JP2775992B2 - Method for producing hydroxylamine - Google Patents

Method for producing hydroxylamine

Info

Publication number
JP2775992B2
JP2775992B2 JP2123771A JP12377190A JP2775992B2 JP 2775992 B2 JP2775992 B2 JP 2775992B2 JP 2123771 A JP2123771 A JP 2123771A JP 12377190 A JP12377190 A JP 12377190A JP 2775992 B2 JP2775992 B2 JP 2775992B2
Authority
JP
Japan
Prior art keywords
hydroxylamine
chamber
sulfate
exchange membrane
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2123771A
Other languages
Japanese (ja)
Other versions
JPH0421506A (en
Inventor
昭博 坂田
邦彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2123771A priority Critical patent/JP2775992B2/en
Publication of JPH0421506A publication Critical patent/JPH0421506A/en
Application granted granted Critical
Publication of JP2775992B2 publication Critical patent/JP2775992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,硫酸ヒドロキシルアミン又は塩酸ヒドロ
キシルアミン,若しくはその両者から遊離のヒドロキシ
ルアミンを製造する方法に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing free hydroxylamine from hydroxylamine sulfate or hydroxylamine hydrochloride, or both.

〔従来の技術〕 ヒドロキシルアミンは,その還元作用によって各種工
業薬品の原料として利用されている。
[Related Art] Hydroxylamine is used as a raw material for various industrial chemicals due to its reducing action.

かゝるヒドロキシルアミンは,従来から硫酸ヒドロキ
シルアミン又は塩酸ヒドロキシルアミン,若しくはその
両者を使用して下記の方法によって製造されている。
Such hydroxylamines have been conventionally produced using hydroxylamine sulfate or hydroxylamine hydrochloride, or both, by the following method.

(a)硫酸ヒドロキシルアミン水溶液又は塩酸ヒドロキ
シルアミン水溶液に苛性アルカリを添加して中和し,こ
れを蒸留して遊離のヒドロキシルアミンを得る方法。
(A) A method in which a caustic alkali is added to an aqueous solution of hydroxylamine sulfate or an aqueous solution of hydroxylamine hydrochloride for neutralization, and this is distilled to obtain free hydroxylamine.

(b)硫酸ヒドロキシルアミン水溶液に酸化バリウム
(又は水酸化バリウム)を添加し,生成する硫酸バリウ
ムを濾過して除去し,遊離ヒドロキシルアミンを得る方
法。
(B) A method in which barium oxide (or barium hydroxide) is added to an aqueous solution of hydroxylamine sulfate, and the resulting barium sulfate is removed by filtration to obtain free hydroxylamine.

(c)硫酸ヒドロキシルアミン水溶液又は/及び塩酸ヒ
ドロキシルアミン水溶液を,イオン交換樹脂で処理する
ことにより遊離ヒドロキシルアミンを得る方法(特公昭
49−14640,特開昭62−216908など)。
(C) A method for obtaining free hydroxylamine by treating an aqueous solution of hydroxylamine sulfate or / and an aqueous solution of hydroxylamine hydrochloride with an ion exchange resin (Japanese Patent Publication No.
49-14640, JP-A-62-216908).

(d)硫酸ヒドロキシルアミンのアルコール溶液をアン
モニアで処理し,析出する硫酸アンモニウムを濾過して
分離した後,共存するアルコールを除去する方法(特開
昭61−171905)。
(D) A method in which an alcohol solution of hydroxylamine sulfate is treated with ammonia, the precipitated ammonium sulfate is separated by filtration, and the coexisting alcohol is removed (JP-A-61-171905).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記の従来技術において,(a)の硫酸ヒドロキシル
アミン水溶液(又は塩酸ヒドロキシルアミン水溶液)を
苛性アルカリで中和し蒸留する方法は,例えば中和に苛
性ソーダを使用した場合は,蒸留時に硫酸塩である硫酸
ナトリウム(Na2SO4),又は塩化物である塩化ナトリウ
ム(NaCl)が蒸留釜に析出し,閉塞等のトラブルを発生
させる。
In the above prior art, the method of (a) neutralizing an aqueous solution of hydroxylamine sulfate (or an aqueous solution of hydroxylamine hydrochloride) with caustic alkali and distilling, for example, when caustic soda is used for neutralization, sulfate is used during distillation. Sodium sulfate (Na 2 SO 4 ) or sodium chloride (NaCl), which is a chloride, precipitates in the still and causes troubles such as blockage.

これを防止するために,前記硫酸ナトリウム(Na2S
O4)や塩化ナトリウム(NaCl)等が析出しない程度の希
薄な液として蒸留することはできるが,この場合には,
蒸留された留出液中の遊離ヒドロキシルアミンの濃度が
希薄となるので,これを濃縮する必要が生じ,製品がコ
スト高となることを免れない。
To prevent this, the sodium sulfate (Na 2 S
O 4 ) and sodium chloride (NaCl) can be distilled as a dilute solution that does not precipitate, but in this case,
Since the concentration of free hydroxylamine in the distilled distillate becomes low, it is necessary to concentrate the free hydroxylamine, which inevitably increases the cost of the product.

また,(b)に記載の酸化バリウム添加法において
は,その大きな発熱反応のために製造に際して危険が伴
う。
In addition, in the method of adding barium oxide described in (b), danger is involved in production due to the large exothermic reaction.

つぎに,(c)に記載したイオン交換樹脂で処理する
方法については,これが回分操作であるため,作業が煩
雑となると共に,イオン交換樹脂に捕捉されるヒドロキ
シルアミンの量も少ないため大量のイオン交換樹脂の使
用を余儀なくされるので,得られた製品がコスト高とな
る。
Next, the method of treating with an ion-exchange resin described in (c) is a batch operation, which complicates the operation, and the amount of hydroxylamine captured by the ion-exchange resin is small. The use of exchange resin necessitates the cost of the resulting product.

さらに,(d)に示す方法は,結晶(硫酸アンモニウ
ム)の分離,アルコールの除去といった煩雑な操作を要
し,アルコールの完全な分離や回収に問題がある。
Further, the method shown in (d) requires complicated operations such as separation of crystals (ammonium sulfate) and removal of alcohol, and there is a problem in complete separation and recovery of alcohol.

叙上のように,従来のヒドロキシルアミンの製造方法
は,幾多の問題点を有するものである。
As mentioned above, conventional methods for producing hydroxylamine have a number of problems.

この発明の発明者等は,かゝる従来のヒドロキシルア
ミンの製造における問題点に鑑み,鋭意研究の結果,硫
酸ヒドロキシルアミン又は/及び塩酸ヒドロキシルアミ
ンの水溶液を中和した後,アニオン交換膜とカチオン交
換膜を交互に配設して得られる脱塩室と濃縮室からなる
2室型の電気透析装置を使用して脱塩することによっ
て,簡単かつ容易に,しかも安価に遊離のヒドロキシル
アミンを製造する方法を完成させたものである。
In view of the problems in the conventional production of hydroxylamine, the inventors of the present invention have conducted intensive studies and found that after neutralizing an aqueous solution of hydroxylamine sulfate or / and hydroxylamine hydrochloride, an anion exchange membrane and a cationic Desalting using a two-chamber electrodialyzer consisting of a desalting chamber and a concentrating chamber obtained by alternately arranging exchange membranes to produce free hydroxylamine simply, easily and inexpensively. It is a way to complete it.

〔課題を解決するための手段〕[Means for solving the problem]

すなわち,この発明のヒドロキシルアミンの製造法
は,アニオン交換膜とカチオン交換膜を交互に配して形
成される2室を単位とし,その一方を脱塩室とし,隣接
する他方を濃縮室としてなる2室型電気透析装置の前記
脱塩室に,硫酸ヒドロキシルアミン水溶液又は/及び塩
酸ヒドロキシルアミン水溶液を水酸化アルカリ又は/及
びアンモニアで中和して得た液を供給し,通電により脱
塩室よりヒドロキシルアミンを取得することを特徴とす
るものである。
That is, in the method for producing hydroxylamine of the present invention, two chambers formed by alternately arranging an anion exchange membrane and a cation exchange membrane are used as a unit, one of which is a desalination chamber, and the other is a concentrating chamber. A solution obtained by neutralizing an aqueous solution of hydroxylamine sulfate or / and an aqueous solution of hydroxylamine hydrochloride with alkali hydroxide or / and ammonia is supplied to the desalting chamber of the two-chamber electrodialysis apparatus. It is characterized by obtaining hydroxylamine.

この発明の方法の一例として,硫酸ヒドロキシルアミ
ンを苛性ソーダで中和した液を用いたヒドロキシルアミ
ンの製造について,以下に図面を引用して詳述する。
As an example of the method of the present invention, the production of hydroxylamine using a solution obtained by neutralizing hydroxylamine sulfate with caustic soda will be described in detail below with reference to the drawings.

第1図はこの発明の方法に使用される2室型電気透析
装置及びこれによるヒドロキシルアミンの製造方法の一
例を示す概略説明図であって,この2室型電気透析装置
に供給する液は,硫酸ヒドロキシルアミンを苛性ソーダ
で中和して得られるものであるが,場合によってはこの
中和液に安定剤が添加したものであってもよい。
FIG. 1 is a schematic explanatory view showing an example of a two-chamber electrodialysis apparatus used in the method of the present invention and a method for producing hydroxylamine using the electrodialysis apparatus. It is obtained by neutralizing hydroxylamine sulfate with caustic soda. In some cases, a stabilizer may be added to this neutralized solution.

第1図に示す2室型の電気透析装置1は,アニオン交
換膜a,a,a・・・・と,カチオン交換膜c,c,c・・・・と
を交互に配設し,両者の交換膜で形成された隣接する2
つの室の一方の陽極側がアニオン交換膜で,反対側でカ
チオン交換膜で仕切られた室を脱塩室Y,Y,Y・・・・と
し,他方の陽極側がカチオン交換膜で,反対側がアニオ
ン交換膜で仕切られた室を濃縮室X,X,X・・・・とする
と共に,両端部のイオン交換膜で区画された室の一方
(図の右端の室)を陽極を存在させた陽極室〔A〕と
し,他方(図の左端の室)を陰極を存在させた陰極室
〔C〕として構成したものである。
The two-chamber type electrodialysis apparatus 1 shown in FIG. 1 has anion exchange membranes a, a, a... And cation exchange membranes c, c, c. 2 formed by the exchange membrane of
One of the two compartments is an anion exchange membrane, the other compartment is a cation exchange membrane, and the other compartment is a desalination compartment Y, Y, Y ..., the other anode is a cation exchange membrane and the other is an anion exchange membrane. The chambers separated by the exchange membrane are referred to as the concentration chambers X, X, X ..., and one of the chambers partitioned by the ion exchange membranes at both ends (the rightmost chamber in the figure) is an anode in which an anode is present. The cathode chamber [A] and the other chamber (the left end chamber in the figure) are configured as a cathode chamber [C] having a cathode.

しかして,既述の硫酸ヒドロキシルアミンを苛性ソー
ダで中和して得たpH6〜10程度の液,若しくはこの液に
安定剤を添加した液を,図示した電気透析装置1の各脱
塩室Y,Y・・・に導入し,各濃縮室X,X・・・と陽極室
〔A〕及び陰極室〔C〕にはそれぞれ希薄な硫酸ナトリ
ウムを供給し通電する。
Then, a solution having a pH of about 6 to 10 obtained by neutralizing the above-described hydroxylamine sulfate with caustic soda, or a solution obtained by adding a stabilizer to this solution, is added to each of the desalting chambers Y, Into each of the concentration chambers X, X..., The anode chamber [A] and the cathode chamber [C].

この通電によって脱塩室Yに供給された原料液では,
ナトリウムイオン(Ne+)と硫酸イオン(SO4 2-)が解離
し,Na+はカチオン交換膜cを通って濃縮室Xに,SO4 2-
アニオン交換膜aを通って反対側の濃縮室Xに移動す
る。
In the raw material liquid supplied to the desalting chamber Y by this energization,
Sodium ions (Ne + ) and sulfate ions (SO 4 2- ) are dissociated, and Na + passes through the cation exchange membrane c to the concentration chamber X, and SO 4 2- passes through the anion exchange membrane a to concentrate on the opposite side. Move to room X.

その結果,脱塩室Yでは,脱塩された遊離のヒドロキ
シルアミンが,一方の濃縮室Xには硫酸ナトリウム(Na
2SO4)がそれぞれ生成されるため,前記脱塩室Yで生成
したヒドロキシルアミンを,適宜手段によって取り出す
ことによって目的製品を得ることができる。
As a result, in the desalting chamber Y, the desalted free hydroxylamine is supplied, and in the concentrating chamber X, sodium sulfate (Na
Since 2 SO 4 ) is produced, the desired product can be obtained by removing the hydroxylamine produced in the desalting chamber Y by an appropriate means.

なお,前記のとおり陽極室〔A〕及び陰極室〔C〕に
は,それぞれ硫酸ナトリウムが循環されるが,苛性ソー
ダ等の別の液を用いてもよい。
As described above, sodium sulfate is circulated in each of the anode chamber [A] and the cathode chamber [C], but another liquid such as caustic soda may be used.

この電気透析装置1で使用する陽極〔A〕としては,
白金をコーティングしたチタン板等を,陰極〔C〕とし
てはステンレススチール板或いはニッケル板などの使用
溶液に対して耐蝕性のある材料を選択使用するものであ
る。
The anode [A] used in the electrodialysis apparatus 1 includes:
A titanium plate or the like coated with platinum is used, and a material having corrosion resistance to a used solution such as a stainless steel plate or a nickel plate is selectively used as the cathode [C].

この発明の方法で使用する電気透析装置のカチオン交
換膜及びアニオン交換膜としては,例えばセレミオンCM
V,セレミオンAMV(いづれも旭硝子(株)製)等の一般
に市販されているカチオン交換膜及びアニオン交換膜を
使用することが可能である。
Examples of the cation exchange membrane and anion exchange membrane of the electrodialysis apparatus used in the method of the present invention include Selemion CM
Generally available cation exchange membranes and anion exchange membranes such as V, Selemion AMV (both manufactured by Asahi Glass Co., Ltd.) can be used.

一方,透析操作の際の電流密度は,高い方が望まし
い。
On the other hand, the current density during the dialysis operation is preferably higher.

これは生成したヒドロキシルアミンが拡散移動によっ
て隣室へ移動して電流効率のロスとなるので,なるべく
電流密度を高くして設定単位時間当たりの生成量を多く
することが電流効率の向上と設備コストの低減を図る上
で好ましいとの理由によるためである。
This is because the generated hydroxylamine moves to the next room by diffusion and causes a loss of current efficiency. Therefore, it is necessary to increase the current density as much as possible to increase the amount of generation per set unit time. This is because it is preferable from the viewpoint of reduction.

しかしながら,電流密度を過度に高くすると,電圧が
上昇し,電力原単位も悪くなるのでおのずから上限があ
り,1〜30A/dm2,特に3〜15A/dm2の範囲が好ましい。
However, if the current density is excessively high, the voltage increases and the power consumption decreases, so that there is naturally an upper limit, and the range is preferably 1 to 30 A / dm 2 , particularly preferably 3 to 15 A / dm 2 .

透析操作における温度は,特に制限されないが通常は
室温で実施される。
The temperature in the dialysis operation is not particularly limited, but is usually performed at room temperature.

脱塩室の硫酸ナトリウム濃度は,これをほゞゼロ
(0)にすることも不可能ではないが,このように操作
することは,生成したヒドロキシルアミンが導電性に乏
しく,使用電圧が高くなって好ましくないので,以下に
示す工程に従って操作することによって目的とする製品
ヒドロキシルアミンを最終的に得ることが望ましい。
It is not impossible to make the concentration of sodium sulfate in the desalting chamber almost zero (0), but this operation is necessary because the generated hydroxylamine has poor conductivity and the working voltage increases. Therefore, it is desirable to finally obtain the desired product hydroxylamine by operating according to the following steps.

すなわち,第2図に示すように電気透析装置1を出た
脱塩後の微量の硫酸ナトリウムを含むヒドロキシルアミ
ンを,蒸留装置3と貯槽2に分岐して送給すると共に,
蒸留装置3において蒸留し,この蒸留で得たヒドロキシ
ルアミンを濃縮装置4で濃縮して製品として得る。
That is, as shown in FIG. 2, hydroxylamine containing a trace amount of sodium sulfate after desalting exiting the electrodialysis apparatus 1 is branched and sent to the distillation apparatus 3 and the storage tank 2.
Distillation is performed in the distillation apparatus 3, and the hydroxylamine obtained by the distillation is concentrated in the concentration apparatus 4 to obtain a product.

一方,前記貯槽2の硫酸ナトリウムを含むヒドロキシ
ルアミン,及び蒸留装置3で得られた硫酸ナトリウムを
含む釜液は,中和槽6において原料硫酸ヒドロキシルア
ミンを苛性ソーダで中和し,これを濾過器5で濾過して
結晶硫酸ナトリウムを分離した後の濾液と共に,前記電
気透析装置1に供給して脱塩するもので,この場合蒸留
装置3における釜液は,硫酸ナトリウムの結晶が析出し
ない濃度で運転して電気透析装置1に戻すことが望まし
い。
On the other hand, the hydroxylamine containing sodium sulfate in the storage tank 2 and the kettle liquid containing sodium sulfate obtained in the distillation apparatus 3 neutralize the raw material hydroxylamine sulfate with caustic soda in the neutralization tank 6, and this is filtered by the filter 5. Is supplied to the electrodialyzer 1 together with the filtrate after filtration to separate the crystalline sodium sulfate, and desalting is performed. In this case, the kettle liquid in the distillation apparatus 3 is operated at a concentration at which sodium sulfate crystals do not precipitate. It is desirable to return to the electrodialysis apparatus 1 after the operation.

〔作用〕[Action]

この発明では,原料となる硫酸ヒドロキシルアミン水
溶液又は/及び塩酸ヒドロキシルアミン水溶液を,予め
水酸化アルカリ又は/及びアンモニアで中和し,この中
和後の液を,アニオン交換膜とカチオン交換膜とによっ
て脱塩室と濃縮室とを交互に形成してなる2室型電気透
析装置の前記脱塩室に供給して通電すれば,脱塩室Yに
供給された原料液中でナトリウムイオン(Na+)と硫酸
イオン(SO4 2-)が解離し,Na+はカチオン交換膜cを通
って濃縮室Xに,またSO4 2-はアニオン交換膜aを通っ
て反対側の濃縮室Xに移動するので,前記脱塩室からは
目的とするヒドロキシルアミンを,また,濃縮室からは
該当する液の硫酸塩又は/及び塩化物を得ることができ
るものである。
In this invention, the aqueous solution of hydroxylamine sulfate or / and the aqueous solution of hydroxylamine hydrochloride as a raw material is neutralized in advance with alkali hydroxide or / and ammonia, and the neutralized solution is passed through an anion exchange membrane and a cation exchange membrane. When electricity is supplied to the desalting chamber of a two-chamber electrodialysis apparatus in which a desalting chamber and a concentrating chamber are formed alternately, sodium ions (Na + ) And sulfate ions (SO 4 2- ) are dissociated, and Na + moves to the concentration chamber X through the cation exchange membrane c, and SO 4 2- moves to the opposite concentration chamber X through the anion exchange membrane a. Therefore, the desired hydroxylamine can be obtained from the desalting chamber, and the sulfate and / or chloride of the corresponding liquid can be obtained from the concentrating chamber.

〔実 施 例〕〔Example〕

以下,実施例によってこの発明をより具体的に説明す
る。
Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1 硫酸ヒドロキシルアミン500gを水に溶解して32%苛性
ソーダを中和し,得られた液を水で希釈して2,000gの溶
液とした。
Example 1 Hydroxylamine sulfate (500 g) was dissolved in water to neutralize 32% caustic soda, and the obtained liquid was diluted with water to obtain a 2,000 g solution.

この液は硫酸ナトリウム(Na2SO4)21.5%およびヒド
ロキシルアミン(NH2OH)9.96%を含むものである。
This solution contains 21.5% of sodium sulfate (Na 2 SO 4 ) and 9.96% of hydroxylamine (NH 2 OH).

この中和後の液を2室型電気透析装置に導入して脱塩
した。
The neutralized solution was introduced into a two-chamber electrodialysis apparatus to desalinate.

2室型電気透析装置の仕様および操作条件は次ぎのと
おりである。
The specifications and operating conditions of the two-chamber electrodialysis device are as follows.

膜枚数;アニオン交換膜 セレミオンAVC10枚 カチオン交換膜 セレミオンCMV12枚 (いずれも旭硝子株式会社製) 膜面積;1.72dm2/枚(有効面積) 膜間隔;0.75mm 陽 極;白金コーティングしたチタン 陰 極;ステンレス 室 数;陽極室 1 陰極室 1 脱塩室 10 濃縮室 11 電 流;11A(6.4A/dm2) 温 度;室 温 循環量;脱塩室 18l/min 濃縮室 9l/min 電極室 9l/min 前記の中和後の液は,2室型電気透析装置の脱塩室に供
給して循環させ,濃縮室には濃度1.97%の硫酸ナトリウ
ム(Na2SO4)溶液を2000ml循環させ,陽極室,陰極室液
には濃度1.97%の硫酸ナトリウム(Na2SO4)溶液を700m
l同一タンクから供給循環させた。
Number of membranes: anion exchange membrane Selemion AVC 10 cation exchange membrane Selemion CMV 12 (all manufactured by Asahi Glass Co., Ltd.) Membrane area: 1.72 dm 2 / sheet (effective area) Membrane interval; 0.75 mm anode; platinum-coated titanium anode; Number of stainless steel chambers; anode room 1 cathode room 1 desalination room 10 concentration room 11 current; 11A (6.4A / dm 2 ) temperature; room temperature circulation amount; desalination room 18l / min concentration room 9l / min electrode room 9l / min The above neutralized solution is supplied to the desalting chamber of the two-chamber electrodialyzer and circulated, and the concentrated chamber is circulated with 2,000 ml of 1.97% sodium sulfate (Na 2 SO 4 ) solution. 700 m sodium sulfate (Na 2 SO 4 ) solution with a concentration of 1.97% for the anode and cathode compartment liquids
l Supply circulation from the same tank.

この状態で11Aの電流を通電して1時間電気透析を行
ったところ,脱塩室から,硫酸ナトリウム(Na2SO4)が
11.73%,ヒドロキシルアミン(NH2OH)が10.50%の濃
度の液1,236gを得ることができた。
When electrodialysis was performed for 1 hour by applying a current of 11 A in this state, sodium sulfate (Na 2 SO 4 ) was discharged from the desalting chamber.
1,236 g of a liquid having a concentration of 11.73% and a concentration of hydroxylamine (NH 2 OH) of 10.50% could be obtained.

したがって,脱塩の効率は97.8%,ヒドロキシルアミ
ンの回収率は65.2%であった。
Therefore, the desalination efficiency was 97.8% and the recovery of hydroxylamine was 65.2%.

また,この時のセル電圧は,13.3〜14.0Vであった。 The cell voltage at this time was 13.3-14.0V.

〔発明の効果〕〔The invention's effect〕

この発明のヒドロキシルアミンの製造方は,原料の硫
酸ヒドロキシルアミン水溶液又は/及び塩酸ヒドロキシ
ルアミン水溶液を中和し,この中和後の液をアニオン交
換膜とカチオン交換膜で構成された2室型の電気透析装
置の脱塩室に導入したのち,電気透析によって原料液を
ナトリウムインオと硫酸イオンとに解離せしめ,脱塩室
中の前記各イオンをカチオン交換膜あるいはアニオン交
換膜を通して濃縮室に移動させて脱塩することによって
脱塩室から遊離のヒドロキシルアミンを得るというきわ
めて簡単な方法であるので,その操作が容易であると共
に,きわめて安全で,かつ安価に目的物たるヒドロキシ
ルアミンを得ることができるものである。
According to the method for producing hydroxylamine of the present invention, the aqueous solution of hydroxylamine sulfate or / and the aqueous solution of hydroxylamine hydrochloride is neutralized, and the neutralized solution is subjected to a two-chamber type comprising an anion exchange membrane and a cation exchange membrane. After being introduced into the desalting chamber of the electrodialyzer, the raw material solution is dissociated into sodium ions and sulfate ions by electrodialysis, and the ions in the desalting chamber are moved to the concentration chamber through a cation exchange membrane or an anion exchange membrane. It is a very simple method of obtaining free hydroxylamine from the desalting chamber by desalting and then desalting, so that the operation is easy, and it is extremely safe and inexpensive to obtain the desired hydroxylamine. You can do it.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の方法に使用される2室型電気透析装
置及びこれによるヒドロキシルアミンの製造法の一例を
示す概略説明図である。 第2図は,この発明のヒドロキシルアミンの製造法の一
例を示した工程図である。 1……電気透析装置、2……貯槽 3……蒸留装置、4……濃縮装置 5……濾過器、6……中和槽
FIG. 1 is a schematic explanatory view showing an example of a two-chamber electrodialyzer used in the method of the present invention and a method for producing hydroxylamine using the same. FIG. 2 is a process chart showing an example of the method for producing hydroxylamine of the present invention. DESCRIPTION OF SYMBOLS 1 ... Electrodialysis apparatus, 2 ... Storage tank 3 ... Distillation apparatus, 4 ... Concentration apparatus 5 ... Filter, 6 ... Neutralization tank

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アニオン交換膜とカチオン交換膜を交互に
配して形成される2室を単位とし,その一方を脱塩室と
し,隣接する他方を濃縮室としてなる2室型電気透析装
置の前記脱塩室に,硫酸ヒドロキシルアミン水溶液又は
/及び塩酸ヒドロキシルアミン水溶液を水酸化アルカリ
又は/及びアンモニアで中和して得た液を供給し,通電
により脱塩室よりヒドロキシルアミンを取得することを
特徴とするヒドロキシルアミンの製造法。
1. A two-chamber electrodialysis apparatus comprising two chambers formed by alternately arranging anion exchange membranes and cation exchange membranes, one of which is a desalination chamber and the other is a concentrating chamber. A solution obtained by neutralizing an aqueous solution of hydroxylamine sulfate or / and an aqueous solution of hydroxylamine hydrochloride with alkali hydroxide or / and ammonia is supplied to the desalting chamber, and hydroxylamine is obtained from the desalting chamber by applying electricity. Characteristic method for producing hydroxylamine.
JP2123771A 1990-05-14 1990-05-14 Method for producing hydroxylamine Expired - Lifetime JP2775992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2123771A JP2775992B2 (en) 1990-05-14 1990-05-14 Method for producing hydroxylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2123771A JP2775992B2 (en) 1990-05-14 1990-05-14 Method for producing hydroxylamine

Publications (2)

Publication Number Publication Date
JPH0421506A JPH0421506A (en) 1992-01-24
JP2775992B2 true JP2775992B2 (en) 1998-07-16

Family

ID=14868876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2123771A Expired - Lifetime JP2775992B2 (en) 1990-05-14 1990-05-14 Method for producing hydroxylamine

Country Status (1)

Country Link
JP (1) JP2775992B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936594A1 (en) * 1999-08-04 2001-02-08 Basf Ag Process for the preparation of high-purity stabilized hydroxylamine solutions
JP2005239702A (en) * 2004-01-28 2005-09-08 Showa Denko Kk Method for producing hydroxylamine
JP4578988B2 (en) * 2005-01-21 2010-11-10 昭和電工株式会社 Method for producing hydroxylamine
JP4578999B2 (en) * 2005-02-10 2010-11-10 昭和電工株式会社 Method for producing hydroxylamine
JP4578998B2 (en) * 2005-02-10 2010-11-10 昭和電工株式会社 Method for producing hydroxylamine
JP2006219343A (en) * 2005-02-10 2006-08-24 Showa Denko Kk Method for producing hydroxylamine

Also Published As

Publication number Publication date
JPH0421506A (en) 1992-01-24

Similar Documents

Publication Publication Date Title
US5240579A (en) Electrodialysis reversal process and apparatus with bipolar membranes
US6149788A (en) Method and apparatus for preventing scaling in electrodeionization units
US4636295A (en) Method for the recovery of lithium from solutions by electrodialysis
JPH10128338A (en) Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
AU633075B2 (en) Electrodialytic water splitter
US4943360A (en) Process for recovering nitric acid and hydrofluoric acid from waste pickle liquors
US4767870A (en) Method of purifying L-ascorbic acid
JP2775992B2 (en) Method for producing hydroxylamine
NO312456B1 (en) Process for the preparation of a particularly pure glycolic acid
US5064538A (en) Membrane process for acid recovery
JP2824537B2 (en) Method for producing hydroxylamine
JPH07313098A (en) Production of low salt soysauce and apparatus therefor
KR100191357B1 (en) Recovery method of organic acid
JPH0830048B2 (en) Amino acid production method
JPH0737322B2 (en) Method for producing high-purity hydroxylamine nitrate
JPH01111894A (en) Method for purifying dipeptide ester
JP3109639B2 (en) Method for producing reduced salt soy sauce
JPH09887A (en) Method for regenerating acid waste liquid
JP4166864B2 (en) Method for producing amino acid or salt thereof
JPS6261320B2 (en)
JP2002166135A (en) Method for producing hydroxy-containing salt
JPH0337967B2 (en)
JP2001270844A (en) Method for recovering sodium formate from production waste liquor of hydrosulfite
JPS62160189A (en) Treatment of waste water containing ammonium ion
JP2023061672A (en) Desalting method of sugar solution, production method of refined sugar solution, and desalting system of sugar solution