JPH01264933A - Production of iron hydroxide or iron oxide - Google Patents

Production of iron hydroxide or iron oxide

Info

Publication number
JPH01264933A
JPH01264933A JP9177488A JP9177488A JPH01264933A JP H01264933 A JPH01264933 A JP H01264933A JP 9177488 A JP9177488 A JP 9177488A JP 9177488 A JP9177488 A JP 9177488A JP H01264933 A JPH01264933 A JP H01264933A
Authority
JP
Japan
Prior art keywords
iron
hydroxide
anions
cations
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9177488A
Other languages
Japanese (ja)
Other versions
JP2594310B2 (en
Inventor
Takahisa Yamamoto
宜契 山本
Yoshiaki Noma
野間 義昭
Ryuji Takeshita
竹下 竜二
Noboru Idemoto
出本 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP63091774A priority Critical patent/JP2594310B2/en
Publication of JPH01264933A publication Critical patent/JPH01264933A/en
Application granted granted Critical
Publication of JP2594310B2 publication Critical patent/JP2594310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain easily and inexpensively pure iron (hydro)oxide by carrying out electrodialysis of a liquid suspension contg. iron (hydro)oxide, cations, and anions with an ion exchange membrane, and removing the cations and the anions. CONSTITUTION:A liquid suspension contg. iron hydroxide, iron oxide, together with cations and anions as impurities is prepd. by prepg. iron hydroxide by the hydrolysis of iron salt such as iron sulfate, iron chloride, etc., and oxidizing, etc., further the product of the hydrolysis. The cations and anions are removed from the liquid suspension by feeding the liquid suspension contg. the impurities to an electrodialysis cell provided with ion exchange membranes and carrying out electrodialysis of the suspension. The liquid suspension freed of the cations and anions is then concentrated, thus, particles of pure acicular iron hydroxide and acicular iron oxide, are obtd. Magnetic particles having high output and high density recording characteristic are obtd. by reducing the iron hydroxide particles or iron oxide particles in hot reducing gas.

Description

【発明の詳細な説明】 〔家業上の利用分野〕 本発明は水酸化鉄又は酸化鉄の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application in Family Business] The present invention relates to a method for producing iron hydroxide or iron oxide.

〔従来の技術〕[Conventional technology]

近年、高出力並びに高密度記録に適する特性を備えた磁
性粒子、9口ち、飽和磁化が大きく、且つ、高い保磁力
を有する磁性粒子の開発が盛んである。
In recent years, there has been active development of magnetic particles having characteristics suitable for high output and high density recording, magnetic particles having large saturation magnetization, and high coercive force.

このような特性を有する磁性粒子は、一般に針状晶含水
酸化鉄粒子、針状晶酸化鉄粒子蓋しくけこれらに鉄以外
の異埋金属を含むものを原料とし、これらを還元性ガス
中350℃程度で加熱還元することにより得られる。原
料である針状晶含水酸化鉄粒子、針状晶酸化鉄粒子は、
一般に、硫酸鉄、塩化鉄、硝酸鉄等の第1及び第2鉄塩
を加水分解して水酸化鉄を得、更に酸化することによっ
て得られる。この製造方法では、加水分解により塩が生
成する。この塩を含んだ水酸化鉄から磁性粒子を製造し
た場合、不純物として含まれる塩が磁性粒子の上記した
優れた特性を低下させるため、加水分解で得た水酸化鉄
の懸濁液から塩を除去することが行なわれている。塩の
除去には、水酸化鉄の懸濁液の粘度が高いこともありで
、フィルタープレスが使用されている。
Magnetic particles having such characteristics are generally made from acicular crystal hydrated iron oxide particles, acicular crystal iron oxide particles containing disembodied metals other than iron, and are heated in a reducing gas at 350° C. It can be obtained by heating reduction at about ℃. The raw material, acicular crystal hydrated iron oxide particles, acicular crystal iron oxide particles,
Generally, iron hydroxide is obtained by hydrolyzing iron and ferric salts such as iron sulfate, iron chloride, iron nitrate, and the like, and is further oxidized. In this production method, salt is produced by hydrolysis. When magnetic particles are manufactured from iron hydroxide containing this salt, the salts contained as impurities reduce the above-mentioned excellent properties of the magnetic particles. It is being removed. A filter press is used to remove the salts, partly due to the high viscosity of the iron hydroxide suspension.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、フィルタープレスでは水酸化鉄中の塩を
十分に除去できないという問題がある。
However, there is a problem in that the filter press cannot sufficiently remove salts in iron hydroxide.

tな、塩の除去を十分に行なおうとすれば、水酸化鉄の
懸濁液を十分に希釈せねばならず、そのために大量の水
が必要となり、また、希釈された懸濁液からケーキを得
るのに大規模々濃縮及び濾過装置2分散懸濁装置を必要
とする々ど、除去工程に伴う設備費、コストは多大なも
のである。
In order to achieve sufficient salt removal, the iron hydroxide suspension must be sufficiently diluted, which requires a large amount of water, and the diluted suspension must be thoroughly diluted. Although large-scale concentration and filtration equipment, two dispersion and suspension equipment are required to obtain this, the equipment costs and costs associated with the removal process are enormous.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、純粋な水酸化鉄又は酸化鉄の製造方法に
ついて鋭意研究を重ねた。その結果、鉄塩を加水分解し
て得た水酸化鉄又はさらに酸化された酸化鉄の懸濁液を
イオン交換膜電気透析槽に供給し、懸濁液中に含まれ塩
生成の原因となる陽イオン及び陰イオンを電気透析によ
って除去することにより、純粋な水酸化鉄又は酸化鉄を
製造することに成功し、本発明を完成するに至った。
The present inventors have conducted extensive research into methods for producing pure iron hydroxide or iron oxide. As a result, a suspension of iron hydroxide or further oxidized iron oxide obtained by hydrolyzing iron salts is supplied to the ion exchange membrane electrodialysis tank, and the iron oxide contained in the suspension causes salt formation. By removing cations and anions by electrodialysis, they succeeded in producing pure iron hydroxide or iron oxide, leading to the completion of the present invention.

即ち、本発明は、水酸化鉄又は酸化鉄と、陽イオン及び
陰イオンとを含有する懸濁液をイオン交換膜電気透析槽
に供給し、電気透析を行なうことによって該懸濁液から
陽イオン及び陰イオンを除去することを特徴とする水酸
化鉄又は酸化鉄の製造方法である。
That is, the present invention supplies a suspension containing iron hydroxide or iron oxide, cations and anions to an ion exchange membrane electrodialysis tank, and performs electrodialysis to remove cations from the suspension. and a method for producing iron hydroxide or iron oxide, characterized by removing anions.

本発明によれば、水酸化鉄又は酸化鉄と、陽イオン及び
陰イオンとを含有する懸濁液から陽イオン及び陰イオン
の除去がほぼ完全に達成され、しかも、経済的に純粋な
水酸化鉄又は酸化鉄を製造することが可能である。
According to the present invention, almost complete removal of cations and anions from a suspension containing iron hydroxide or iron oxide and cations and anions can be achieved, and moreover, economically pure hydroxide It is possible to produce iron or iron oxide.

本発明に於ける水酸化鉄は、水酸化第1鉄、水酸化第2
沫及びオキシ水酸化鉄等が用いられる。
The iron hydroxide in the present invention includes ferrous hydroxide and ferric hydroxide.
Iron droplets, iron oxyhydroxide, etc. are used.

また、酸化鉄としては、酸化第1鉄及び酸化第2鉄が用
いられる。本発明に於ける懸濁液中には、水酸化鉄と酸
化鉄のいずれか一方又は両方が含まれている。水酸化鉄
又は酸化鉄の懸濁液中に含まれる陽イオンとしては、ナ
トリウムイオン、カリウムイオン等のアルカリ金属イオ
ン;マグネシウムイオン、カルシウムイオン等のアルカ
リ土類金属イオン;アンモニウムイオン等が、また、陰
イオンとしては、塩素イオン、ヨウ素イオン、シュウ素
イオン等のハロゲンイオン;硫酸イオン;硝酸イオン;
シュウ酸イオン、酢酸イオン等のカル?ン酸イオン等が
一般的である。
Further, as the iron oxide, ferrous oxide and ferric oxide are used. The suspension in the present invention contains one or both of iron hydroxide and iron oxide. Cations contained in the suspension of iron hydroxide or iron oxide include alkali metal ions such as sodium ions and potassium ions; alkaline earth metal ions such as magnesium ions and calcium ions; ammonium ions, etc. Examples of anions include halogen ions such as chloride ions, iodine ions, and oxalide ions; sulfate ions; nitrate ions;
Calculation of oxalate ion, acetate ion, etc.? Commonly used are chloride ions, etc.

本発明に於ける水酸化鉄又は酸化鉄と陽イオン及び陰イ
オンとを含有する懸濁液は、一般に次のような方法によ
って得られる。硫酸鉄、塩化鉄、硝酸鉄、シュウ酸鉄、
酢酸鉄等の第1及び第2鉄塩てアルカリ溶液、例えば、
アルカリ金属水酸化物若しくはアルカリ土類金属水酸化
物の水溶液又はアンモニア水溶液等を加え、加水分解に
より得ることができる。加水分解によシ生成した水酸化
鉄は、一部酸化されてオキシ水酸化鉄又は酸化鉄になる
場合もある。
The suspension containing iron hydroxide or iron oxide and cations and anions in the present invention is generally obtained by the following method. iron sulfate, iron chloride, iron nitrate, iron oxalate,
Alkaline solutions of ferrous and ferric salts such as iron acetate, e.g.
It can be obtained by hydrolysis by adding an aqueous solution of an alkali metal hydroxide or an alkaline earth metal hydroxide or an ammonia aqueous solution. Iron hydroxide produced by hydrolysis may be partially oxidized to become iron oxyhydroxide or iron oxide.

また、上記の懸濁液には、磁性粒子の原料として使用さ
れる各種の水溶性金属塩が含まれていてもよい。例えば
、ナトリウムやカリウムのケイ酸塩、クロム塩、ニッケ
ル塩、マグネシウム塩等の水溶性金属塩が含まれていて
も良い。
Further, the above suspension may contain various water-soluble metal salts used as raw materials for magnetic particles. For example, water-soluble metal salts such as sodium and potassium silicates, chromium salts, nickel salts, and magnesium salts may be included.

本発明で電気透析の対象とする懸濁液中の水酸化鉄及び
酸化鉄の合計の濃度は、特に制限されないが、電気透析
の効率や懸濁液の粘度等を勘案すると、一般に1〜30
 (Hit/ lの範囲であることが好ましい。特に好
ましいのは1〜1009/lである。従って、水酸化鉄
又は酸化鉄の濃度が上記範囲を上回る場合には、上記範
囲となるように希釈することが好ましい。
The total concentration of iron hydroxide and iron oxide in the suspension to be subjected to electrodialysis in the present invention is not particularly limited, but generally 1 to 30
(Hit/l is preferably in the range of 1 to 1009/l. Particularly preferred is 1 to 1009/l. Therefore, if the concentration of iron hydroxide or iron oxide exceeds the above range, dilute it to the above range. It is preferable to do so.

本発明のイオン交換膜電気透析槽及び電気透析方法は、
陽極と陰極の間に陽イオン交換膜と陰イオン交換膜を配
列して構成される基本構造であれば公知のイオン交換膜
電気透析槽が特に制限なく使用される。例えば、陽陰極
間に陽、陰イオン交換膜をそれぞれ1枚組込んだ3室型
、電極間に陽イオン交換膜と陰イオン交換膜とを室枠を
介して交互に配列し、これらの両イオン交換膜と室枠と
によって脱塩室と濃縮室とを形成させた基本構造よりな
るフィルタープレス型やユニットセル型などである。か
かるイオン交換膜電気透析槽に用いる陽、陰イオン交換
膜の種類、膜数、あるいは脱塩室および濃縮室の流路間
隔(膜間隔)等は、処理する水酸化鉄又は酸化鉄の懸濁
液の種類や処理量により適宜選定される。
The ion exchange membrane electrodialysis tank and electrodialysis method of the present invention include:
Any known ion exchange membrane electrodialysis cell may be used without any particular restriction as long as it has a basic structure in which a cation exchange membrane and an anion exchange membrane are arranged between an anode and a cathode. For example, a three-chamber type with one cation exchange membrane and one anion exchange membrane installed between the anode and cathode, a cation exchange membrane and an anion exchange membrane alternately arranged between the electrodes via a chamber frame, and both These include the filter press type and unit cell type, which have a basic structure in which a demineralization chamber and a concentration chamber are formed by an ion exchange membrane and a chamber frame. The type and number of positive and anion exchange membranes used in such an ion exchange membrane electrodialysis tank, the flow path spacing (membrane spacing) of the demineralization chamber and the concentration chamber, etc. are determined based on the suspension of iron hydroxide or iron oxide to be treated. It is selected as appropriate depending on the type of liquid and processing amount.

特に、陽イオン交換膜としては従来の陽イオン交換膜で
も良いが、好ましくは、陽イオン交換膜の少なくとも片
面に陰イオン交換層を有する膜が有効である。例えば、
第1.第2.第3級アミノ基及び第4級アンモニウム塩
基等の陰イオン交換基が陽イオン交換膜の片面に化学的
若しくは物理的に吸着しているもの、又は化学的に結合
しているもの等である。このような陽イオン交換膜を用
いた場合、鉄イオンのリークが極めて小さくなるため好
ましい。また、脱塩室の流路間隔は水酸化鉄又は酸化疾
の懸濁液により、流路が閉塞しないことが必要であるた
め、一般に10mm以上が好ましい。また脱塩室に攪拌
器を設けることも好捷しい。
In particular, the cation exchange membrane may be a conventional cation exchange membrane, but preferably a membrane having an anion exchange layer on at least one side of the cation exchange membrane is effective. for example,
1st. Second. Anion exchange groups such as tertiary amino groups and quaternary ammonium bases are chemically or physically adsorbed on one side of a cation exchange membrane, or chemically bonded. When such a cation exchange membrane is used, leakage of iron ions becomes extremely small, which is preferable. Furthermore, the interval between the channels in the demineralization chamber is generally preferably 10 mm or more, since it is necessary that the channels are not blocked by iron hydroxide or oxidative suspension. It is also preferable to provide a stirrer in the desalination chamber.

イオン交換膜電気透析槽を用いて水酸化鉄又は酸化鉄と
、陽イオン及び陰イオンとを含有する懸濁液中の陽イオ
ン及び陰イオンを除去する方法は、透析装置の脱塩室に
前記した水酸化鉄又は酸化鉄の懸濁液或いは希釈した懸
濁液を供給し、濃縮室に電解質溶液を供給し、さらに陰
、陽極室にも食塩水等の電解質溶液よりなる電極液を供
給した状態で陽極と陰極との間に直流電流を通ずること
により実施される。
A method for removing cations and anions in a suspension containing iron hydroxide or iron oxide and cations and anions using an ion-exchange membrane electrodialysis tank includes A suspension or diluted suspension of iron hydroxide or iron oxide was supplied, an electrolyte solution was supplied to the concentration chamber, and an electrode solution consisting of an electrolyte solution such as saline was also supplied to the anode and anode chambers. This is carried out by passing a direct current between the anode and the cathode.

かかる本発明における電気透析において、電気透析槽に
印加する電圧、電流密度、温度、液流速、処理時間は対
象とする水酸化鉄又は酸化鉄の懸濁液の性状及び除去す
べき塩の濃度により適宜選択する。
In the electrodialysis according to the present invention, the voltage applied to the electrodialysis tank, current density, temperature, liquid flow rate, and treatment time depend on the properties of the target iron hydroxide or iron oxide suspension and the concentration of the salt to be removed. Select as appropriate.

例えば、イオン交換膜電気透析槽に水酸化鉄又は酸化鉄
の懸濁液を供給する速度は、一般に0.01〜20cI
rL/Sal!、好ましくは、0.1〜5crrL/s
eeであり、電気密度は一般に0.01〜20A/dm
2、好ましくは0.1〜5A/dm  が適用され、温
度は10〜50℃程度が好ましい。
For example, the rate at which iron hydroxide or iron oxide suspension is fed to an ion exchange membrane electrodialysis tank is generally 0.01 to 20 cI.
rL/Sal! , preferably 0.1 to 5 crrL/s
ee, and the electrical density is generally 0.01 to 20 A/dm
2. Preferably, 0.1 to 5 A/dm is applied, and the temperature is preferably about 10 to 50°C.

本発明に於いて電気透析の対象となる水酸化鉄又は酸化
鉄の懸濁液は粘性が高く、付着性があるため、電気透析
による脱塩を終了した後は、直ちに、例えば、1時間以
内に脱塩室の処理液の液抜きを行ない、次いで、上水に
て逆洗流を行ない、電槽内に残存している懸濁液を除去
することが好ましい。この操作により、再度電気透析を
行なう場合に液流路の閉塞、膜及びスR−サー等への目
詰りを防ぎ、電圧上昇等を十分に抑制することができる
Since the suspension of iron hydroxide or iron oxide that is the target of electrodialysis in the present invention is highly viscous and adhesive, it should be treated immediately after desalting by electrodialysis, for example, within one hour. It is preferable to drain the processing liquid from the desalting chamber first, and then perform backwashing with tap water to remove the suspension remaining in the container. By this operation, when performing electrodialysis again, it is possible to prevent clogging of the liquid flow path, clogging of the membrane, the rinser, etc., and to sufficiently suppress voltage increases, etc.

〔効果〕〔effect〕

以上に説明したように本発明の方法によれば、水酸化鉄
又は酸化鉄の懸濁液をイオン交換膜電気透析槽に供給す
るという簡便な方法で磁性化に悪影響を及ぼす塩をほぼ
完全に除去できるため、純粋な水酸化鉄又は酸化鉄の懸
濁液を容易且つ安価に製造することができる。
As explained above, according to the method of the present invention, salts that adversely affect magnetization can be almost completely removed by a simple method of supplying a suspension of iron hydroxide or iron oxide to an ion exchange membrane electrodialysis tank. Since it can be removed, pure iron hydroxide or iron oxide suspension can be produced easily and inexpensively.

〔実施例〕〔Example〕

以下、本発明を具体的に説明するための実施例を示すが
本発明はこれらに限定されるものではない。
Examples are shown below to specifically explain the present invention, but the present invention is not limited thereto.

実施例−1 硫酸第1鉄水溶液K NaOH水溶液を加えpH6にて
空気を吹き込み、温度40℃においてFe0OHR濁液
の生成反応を行なった。その懸濁液濃度は1009/A
’であった。
Example-1 Ferrous sulfate aqueous solution K A NaOH aqueous solution was added, air was blown at pH 6, and a Fe0OHR suspension was produced at a temperature of 40°C. The suspension concentration is 1009/A
'Met.

膣液を水で50 !ll迄希釈し、本発明の方法によっ
て電気透析を行々い、Na 2 SO4を除去した。
50% of vaginal fluid with water! The solution was diluted to 1 liter and subjected to electrodialysis according to the method of the present invention to remove Na 2 SO 4 .

電気透析槽としてはネオセグタCMS (徳山曹達■製
、表面に陰イオン交換層を有する強酸性陽イオン交換膜
)およびネオセプタAM(徳山曹達■製1強塩基性陰イ
オン交換膜)に上り脱塩室と濃縮室とに区画した電気透
析槽TS−2型(徳山曹達■製有効膜面積2dm2/対
、流路間隔10mの脱塩室)を使用した。
The electrodialysis tanks include Neosegta CMS (manufactured by Tokuyama Soda ■, a strong acidic cation exchange membrane with an anion exchange layer on the surface) and NeoSepta AM (manufactured by Tokuyama Soda ■, a strongly basic anion exchange membrane) and a desalination chamber. An electrodialysis tank TS-2 type (effective membrane area 2 dm2/pair, desalination chamber manufactured by Tokuyama Soda ■, channel spacing 10 m) was used, which was divided into a concentration chamber and a concentration chamber.

電気透析条件は温度40℃、平均電流密度1.5A/d
m2、膜面速度0.5cm/Seeで運転した。その結
果を表−1に示す。尚、電気透析終了後は直ちに脱塩室
の処理液の液抜きを行ない、次いで上水にて逆洗流を行
ない電槽内に残存している懸濁液を除去した。
Electrodialysis conditions were a temperature of 40°C and an average current density of 1.5A/d.
It was operated at a membrane speed of 0.5 cm/See. The results are shown in Table-1. Immediately after the electrodialysis was completed, the treated solution in the desalting chamber was drained, and then backwashed with tap water to remove the suspension remaining in the cell.

実施例−2 Fe  2mot/lを含む硫酸第1鉄水溶液にKO)
(水溶液を加え、pH7,5、温度40℃においてFa
 (0H)2(濃度2009/l )の生成反応を行な
った。膣液を水で50911迄希釈し、本発明の方法に
よって電気透析を行ない、K2SO4を除去した。
Example-2 KO in ferrous sulfate aqueous solution containing 2 mot/l of Fe)
(Add aqueous solution, pH 7.5, temperature 40℃
A reaction for producing (0H)2 (concentration 2009/l) was carried out. Vaginal fluid was diluted with water to 50911 and subjected to electrodialysis according to the method of the present invention to remove K2SO4.

電気透析槽及び電気透析条件は実施例−1と同様に行な
った。その結果を表−IK示す。
The electrodialysis tank and electrodialysis conditions were the same as in Example-1. The results are shown in Table IK.

実施例−3 硝酸第2鉄水溶液にNaOH水溶液を加え、…2.5に
おいて空気を吹き込み温度70℃においてFe203懸
濁液(濃度2o9/l)の生成反応を行ない、原液を本
発明の方法によって電気透析を行ない、NaNo sを
除去した。
Example-3 A NaOH aqueous solution was added to a ferric nitrate aqueous solution, and air was blown at 2.5 to perform a reaction to produce a Fe203 suspension (concentration 2o9/l) at a temperature of 70°C, and the stock solution was processed by the method of the present invention. Electrodialysis was performed to remove NaNos.

電気透析槽としては実施例−1と同様のものを使用し、
電気透析条件は温度40℃平均電流密度1.2A/dm
2膜面速度1.0ぼ7式で運転した。その結果を表−1
に示す。
As the electrodialysis tank, the same one as in Example-1 was used,
Electrodialysis conditions are temperature: 40°C, average current density: 1.2A/dm
It was operated at a two-film surface speed of 1.0 or less. Table 1 shows the results.
Shown below.

実施例−4 Fe  1 mot/ lを含む臭化第1鉄水溶液にN
aOH水溶液を加え、pH6にて空気を吹き込み、温度
50℃においてFe0OH懸濁液の生成反応を行なった
。その懸濁液濃度は1209/lであった。膣液を水で
409/l迄希釈し、本発明の方法によって電気透析を
行ない、NaBrを除去した。
Example-4 Adding N to a ferrous bromide aqueous solution containing 1 mot/l of Fe
An aOH aqueous solution was added, air was blown at pH 6, and a Fe0OH suspension was produced at a temperature of 50°C. The suspension concentration was 1209/l. The vaginal fluid was diluted with water to 409/l and subjected to electrodialysis to remove NaBr according to the method of the invention.

電気透析槽としては実施例−1と同様のものを使用し、
電気透析条件は温度30℃平均電流密度1.4A/dm
  、膜面速度0.6 cm、/seeで運転した。そ
の結果を表−1に示す。
As the electrodialysis tank, the same one as in Example-1 was used,
Electrodialysis conditions are temperature 30℃ average current density 1.4A/dm
, membrane surface velocity of 0.6 cm,/see. The results are shown in Table-1.

実施例−5 実施例−1と同様の液を用い電気透析槽とじては陽イオ
ン交換膜【ネオセプタCM(i山曹達物製、強酸性陽イ
オン交換膜)t−用いて実施例−1と同様の電槽及び電
気透析条件で処理した。その結果を表−1に示す。
Example 5 Using the same solution as in Example 1, an electrodialysis tank was prepared using a cation exchange membrane [Neosepta CM (strongly acidic cation exchange membrane manufactured by i-sansodamono) t]. It was treated under the same cell and electrodialysis conditions. The results are shown in Table-1.

表−1 比較例−1 実施例−1と同様の懸濁液をフィタープレスデ過機で濾
過し、この濾過した固形ケーキを水で再度分散懸濁させ
、該懸濁液を更に濾過分散を繰り返してNa2SO4を
除去した。その結果を表−2に示す。
Table-1 Comparative Example-1 The same suspension as in Example-1 was filtered using a filter press filter, the filtered solid cake was again dispersed and suspended in water, and the suspension was further filtered and dispersed. was repeated to remove Na2SO4. The results are shown in Table-2.

Claims (1)

【特許請求の範囲】[Claims] 1)水酸化鉄又は酸化鉄と、陽イオン及び陰イオンとを
含有する懸濁液をイオン交換膜電気透析槽に供給し、電
気透析を行なうことによって該懸濁液から陽イオン及び
陰イオンを除去することを特徴とする水酸化鉄又は酸化
鉄の製造方法。
1) A suspension containing iron hydroxide or iron oxide, cations and anions is supplied to an ion exchange membrane electrodialysis tank, and cations and anions are removed from the suspension by electrodialysis. A method for producing iron hydroxide or iron oxide, which comprises removing iron hydroxide or iron oxide.
JP63091774A 1988-04-15 1988-04-15 Method for producing iron hydroxide or iron oxide Expired - Lifetime JP2594310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63091774A JP2594310B2 (en) 1988-04-15 1988-04-15 Method for producing iron hydroxide or iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63091774A JP2594310B2 (en) 1988-04-15 1988-04-15 Method for producing iron hydroxide or iron oxide

Publications (2)

Publication Number Publication Date
JPH01264933A true JPH01264933A (en) 1989-10-23
JP2594310B2 JP2594310B2 (en) 1997-03-26

Family

ID=14035931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63091774A Expired - Lifetime JP2594310B2 (en) 1988-04-15 1988-04-15 Method for producing iron hydroxide or iron oxide

Country Status (1)

Country Link
JP (1) JP2594310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087748A (en) * 2012-10-30 2014-05-15 Mitsui Eng & Shipbuild Co Ltd Inter-liquid ion transfer method and inter-liquid ion transfer device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379798A (en) * 1976-12-24 1978-07-14 Hitachi Maxell Ltd Production of fine powder of transition metal oxide or oxyhydroxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379798A (en) * 1976-12-24 1978-07-14 Hitachi Maxell Ltd Production of fine powder of transition metal oxide or oxyhydroxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087748A (en) * 2012-10-30 2014-05-15 Mitsui Eng & Shipbuild Co Ltd Inter-liquid ion transfer method and inter-liquid ion transfer device

Also Published As

Publication number Publication date
JP2594310B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
CA2528750C (en) Boron separation and recovery
US5316637A (en) Electrodeionization apparatus
US5240579A (en) Electrodialysis reversal process and apparatus with bipolar membranes
RU1837950C (en) Method for purifying of aqueous zinc sulfate solutions
US4163716A (en) Process for the purification of contaminated water
US4306946A (en) Process for acid recovery from waste water
JPS60106583A (en) Method of treating aqueous flow containing precipitable material and acid and/or base
US2004257A (en) Purification of water by zeolites
CN113023844A (en) Method for treating salt-containing fermentation waste liquid by combining diffusion dialysis with electrodialysis
US3394068A (en) Electrodialysis of pickle liquor using sequestrants
US3766049A (en) Recovery of metal from rinse solutions
CN105330102B (en) A kind of production technology of improved DSD acid
US5064538A (en) Membrane process for acid recovery
JP2002143854A (en) Electrochemical water treating device
JPH01264933A (en) Production of iron hydroxide or iron oxide
CN205528097U (en) Processing system of nickeliferous waste water that anodic oxidation hole sealing produced
JP2775992B2 (en) Method for producing hydroxylamine
US4082546A (en) Recovery of waste heavy metals from solutions by cementation with aluminum
JPS5850792B2 (en) Device that changes salt concentration in liquid
Bolger et al. Current and emerging technologies for extending the lifetime of electroless nickel plating baths
US3398078A (en) Recovery of glutamic acid values by electrodialysis
JP3637458B2 (en) Ammonia nitrogen removal method
JPH09887A (en) Method for regenerating acid waste liquid
JPH0421507A (en) Production of hydroxylamine
JP3647505B2 (en) Method and apparatus for producing electrolyzed water