JPH0527474B2 - - Google Patents

Info

Publication number
JPH0527474B2
JPH0527474B2 JP305186A JP305186A JPH0527474B2 JP H0527474 B2 JPH0527474 B2 JP H0527474B2 JP 305186 A JP305186 A JP 305186A JP 305186 A JP305186 A JP 305186A JP H0527474 B2 JPH0527474 B2 JP H0527474B2
Authority
JP
Japan
Prior art keywords
wastewater
exchange membrane
mineral acid
ammonium ions
dialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP305186A
Other languages
Japanese (ja)
Other versions
JPS62160189A (en
Inventor
Hisao Takeuchi
Keisuke Nagai
Toshio Ito
Muneyuki Ozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP305186A priority Critical patent/JPS62160189A/en
Publication of JPS62160189A publication Critical patent/JPS62160189A/en
Publication of JPH0527474B2 publication Critical patent/JPH0527474B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

アンモニウムイオンを含む廃水の処理方法とし
てイオン交換膜を隔膜とする電気透析装置を用
い、隔膜の一方の側にアンモニウムイオンを含む
廃水を通液し、反対側に酸水溶液を通液し、直流
電流を通電する事により廃水中のアンモニウムイ
オンを交換除去する電気透析処理方法が知られて
いる。小島貞男「脱窒、脱燐技術と富栄養化対
策」p.889〜892(1925)。 しかしながら、アンモニウムイオンを含む廃水
は一般に溶存有機物、有機固形分を含んでおり、
電気透析処理を行つた場合、運転初期は効率の良
い透析が行えるが、時間の経過とともに含有溶存
有機物、有機固形分によりイオン交換膜が汚染さ
れ、その透析性能がいちぢるしく低下する現象、
即ち、フアウリング現象が生じる。本現象が生じ
ると、初期の電流密度を維持できなくなるので、
電流密度を低下させて運転を継続するか、又は運
転を停止し、電気透析槽内の残液を抜いた後、洗
浄剤によりイオン交換膜を洗浄する等の操作が必
要となるが、いずれにしても時間当りの処理能力
を大巾に低下させる事になり、工業的規模での操
作に於ては設備生産性の観点から大きな問題点と
なつている。 又、前述の様なフアウリング現象によるイオン
交換膜の性能低下を生じさせないために、あらか
じめ溶存有機物、有機固形分を含んだ当該液を清
澄過又は限外過処理し、フアウリング物質を
除去する方法も知られているが(前と同じ文献
p.889参照)、この様な前処理工程を導入するとト
ータル設備コスト、ランニングコストが増大し、
経済的観点では大きな欠点となる。 本発明者等は、この様な従来技術の欠点を除く
方法を種々検討した結果、アンモニウムイオンを
含む廃水をドナン透析処理に付することにより前
処理工程ないしに直接高性能でかつ性能低下する
事なくアンモニウムイオンを除去する方法を開発
するに至つた。 本発明はアンモニウムイオンを含む廃水をカチ
オン交換膜を介して鉱酸水溶液と接触させる事に
より、アンモニウムイオンと水素イオンを効率良
くイオン交換させる。 カチオン交換膜を介してのアンモニウムイオン
を含む廃水と鉱酸水溶液(ストリツプ液)との接
触は、即ち、2液の接触は、例えば、カチオン交
換膜の一方の側に一方の液を、他方の側に他方の
液を通液することによつて行なわれる。ドナン透
析が一回の通液接触では不充分な場合は循環通液
接触させるとよい。カチオン交換膜を介して廃水
と反対側に通液する鉱酸水溶液のモル濃度を廃水
中に含まれる全カチオン濃度より大きくする必要
がある。本発明におけるイオン交換反応はドナン
透析原理に基ずくもので反応推進力はカチオン交
換膜を介した両側水溶液のカチオンモル濃度差に
よるものである。廃水側よりカチオンモル濃度の
高い鉱酸側からカチオン交換膜を経由して水素イ
オンが移動し、廃水側では電気的中性を保つため
にアンモニウムイオンが鉱酸側に移動する。この
時、鉱酸側のアニオンはカチオン交換膜と接触し
ても通過、移動できない。 因みに、アンモニウムイオンを含む廃水の代り
に塩化アンモニウムを含む水をカチオン交換膜を
介して塩酸と接触させた場合、イオン交換反応が
平衡に達すると次式が成立する(F.G.Donnan:
Chem.Rev.、、73ページ(1925年)。 〔CNH4 +R/〔CNH4 +L=〔CH +R/〔CH +L ここに、〔CNH +〕および〔CH +〕は、それぞれ、
アンモニウムイオンのモル濃度および水素イオン
のモル濃度を表わし、添字のRおよびLは、それ
ぞれ、カチオン交換膜の一方の側と他方の側とを
表わす。上記式より、廃水側と鉱酸側とカチオン
モル濃度差が大きい程、平衡状態でのアンモニウ
ムイオン除去率の高い事が示唆されている。 本発明でアンモニウムイオンを含む廃水とは、
アンモニウムイオンがカチオンの主体となつてい
る廃水である。このような廃水に含まれる溶存有
機物としては溶存歪白質、色素、糖類、アミノ
酸、有機酸などが挙げられ、有機固形分としてコ
ロイド様歪白質、菌体、せんい質などが挙げら
れ、これらは発酵工業に於る廃水、生活廃水など
に一般的に含まれている物質である。このような
廃水からアンモニウムイオンを除去することは、
環境保全に資する。 廃液中のアンモニウムイオン濃度は、本願発明
方法で処理する場合特に限定するものでないが、
通常は100〜1000ppmの範囲のものが多い。 又、廃水は、アンモニウムイオンを除去すると
水素イオンと置換されるためPHが低下する場合が
あるが、必要に応じてアンモニア以外のアルカリ
を添加し、PH調整する事ができる。アンモニウム
イオンを含む廃水がアルカリ性の場合、ストリツ
プ液側から水素イオンが供給され、廃水が中和さ
れるのでアンモニウムイオンを除去した廃水のPH
を中性付近とする事ができる。 ストリツプ液として使用する鉱酸水溶液は塩
酸、硫酸、硝酸などの無機酸を挙げる事ができ、
使用時の濃度は特に限定するものではないが、廃
水中の全カチオンモル濃度より大きくする事が必
要である。通常1−5モル濃度の鉱酸水溶液を使
用する。濃度がこれより高くても問題ないが、鉱
酸の種類によつては濃度が高すぎるとイオン交換
膜が材質的におかされる事もあるので注意しなけ
ればならない。適当な濃度は、当業者であれば、
予備実験によつて容易に定め得る。 ストリツプ液として鉱酸以外に酢酸ギ酸等の有
機酸類、食塩、硫酸ソーダ、塩化カリ、硫酸カリ
ウム等のアンモニウム塩以外の無機電解質水溶液
も使用できる事はドナン透析原理(前記文献)か
ら容易に知る事ができるが、本発明者等は種々検
討した結果、ストリツプ液として鉱酸を用いた場
合の方がアンモニウム塩以外の無機電解質水溶液
を用いた場合よりもアンモニウムイオンの透析速
度が非常に大きいという事実を見い出した。 これは工業的観点から非常に重要な発見であ
り、アンモニウムイオンを含む廃水処理設備を建
設するに当り、投資額を大幅に低減できる事を意
味する。ストリツプ液中のカチオンが鉱酸に由来
する水素イオンの場合と無機電解質に由来するア
ンモニウムイオン以外のカチオンの場合の透析速
度差については、ドナン透析原理から類推できる
ものでなく本発明者等の鋭意研究の結果得た知見
である。 ドナン透析装置としては、簡単なものは箱型容
器の中央をカチオン交換膜で仕切る事により2つ
の室を作り、一つの室に廃水、他室に鉱酸を入れ
必要ならば撹拌機を据付ける事により、容易に製
作できる。実用的にはフイルタープレス型の市販
電気透析槽(但し、この場合電極板極室は不要)、
及び市販の拡散透析槽を用いる事ができる。 カチオン交換膜としては、例えば、p−スルホ
ン酸スチレン−ジビニルベンゼン共重合体、p−
スルホン酸スチレン−ブタジエン共重合体、p−
スルホン酸フエノール−ホルムアルデヒド共重合
体等のスルホン酸系、カルボン酸系のもので良
い。旭硝子(株)セレミオンCMV膜、徳山曹達(株)ネ
オセプタCIM膜等がその例である。 前述の様な各種溶存有機物、有機固形分を含
み、アンモニウムイオン濃度が100〜10000ppmの
各種廃水をフイルタープレス型にカチオン交換膜
を配置したドナン透析装置を用い、アンモニウム
除去率90%以上になるまで透析した所、急激な性
能低下現象は全く見られず、又、念のため廃水、
ストリツプ液を新規なものに交換し、数度くり返
し透析を行つても同程度の透析性能を示した。
又、装置を解体してカチオン交換膜表面を観察し
た所、電気透析後、一般的に見られる様な膜面の
汚染、有機物の付着が全く認められなかつた。 この事実は本発明者等により初めて見い出され
た現象でこれにより、前述の電気透析法を用いた
場合の欠点が一挙に解決される事が判明した。 さて、本発明で生成するアンモニウムイオンを
吸収した鉱酸水溶液をアニオン交換膜を介して水
と接触させる事により、該鉱酸水溶液から鉱酸の
みを水側へ拡散透析、回収することができる。こ
のようにして得られる鉱酸水溶液は、必要により
新たに必要量の鉱酸を添加し、濃度調整した後、
本発明でのストリツプ液として使用すれば本発明
の鉱酸コストを低減することができて有利であ
る。また、鉱酸を回収した後には塩化アンモニウ
ムの溶液が生ずるが、これは肥料その他の用途に
向けられる。 本発明においてアンモニウムイオンを吸収した
鉱酸水溶液アニオン交換膜を介して水と接触させ
ることにより該鉱酸水溶液から鉱酸のみを透析さ
せ新たな鉱酸水溶液として回収するための拡散透
析装置は、本発明のドナン透析装置のカチオン交
換膜をアニオン交換膜と取り替えたものでよい。
拡散透析処理における2液の接触は、本発明(ド
ナン透析処理)での2液の接触に準じて行なう。 この場合、アニオン交換膜はアニオンの通過さ
せ、カチオンを阻止するが、水素イオンの場合、
イオン径が非常に小さいため、特異的にアニオン
交換膜を通過し、結果的に鉱酸のみが透析され
る。そのようなアニオン交換膜としては、パラメ
チレンアミンスチレン−ジビニルベンゼン共重合
体、パラメチレンアミンスチレン−ブタジエン共
重合体等の第4級アンモニウム塩等のアミン系ア
ニオン交換膜でよく、例えば、旭硝子(株)セレミオ
ンDMV膜、徳山曹達(株)ネオセプタAFN膜が挙げ
られる。 以下、実施例、比較例、参考例により本発明を
更に説明する。 比較例 1 スチレン−ジビニルベンゼン共重合体を母体と
した強酸性カチオン交換膜(旭硝子(株)セレミオン
CMV膜)21枚を第1図に示した様なフイルター
プレス型電気透析槽(旭硝子(株)Du−ob型)を組
み立てた。全膜面積は35.9dm2であつた。 アンモニウムイオンを含む廃水として活性汚泥
法により処理される前の溶存有機物、有機固形分
を含んだ廃水4.0を用い鉱酸として2規定の塩
酸4.0を用いそれぞれを上記電気透析液のフイ
ード室及び酸室に供給し、循環通液しつつ通電し
た。なお、極液としては、陰、陽とも0.5規定硫
酸を使用した。 電圧22V、電流密度6.7A/dm2の定電圧運転を
5時間行い、経時的な電流密度変化を追跡した結
果を表1に示した。
As a method for treating wastewater containing ammonium ions, an electrodialysis device with an ion-exchange membrane as a diaphragm is used. Wastewater containing ammonium ions is passed through one side of the diaphragm, an acid aqueous solution is passed through the other side, and a DC current is applied. An electrodialysis treatment method is known in which ammonium ions in wastewater are exchanged and removed by applying electricity. Sadao Kojima, “Denitrification, dephosphorization technology and eutrophication countermeasures” p.889-892 (1925). However, wastewater containing ammonium ions generally contains dissolved organic matter and organic solids;
When performing electrodialysis treatment, efficient dialysis can be performed at the beginning of operation, but as time passes, the ion exchange membrane becomes contaminated with dissolved organic matter and organic solids, and its dialysis performance deteriorates significantly.
That is, a fouling phenomenon occurs. When this phenomenon occurs, the initial current density cannot be maintained, so
It is necessary to either continue operation by lowering the current density, or to stop operation, drain the remaining liquid in the electrodialysis tank, and then clean the ion exchange membrane with a cleaning agent. However, the processing capacity per hour is greatly reduced, and this is a major problem from the viewpoint of equipment productivity when operated on an industrial scale. In addition, in order to prevent the deterioration of the performance of the ion exchange membrane due to the above-mentioned fouling phenomenon, there is also a method in which the liquid containing dissolved organic matter and organic solids is subjected to clarification or ultrafiltration treatment to remove fouling substances. Although known (same literature as before
(See p.889), introducing such a pretreatment process will increase the total equipment cost and running cost.
From an economic point of view, this is a major drawback. The inventors of the present invention have studied various methods to eliminate the drawbacks of the conventional technology, and have found that by subjecting wastewater containing ammonium ions to Donnan dialysis treatment, high performance can be achieved without the pretreatment process or directly without any reduction in performance. This led to the development of a method to remove ammonium ions. The present invention efficiently exchanges ammonium ions and hydrogen ions by bringing wastewater containing ammonium ions into contact with an aqueous mineral acid solution via a cation exchange membrane. Contact between wastewater containing ammonium ions and an aqueous mineral acid solution (strip solution) through a cation exchange membrane, i.e., contact of the two solutions, for example, one solution on one side of the cation exchange membrane and one solution on the other side. This is done by passing a liquid through one side of the other. If one-time fluid contact is insufficient for Donnan dialysis, circulating fluid contact may be used. It is necessary that the molar concentration of the mineral acid aqueous solution passed through the cation exchange membrane to the side opposite to the wastewater be greater than the total cation concentration contained in the wastewater. The ion exchange reaction in the present invention is based on the Donnan dialysis principle, and the driving force for the reaction is due to the difference in cation molar concentration between the aqueous solutions on both sides via the cation exchange membrane. Hydrogen ions move from the mineral acid side, which has a higher cation molar concentration than the wastewater side, via a cation exchange membrane, and ammonium ions move to the mineral acid side to maintain electrical neutrality on the wastewater side. At this time, anions on the mineral acid side cannot pass through or move even if they come into contact with the cation exchange membrane. Incidentally, if water containing ammonium chloride is brought into contact with hydrochloric acid through a cation exchange membrane instead of waste water containing ammonium ions, the following equation will hold when the ion exchange reaction reaches equilibrium (FGDonnan:
Chem.Rev., page 73 (1925). [C NH4 + ] R / [C NH4 + ] L = [C H + ] R / [C H + ] LHere , [C NH + ] and [C H + ] are respectively,
It represents the molar concentration of ammonium ions and the molar concentration of hydrogen ions, and the subscripts R and L represent one side and the other side of the cation exchange membrane, respectively. The above equation suggests that the larger the difference in cation molar concentration between the wastewater side and the mineral acid side, the higher the ammonium ion removal rate in the equilibrium state. In the present invention, wastewater containing ammonium ions is
This is wastewater whose main cations are ammonium ions. Dissolved organic matter contained in such wastewater includes dissolved distorted white matter, pigments, sugars, amino acids, organic acids, etc., and organic solids include colloidal distorted white matter, bacterial cells, fibrous matter, etc. It is a substance commonly contained in industrial wastewater, domestic wastewater, etc. Removing ammonium ions from such wastewater is
Contributes to environmental conservation. The ammonium ion concentration in the waste liquid is not particularly limited when treated by the method of the present invention, but
Usually, it is in the range of 100 to 1000 ppm. Furthermore, when ammonium ions are removed from wastewater, they are replaced with hydrogen ions, which may lower the pH of the wastewater, but if necessary, an alkali other than ammonia can be added to adjust the pH. If the wastewater containing ammonium ions is alkaline, hydrogen ions are supplied from the stripping liquid side and the wastewater is neutralized, so the pH of the wastewater from which ammonium ions have been removed is
can be set to around neutrality. Mineral acid aqueous solutions used as stripping liquids include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid.
The concentration during use is not particularly limited, but it must be higher than the total cation molar concentration in wastewater. Usually a 1-5 molar mineral acid aqueous solution is used. There is no problem if the concentration is higher than this, but depending on the type of mineral acid, if the concentration is too high, the material of the ion exchange membrane may be damaged, so care must be taken. Appropriate concentrations can be determined by those skilled in the art.
It can be easily determined by preliminary experiments. It is easily known from the Donnan dialysis principle (cited in the above document) that in addition to mineral acids, organic acids such as acetic acid formic acid, and inorganic electrolyte aqueous solutions other than ammonium salts such as common salt, sodium sulfate, potassium chloride, and potassium sulfate can be used as the stripping liquid. However, as a result of various studies, the present inventors have found that the rate of dialysis of ammonium ions is much higher when a mineral acid is used as the stripping liquid than when an inorganic electrolyte solution other than an ammonium salt is used. I found out. This is a very important discovery from an industrial perspective, and means that the investment cost for constructing wastewater treatment facilities containing ammonium ions can be significantly reduced. The difference in dialysis rates when the cations in the stripping solution are hydrogen ions derived from mineral acids and cations other than ammonium ions derived from inorganic electrolytes cannot be inferred from the Donnan dialysis principle, and the present inventors' earnest efforts This is the knowledge obtained as a result of research. A simple Donnan dialysis machine consists of creating two chambers by dividing the center of a box-shaped container with a cation exchange membrane, placing waste water in one chamber and mineral acid in the other, and installing a stirrer if necessary. Therefore, it can be easily manufactured. Practically speaking, a filter press type commercially available electrodialysis tank (however, an electrode plate electrode chamber is not required in this case),
A commercially available diffusion dialysis tank can also be used. Examples of the cation exchange membrane include p-styrene sulfonate-divinylbenzene copolymer, p-
Styrene sulfonate-butadiene copolymer, p-
Sulfonic acid-based or carboxylic acid-based materials such as sulfonic acid phenol-formaldehyde copolymer may be used. Examples include Asahi Glass Co., Ltd.'s Selemion CMV membrane and Tokuyama Soda Co., Ltd.'s Neocepta CIM membrane. Using a Donnan dialysis device equipped with a cation exchange membrane in a filter press type, various wastewaters containing various dissolved organic substances and organic solids as mentioned above and having an ammonium ion concentration of 100 to 10,000 ppm are used until the ammonium removal rate reaches 90% or more. After dialysis, no rapid performance deterioration was observed, and just in case, waste water,
Even when the strip solution was replaced with a new one and dialysis was repeated several times, the dialysis performance remained at the same level.
Furthermore, when the device was disassembled and the surface of the cation exchange membrane was observed, no contamination or organic matter adhesion on the membrane surface, which is commonly seen after electrodialysis, was observed. This fact was discovered for the first time by the inventors of the present invention, and it has been found that the drawbacks of the above-mentioned electrodialysis method can be solved at once. Now, by bringing the mineral acid aqueous solution that has absorbed ammonium ions produced in the present invention into contact with water via an anion exchange membrane, only the mineral acid can be recovered by diffusion dialysis to the water side from the mineral acid aqueous solution. The mineral acid aqueous solution obtained in this way is prepared by adding a new required amount of mineral acid as necessary to adjust the concentration.
Use of the mineral acid as a stripping liquid in the present invention is advantageous in that the cost of the mineral acid of the present invention can be reduced. Also, after recovering the mineral acids, a solution of ammonium chloride is produced, which can be used as fertilizer or for other uses. In the present invention, there is provided a diffusion dialysis apparatus for dialyzing only the mineral acid from the mineral acid aqueous solution and recovering it as a new mineral acid aqueous solution by contacting the mineral acid aqueous solution with water through an anion exchange membrane that has absorbed ammonium ions. The cation exchange membrane of the Donnan dialysis apparatus of the invention may be replaced with an anion exchange membrane.
The contact of the two liquids in the diffusion dialysis treatment is carried out in accordance with the contact of the two liquids in the present invention (Donan dialysis treatment). In this case, the anion exchange membrane allows anions to pass through and blocks cations, but in the case of hydrogen ions,
Since the ionic diameter is very small, it specifically passes through the anion exchange membrane, resulting in only the mineral acid being dialyzed. Such an anion exchange membrane may be an amine-based anion exchange membrane such as a quaternary ammonium salt such as paramethyleneamine styrene-divinylbenzene copolymer or paramethyleneamine styrene-butadiene copolymer. Examples include Selemion DMV membrane (Co., Ltd.) and Neocepta AFN membrane (Tokuyama Soda Co., Ltd.). The present invention will be further explained below with reference to Examples, Comparative Examples, and Reference Examples. Comparative Example 1 Strongly acidic cation exchange membrane based on styrene-divinylbenzene copolymer (Asahi Glass Co., Ltd. Selemion)
A filter press type electrodialyzer (Du-ob type, manufactured by Asahi Glass Co., Ltd.) was assembled using 21 sheets of CMV membrane as shown in Fig. 1. The total membrane area was 35.9 dm2 . Wastewater 4.0 containing dissolved organic matter and organic solids before being treated by the activated sludge method as wastewater containing ammonium ions was used, and 2N hydrochloric acid 4.0 was used as the mineral acid. The liquid was supplied to the tank, and electricity was applied while circulating the liquid. Note that 0.5N sulfuric acid was used as the polar solution for both negative and positive electrodes. Constant voltage operation was performed for 5 hours at a voltage of 22 V and a current density of 6.7 A/dm 2 , and the changes in current density over time were tracked and the results are shown in Table 1.

【表】 5時間透析後、電気透析槽を解体しカチオン交
換膜面を観察した所、フイード室側の膜面に粘着
性のある固形分の付着が見られた。 表2に5時間透析後のフイード液の性状変化を
示した。
[Table] After dialysis for 5 hours, the electrodialysis tank was disassembled and the cation exchange membrane surface was observed, and sticky solid matter was observed on the membrane surface on the feed chamber side. Table 2 shows changes in the properties of the feed liquid after 5 hours of dialysis.

【表】 実施例 1 比較例1と同様の設備、液を用い、通電せずに
フイード液、酸液を電気透析槽に循環通液させ
た。但し、この場合極液は0.5N硫酸を使用せず
水を用いた。 表3にフイード液のアンモニア態窒素濃度及び
PHの経時変化を示した。
[Table] Example 1 Using the same equipment and liquid as in Comparative Example 1, feed liquid and acid solution were circulated through an electrodialysis tank without applying electricity. However, in this case, water was used as the polar solution instead of 0.5N sulfuric acid. Table 3 shows the ammonia nitrogen concentration and
It shows the change in pH over time.

【表】 透析5時間後、装置を解体し、カチオン交換膜
面を観察した所、膜面両側共固形物の付着は見ら
れなかつた。 実施例 2 第2図に示した様なドナン透析装置を組立て、
フイード室側の比較例1と同様の廃水400ml、ス
トリツプ室側に2N HCl 又は2N NaCl 又は
2N KClを400ml入れ、室温で両室を実験室用ス
ターラーで撹拌し(300rpm)フイード室側のア
ンモニア態窒素濃度変化及びPH変化を経時的に測
定した。 結果を表4に示した。
[Table] After 5 hours of dialysis, the apparatus was disassembled and the cation exchange membrane surface was observed, and no co-solid matter was observed on both sides of the membrane surface. Example 2 Assemble a Donnan dialysis machine as shown in Figure 2,
400 ml of the same wastewater as in Comparative Example 1 on the feed chamber side, and 2N HCl or 2N NaCl or
400 ml of 2N KCl was added, and both chambers were stirred at room temperature using a laboratory stirrer (300 rpm), and changes in ammonia nitrogen concentration and pH changes in the feed chamber side were measured over time. The results are shown in Table 4.

【表】 上表からストリツプ室に鉱酸(塩酸)を入れた
場合が最も有効なことが理解されよう。 実施例 3 実施例2で用いた廃液6.0をフイード液、3N
HCl2.0をストリツプ液として、実施例1で用
いた電気透析槽を用い通電せずに、ドナン透析を
6時間行い、アンモニウムイオンを吸収したスト
リツプ液2.5を得た。0.5液量が増えたのは、
フイード側から水が移動したためである。 表5に透析終了後のストリツプ液組成を示す。
[Table] From the above table, it can be seen that the most effective method is to add mineral acid (hydrochloric acid) to the stripping chamber. Example 3 The waste liquid 6.0 used in Example 2 was used as a feed liquid, 3N
Using HCl2.0 as a strip solution, Donnan dialysis was performed for 6 hours without applying electricity using the electrodialysis tank used in Example 1 to obtain a strip solution 2.5 that had absorbed ammonium ions. The increase in liquid volume by 0.5 is due to
This is because water moved from the feed side. Table 5 shows the composition of the strip solution after dialysis.

【表】 参考例 1 因みに強塩基性アニオン交換膜(旭硝子(株)セレ
ミオンDMV膜)19枚(全膜面積は、39.7dm2であ
つた。)を組み入れた第3図に示した市販拡散透
析槽(旭硝子(株)T−ob型透析槽)を用い、上記
実施例3で得られたストリツプ液を0.3/hrの
速度でフイードし、膜の反対側に酸回収用水を
0.24/hrの速度でフイードする事によりストリ
ツプ液からの酸回収を行つた。 回収塩酸の組成を表6に示す。
[Table] Reference Example 1 Incidentally, the commercially available diffusion dialysis shown in Figure 3 incorporates 19 strongly basic anion exchange membranes (Celemion DMV membranes manufactured by Asahi Glass Co., Ltd.) (total membrane area was 39.7 dm 2 ). Using a tank (Asahi Glass Co., Ltd. T-ob type dialysis tank), feed the strip solution obtained in Example 3 at a rate of 0.3/hr, and add water for acid recovery to the other side of the membrane.
Acid recovery from the strip solution was accomplished by feeding at a rate of 0.24/hr. Table 6 shows the composition of the recovered hydrochloric acid.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比較例1の装置及び操作の概要を、第
2図は実施例2の装置及び操作の概要を、そし
て、第3図は参考例1の装置及び操作の概要を示
す。
FIG. 1 shows an overview of the device and operation of Comparative Example 1, FIG. 2 shows an overview of the device and operation of Example 2, and FIG. 3 shows an overview of the device and operation of Reference Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 カチオン交換膜を隔膜とするドナン透析装置
を用い、該隔膜を介してアンモニウムイオンを含
む廃水と鉱酸水溶液とを接触させる事により廃水
中のアンモニウムイオンと鉱酸中の水素イオンを
交換することを特徴とするアンモニウムイオンを
含む廃水の処理方法。
1 Using a Donnan dialysis device with a cation exchange membrane as a diaphragm, ammonium ions in the wastewater and hydrogen ions in the mineral acid are exchanged by bringing the wastewater containing ammonium ions into contact with an aqueous mineral acid solution through the diaphragm. A method for treating wastewater containing ammonium ions, characterized by:
JP305186A 1986-01-10 1986-01-10 Treatment of waste water containing ammonium ion Granted JPS62160189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP305186A JPS62160189A (en) 1986-01-10 1986-01-10 Treatment of waste water containing ammonium ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP305186A JPS62160189A (en) 1986-01-10 1986-01-10 Treatment of waste water containing ammonium ion

Publications (2)

Publication Number Publication Date
JPS62160189A JPS62160189A (en) 1987-07-16
JPH0527474B2 true JPH0527474B2 (en) 1993-04-21

Family

ID=11546520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP305186A Granted JPS62160189A (en) 1986-01-10 1986-01-10 Treatment of waste water containing ammonium ion

Country Status (1)

Country Link
JP (1) JPS62160189A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255580A (en) * 2005-03-17 2006-09-28 Mitsui Eng & Shipbuild Co Ltd Ammonia concentration reduction apparatus and method of fermented solution

Also Published As

Publication number Publication date
JPS62160189A (en) 1987-07-16

Similar Documents

Publication Publication Date Title
US5948230A (en) Electrodialysis including filled cell electrodialysis (Electrodeionization)
JPH10128338A (en) Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
JPS63153298A (en) Removal of acid from cathodic electrophoretic painting bath by electrodialysis
CN113023844A (en) Method for treating salt-containing fermentation waste liquid by combining diffusion dialysis with electrodialysis
CA1272982A (en) Method for the recovery of lithium from solutions by electrodialysis
JP2775992B2 (en) Method for producing hydroxylamine
JPH0527474B2 (en)
JP4925687B2 (en) Recovery method of high purity inorganic acid
JP2824537B2 (en) Method for producing hydroxylamine
JP4480903B2 (en) Method for producing dealkalized water glass solution
JP3555732B2 (en) Pure water production method
JP3637458B2 (en) Ammonia nitrogen removal method
JPS6225419B2 (en)
JPS5850791B2 (en) Device that changes salt concentration in liquid
JPH0724828B2 (en) Method of removing electrolyte
JP2001170658A (en) Treating device for fluorine-containing waste water and treatment method
JPS6261320B2 (en)
JPH03146118A (en) Treatment method of aluminum material surface treatment wastewater
JPH0337967B2 (en)
JPH0780254A (en) Removal of ammoniacal nitrogen in condensate desalted regenerated water
JPS6136980B2 (en)
JPS59179099A (en) Desalting of sugar liquid
JPS6041964B2 (en) Electrodialysis method
JPS62190100A (en) Method for purifying sugar solution
JPH11165177A (en) Electric deionized water generator