本発明によってイオンが除去された後の原液(処理液)は、例えばハウス栽培用の養液や、家畜用飼料として好適に用いることができる。特に、ハウス栽培用の養液として用いる場合には、ハウス内の土壌が雨に曝されないことによる蓄積塩害を防止できる効果に優れ、家畜用飼料に用いる場合には、家畜の尿管結石の原因となるカリウムを好適に除去できる効果が得られる。   The stock solution (treatment solution) from which ions have been removed according to the present invention can be suitably used as, for example, a nutrient solution for house cultivation or a livestock feed. In particular, when used as a nutrient solution for house cultivation, it is excellent in the effect of preventing accumulated salt damage due to the soil in the house not being exposed to rain. The effect that potassium which becomes becomes suitable can be acquired.

また、本発明によれば、原液中に含まれる多価フェノール類、クエン酸、有機酸類、カリウムイオン等の有価物を、イオンとして受容液中に好適に回収でき、有価物の再利用を効率化することができる。   In addition, according to the present invention, valuable materials such as polyphenols, citric acid, organic acids, and potassium ions contained in the stock solution can be suitably recovered as ions in the receiving solution, and the reuse of valuable materials is efficient. Can be

また更に、本発明では、原液として汚染土壌スラリーを好ましく処理できる。例えば、汚染土壌を水中に分散してスラリー化し、これを原液として、本発明の液間イオン移送装置で処理する。イオン化した汚染物質は受容液中に除去され、処理後の原液(処理液)から除染された土壌成分(固形分)を容易に回収できる。   Furthermore, in the present invention, a contaminated soil slurry can be preferably treated as a stock solution. For example, the contaminated soil is dispersed in water to form a slurry, which is treated as a stock solution with the liquid ion transfer apparatus of the present invention. Ionized contaminants are removed in the receiving solution, and the soil components (solid content) decontaminated from the treated stock solution (treatment solution) can be easily recovered.

特に、汚染物質がセシウムである場合には、本発明によって好適に受容液中に除去できることが確認された。これは、電位勾配下におけるセシウムイオンの移動速度が比較的速いことによるものと推定される。   In particular, when the pollutant is cesium, it was confirmed that the present invention can be suitably removed in the receiving solution. This is presumed to be due to the relatively fast movement speed of cesium ions under a potential gradient.

本発明において、原液中に含まれる除去対象となるイオンとしては、陽イオン及び又は陰イオンであれば格別限定されない。イオンの価数は1価又は2価以上の何れであってもよく、また、単原子イオン、多原子イオン、錯イオン、クラスターイオン等の何れの形態であってもよい。   In the present invention, the ion to be removed contained in the stock solution is not particularly limited as long as it is a cation and / or an anion. The valence of the ion may be either monovalent or divalent or higher, and may be any form such as a monoatomic ion, polyatomic ion, complex ion, or cluster ion.

以下に、本発明の実施例について説明するが、本発明はかかる実施例に限定されない。   Examples of the present invention will be described below, but the present invention is not limited to such examples.

1.原液の性状
下記の実施例では、原液として、生ごみ系メタン発酵消化液、生ごみペースト、黒糖焼酎粕濃縮液、梅発酵残液、豚糞尿又は食塩水を用いた。
1. Properties of Stock Solution In the following examples, raw methane fermentation digestive juice, raw paste, brown sugar shochu concentrate, plum fermentation residue, porcine manure or saline was used as the stock solution.

なお、原液として用いた黒糖焼酎粕濃縮液は、黒糖焼酎粕を遠心分離機により固液分離した後の液側を回収し、これを多重効用蒸発缶により濃縮したものである。   The brown sugar shochu concentrate used as the stock solution is obtained by collecting the liquid side after solid-liquid separation of the brown sugar shochu using a centrifuge and concentrating it with a multi-effect evaporator.

各原液(食塩水を除く)について、下記の項目で性状を評価した結果を表1に示す。   Table 1 shows the results of evaluating the properties of each stock solution (excluding saline) with the following items.

<性状評価項目>
・固形分濃度(wt%):107℃での乾燥秤量法による
・粘度(PaS):20℃における振動板型粘度計法による
・粒径(直径、μm):篩分別拡大鏡観察法による
・pH:JIS K0102.12.1による
・導電率(S/cm):JIS K0102.13による
・ナトリウムイオン濃度(mg/L):酸分解・原子吸光法による
・カリウムイオン濃度(mg/L):酸分解・原子吸光法による
・亜鉛イオン濃度(mg/L):酸分解・ICP法による
・塩化物イオン濃度(mg/L):イオンクロマトグラフ法による
<Property evaluation items>
-Solid content concentration (wt%): by dry weighing method at 107 ° C-Viscosity (PaS): by vibration plate viscometer method at 20 ° C-Particle size (diameter, µm): by sieving magnifying glass pH: According to JIS K0102.12.1. Conductivity (S / cm): According to JIS K0102.13. Sodium ion concentration (mg / L): Acid decomposition. By atomic absorption method. Potassium ion concentration (mg / L):・ Acid decomposition ・ Atomic absorption method ・ Zinc ion concentration (mg / L): Acid decomposition ・ ICP method ・ Chloride ion concentration (mg / L): Ion chromatographic method

Figure 2014087748
Figure 2014087748

2.液間イオン移送試験
(実施例1)
図1に示したものと同様の構成を備える試験用の小型液間イオン移送装置を用いて、生ごみ混合ペーストを原液として、下記試験条件で試験を行った。
2. Liquid ion transfer test (Example 1)
A test was performed under the following test conditions using a garbage mixed paste as an undiluted solution using a small liquid ion transfer device for testing having the same configuration as that shown in FIG.

原液流路11における原液の線速度及び原液流路11滞留時間(RT)、試験前後におけるイオン濃度の変化、印加電圧/電流、電流効率を表2に示した。   Table 2 shows the linear velocity of the stock solution in the stock solution channel 11, the residence time (RT) of the stock solution channel 11, the change in ion concentration before and after the test, the applied voltage / current, and the current efficiency.

<試験条件>
・隔膜13C:陽イオン交換膜(トクヤマ社製、一価選択性陽イオン交換膜)
・隔膜13A:陰イオン交換膜(旭化成社製、陰イオン交換膜)
・膜面積:幅(液流と垂直方向)10mm×高さ(液流方向)100mm
・見かけの電極面積:同上
・原液流路11の流路幅W=2.1〜3.0mm
・平均送液量:0.1〜1ml/hr
<Test conditions>
-Membrane 13C: cation exchange membrane (manufactured by Tokuyama, monovalent selective cation exchange membrane)
-Diaphragm 13A: Anion exchange membrane (Asahi Kasei Co., Ltd., anion exchange membrane)
・ Membrane area: width (perpendicular to liquid flow) 10 mm x height (liquid flow direction) 100 mm
-Apparent electrode area: Same as above-Channel width W of the stock solution channel 11 = 2.1 to 3.0 mm
・ Average liquid flow rate: 0.1-1 ml / hr

(実施例2)
実施例1において、原液を生ごみ系メタン発酵消化液に代え、表2の試験条件としたこと以外は実施例1と同様にして試験を行った。結果を表2に示す。
(Example 2)
In Example 1, the test was performed in the same manner as in Example 1 except that the raw solution was replaced with the garbage-based methane fermentation digestion liquid and the test conditions shown in Table 2 were adopted. The results are shown in Table 2.

(実施例3)
実施例1において、原液を黒糖焼酎粕濃縮液に代え、表2の試験条件としたこと以外は、実施例1と同様にして試験を行った。結果を表2に示す。
(Example 3)
In Example 1, the test was performed in the same manner as in Example 1 except that the stock solution was replaced with the brown sugar shochu concentrate and the test conditions shown in Table 2 were adopted. The results are shown in Table 2.

(実施例4)
実施例1において、原液を梅発酵残液に代え、表2の試験条件としたこと以外は、実施例1と同様にして試験を行った。結果を表2に示す。
(Example 4)
In Example 1, the test was performed in the same manner as in Example 1 except that the stock solution was replaced with the ume fermentation residue and the test conditions shown in Table 2 were adopted. The results are shown in Table 2.

(実施例5)
実施例1において、原液を豚糞尿に代え、表2の試験条件としたこと以外は、実施例1と同様にして試験を行った。結果を表2に示す。
(Example 5)
In Example 1, the test was performed in the same manner as in Example 1 except that the stock solution was replaced with pig manure and the test conditions shown in Table 2 were used. The results are shown in Table 2.

(実施例6)
実施例3において、表2の試験条件としたこと以外は、実施例3と同様にして試験を行った。結果を表2に示す。
(Example 6)
In Example 3, the test was performed in the same manner as in Example 3 except that the test conditions in Table 2 were used. The results are shown in Table 2.

(実施例7)
実施例6において、隔膜13C、13Aを、MF膜(JSユアサ社製、ユミクロン)に代え、表2の試験条件としたこと以外は、実施例6と同様にして試験を行った。結果を表2に示す。
(Example 7)
In Example 6, the tests were performed in the same manner as in Example 6 except that the diaphragms 13C and 13A were replaced with MF membranes (Yumicron manufactured by JS Yuasa Co., Ltd.) and the test conditions shown in Table 2 were adopted. The results are shown in Table 2.

(実施例8)
実施例7において、原液を食塩水に代え、表2の試験条件としたこと以外は、実施例7と同様にして試験を行った。結果を表2に示す。
(Example 8)
In Example 7, the test was performed in the same manner as in Example 7 except that the stock solution was changed to saline and the test conditions shown in Table 2 were used. The results are shown in Table 2.

Figure 2014087748
Figure 2014087748

1:液間イオン移送装置
10:液間イオン移送装置本体
11:原液流路
111:流入口
112:流出口
12:受容液流路
12C:陽イオン受容液流路
12A:陰イオン受容液流路
13、13C、13A:隔膜
C:陽極
A:陰極
1: Liquid ion transfer device 10: Liquid ion transfer device body 11: Stock solution flow channel 111: Inlet 112: Outlet 12: Receptor flow channel 12C: Cation acceptor flow channel 12A: Anion acceptor flow channel 13, 13C, 13A: Diaphragm C: Anode A: Cathode

Claims (2)

陽極及び陰極からなる1対の電極間に、除去対象となるイオンを含む原液が流通する原液流路と、該原液から除去された該イオンを受容するイオン受容液が流通する受容液流路とが、少なくとも該イオンが通過可能な隔膜を介して並設されており、
前記1対の電極間に設けられた電位勾配によって、前記原液流路を流通する前記原液から前記イオン受容液流路を流通する前記イオン受容液へと前記隔膜を介して前記イオンを電気的に移送する液間イオン移送方法であって、
前記原液は、直径100μm以上の粒子を含有しているか、あるいは粘度が100cp以上の乳濁液及び又は懸濁液であり、
前記原液流路の流路幅が1.5mm以上20mm以下の範囲であり、且つ該原液流路を流通する前記原液の線速が10mm/秒以下の範囲であるか、又は前記原液の前記原液流路における滞留時間が10分以上数日以下の範囲であることを特徴とする液間イオン移送方法。
A stock solution channel through which a stock solution containing ions to be removed flows between a pair of electrodes consisting of an anode and a cathode, and a receiving solution channel through which an ion receiving solution that accepts the ions removed from the stock solution flows Are arranged side by side through a diaphragm through which at least the ions can pass,
Due to the potential gradient provided between the pair of electrodes, the ions are electrically passed through the diaphragm from the stock solution flowing through the stock solution channel to the ion receiving solution flowing through the ion acceptor channel. A method of transferring ions between liquids,
The stock solution is an emulsion and / or suspension containing particles having a diameter of 100 μm or more, or having a viscosity of 100 cp or more,
The flow path width of the stock solution channel is in the range of 1.5 mm or more and 20 mm or less, and the linear velocity of the stock solution flowing through the stock solution channel is in the range of 10 mm / second or less, or the stock solution of the stock solution A method for transferring ions between liquids, wherein the residence time in the channel is in the range of 10 minutes to several days.
陽極及び陰極からなる1対の電極間に、除去対象となるイオンを含む原液が流通する原液流路と、該原液から除去された該イオンを受容するイオン受容液が流通する受容液流路とが、少なくとも該イオンが通過可能な隔膜を介して並設されており、
前記1対の電極間に設けられた電位勾配によって、前記原液流路を流通する前記原液から前記イオン受容液流路を流通する前記イオン受容液へと前記隔膜を介して前記イオンを電気的に移送するように構成された液間イオン移送装置であって、
前記原液は、直径100μm以上の粒子を含有しているか、あるいは粘度が100cp以上の乳濁液及び又は懸濁液であり、
前記原液流路の流路幅が1.5mm以上20mm以下の範囲であり、且つ該原液流路を流通する前記原液の線速が10mm/秒以下の範囲であるか、又は前記原液の前記原液流路における滞留時間が10分以上数日以下の範囲であることを特徴とする液間イオン移送装置。
A stock solution channel through which a stock solution containing ions to be removed flows between a pair of electrodes consisting of an anode and a cathode, and a receiving solution channel through which an ion receiving solution that accepts the ions removed from the stock solution flows Are arranged side by side through a diaphragm through which at least the ions can pass,
Due to the potential gradient provided between the pair of electrodes, the ions are electrically passed through the diaphragm from the stock solution flowing through the stock solution channel to the ion receiving solution flowing through the ion acceptor channel. A liquid ion transfer device configured to transfer,
The stock solution is an emulsion and / or suspension containing particles having a diameter of 100 μm or more, or having a viscosity of 100 cp or more,
The flow path width of the stock solution channel is in the range of 1.5 mm or more and 20 mm or less, and the linear velocity of the stock solution flowing through the stock solution channel is in the range of 10 mm / second or less, or the stock solution of the stock solution A liquid ion transfer device characterized in that the residence time in the flow channel is in the range of 10 minutes to several days.
JP2012239470A 2012-10-30 2012-10-30 Inter-liquid ion transfer method and inter-liquid ion transfer device Pending JP2014087748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239470A JP2014087748A (en) 2012-10-30 2012-10-30 Inter-liquid ion transfer method and inter-liquid ion transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239470A JP2014087748A (en) 2012-10-30 2012-10-30 Inter-liquid ion transfer method and inter-liquid ion transfer device

Publications (1)

Publication Number Publication Date
JP2014087748A true JP2014087748A (en) 2014-05-15

Family

ID=50790159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239470A Pending JP2014087748A (en) 2012-10-30 2012-10-30 Inter-liquid ion transfer method and inter-liquid ion transfer device

Country Status (1)

Country Link
JP (1) JP2014087748A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312261A (en) * 1986-07-04 1988-01-19 Tokuyama Soda Co Ltd Production of 'miso' having reduced salt content
JPS63153298A (en) * 1986-12-10 1988-06-25 バスフ アクチェンゲゼルシャフト Removal of acid from cathodic electrophoretic painting bath by electrodialysis
JPH01264933A (en) * 1988-04-15 1989-10-23 Tokuyama Soda Co Ltd Production of iron hydroxide or iron oxide
JP2005087979A (en) * 2003-09-22 2005-04-07 National Institute Of Advanced Industrial & Technology Methane fermentation process and methane fermentation system
US20060091013A1 (en) * 2002-12-27 2006-05-04 Ebara Corporation Electric demineralizer
JP2008132492A (en) * 2002-12-27 2008-06-12 Ebara Corp Electric demineralizer
JP2012520168A (en) * 2009-03-12 2012-09-06 エボニック デグサ ゲーエムベーハー Production of high purity suspension containing precipitated silica by electrodialysis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312261A (en) * 1986-07-04 1988-01-19 Tokuyama Soda Co Ltd Production of 'miso' having reduced salt content
JPS63153298A (en) * 1986-12-10 1988-06-25 バスフ アクチェンゲゼルシャフト Removal of acid from cathodic electrophoretic painting bath by electrodialysis
JPH01264933A (en) * 1988-04-15 1989-10-23 Tokuyama Soda Co Ltd Production of iron hydroxide or iron oxide
US20060091013A1 (en) * 2002-12-27 2006-05-04 Ebara Corporation Electric demineralizer
JP2008132492A (en) * 2002-12-27 2008-06-12 Ebara Corp Electric demineralizer
JP2005087979A (en) * 2003-09-22 2005-04-07 National Institute Of Advanced Industrial & Technology Methane fermentation process and methane fermentation system
JP2012520168A (en) * 2009-03-12 2012-09-06 エボニック デグサ ゲーエムベーハー Production of high purity suspension containing precipitated silica by electrodialysis

Similar Documents

Publication Publication Date Title
Uduman et al. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels
JP5785196B2 (en) Water treatment apparatus and method
US7981268B2 (en) Deionization and desalination using electrostatic ion pumping
US10252924B2 (en) Purification of ultra-high saline and contaminated water by multi-stage ion concentration polarization (ICP) desalination
AU2016388020B2 (en) Composite membrane separation method applicable to desalting and recycling of sewage
CN106044965B (en) Device and method for recovering heavy metals in electroplating wastewater
CN105692989A (en) A comprehensive utilization process for viscose fiber acidic waste water
CN103130363B (en) Desalination system and desalination method
WO2014052025A1 (en) A system and method for the treatment of hydraulic fracturing backflow water
CN102476885A (en) Waste water processing system and method thereof
CN102826704B (en) Recycle system for recycled water
CN105555717A (en) Apparatus and method for treating organic-containing wastewater
KR101299735B1 (en) Capacitive deionization method for drinking water treatment
CN101560030A (en) Method for realizing resource utilization of copper-containing waste water by electrolysis-electrodialysis united technology
JP5865818B2 (en) Electrodialysis apparatus and electrodialysis method
CN108285221B (en) Advanced concentration treatment method for wastewater
CN106630311A (en) Desulfurization wastewater zero-discharge treatment method
CN104291501B (en) A kind of Integrated Membrane Technology processes the method for ammonium nitrate wastewater
JP2014128746A (en) Seawater desalination apparatus, seawater desalination method, and flocculant setting for seawater desalination
JP2014087748A (en) Inter-liquid ion transfer method and inter-liquid ion transfer device
CN106673144B (en) A kind of electric nanofiltration device with low salt rejection rate and high rejection to organics rate
JP2010046562A (en) Resource recovery type water treatment method and system
US9718711B2 (en) Methods and apparatuses for filtering water fluid by screening ionic minerals
CN104909505B (en) Treatment system applied to industrial desalination
CN108083533B (en) Circulating water zero-discharge quality-divided recycling treatment device and treatment method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160705