JP3637458B2 - Ammonia nitrogen removal method - Google Patents

Ammonia nitrogen removal method Download PDF

Info

Publication number
JP3637458B2
JP3637458B2 JP06184595A JP6184595A JP3637458B2 JP 3637458 B2 JP3637458 B2 JP 3637458B2 JP 06184595 A JP06184595 A JP 06184595A JP 6184595 A JP6184595 A JP 6184595A JP 3637458 B2 JP3637458 B2 JP 3637458B2
Authority
JP
Japan
Prior art keywords
chamber
ions
concentration
exchange membrane
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06184595A
Other languages
Japanese (ja)
Other versions
JPH08229568A (en
Inventor
哲男 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP06184595A priority Critical patent/JP3637458B2/en
Publication of JPH08229568A publication Critical patent/JPH08229568A/en
Application granted granted Critical
Publication of JP3637458B2 publication Critical patent/JP3637458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【産業上の利用分野】
本発明は火力発電プラントにおける復水脱塩再生水などの液中に存在するアンモニア性窒素をアンモニアガスとして除去する方法に関する。
【0002】
【従来の技術】
例えば火力発電プラントにおける復水などは、通常イオン交換樹脂により脱塩されて復水脱塩再生水とされるが、その再生水中には一般に環境基準を越える量のアンモニア性窒素が含まれている。従来からこのような復水脱塩再生水中のアンモニア性窒素を環境基準以下に低減する方法として、アンモニア拡散(ストリッピング)法が多用されている。
【0003】
【発明が解決しようとする課題】
しかしこのストリッピング法は、複雑な設備や大きな敷地面積を必要とする上に、多大のエネルギーを消費するという問題がある。また、大気中に蒸発水と共にアンモニアを放出させることは環境上も好ましくないので、それを回避するためにはさらに後処理設備を必要とするが、そのような設備を設けても資源としてのアンモニアを回収することは容易ではない。
そこで本発明はこのような問題を解決するためのアンモニア性窒素の除去方法の提供を課題とするものである。
【0004】
【課題を解決するための手段】
本発明は、アンモニア性窒素を含有する液に酸を添加してアンモニウム塩を沈澱除去し、得られたアンモニウムイオンを含む液を陽イオン交換膜と陰イオン交換膜が交互に配置された電気透析装置で処理するアンモニア性窒素の除去方法である。
そして電気透析装置の透析単位として、アンモニウムイオンを含む液を導入する希釈室と、その希釈室の陽イオン交換膜側に隣接する第1濃縮室と、希釈室の陰イオン交換膜側に隣接する第2濃縮室と、第1濃縮室の陰イオン交換膜側に隣接して水酸イオン含有液が流れる水酸イオン室を含む。さらに第1濃縮室のpHは、希釈室より移動するアンモニウムイオンと水酸イオン室から移動する水酸イオンからアンモニアを生成する平衡条件となるようなアルカリ性に維持する。そして生成したアンモニアを気体として第1濃縮室から取り出すことを特徴とするものである。
【0005】
【実施例】
次に、本発明のアンモニア性窒素の除去方法をさらに詳細に説明する。
図1は本発明のアンモニア性窒素の除去方法を実施するための処理フローシートの一例であり、1はpH調整槽、2はポンプ、3は中空糸膜フイルタ、4は電気透析装置である。
アンモニア性窒素を含有する液aは、pH調整槽1で添加される酸bと混合され、pHを4以下、好ましくは2〜4程度に調整され、それによってアンモニア性窒素はアンモニウム塩として沈澱し配管cから除去される。添加する酸としては鉱酸、例えば塩酸または硫酸などが好ましい。沈澱しないアンモニウムイオン(NH4 イオン)と無機イオン、例えば酸として硫酸を使用するときは硫酸イオン(SO4 イオン)が液中に残される。
pH調整槽1からのアンモニウムイオンを含む液は、ポンプ2により配管dを通って中空糸膜フイルタ3に送られて微細な固形粒子が除去される。固形粒子を除去することにより電気透析装置における透析膜の有効処理時間を大幅に延長することができる。
【0006】
固形粒子を除去した再生水は、配管eにより電気透析装置4の希釈室に導入され、そこで電気透析処理により一定量のアンモニアイオンおよびその他の無機イオン類を低減された液が配管fを通って排出され、再使用するか系外に放出される。
電気透析装置4は後述するように陽イオン交換膜と陰イオン交換膜が交互に多数配置され、それらによって仕切られた希釈室、第1濃縮室、第2濃縮室および水酸イオン室が透析単位となっている。そして水酸イオン室に水酸イオン供給液としての水酸化ナトリウム(NaOH)を含む液が配管gにより導入され、配管hから流出する。さらに第1濃縮室には室内を高pHに維持するためにアルカリ剤を含む液、例えば水酸化ナトリウム(NaOH)液が配管kにより導入され、第1濃縮室からはNaOH液が配管mにより流出する。また気体としてのアンモニアが第1濃縮室内を上昇して配管iから外部に取り出される。さらに第2濃縮室で濃縮されたSO4 イオンのような無機イオンとNaイオンを含む液が配管jから流出する。
【0007】
次に、図2は本発明に使用される電気透析装置4を模式的に示す図である。例えばチタン板に白金メッキした陽極板5と、ステンレス板からなる陰極板6との間に陽イオン交換膜Cと陰イオン交換膜Aが交互に多数配置される。陰イオン交換膜Aとしては、例えばイオン交換基として4級アンモニウム塩を1.5〜3.0(meq/g乾燥樹脂)含むスチレン/ジビニルベンゼン共重合体系の膜が使用され、陽イオン交換膜Cとしては、例えばイオン交換基としてスルホン酸基を1.5〜3.0(meq/g乾燥樹脂)含むスチレン/ジビニルベンゼン共重合体系の膜が使用される。なお陽極板5とそれに隣接する陰イオン交換膜Aとの間には陽極液が流され、陰極板6とそれに隣接する陽イオン交換膜Cとの間には陰極液が流される。
【0008】
イオン交換膜の対数は液中に含まれるアンモニアイオンの濃度や所望の処理量等により異なるが、一般に200〜900対程度用いられる。そして一対の陽イオン交換膜Cと陰イオン交換膜Aの間にアンモニウムイオンを含む液を導入する希釈室10が配置され、希釈室10の陽イオン交換膜C側に隣接して第1濃縮室11、希釈室10の陰イオン交換膜A側に隣接して第2濃縮室12が配置され、さらに第1濃縮室11の陰イオン交換膜A側に隣接して水酸イオン含有液が流れる水酸イオン室13が配置されている。そしてこれら希釈室10、第1濃縮室11、第2濃縮室12および水酸イオン室13により透析単位Uが構成され、そのような透析単位が陽極板5と陰極板6との間に多数配置されている。
【0009】
前述のように酸として硫酸を用いた場合は、希釈室10にはアンモニウムイオン(NH4 イオン)と硫酸イオン(SO4 イオン)を含む液が配管eにより導入され、そこでこれらイオンは陰−陽極板間に形成された電場によって電気的に泳動する。NH4 イオン(陽イオン)は陰極板6の方向に泳動し、陽イオン交換膜Cを透過し第1濃縮室11に移動する。第1濃縮室11内のNH4 イオンはさらに陰極板6方向へ泳動しようとするが、水酸イオン室13との境界の陰イオン交換膜Aに阻止される。
一方SO4 イオン(陰イオン)は陽極板5の方向に泳動し、陰イオン交換膜Aを透過して第2濃縮室12に移動する。第2濃縮室12内のSO4 イオンはさらに陽極板5方向に泳動しようとするが、次の透析単位を構成する水酸イオン室13との境界の陽イオン交換膜Cに阻止されて濃縮液中に残る。このように希釈室10のNH4 イオンは第1濃縮室11へ移動し、SO4 イオンは第2濃縮室12に移動する。
【0010】
配管gにより図示中央の水酸イオン室13に導入された水酸化ナトリウムを含む液は、陽イオンであるナトリウムイオン(Naイオン)と陰イオンである水酸イオン(OHイオン)とに電離される。陰−陽極板間に形成された電場によって、Naイオンは陰極板6の方向に泳動し、陽イオン交換膜Cを透過し次の透析単位を構成する第2濃縮室12に移動する。第2濃縮室12内のNaイオンはさらに陰極板6方向へ泳動しようとするが陰イオン交換膜Aに阻止される。
一方、OHイオンは陽極板5の方向に泳動し、陰イオン交換膜Aを透過して第1濃縮室11に移動する。第1濃縮室11内のOHイオンはさらに陽極板5方向に泳動しようとするが、希釈室10との境界の陽イオン交換膜Cに阻止される。このように水酸イオン室13のNaイオンは次の透析単位を構成する第2濃縮室12に移動し、OHイオンは第1濃縮室11に移動する。
上記のようにして、希釈室10に導入されたNH4 イオンとSO4 イオンは希釈され、配管fから系外に排出されるか再循環される。また、水酸イオン室13に導入されたNaOHは希釈されて配管hから流出し、新たなNaOH液を補給され再循環される。
【0011】
第1濃縮室11には希釈室10から移動したNH4 イオンと水酸イオン室13から移動したOHイオンが存在するが、NH4 イオンとOHイオンは、アンモニア(NH3 )との間で可逆的反応をする。図3は室内のpHを変化したときのNH3 とNH4 イオンとの存在割合を、温度をパラメータとして測定した結果である。
図3から判るように、室内のpHが高くなるほどその反応はNH3 側に移行するが、少なくともpHを12以上のアルカリ側に維持することにより、温度が変化しても反応はほぼ100%NH3 側に移行した状態で平衡する。第1濃縮室11内は配管kから導入したNaOH液により、そのような高pH、少なくともその温度において反応がほぼ100%NH3 側に平衡する条件の高いpHに維持され、それによって第1濃縮室11内に移動したNH4 イオンは、気体アンモニア(NH3 )として分離され配管iから効率良く取り出し回収できる。一方、第1濃縮室11からはNaOHを含む液が配管mにより流出するが、これは再循環される。
【0012】
【実験例】
次に図1のフローシートのように構成された本発明の実施例を示す。
配管aから0.3リットル/時のアンモニア性窒素を含有する復水脱塩再生水をpH調整槽1に供給し、そこで硫酸を添加してpHを3に調整した。pH調整された再生水は次に中空糸膜フイルタ3でSSとして0.2ppmまで固形粒子除去した後、電気透析装置4に導入して電気透析処理をした。電気透析装置4の有効膜面積は1.72dm/対、組込膜対数は1である。
水酸イオン室13には濃度pH12のNaOH液を0.3リットル/時流し、さらに第1濃縮室に濃度pH12のNaOH液を0.3リットル/時流してそのpHを12に維持した。その結果、配管iから気体としてのアンモニアが1.3リットル/時回収された。一方、配管mからはアンモニウムイオンを実質的に含まないNaOH液が流出した。
【0013】
【発明の効果】
本発明の方法によれば、複雑な設備や大きな敷地面積を必要とせず、多大のエネルギーの消費をすることなく、アンモニア性窒素を効率良く除去することができる。さらに本発明の方法によれば、アンモニアを気体として容易に分離回収することができるので環境の問題を生じることがなく、しかも回収したアンモニアは資源として有効活用できる。
【図面の簡単な説明】
【図1】本発明のアンモニア性窒素の除去方法を実施するための処理フローシート。
【図2】本発明の方法において使用する電気透析装置の原理を説明する模式的な図。
【図3】アンモニウムイオンとアンモニアの平衡条件を示す図。
【符号の説明】
1 pH調整槽
2 ポンプ
3 中空糸膜フイルタ
4 電気透析装置
5 陽極板
6 陰極板
10 希釈室
11 第1濃縮室
12 第2濃縮室
13 水酸イオン室
A 陰イオン交換膜
C 陽イオン交換膜
[0001]
[Industrial application fields]
The present invention relates to a method for removing ammonia nitrogen present in a liquid such as condensate demineralized reclaimed water in a thermal power plant as ammonia gas.
[0002]
[Prior art]
For example, condensate in a thermal power plant is usually desalted with an ion exchange resin to form condensate demineralized reclaimed water, and the reclaimed water generally contains ammonia nitrogen in an amount exceeding environmental standards. Conventionally, an ammonia diffusion (stripping) method has been frequently used as a method of reducing ammonia nitrogen in such condensate demineralized reclaimed water to be below the environmental standard.
[0003]
[Problems to be solved by the invention]
However, this stripping method requires a complicated facility and a large site area, and also has a problem of consuming a great deal of energy. Moreover, since it is not environmentally preferable to release ammonia together with evaporated water into the atmosphere, in order to avoid this, further post-treatment facilities are required. Even if such facilities are provided, ammonia as a resource is also required. It is not easy to recover.
Accordingly, an object of the present invention is to provide a method for removing ammoniacal nitrogen for solving such problems.
[0004]
[Means for Solving the Problems]
The present invention relates to electrodialysis in which an ammonium salt is precipitated and removed by adding an acid to a liquid containing ammoniacal nitrogen, and the resulting liquid containing ammonium ions is alternately arranged with a cation exchange membrane and an anion exchange membrane. This is a method of removing ammoniacal nitrogen treated by an apparatus.
As a dialysis unit of the electrodialysis apparatus, a dilution chamber for introducing a solution containing ammonium ions, a first concentration chamber adjacent to the cation exchange membrane side of the dilution chamber, and an anion exchange membrane side of the dilution chamber are adjacent to each other. The second concentration chamber includes a hydroxide ion chamber in which a hydroxide ion-containing liquid flows adjacent to the anion exchange membrane side of the first concentration chamber. Further, the pH of the first concentrating chamber is maintained at an alkalinity so as to be an equilibrium condition for generating ammonia from ammonium ions moving from the dilution chamber and hydroxide ions moving from the hydroxide ion chamber. And the produced | generated ammonia is taken out from a 1st concentration chamber as gas, It is characterized by the above-mentioned.
[0005]
【Example】
Next, the ammonia nitrogen removing method of the present invention will be described in more detail.
FIG. 1 is an example of a processing flow sheet for carrying out the ammonia nitrogen removing method of the present invention, wherein 1 is a pH adjusting tank, 2 is a pump, 3 is a hollow fiber membrane filter, and 4 is an electrodialysis apparatus.
The liquid a containing ammonia nitrogen is mixed with the acid b added in the pH adjusting tank 1, and the pH is adjusted to 4 or less, preferably about 2 to 4, whereby the ammonia nitrogen precipitates as an ammonium salt. It is removed from the pipe c. The acid to be added is preferably a mineral acid such as hydrochloric acid or sulfuric acid. Ammonium ions (NH 4 ions) that do not precipitate and inorganic ions such as sulfuric acid (SO 4 ions) are left in the solution when sulfuric acid is used as the acid.
The liquid containing ammonium ions from the pH adjusting tank 1 is sent by the pump 2 through the pipe d to the hollow fiber membrane filter 3 to remove fine solid particles. By removing the solid particles, the effective treatment time of the dialysis membrane in the electrodialysis apparatus can be greatly extended.
[0006]
The reclaimed water from which the solid particles have been removed is introduced into the dilution chamber of the electrodialyzer 4 through the pipe e, where a liquid in which a certain amount of ammonia ions and other inorganic ions have been reduced by the electrodialysis treatment is discharged through the pipe f. And reused or released out of the system.
As will be described later, the electrodialysis apparatus 4 includes a large number of cation exchange membranes and anion exchange membranes alternately arranged, and the dilution chamber, the first concentration chamber, the second concentration chamber, and the hydroxide ion chamber partitioned by them are dialysis units. It has become. Then, a liquid containing sodium hydroxide (NaOH) as a hydroxide ion supply liquid is introduced into the hydroxide ion chamber through the pipe g and flows out from the pipe h. Further, a liquid containing an alkaline agent, for example, sodium hydroxide (NaOH) liquid is introduced into the first concentration chamber through the pipe k in order to maintain the room at a high pH, and the NaOH liquid flows out from the first concentration chamber through the pipe m. To do. Also, ammonia as a gas rises in the first concentration chamber and is taken out from the pipe i. Further, a liquid containing inorganic ions such as SO 4 ions and Na ions concentrated in the second concentration chamber flows out from the pipe j.
[0007]
Next, FIG. 2 is a diagram schematically showing the electrodialysis apparatus 4 used in the present invention. For example, a large number of cation exchange membranes C and anion exchange membranes A are alternately arranged between an anode plate 5 platinum-plated on a titanium plate and a cathode plate 6 made of a stainless steel plate. As the anion exchange membrane A, for example, a membrane of a styrene / divinylbenzene copolymer system containing a quaternary ammonium salt as an ion exchange group of 1.5 to 3.0 (meq / g dry resin) is used. As C, for example, a styrene / divinylbenzene copolymer film containing 1.5 to 3.0 (meq / g dry resin) of a sulfonic acid group as an ion exchange group is used. An anolyte flows between the anode plate 5 and the anion exchange membrane A adjacent thereto, and a catholyte flows between the cathode plate 6 and the cation exchange membrane C adjacent thereto.
[0008]
The logarithm of the ion exchange membrane varies depending on the concentration of ammonia ions contained in the liquid, the desired treatment amount, etc., but generally about 200 to 900 pairs are used. A dilution chamber 10 for introducing a liquid containing ammonium ions is disposed between the pair of cation exchange membrane C and anion exchange membrane A, and the first concentration chamber is adjacent to the cation exchange membrane C side of the dilution chamber 10. 11. The water in which the second concentration chamber 12 is disposed adjacent to the anion exchange membrane A side of the dilution chamber 10 and the hydroxide ion-containing liquid flows adjacent to the anion exchange membrane A side of the first concentration chamber 11. An acid ion chamber 13 is disposed. The dilution chamber 10, the first concentration chamber 11, the second concentration chamber 12, and the hydroxide ion chamber 13 constitute a dialysis unit U, and a large number of such dialysis units are arranged between the anode plate 5 and the cathode plate 6. Has been.
[0009]
As described above, when sulfuric acid is used as the acid, a solution containing ammonium ions (NH 4 ions) and sulfate ions (SO 4 ions) is introduced into the dilution chamber 10 through the pipe e, where these ions are negative-anode. Electrophoresis is performed by an electric field formed between the plates. NH 4 ions (cations) migrate in the direction of the cathode plate 6, pass through the cation exchange membrane C, and move to the first concentration chamber 11. NH 4 ions in the first concentration chamber 11 try to migrate further toward the cathode plate 6, but are blocked by the anion exchange membrane A at the boundary with the hydroxide ion chamber 13.
On the other hand, SO 4 ions (anions) migrate in the direction of the anode plate 5, pass through the anion exchange membrane A, and move to the second concentration chamber 12. The SO 4 ions in the second concentrating chamber 12 try to migrate further in the direction of the anode plate 5, but are blocked by the cation exchange membrane C at the boundary with the hydroxide ion chamber 13 constituting the next dialysis unit and concentrated solution. Remain in. Thus, NH 4 ions in the dilution chamber 10 move to the first concentration chamber 11, and SO 4 ions move to the second concentration chamber 12.
[0010]
The liquid containing sodium hydroxide introduced into the hydroxide ion chamber 13 in the center of the figure by the pipe g is ionized into sodium ions (Na ions) that are cations and hydroxide ions (OH ions) that are anions. . Na ions migrate in the direction of the cathode plate 6 by the electric field formed between the negative and positive electrode plates, pass through the cation exchange membrane C, and move to the second concentration chamber 12 constituting the next dialysis unit. Na ions in the second concentration chamber 12 try to migrate further toward the cathode plate 6 but are blocked by the anion exchange membrane A.
On the other hand, OH ions migrate in the direction of the anode plate 5, pass through the anion exchange membrane A, and move to the first concentration chamber 11. The OH ions in the first concentration chamber 11 try to migrate further in the direction of the anode plate 5, but are blocked by the cation exchange membrane C at the boundary with the dilution chamber 10. Thus, Na ions in the hydroxide ion chamber 13 move to the second concentration chamber 12 constituting the next dialysis unit, and OH ions move to the first concentration chamber 11.
As described above, NH 4 ions and SO 4 ions introduced into the dilution chamber 10 are diluted and discharged out of the system from the pipe f or recirculated. Further, the NaOH introduced into the hydroxide ion chamber 13 is diluted and flows out from the pipe h, is replenished with a new NaOH solution, and is recirculated.
[0011]
In the first concentration chamber 11, there are NH 4 ions moved from the dilution chamber 10 and OH ions moved from the hydroxide ion chamber 13. The NH 4 ions and OH ions are reversible between ammonia (NH 3 ). To react. FIG. 3 shows the results of measuring the abundance ratio of NH 3 and NH 4 ions when the indoor pH is changed using temperature as a parameter.
As can be seen from FIG. 3, the reaction shifts to the NH 3 side as the indoor pH increases. However, the reaction is almost 100% NH even if the temperature changes by maintaining at least the pH of 12 or higher. Equilibrate in the state shifted to the 3 side. The inside of the first concentration chamber 11 is maintained at such a high pH, at least at such a temperature, by a NaOH solution introduced from the pipe k at a high pH under which the reaction equilibrates to the nearly 100% NH 3 side. The NH 4 ions moved into the chamber 11 are separated as gaseous ammonia (NH 3 ) and can be efficiently taken out and recovered from the pipe i. On the other hand, a liquid containing NaOH flows out from the first concentration chamber 11 through the pipe m, but this is recirculated.
[0012]
[Experimental example]
Next, the Example of this invention comprised like the flow sheet of FIG. 1 is shown.
Condensate demineralized regenerated water containing ammonia nitrogen at 0.3 liter / hour was supplied to the pH adjustment tank 1 from the pipe a, and sulfuric acid was added thereto to adjust the pH to 3. The pH-adjusted reclaimed water was then subjected to solid dial removal to 0.2 ppm as SS with the hollow fiber membrane filter 3 and then introduced into the electrodialysis apparatus 4 for electrodialysis treatment. The effective membrane area of the electrodialysis apparatus 4 is 1.72 dm / pair, and the number of built-in membrane pairs is 1.
A NaOH solution having a concentration of pH 12 was flowed into the hydroxide ion chamber 13 at 0.3 liter / hour, and an NaOH solution having a concentration of pH 12 was flowed into the first concentration chamber at 0.3 liter / hour to maintain the pH at 12. As a result, 1.3 liter / hour of ammonia as a gas was recovered from the pipe i. On the other hand, an NaOH solution substantially free of ammonium ions flowed out from the pipe m.
[0013]
【The invention's effect】
According to the method of the present invention, ammonia nitrogen can be efficiently removed without requiring complicated facilities or a large site area and without consuming a great deal of energy. Furthermore, according to the method of the present invention, ammonia can be easily separated and recovered as a gas, so that environmental problems do not occur, and the recovered ammonia can be effectively used as a resource.
[Brief description of the drawings]
FIG. 1 is a process flow sheet for carrying out the method for removing ammoniacal nitrogen of the present invention.
FIG. 2 is a schematic diagram illustrating the principle of an electrodialysis apparatus used in the method of the present invention.
FIG. 3 is a view showing an equilibrium condition between ammonium ions and ammonia.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 pH adjustment tank 2 Pump 3 Hollow fiber membrane filter 4 Electrodialyzer 5 Anode plate 6 Cathode plate 10 Dilution chamber 11 First concentration chamber 12 Second concentration chamber 13 Hydroxide ion chamber A Anion exchange membrane C Cation exchange membrane

Claims (2)

アンモニア性窒素を含有する液に酸を添加してアンモニウム塩を沈澱除去し、アンモニウムイオンを含む液を陽イオン交換膜Cと陰イオン交換膜Aが交互に配置された電気透析装置4で処理するアンモニア性窒素の除去方法であって、電気透析装置4の透析単位Uとして、アンモニウムイオンを含む液を導入する希釈室10と、該希釈室10の陽イオン交換膜C側に隣接する第1濃縮室11と、該希釈室10の陰イオン交換膜A側に隣接する第2濃縮室12と、前記第1濃縮室11の陰イオン交換膜A側に隣接して水酸イオン含有液が流れる水酸イオン室13を含み、前記第1濃縮室11のpHを前記希釈室10より移動するアンモニウムイオンと前記水酸イオン室13から移動する水酸イオンからアンモニアを生成する平衡条件となるようなアルカリ性に維持し、それによって生成したアンモニアを気体として該第1濃縮室11から取り出すことを特徴とするアンモニア性窒素の除去方法。An acid is added to a liquid containing ammonia nitrogen to precipitate and remove ammonium salts, and a liquid containing ammonium ions is processed by an electrodialysis apparatus 4 in which cation exchange membranes C and anion exchange membranes A are alternately arranged. A method for removing ammonia nitrogen, which is a dialysis unit U of the electrodialyzer 4, a dilution chamber 10 for introducing a liquid containing ammonium ions, and a first concentration adjacent to the cation exchange membrane C side of the dilution chamber 10. Chamber 11, the second concentration chamber 12 adjacent to the anion exchange membrane A side of the dilution chamber 10, and the water in which the hydroxide ion-containing liquid flows adjacent to the anion exchange membrane A side of the first concentration chamber 11 An acid ion chamber 13 is included, and the pH of the first concentrating chamber 11 becomes an equilibrium condition for generating ammonia from ammonium ions moving from the dilution chamber 10 and hydroxide ions moving from the hydroxide ion chamber 13. Maintaining the alkaline method of removing ammonia nitrogen, characterized in that retrieving the ammonia formed from the first concentrating compartment 11 as a gas thereby. 第1濃縮室11のpHを12以上の高アルカリ性に維持する請求項1のアンモニア性窒素の除去方法。The method for removing ammoniacal nitrogen according to claim 1, wherein the pH of the first concentration chamber 11 is maintained at a high alkalinity of 12 or more.
JP06184595A 1995-02-24 1995-02-24 Ammonia nitrogen removal method Expired - Fee Related JP3637458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06184595A JP3637458B2 (en) 1995-02-24 1995-02-24 Ammonia nitrogen removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06184595A JP3637458B2 (en) 1995-02-24 1995-02-24 Ammonia nitrogen removal method

Publications (2)

Publication Number Publication Date
JPH08229568A JPH08229568A (en) 1996-09-10
JP3637458B2 true JP3637458B2 (en) 2005-04-13

Family

ID=13182840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06184595A Expired - Fee Related JP3637458B2 (en) 1995-02-24 1995-02-24 Ammonia nitrogen removal method

Country Status (1)

Country Link
JP (1) JP3637458B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167720A (en) * 1996-11-29 1998-06-23 Toshiba Eng & Constr Co Ltd Treatment of ammonia-containing solution
JP6917369B2 (en) * 2015-10-30 2021-08-11 中国石油化工股▲ふん▼有限公司 Wastewater treatment method and treatment system, and molecular sieve preparation method and production system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump

Also Published As

Publication number Publication date
JPH08229568A (en) 1996-09-10

Similar Documents

Publication Publication Date Title
JPH10128338A (en) Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
EA025677B1 (en) Low energy system and method of desalinating seawater
AU633075B2 (en) Electrodialytic water splitter
JP2001026418A (en) Recovering method of industrially useful inorganic material and industrially useful inorganic material recovered by the same
Rao et al. Electrodialysis in the recovery and reuse of chromium from industrial effluents
WO2022209641A1 (en) Electrodialysis method using bipolar membrane
JP3637458B2 (en) Ammonia nitrogen removal method
JP4065386B2 (en) Electrodialysis machine
WO2020264012A1 (en) Electrodialysis process and bipolar membrane electrodialysis devices for silica removal
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
KR100398417B1 (en) A method for treating electrogalvanizing wastewaters
JP2824537B2 (en) Method for producing hydroxylamine
Wisniewski et al. Water recovery from etching effluents for the purpose of rinsing stainless steel
JP3555732B2 (en) Pure water production method
CN114455771B (en) Waste acid treatment system and method
JPS5837596A (en) Method of processing radioactive liquid waste containing nitrate
JP2001104955A (en) Pure water making method
JPH0421506A (en) Production of hydroxylamine
JP3202887B2 (en) Wastewater recovery method
JP3385388B2 (en) Treatment method for wastewater containing ammonia nitrogen
JPH07275896A (en) Treatment for condensed, desalted and reproduced water
JPH0780254A (en) Removal of ammoniacal nitrogen in condensate desalted regenerated water
JP2001170658A (en) Treating device for fluorine-containing waste water and treatment method
JPH05228471A (en) Treatment of aluminum phosphate-containing monobasic acid waste liquid
JP2007296444A (en) Method and system for treating waste water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees