JPS6261320B2 - - Google Patents

Info

Publication number
JPS6261320B2
JPS6261320B2 JP12065180A JP12065180A JPS6261320B2 JP S6261320 B2 JPS6261320 B2 JP S6261320B2 JP 12065180 A JP12065180 A JP 12065180A JP 12065180 A JP12065180 A JP 12065180A JP S6261320 B2 JPS6261320 B2 JP S6261320B2
Authority
JP
Japan
Prior art keywords
sugar
sugar solution
acid
compartment
molasses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12065180A
Other languages
Japanese (ja)
Other versions
JPS5747497A (en
Inventor
Ikuo Kikuchi
Kohei Yamada
Takeo Utsunomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP12065180A priority Critical patent/JPS5747497A/en
Publication of JPS5747497A publication Critical patent/JPS5747497A/en
Publication of JPS6261320B2 publication Critical patent/JPS6261320B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、糖液の精製方法、特には糖蜜又は廃
糖蜜を電気透析により効率的且つ有用成分を損な
うことなく精製しうる新規な処理方法に関する。 甘蔗、甜菜等を原料とする製糖乃至糖の精製に
おいては、糖結晶の分離母液である糖蜜は、通常
再度晶析工程に戻し、結晶晶析が繰り返えされ
る。かゝる場合糖蜜中の灰分は、造蜜性成分とし
て糖の回収率を低下させ、あるいは糖蜜の味覚を
損うことが知られており、糖蜜中の灰分は、蓄積
させることなく、できるだけ除去されるのが好ま
しいとされる。 一方、上記工程において糖蜜のうち、技術的又
は経済的理由により、もはや糖結晶として回収し
得ないものが、廃糖蜜として排出される。廃糖蜜
の性状及び成分は、原糖の種類、例えば甘蔗糖か
甜菜糖かの差違により、また製糖の方法の差異に
より大きく異なる。しかしいずれの場合にも、な
お相当量の糖分、各種アミノ酸等の窒素質、遊離
酸、結合酸等の酸類などの有用成分を含んでい
る。従来、かゝる廃糖蜜は、動物用飼料、肥料、
発酵促進剤、その他工業用原料として利用されて
いるが、多くの場合、廃糖蜜中に含まれる灰分
は、かゝる分野へのより多くの需要にとつて障害
となつている。 これら糖蜜又は廃糖蜜中の灰分を除く手段とし
て、現在までにイオン交換樹脂法、電気透析法な
どが提案されている。しかしイオン交換樹脂法で
は、樹脂及び再生用薬剤を多量に必要とするため
工業的に実施することは難しい。一方、電気透析
法は、イオン交換膜を使用する方法であり、再生
剤等を必要としなく原理的には工業的に優れた方
法であるが、従来の電気透析法では、糖液中に含
まれる何らかの物質により運転中イオン交換膜の
電気抵抗が増大し、そのまゝでは工業的に実施で
きない。これを防ぐため、電気透析にあたり、特
殊なイオン交換樹脂処理、更には限外過、活性
炭処理などの前処理が提案されているが、手段と
して複雑になるだけでなく、精製効果もなお十分
ではない。 本発明者は、上記の如き前処理などが必要なく、
しかも運転中トラブルを引き起すことなく効率的
に、糖蜜又は廃糖蜜などの糖液中の灰分を除去精
製する処理方法について研究したところ、電気透
析のイオン交換膜として、陽イオン交換陽を使用
し、これを電極間に少なくとも2枚配置し、陰極
側及び陽極側がともに陽イオン交換膜で構成され
た画室に上記糖液を存在させ、一方、該画室と陽
イオン交換膜を介して隣接する陽極側の画室に酸
を存在させて通電し、上記画室の陽極側から水素
イオンを透過流入せしめると同時に、該画室の陰
極側から灰分を構成する金属陽イオンを透過流出
させることにより、上記目的を十分に達成できる
ことを見い出した。 かゝる本発明の方法によれば、電気透析による
従来の手段に比べ、運転中のイオン交換膜の電気
抵抗の上昇に基ずく、電流密度の低下或いは電槽
電圧の増大などを実質上、ほとんど引き起すこと
なく、糖液の精製が実施できる。しかも、糖液中
の有用成分である糖類やアミノ酸などの損失は、
ほとんど伴なうことがないことが見い出された。
かくして、本発明によれば、糖蜜からの製糖工程
が効率的に進められるだけでなく、また、従来そ
こに含まれる灰分のために十分な利用がなし得な
かつた廃糖蜜の有用資源としての再利用に新たな
道を拓くものである。 本発明の方法は、同じ電気透析でも従来の方式
と実質上その原理を異にする。即ち、本発明の原
理を説明した第1図からも明らかなように、そこ
では、陽イオン交換膜Cのみが使用される。そし
て、陽イオン交換膜で囲まれた画室1に、糖液4
が供給され、画室1の陽極側の画室2には、酸5
が供給される。画室1の陰極側の画室3には、適
宜の電解液6が供給される。かくして通電した場
合には、糖液4中の灰分を構成する金属陽イオン
であるナトリウムイオン、カリウムイオンなど
は、陰極側の画室3に流出するとともに、酸が存
在する陽極側の画室2からは水素イオンが糖液中
に流入される。画室1を通じてのイオンの流出量
及び流入量は同モルになるからして結局のとこ
ろ、糖液中の灰分を構成するナトリウムイオン、
カリウムイオンが水素イオンによつて置換される
ことになる。このような本発明では、糖液を通じ
ての陰イオンの移動は、実質上行なわれないが、
本発明で精製された糖液は、糖蜜又は廃糖蜜の場
合とも、上記した未処理品の有するそれぞれの欠
点を実質上解消するものであるからして、本発明
による精製方法は、十分にその目的を達成するも
のである。 本発明で処理される糖液としては、上記した甘
蔗糖、甜菜糖の製糖工程で扱われる糖蜜、更には
これらの製糖工程或いは、製糖工程から排出され
る廃糖蜜が例示される。しかし、本発明で対象と
される糖液は、必ずしも糖蜜又は廃糖蜜と称され
るものでなくともよく、名称は何であつても灰分
を含む糖液であればいずれも対象とされる。 本発明で処理される糖液の一例である廃糖蜜の
成分としては、蔗糖、果糖、ブドウ糖などの糖
分、アミノ酸(グルタミン酸、アスパラギン酸な
ど)、アミド質(アスパラギンなど)、アルブミノ
イド質など窒素質、遊離酸、結合酸などのほか、
カリウム、ナトリウム、カルシウムなどの灰分が
挙げられる。これらの組成比は、上記したように
原糖の種類、製糖の方法などによつても異なる
が、通常糖分が2〜70%、窒素質が1〜10%、灰
分が5〜20%含まれ、またPHも広範囲にわたり、
通常4〜12のものも対象とされる。 本発明の実施に使用される酸としては、水溶液
において水素イオンを放出しうるものならいずれ
も使用可能であり、好ましくは、塩酸、硫酸、硝
酸などの無機酸、酢酸、クエン酸、プロピオン酸
などの有機酸が例示される。酸の濃度は、処理す
る糖液に含有される灰分の量及び水素イオン濃度
にもよるが、好ましくは0.01〜5.0規定、特には
0.05〜1.0規定のものが使用できる。一方、糖液
が供給される画室の陰極側の画室に供給される電
解液としては、導電性を有する限り、塩化カリウ
ム、塩化ナトリウムなどの適宜の塩類、酸、アル
カリ等の適宜のものが使用できる。特には、上記
陽極側に供給したのと同じ酸を供給するのが好ま
しい。 本発明で使用される陽イオン交換膜としては、
均一系若しくは不均一系、強酸性若しくは弱酸
性、架橋系若しくは非架橋系の炭化水素重合体又
は含フツ素重合体のいずれのものも使用できる
が、なかでも電気化学的性質が良好な均一系で、
強酸性の架橋膜を使用するのが好ましい。これら
陽イオン交換膜を用いた本発明で使用する電気透
析槽としては、従来のフイルタープレス型又はユ
ニツトセル型のいずれも使用できる。 特に本発明を工業的に実施する場合は、添図第
2図に示した如く、電極間に多数の陽イオン交換
膜Cを配置し、陽イオン交換膜で区画された交番
の画室1,1′,1″……に糖液4を供給し、一方
その残りの交番の画室2,2′,2″……には酸5
を供給して、通電処理される。かくすることによ
り、極めて効率的に糖液の灰分除去が実施でき
る。かゝる場合、陰極又は陽極に隣接して配置さ
れるイオン交換膜は、必ずしも陽イオン交換膜で
ある必要はなく、極液の種類などに応じて、場合
により陰イオン交換膜を使用したり、また複数の
同種のイオン交換膜を配列するなどの適宜の構成
が採用できる。 電気透析にあたつては、電槽の能力を十分に発
揮せしめるために、電流密度は、可能な限り大き
いのが望ましいが、本発明では、糖液を通じて陽
極側から水素イオンを流入させるとともに、陰極
側へは、ナトリウムイオン、カリウムイオンなど
を流出させるために、電流密度が過度に大きい場
合、陽イオン交換膜を通じての水素イオンの透過
速度が大きいために、陽極側から流入した水素イ
オンが糖液を大部分素通りして陽極側へ流出する
結果を招く。かくして、電流密度は水素イオンの
陰極側画室への漏洩を考慮しながら、好ましくは
1〜20A/dm2の範囲で適宜選ばれる。また、糖
液を電槽に供給するにあたつては、糖液中の灰分
が十分にイオンに解離させ、水素イオンとの置換
を効率的に行なうために、必要に応じてそのPHを
好ましくは4〜12の範囲になるように調節すると
ともに、温度も好ましくは5〜90℃の範囲に調節
することができる。 かくして、本発明により処理された糖液は、十
分に低い灰分量をもつまでに精製されるが、処理
後においては、その用途等により必要に応じて更
にPHを調節したり、また陰又は陽のイオン交換樹
脂で処理することにより、糖液の性状及び成分の
調整を図ることができる。 以下に、本発明を更に具体的に説明するために
実施例を挙げるが、本発明は、かゝる実施例によ
つて何ら制限されるものではなく、本発明の範囲
内で種々の変更が可能である。 実施例 1 スチレン−ジビニルベンゼン共重合体を母体と
する強酸性陽イオン交換膜(旭硝子社製セレミオ
ンCMV)の22枚を、第2図に示されるように、
電極間に配列することにより、糖液室9室、酸室
10室からなる電気透析槽(有効膜面積2.09dm2
対)を組み立てた。 糖液として、甜菜糖の製糖工程から排出される
廃糖蜜2.0を使用し、酸として0.5規定の塩酸2.0
を使用し、それぞれこれらを上記電気透析槽の
糖液室及び酸室に供給して通電した。なお、極液
としては、陰、陽とも0.5規定の硫酸を使用し
た。 電圧22V、電流密度5.26A/dm2の定電圧運転
で5時間運転を行なつたところ、以下に示すよう
に廃糖液の組成は、処理の前後において変化し、
灰分(K2O+Na2O)の除去率は、81%に達し
た。電流密度は運転停止時においても、その低下
は生じなかつた。
The present invention relates to a method for purifying sugar solution, and in particular to a novel treatment method for purifying molasses or blackstrap molasses by electrodialysis efficiently and without damaging useful components. In sugar refining or sugar refining using cane, sugar beet, etc. as raw materials, molasses, which is the separated mother liquor of sugar crystals, is usually returned to the crystallization step and crystallization is repeated. In such cases, ash in molasses is known to reduce sugar recovery rate as a honey-forming component or impair the taste of molasses, so ash in molasses should be removed as much as possible without allowing it to accumulate. It is said that it is preferable to do so. On the other hand, in the above process, molasses that can no longer be recovered as sugar crystals due to technical or economic reasons is discharged as waste molasses. The properties and components of blackstrap molasses vary greatly depending on the type of raw sugar, for example, cane sugar or beet sugar, and the method of sugar production. However, in either case, it still contains useful components such as considerable amounts of sugar, nitrogenous substances such as various amino acids, and acids such as free acids and bound acids. Conventionally, such blackstrap molasses is used as animal feed, fertilizer,
Although it is used as a fermentation accelerator and other industrial raw materials, the ash content in molasses is often an impediment to more demand in these areas. As means for removing ash from these molasses or blackstrap molasses, ion exchange resin methods, electrodialysis methods, and the like have been proposed to date. However, the ion exchange resin method requires large amounts of resin and regeneration chemicals, and is therefore difficult to implement industrially. On the other hand, electrodialysis is a method that uses an ion-exchange membrane and does not require regenerants and is in principle an excellent industrial method. The electrical resistance of the ion exchange membrane increases during operation due to some substance contained in the membrane, and it cannot be carried out industrially as it is. To prevent this, pretreatments such as special ion exchange resin treatment, ultrafiltration, and activated carbon treatment have been proposed for electrodialysis, but these methods are not only complicated, but also have insufficient purification effects. do not have. The present inventor has discovered that there is no need for the above-mentioned pre-treatment,
Furthermore, we conducted research on a treatment method that efficiently removes and purifies ash from sugar solutions such as molasses or blackstrap molasses without causing trouble during operation, and found that a cation exchange membrane was used as the ion exchange membrane for electrodialysis. At least two of these are arranged between the electrodes, and the sugar solution is present in a compartment whose cathode side and anode side are both composed of cation exchange membranes, while the anode adjacent to the compartment with the cation exchange membrane interposed therebetween. The above purpose is achieved by making an acid exist in the side compartment and energizing it to allow hydrogen ions to permeate and flow in from the anode side of the compartment, and at the same time to permeate and flow out metal cations constituting the ash from the cathode side of the compartment. I have found that it is quite achievable. According to the method of the present invention, compared to conventional means using electrodialysis, the decrease in current density or increase in cell voltage caused by the increase in electrical resistance of the ion exchange membrane during operation can be substantially avoided. Sugar solution can be purified with almost no disturbance. Moreover, the loss of useful components such as sugars and amino acids in the sugar solution is
It was found that there were almost no accompanying effects.
Thus, according to the present invention, not only can the sugar refining process from molasses proceed efficiently, but also the waste molasses, which could not be fully utilized due to the ash contained therein, can be recycled as a useful resource. This opens up new avenues for use. The method of the present invention substantially differs in principle from conventional methods even though they are the same electrodialysis methods. That is, as is clear from FIG. 1, which explains the principle of the present invention, only the cation exchange membrane C is used there. Then, sugar solution 4 is placed in compartment 1 surrounded by a cation exchange membrane.
Acid 5 is supplied to compartment 2 on the anode side of compartment 1.
is supplied. A suitable electrolytic solution 6 is supplied to the compartment 3 on the cathode side of the compartment 1 . When electricity is applied in this way, metal cations such as sodium ions and potassium ions that make up the ash in the sugar solution 4 flow out into the compartment 3 on the cathode side, and flow out from the compartment 2 on the anode side where acid is present. Hydrogen ions are flowed into the sugar solution. Since the outflow and inflow amounts of ions through compartment 1 are the same molar, in the end, the sodium ions that make up the ash in the sugar solution,
Potassium ions will be replaced by hydrogen ions. In the present invention, the movement of anions through the sugar solution is substantially not carried out, but
The sugar solution purified by the present invention, whether it is molasses or blackstrap molasses, substantially eliminates each of the drawbacks of the unprocessed products described above, and therefore the purification method of the present invention is fully effective. It accomplishes its purpose. Examples of the sugar solution treated in the present invention include the above-mentioned molasses used in the sugar manufacturing process of cane sugar and beet sugar, as well as blackstrap molasses discharged from these sugar manufacturing processes or sugar manufacturing processes. However, the sugar solution targeted by the present invention does not necessarily have to be called molasses or blackstrap molasses, and any sugar solution containing ash is targeted, regardless of its name. The components of blackstrap molasses, which is an example of the sugar solution treated in the present invention, include sugars such as sucrose, fructose, and glucose, amino acids (glutamic acid, aspartic acid, etc.), amides (such as asparagine), nitrogen substances such as albuminoids, In addition to free acids and bound acids,
Examples include ash such as potassium, sodium, and calcium. As mentioned above, these composition ratios vary depending on the type of raw sugar, the method of sugar production, etc., but usually they contain 2 to 70% sugar, 1 to 10% nitrogen, and 5 to 20% ash. , and the pH ranges over a wide range.
Usually 4 to 12 items are also included. As the acid used in carrying out the present invention, any acid that can release hydrogen ions in an aqueous solution can be used, and preferably inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, acetic acid, citric acid, propionic acid, etc. Examples include organic acids. The acid concentration depends on the amount of ash and hydrogen ion concentration contained in the sugar solution to be treated, but is preferably 0.01 to 5.0 normal, especially
Those with a specification of 0.05 to 1.0 can be used. On the other hand, as the electrolytic solution supplied to the compartment on the cathode side of the compartment where the sugar solution is supplied, appropriate salts such as potassium chloride and sodium chloride, acids, alkalis, etc. can be used as long as they have conductivity. can. In particular, it is preferable to supply the same acid as that supplied to the anode side. The cation exchange membrane used in the present invention includes:
Homogeneous or heterogeneous, strongly acidic or weakly acidic, crosslinked or non-crosslinked hydrocarbon polymers or fluorine-containing polymers can be used, but homogeneous polymers with good electrochemical properties are particularly suitable. in,
Preference is given to using strongly acidic crosslinked membranes. As the electrodialysis tank used in the present invention using these cation exchange membranes, either the conventional filter press type or unit cell type can be used. In particular, when the present invention is carried out industrially, a large number of cation exchange membranes C are arranged between the electrodes, and alternating compartments 1, 1' are partitioned by the cation exchange membranes, as shown in Figure 2 of the accompanying drawings. , 1''..., and the remaining alternating compartments 2, 2', 2''... are supplied with acid 5.
is supplied and energized. By doing so, the ash content of the sugar solution can be removed extremely efficiently. In such a case, the ion exchange membrane placed adjacent to the cathode or anode does not necessarily have to be a cation exchange membrane, but an anion exchange membrane may be used depending on the type of polar liquid, etc. Further, an appropriate configuration such as arranging a plurality of ion exchange membranes of the same type can be adopted. In electrodialysis, it is desirable that the current density is as high as possible in order to fully utilize the capacity of the cell, but in the present invention, hydrogen ions are introduced from the anode side through the sugar solution, and In order to flow out sodium ions, potassium ions, etc. to the cathode side, if the current density is excessively high, the permeation rate of hydrogen ions through the cation exchange membrane is high, so the hydrogen ions flowing from the anode side are This results in most of the liquid passing through and flowing out to the anode side. Thus, the current density is preferably selected appropriately within the range of 1 to 20 A/dm 2 while taking into account the leakage of hydrogen ions into the cathode side compartment. In addition, when supplying the sugar solution to the container, the pH of the sugar solution should be adjusted as necessary to ensure that the ash in the sugar solution is sufficiently dissociated into ions and efficiently replaced with hydrogen ions. is adjusted to be in the range of 4 to 12, and the temperature can also be adjusted preferably in the range of 5 to 90°C. In this way, the sugar solution treated according to the present invention is purified to have a sufficiently low ash content, but after the treatment, the pH may be further adjusted as necessary depending on the use, etc. By treating the sugar solution with an ion exchange resin, the properties and components of the sugar solution can be adjusted. Examples are given below to more specifically explain the present invention, but the present invention is not limited to these examples in any way, and various modifications may be made within the scope of the present invention. It is possible. Example 1 22 sheets of a strongly acidic cation exchange membrane (Celemion CMV manufactured by Asahi Glass Co., Ltd.) containing a styrene-divinylbenzene copolymer as a matrix were prepared as shown in FIG.
By arranging between the electrodes, 9 sugar chambers and an acid chamber can be created.
Electrodialysis tank consisting of 10 chambers (effective membrane area 2.09dm 2 /
) was assembled. As the sugar solution, we used blackstrap molasses 2.0%, which is discharged from the sugar beet sugar manufacturing process, and as the acid, we used 0.5N hydrochloric acid 2.0%.
These were supplied to the sugar solution chamber and the acid chamber of the electrodialyzer, respectively, and energized. Note that 0.5N sulfuric acid was used as the polar solution for both negative and positive electrodes. After 5 hours of constant voltage operation with a voltage of 22 V and a current density of 5.26 A/ dm2 , the composition of the waste sugar solution changed before and after the treatment, as shown below.
The removal rate of ash (K 2 O + Na 2 O) reached 81%. The current density did not decrease even when the operation was stopped.

【表】 比較例 1 実施例1において、イオン交換膜としては、上
記陽イオン交換膜とともに、スチレン−ジビニル
ベンゼン共重合体を母体とする強塩基性陰イオン
交換膜(旭硝子社製セレミオンAMV)を使用
し、これらを交互に電極間に配列し、実施例1と
同様に糖液室(脱塩室)9室、濃縮室10室からな
る電気透析槽を組み立てた。 糖液室に、実施例1と同じ廃糖蜜2、濃縮室
に3%芒硝溶液2を、電極液に0.5Nの硫酸を
供給して通電を行なつた。 通電に際し、予め電気透析槽の限界電流密度を
求めたところ、電圧9.5Vで、限界電流密度
6.3A/dm2であつた。この限界値を基準とし
て、電圧8Vの定電圧運転を行なつたところ、初
期電流密度5.1A/dm2でスタートしたが、僅か
1時間30分後には、電流密度0.2A/dm2に低下
してしまつた。この間の灰分(K2O+Na2O)の
除去率は、13.5%であつた。
[Table] Comparative Example 1 In Example 1, in addition to the cation exchange membrane described above, a strongly basic anion exchange membrane (Celemion AMV manufactured by Asahi Glass Co., Ltd.) having a styrene-divinylbenzene copolymer as the base material was used as the ion exchange membrane. These were used and arranged alternately between the electrodes to assemble an electrodialysis tank consisting of 9 sugar solution chambers (desalination chambers) and 10 concentration chambers in the same manner as in Example 1. The same waste molasses 2 as in Example 1 was supplied to the sugar solution chamber, 3% sodium sulfate solution 2 was supplied to the concentration chamber, and 0.5N sulfuric acid was supplied to the electrode solution, and electricity was supplied. When applying electricity, the limiting current density of the electrodialysis tank was determined in advance, and at a voltage of 9.5V, the limiting current density was
It was 6.3A/ dm2 . Using this limit value as a reference, constant voltage operation at 8V started with an initial current density of 5.1A/ dm2 , but after only 1 hour and 30 minutes, the current density decreased to 0.2A/ dm2. It was. The removal rate of ash (K 2 O + Na 2 O) during this period was 13.5%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明方法を実施するた
めに使用される電気透析槽の原理図である。 C:陽イオン交換膜、4……糖液、5……酸。
1 and 2 are diagrams of the principle of an electrodialysis cell used to carry out the method of the invention. C: cation exchange membrane, 4... sugar solution, 5... acid.

Claims (1)

【特許請求の範囲】 1 陽イオン交換膜をもつて構成された画室に糖
液を、また該画室の陽極側に酸を存在せしめて通
電し、該画室の陽極側から水素イオンを透過流入
せしめると同時に、該画室の陰極側から灰分陽イ
オンを透過流出せしめることを特徴とする糖液の
精製方法。 2 糖液が、糖蜜又は廃糖蜜である特許請求の範
囲1の精製方法。 3 糖液がPH3〜12である特許請求の範囲1又は
2の精製方法。 4 酸が、濃度0.01〜5.0規定の無機酸又は有機
酸である特許請求の範囲1,2又は3の精製方
法。
[Claims] 1. A sugar solution is placed in a compartment configured with a cation exchange membrane, and an acid is present on the anode side of the compartment, and electricity is applied to allow hydrogen ions to permeate and flow in from the anode side of the compartment. A method for purifying a sugar solution characterized by simultaneously allowing ash cations to permeate and flow out from the cathode side of the compartment. 2. The purification method according to claim 1, wherein the sugar solution is molasses or blackstrap molasses. 3. The purification method according to claim 1 or 2, wherein the sugar solution has a pH of 3 to 12. 4. The purification method according to claim 1, 2 or 3, wherein the acid is an inorganic acid or an organic acid with a concentration of 0.01 to 5.0 normal.
JP12065180A 1980-09-02 1980-09-02 Purification of sugar solution Granted JPS5747497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12065180A JPS5747497A (en) 1980-09-02 1980-09-02 Purification of sugar solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12065180A JPS5747497A (en) 1980-09-02 1980-09-02 Purification of sugar solution

Publications (2)

Publication Number Publication Date
JPS5747497A JPS5747497A (en) 1982-03-18
JPS6261320B2 true JPS6261320B2 (en) 1987-12-21

Family

ID=14791498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12065180A Granted JPS5747497A (en) 1980-09-02 1980-09-02 Purification of sugar solution

Country Status (1)

Country Link
JP (1) JPS5747497A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638760B2 (en) * 1983-05-11 1994-05-25 台糖株式会社 Method for producing sugar-dense product for fermentation
GB2433518A (en) * 2005-12-21 2007-06-27 Danisco Process for the recovery of sucrose and non-sucrose materials
CN102597253B (en) * 2009-10-30 2015-04-08 Cj第一制糖株式会社 Process for economically manufacturing xylose from hydrolysate using electrodialysis and direct recovery method
JP2014198000A (en) * 2013-03-29 2014-10-23 株式会社クラレ Desalination method of sugar solution

Also Published As

Publication number Publication date
JPS5747497A (en) 1982-03-18

Similar Documents

Publication Publication Date Title
EP1347823B3 (en) A method and apparatus for isolation of ionic species from a liquid
EP0249925B1 (en) Method for generating acid and base regenerants and use thereof to regenerate ion-exchange resins
US2863813A (en) Method of electrodialyzing aqueous solutions
US4636295A (en) Method for the recovery of lithium from solutions by electrodialysis
JPH11221571A (en) Desalting of aqueous flow through sealed cell electrodialysis
CN103341320A (en) Novel process for recycling acid and base from viscose sodium sulfate waste liquid by using a bipolar membrane electrodialysis method
JPS6082106A (en) Method for preventing contamination of electrodialysis membrane
CN113023844A (en) Method for treating salt-containing fermentation waste liquid by combining diffusion dialysis with electrodialysis
US3440159A (en) Separation of un-ionized substances by electro-osmosis
CA1272982A (en) Method for the recovery of lithium from solutions by electrodialysis
JPS6261320B2 (en)
CA2078223A1 (en) Separation/recovery of ammonium salts via electrodialytic water splitting
JP2775992B2 (en) Method for producing hydroxylamine
EP2013367B1 (en) Method for deashing syrup by electrodialysis
JP2001170658A (en) Treating device for fluorine-containing waste water and treatment method
US20230371556A1 (en) Purification method with recycling of effluents
CN219079281U (en) Membrane coupling system for preparing high-purity salt by utilizing seawater
JPS6357085B2 (en)
JPH1121689A (en) Production of high-purity silver
JPH059075B2 (en)
SU482496A1 (en) The method of purification of sugar-containing solution
JPS62190100A (en) Method for purifying sugar solution
KR100285290B1 (en) Recovery method of L-threonine by electrodialysis
EP0572389A1 (en) Separation/recovery of ammonium salts via electrodialytic water splitting.
JPH0527474B2 (en)