JP7040008B2 - TOC removal device - Google Patents

TOC removal device Download PDF

Info

Publication number
JP7040008B2
JP7040008B2 JP2017251628A JP2017251628A JP7040008B2 JP 7040008 B2 JP7040008 B2 JP 7040008B2 JP 2017251628 A JP2017251628 A JP 2017251628A JP 2017251628 A JP2017251628 A JP 2017251628A JP 7040008 B2 JP7040008 B2 JP 7040008B2
Authority
JP
Japan
Prior art keywords
toc
gas
water
hydrogen gas
containing water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017251628A
Other languages
Japanese (ja)
Other versions
JP2019115892A (en
Inventor
裕人 床嶋
伸説 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017251628A priority Critical patent/JP7040008B2/en
Publication of JP2019115892A publication Critical patent/JP2019115892A/en
Application granted granted Critical
Publication of JP7040008B2 publication Critical patent/JP7040008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、TOC除去装置及びTOC除去方法に係り、詳しくは、TOC含有水中の難分解性TOCを含むTOCをより簡便にかつ連続的に分解除去するTOC除去装置及びTOC除去方法に関する。 The present invention relates to a TOC removing device and a TOC removing method, and more particularly, to a TOC removing device and a TOC removing method for more easily and continuously decomposing and removing a TOC containing a persistent TOC in TOC-containing water.

電子部品の洗浄や表面処理には、高濃度の薬液や洗剤と、それを濯ぐための大量の純水や超純水が用いられている。このため、電子部品の高度化に伴う超純水の水質向上だけでなく、水使用量低減を狙った排水回収による水回収率の向上が課題となっている。その中で、水中の有機物成分(TOC)を効率的により低濃度まで低減させることが、水質向上および水回収率向上の両面で重要な課題である。 High-concentration chemicals and detergents and large amounts of pure water and ultrapure water for rinsing them are used for cleaning and surface treatment of electronic parts. For this reason, not only the improvement of the water quality of ultrapure water with the sophistication of electronic parts, but also the improvement of the water recovery rate by wastewater recovery aimed at reducing the amount of water used has become an issue. Among them, it is an important issue to efficiently reduce the organic matter component (TOC) in water to a lower concentration in terms of both improvement of water quality and improvement of water recovery rate.

TOCを分解する方法としては、生物処理と物理化学処理とがあり、生物処理が適用困難な場合、物理化学処理のうち、例えば、逆浸透(RO)膜を用いた除去や酸化剤と併用した加熱分解や低圧UVランプを用いた低圧UV酸化装置などが用いられてきた。 There are two methods for decomposing TOC: biological treatment and physicochemical treatment. When biological treatment is difficult to apply, for example, removal using a reverse osmosis (RO) membrane or combined use with an oxidizing agent is used among the physicochemical treatments. Low-pressure UV oxidizers using thermal decomposition and low-pressure UV lamps have been used.

しかし、これらの方法は多大な電気エネルギー(RO膜の給水加圧ポンプの駆動電力やUV照射電力など)や熱エネルギー(加熱分解装置の蒸気など)を必要とする。
また、超純水製造装置などでよく用いられるRO膜や低圧UV酸化装置などは、分子量が小さい窒素化合物(尿素など)に代表される難分解性TOCと呼ばれるTOCに対しては、極端に分解効率が悪いといった問題もあった。
However, these methods require a large amount of electrical energy (driving power of RO membrane water supply pressurizing pump, UV irradiation power, etc.) and thermal energy (steam of heat decomposition device, etc.).
In addition, RO membranes and low-pressure UV oxidizing equipment, which are often used in ultrapure water production equipment, are extremely decomposable for TOC called persistent TOC represented by nitrogen compounds (urea, etc.) with a small molecular weight. There was also the problem of inefficiency.

これらの問題に対して、本発明者は、特許文献1において、触媒を用いたTOC除去方法を提案した。
この方法は、白金族の金属触媒に対し、水素水通水工程、酸素水通水工程及び有機物含有原水通水工程を繰り返し行う方法であり、次のようなメカニズムでTOCが分解される。
水素水を触媒に通水すると、触媒に水素が吸着する。触媒に水素が吸着した状態で酸素水を供給することにより、触媒上で水分子が生成し、一部の水分子が触媒上に留まる。次いで有機物含有水を供給すると、非共有電子対をもつ尿素のようなTOCと該水分子とが配位結合のような結合をして、有機物が触媒に吸着される。この吸着された有機物が白金族触媒の作用によって一部分解される。そして、次の水素水供給時に、触媒に水素が吸着すると同時に、分解生成物が触媒から離れる。
このようにして触媒に接触させた後の処理水をアニオン交換樹脂及びカチオン交換樹脂の少なくとも一方と接触させることで、TOCの分解によって生成した有機酸などのイオン性物質をイオン交換樹脂によって吸着除去できる。このため、特許文献1では、触媒充填カラムの後段にイオン交換樹脂カラムを設けている。
To solve these problems, the present inventor has proposed a method for removing TOC using a catalyst in Patent Document 1.
This method is a method in which a hydrogen water water flow step, an oxygen water water flow step, and an organic substance-containing raw water water flow step are repeatedly performed on a platinum group metal catalyst, and the TOC is decomposed by the following mechanism.
When hydrogen water is passed through the catalyst, hydrogen is adsorbed on the catalyst. By supplying oxygenated water with hydrogen adsorbed on the catalyst, water molecules are generated on the catalyst, and some water molecules stay on the catalyst. Next, when organic substance-containing water is supplied, a TOC such as urea having an unshared electron pair and the water molecule form a bond such as a coordinate bond, and the organic substance is adsorbed on the catalyst. This adsorbed organic substance is partially decomposed by the action of the platinum group catalyst. Then, at the time of the next supply of hydrogen water, hydrogen is adsorbed on the catalyst and at the same time, the decomposition product is separated from the catalyst.
By contacting the treated water after contacting with the catalyst in this way with at least one of the anion exchange resin and the cation exchange resin, ionic substances such as organic acids generated by the decomposition of TOC are adsorbed and removed by the ion exchange resin. can. Therefore, in Patent Document 1, an ion exchange resin column is provided after the catalyst-filled column.

なお、本発明で用いる連続式電気脱イオン装置は、半導体製造工場、液晶製造工場、製薬工業、食品工業、電力工業等の各種の産業又は民生用ないし研究施設等において使用される脱イオン水の製造に広く用いられている。連続式電気脱イオン装置は、図2に示す如く、電極(陽極11,陰極12)の間に複数のアニオン交換膜13及びカチオン交換膜14を交互に配列して濃縮室15と脱塩室16とを交互に形成し、脱塩室16にイオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体を混合もしくは複層状に充填したものである。図2中、17は陽極室、18は陰極室である。
連続式電気脱イオン装置は、水解離によってHイオンとOHイオンを生成させ、脱塩室内に充填されているイオン交換体を連続して再生することによって、効率的な脱イオン処理が可能であり、従来から広く用いられてきたイオン交換樹脂装置のような薬品を用いた再生処理を必要とせず、完全な連続採水が可能で、高純度の水が得られるという優れた特徴を有する。
The continuous electric deionization device used in the present invention is deionized water used in various industries such as semiconductor manufacturing factories, liquid crystal manufacturing factories, pharmaceutical industries, food industries, electric power industries, etc., or in consumer or research facilities. Widely used in manufacturing. In the continuous electrodeionization device, as shown in FIG. 2, a plurality of anion exchange membranes 13 and cation exchange membranes 14 are alternately arranged between the electrodes (anodide 11 and cathode 12), and the concentration chamber 15 and the desalting chamber 16 are arranged. And are alternately formed, and the desalting chamber 16 is mixed or filled with an anion exchanger and a cation exchanger made of an ion exchange resin, an ion exchange fiber, a graft exchanger, or the like in a mixed or multi-layered manner. In FIG. 2, 17 is an anode chamber and 18 is a cathode chamber.
The continuous electrodeionizer enables efficient deionization by generating H + ions and OH - ions by water dissociation and continuously regenerating the ion exchanger packed in the desalination chamber. It has the excellent feature that it does not require regeneration treatment using chemicals such as the ion exchange resin device that has been widely used in the past, complete continuous water sampling is possible, and high-purity water can be obtained. ..

特開2013-208557号公報Japanese Unexamined Patent Publication No. 2013-208557

特許文献1の方法では、水素水通水工程、酸素水通水工程及び原水通水工程を切り替える必要があり、圧力変動が起きるなどの課題があった。また、原水の処理で生成したイオン性物質をイオン交換樹脂に吸着させて除去する場合は、このイオン交換樹脂の交換や再生操作が必要となるため、連続処理性に課題があった。 In the method of Patent Document 1, it is necessary to switch between the hydrogen water water flow process, the oxygen water water flow process, and the raw water water flow process, and there is a problem that pressure fluctuation occurs. Further, when the ionic substance generated by the treatment of raw water is adsorbed on the ion exchange resin and removed, the ion exchange resin needs to be replaced or regenerated, so that there is a problem in continuous processability.

本発明は、TOC含有水中のTOCを難分解性TOCも含めてより簡便にかつ連続的に分解除去することができるTOC除去装置及びTOC除去方法を提供することを課題とする。 An object of the present invention is to provide a TOC removing device and a TOC removing method capable of more easily and continuously decomposing and removing TOC in TOC-containing water including hardly decomposable TOC.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、連続式電気脱イオン装置の脱塩室に、アニオン交換体及びカチオン交換体と共にTOC分解能を有する触媒を充填することにより、通水の切り換えやイオン交換樹脂の交換又は再生を行う必要もなく、TOCを、難分解性のTOCも含めて簡便にかつ連続的に分解除去できることを見出した。
即ち、連続式電気脱イオン装置の脱塩室内にアニオン交換体及びカチオン交換体と共にTOC分解能を有する触媒を充填し、連続式電気脱イオン装置に供給する給水を、水素ガス溶解TOC含有水と酸素ガス溶液TOC含有水とで交互に切り換えることにより、連続式電気脱イオン装置内のTOC分解能を有する触媒へTOCが吸着(酸素ガス溶解TOC含有水給水時)、脱着(水素ガス溶解TOC含有水給水時)を連続的に繰り返すことが可能となり、また脱着時にイオン化した尿素等のTOC分解物を脱塩室内のイオン交換体で吸着し、TOC分解物を吸着したイオン交換体を連続式電気脱イオン装置本来の作用で連続的に再生することで、連続して水処理を行うことが可能となる。
As a result of diligent studies to solve the above problems, the present inventors have filled the desalting chamber of the continuous electrodeionizer with a catalyst having TOC resolution together with an anion exchanger and a cation exchanger. It has been found that the TOC can be easily and continuously decomposed and removed, including the persistent TOC, without the need for switching the water flow or exchanging or regenerating the ion exchange resin.
That is, the desalting chamber of the continuous electrodeionizer is filled with a catalyst having TOC resolution together with the anion exchanger and the cation exchanger, and the water supplied to the continuous electrodeionizer is hydrogen gas-dissolved TOC-containing water and oxygen. By alternately switching between the gas solution and the TOC-containing water, the TOC is adsorbed (when the oxygen gas-dissolved TOC-containing water is supplied) and desorbed (hydrogen gas-dissolved TOC-containing water supply) to the catalyst having the TOC resolution in the continuous electric deionizer. Time) can be repeated continuously, and the TOC decomposition product such as urea ionized at the time of desorption is adsorbed by the ion exchanger in the desalination chamber, and the ion exchanger adsorbing the TOC decomposition product is continuously electrodeionized. By continuously regenerating with the original operation of the device, it becomes possible to continuously perform water treatment.

本発明はこのような知見に基づいて達成されたものであり、本発明は以下を要旨とする。 The present invention has been achieved based on such findings, and the gist of the present invention is as follows.

[1] 脱塩室内に、TOC分解能を有する触媒を含む連続式電気脱イオン装置を有することを特徴とするTOC除去装置。 [1] A TOC removing device comprising a continuous electric deionizing device including a catalyst having TOC resolution in a desalting chamber.

[2] TOC含有水に水素ガス又は酸素ガスを溶解させるガス溶解手段と、該ガス溶解手段で水素ガスを溶解させたTOC含有水と酸素ガスを溶解させたTOC含有水とを前記連続式電気脱イオン装置の前記脱塩室に交互に導入する手段とを有することを特徴とする[1]に記載のTOC除去装置。 [2] The continuous electricity of a gas dissolving means for dissolving hydrogen gas or oxygen gas in TOC-containing water, a TOC-containing water in which hydrogen gas is dissolved by the gas dissolving means, and a TOC-containing water in which oxygen gas is dissolved. The TOC removing device according to [1], which comprises means for alternately introducing the deionizing device into the desalting chamber.

[3] 前記ガス溶解手段が、前記連続式電気脱イオン装置の前段に設けられたガス溶解膜モジュールと、該ガス溶解膜モジュールの気相室に水素ガスを供給する水素ガス供給手段と該気相室に酸素ガスを供給する酸素ガス供給手段と、該水素ガス供給手段及び酸素ガス供給手段によるガスの供給を交互に切り換える切換手段と、該ガス溶解膜モジュールの液相室に前記TOC含有水を供給する手段とを有し、該液相室から流出するガス溶解TOC含有水が前記連続式電気脱イオン装置の脱塩室に導入されることを特徴とする[2]に記載のTOC除去装置。 [3] The gas dissolving means includes a gas dissolving film module provided in front of the continuous electric deionizing device, a hydrogen gas supplying means for supplying hydrogen gas to the gas phase chamber of the gas dissolving film module, and the gas. An oxygen gas supply means for supplying oxygen gas to the shared chamber, a switching means for alternately switching the gas supply by the hydrogen gas supply means and the oxygen gas supply means, and the TOC-containing water in the liquid phase chamber of the gas dissolution film module. The TOC removal according to [2], wherein the gas-dissolved TOC-containing water flowing out of the liquid phase chamber is introduced into the desalting chamber of the continuous electrodeionizer. Device.

[4] 前記連続式電気脱イオン装置の陽極で発生した酸素ガスを前記TOC含有水に溶解させる酸素ガスとして前記ガス溶解手段に送給する酸素ガス送給手段、及び/又は、前記連続式電気脱イオン装置の陰極で発生した水素ガスを前記TOC含有水に溶解させる水素ガスとして前記ガス溶解手段に送給する水素ガス送給手段を有することを特徴とする[2]又は[3]に記載のTOC除去装置。 [4] An oxygen gas feeding means that feeds an oxygen gas generated at the anode of the continuous electrodeionizer to the gas dissolving means as an oxygen gas that dissolves the TOC-containing water, and / or the continuous electricity. [2] or [3], wherein the gas feeding means for feeding the hydrogen gas generated at the cathode of the deionizer to the gas dissolving means as the hydrogen gas for dissolving the hydrogen gas in the TOC-containing water is provided. TOC removal device.

[5] 前記TOC分解能を有する触媒が白金族金属の微粒子よりなり、イオン交換樹脂に担持されていることを特徴とする[1]ないし[4]のいずれかに記載のTOC除去装置。 [5] The TOC removing apparatus according to any one of [1] to [4], wherein the catalyst having TOC resolution is made of fine particles of a platinum group metal and is supported on an ion exchange resin.

[6] 前記連続式電気脱イオン装置の脱塩室に、カチオン交換樹脂と、前記TOC分解能を有する金属が担持されたアニオン交換樹脂とが充填されていることを特徴とする[1]ないし[5]のいずれかに記載のTOC除去装置。 [6] The desalting chamber of the continuous electrodeionizer is filled with a cation exchange resin and an anion exchange resin on which a metal having TOC resolution is supported [1] to [1]. 5] The TOC removing device according to any one of.

[7] TOC含有水中のTOCを分解除去する方法において、該TOC含有水に水素ガスを溶解させる水素ガス溶解工程と、該TOC含有水に酸素ガスを溶解させる酸素ガス溶解工程とを有し、[1]ないし[6]のいずれかに記載のTOC除去装置の前記脱塩室に、該水素ガス溶解工程からの水素ガス溶解TOC含有水と該酸素ガス溶解工程からの酸素ガス溶解TOC含有水とを交互に導入して該TOC含有水中のTOCを分解除去することを特徴とするTOC除去方法。 [7] A method for decomposing and removing TOC in TOC-containing water includes a hydrogen gas dissolution step of dissolving hydrogen gas in the TOC-containing water and an oxygen gas dissolution step of dissolving oxygen gas in the TOC-containing water. In the desalting chamber of the TOC removing device according to any one of [1] to [6], the hydrogen gas-dissolved TOC-containing water from the hydrogen gas dissolution step and the oxygen gas-dissolved TOC-containing water from the oxygen gas dissolution step. A TOC removing method, which comprises alternately introducing and removing the TOC in the TOC-containing water.

本発明によれば、TOC含有水中の難分解性のTOCも含めてTOCをより簡便にかつ連続的に分解除去することが可能となる。 According to the present invention, it is possible to more easily and continuously decompose and remove TOC including persistent TOC in TOC-containing water.

本発明のTOC除去装置の実施の形態を示す系統図である。It is a system diagram which shows the embodiment of the TOC removal apparatus of this invention. 連続式電気脱イオン装置の一般的な構成を示す模式的な断面図である。It is a schematic sectional drawing which shows the general structure of the continuous electric deionization apparatus.

以下に本発明のTOC除去装置及びTOC除去方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of the TOC removing device and the TOC removing method of the present invention will be described in detail.

本発明のTOC除去装置は、脱塩室にアニオン交換体及びカチオン交換体と共にTOC分解能を有する触媒を充填してなる連続式電気脱イオン装置(以下、「本発明の連続式電気脱イオン装置」と称す場合がある。)を有することを特徴とするものである。
本発明の連続式電気脱イオン装置の部材構成自体は、図2に示す一般的な連続式電気脱イオン装置と同様であり、本発明の連続式電気脱イオン装置は、連続式電気脱イオン装置の脱塩室にTOC分解能を有する触媒を充填してなることを特徴とする。
The TOC removing device of the present invention is a continuous electrodeionization device in which a desalting chamber is filled with an anion exchanger and a cation exchanger and a catalyst having TOC resolution (hereinafter, "continuous electrodeionization device of the present invention"). It may be referred to as).
The member configuration itself of the continuous electric deionizing device of the present invention is the same as the general continuous electric deionizing device shown in FIG. 2, and the continuous electric deionizing device of the present invention is the continuous electric deionizing device. The desalting chamber is filled with a catalyst having TOC resolution.

前述の通り、連続式電気脱イオン装置は、図2に示す如く、電極(陽極11,陰極12)の間に複数のアニオン交換膜13及びカチオン交換膜14を交互に配列して濃縮室15と脱塩室16とを交互に形成し、脱塩室16にイオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体を混合もしくは複層状に充填したものである。
本発明の連続式電気脱イオン装置は、このような一般的な連続式電気脱イオン装置の脱塩室にアニオン交換体及びカチオン交換体と共にTOC分解能を有する触媒を充填してなるものであるが、その充填方法としては、
(1) 複数の脱塩室のうちの一部の脱塩室にTOC分解能を有する触媒を充填し、他の脱塩室にはアニオン交換体及びカチオン交換体を充填する。
(2) 複数の脱塩室のうちの一部にTOC分解能を有する触媒とアニオン交換体及びカチオン交換体とを充填し、他の脱塩室にはアニオン交換体及びカチオン交換体を充填する。
(3) すべての脱塩室にTOC分解能を有する触媒とアニオン交換体及びカチオン交換体とを充填する。
などの方法が考えられるが、TOC分解能を有する触媒に接しない被処理水のTOCは分解されないため、(3)の方法でTOC分解能を有する触媒を充填するこが好ましい。
As described above, in the continuous electrodeionization device, as shown in FIG. 2, a plurality of anion exchange films 13 and cation exchange films 14 are alternately arranged between the electrodes (anodide 11 and cathode 12) to form a concentration chamber 15. The desalting chambers 16 are alternately formed, and the desalting chamber 16 is filled with an anion exchanger and a cation exchanger made of an ion exchange resin, an ion exchange fiber, a graft exchanger, or the like in a mixed or multi-layered manner.
The continuous electrodeionizer of the present invention comprises a desalting chamber of such a general continuous electrodeionizer filled with an anion exchanger and a cation exchanger and a catalyst having TOC resolution. As the filling method,
(1) A catalyst having TOC resolution is filled in a part of the desalting chambers among the plurality of desalting chambers, and an anion exchanger and a cation exchanger are filled in the other desalting chambers.
(2) A catalyst having TOC resolution and an anion exchanger and a cation exchanger are filled in a part of a plurality of desalting chambers, and an anion exchanger and a cation exchanger are filled in the other desalting chambers.
(3) All desalting chambers are filled with a catalyst having TOC resolution and an anion exchanger and a cation exchanger.
However, since the TOC of the water to be treated that does not come into contact with the catalyst having the TOC resolution is not decomposed, it is preferable to fill the catalyst having the TOC resolution by the method (3).

TOC分解能を有する触媒としては、TOC分解能を有するものであればよく、特に制限はないが、難分解性のTOC分解能にも優れることから白金族の金属触媒を用いることが好ましい。
触媒に用いる白金族金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができる。こられの白金族金属は、1種を単独で用いることができ、2種以上を組み合わせて用いることもでき、2種以上の合金として用いることもでき、あるいは、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中で、白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物は、触媒活性が強いので特に好適に用いることができる。
The catalyst having a TOC resolution may be any catalyst having a TOC resolution, and is not particularly limited, but it is preferable to use a platinum group metal catalyst because it is also excellent in a persistent TOC resolution.
Examples of the platinum group metal used in the catalyst include ruthenium, rhodium, palladium, osmium, iridium and platinum. These platinum group metals can be used alone, in combination of two or more, as alloys of two or more, or as a naturally occurring mixture. The product can also be used without being separated into individual pieces. Among these, platinum, palladium, a platinum / palladium alloy alone or a mixture of two or more of them has strong catalytic activity and can be particularly preferably used.

白金族の金属触媒は、白金族の金属微粒子でもよく、白金族の金属ナノコロイド粒子を担体の表面に担持させた金属担持触媒でもよい。 The platinum-group metal catalyst may be platinum-group metal fine particles, or may be a metal-supported catalyst in which platinum-group metal nanocolloidal particles are supported on the surface of a carrier.

白金族の金属ナノコロイド粒子の平均粒子径は好ましくは1~50nmであり、より好ましくは1.2~20nmであり、さらに好ましくは1.4~5nmである。金属ナノコロイド粒子の平均粒子径が1nm未満であると、TOCの分解除去に対する触媒活性が低下するおそれがある。金属ナノコロイド粒子の平均粒子径が50nmを超えると、ナノコロイド粒子の比表面積が小さくなって、TOCの分解除去に対する触媒活性が低下するおそれがある。 The average particle size of the platinum group metal nanocolloidal particles is preferably 1 to 50 nm, more preferably 1.2 to 20 nm, and even more preferably 1.4 to 5 nm. If the average particle size of the metal nanocolloidal particles is less than 1 nm, the catalytic activity for decomposition and removal of TOC may decrease. If the average particle size of the metal nanocolloidal particles exceeds 50 nm, the specific surface area of the nanocolloidal particles becomes small, and the catalytic activity for decomposition and removal of TOC may decrease.

白金族の金属ナノコロイド粒子を担持させる担体に特に制限はなく、例えば、マグネシア、チタニア、アルミナ、シリカ-アルミナ、ジルコニア、活性炭、ゼオライト、ケイソウ土、イオン交換樹脂などを挙げることができる。これらの中で、アニオン交換樹脂を特に好適に用いることができる。白金族の金属ナノコロイド粒子は電気二重層を有し、負に帯電しているので、アニオン交換樹脂に安定的に担持されて剥離しにくい。アニオン交換樹脂としては、スチレン-ジビニルベンゼン共重合体を母体とした強塩基性アニオン交換樹脂であることが好ましく、特にゲル型樹脂であることがより好ましい。また、アニオン交換樹脂の交換基は、OH形であることが好ましい。 The carrier on which the platinum group metal nanocolloidal particles are supported is not particularly limited, and examples thereof include magnesia, titania, alumina, silica-alumina, zirconia, activated carbon, zeolite, diatomaceous earth, and ion exchange resin. Among these, anion exchange resin can be particularly preferably used. Since the platinum group metal nanocolloidal particles have an electric double layer and are negatively charged, they are stably supported by the anion exchange resin and are difficult to peel off. The anion exchange resin is preferably a strong basic anion exchange resin based on a styrene-divinylbenzene copolymer, and more preferably a gel type resin. Further, the exchange group of the anion exchange resin is preferably OH type.

アニオン交換樹脂への白金族の金属ナノコロイド粒子の担持量は、0.01~0.2重量%であることが好ましく、0.04~0.1重量%であることがより好ましい。金属ナノコロイド粒子の担持量が0.01重量%未満であると、TOCの分解除去に対する触媒活性が不足するおそれがある。金属ナノコロイド粒子の担持量は0.2重量%以下でTOCの分解除去に対して十分な触媒活性が発現し、通常は0.2重量%を超える金属ナノコロイド粒子を担持させる必要はない。また、金属ナノコロイド粒子の担持量が増加すると、水中への金属の溶出のおそれも大きくなる。 The amount of the platinum group metal nanocolloidal particles carried on the anion exchange resin is preferably 0.01 to 0.2% by weight, more preferably 0.04 to 0.1% by weight. If the supported amount of the metal nanocolloidal particles is less than 0.01% by weight, the catalytic activity for decomposition and removal of TOC may be insufficient. When the amount of the metal nanocolloidal particles supported is 0.2% by weight or less, sufficient catalytic activity is exhibited for the decomposition and removal of TOC, and it is usually not necessary to support the metal nanocolloidal particles exceeding 0.2% by weight. In addition, as the amount of metal nanocolloidal particles supported increases, the risk of metal elution into water also increases.

脱塩室へのTOC分解能を有する触媒の充填量は特に制限はなく、要求されるTOC分解能により適宜調整される。 The filling amount of the catalyst having the TOC resolution in the desalting chamber is not particularly limited, and is appropriately adjusted according to the required TOC resolution.

本発明の連続式電気脱イオン装置の脱塩室に充填されるアニオン交換体及びカチオン交換体としては、イオン交換樹脂、イオン交換繊維、グラフト交換体等が挙げられるが、好ましくは、アニオン交換樹脂及びカチオン交換樹脂である。 Examples of the anion exchanger and the cation exchanger filled in the desalting chamber of the continuous electrodeionizer of the present invention include an ion exchange resin, an ion exchange fiber, a graft exchanger and the like, and the anion exchange resin is preferable. And ion exchange resin.

脱塩室内のアニオン交換体とカチオン交換体の充填割合には特に制限はないが、通常、アニオン交換体:カチオン交換体=1:1~7:3(体積比)で充填される。 The filling ratio of the anion exchanger and the cation exchanger in the desalting chamber is not particularly limited, but usually, the anion exchanger: the cation exchanger is filled at 1: 1 to 7: 3 (volume ratio).

前述の通り、TOC分解能を有する触媒は、白金族の金属触媒を、アニオン交換樹脂に担持して用いることが好ましいことから、本発明の連続式電気脱イオン装置としては、脱塩室内のアニオン交換樹脂として、従来の通常のアニオン交換樹脂に代えて、前述の白金族金属担持アニオン交換樹脂を充填したものを用いることは、TOC分解能を有する触媒を十分に充填することができる上に、白金族金属担持アニオン交換樹脂を充填するのみで、TOC分解能を有する触媒の充填とアニオン交換体の充填を行えるため、好ましい態様である。 As described above, since it is preferable to use a platinum group metal catalyst supported on an anion exchange resin as a catalyst having TOC resolution, the continuous electrodeionizer of the present invention has anion exchange in a desalting chamber. By using a resin filled with the above-mentioned platinum group metal-supported anion exchange resin instead of the conventional ordinary anion exchange resin, a catalyst having TOC decomposability can be sufficiently filled and the platinum group can be sufficiently filled. This is a preferred embodiment because the catalyst having TOC resolution and the anion exchanger can be filled only by filling the metal-supported anion exchange resin.

この場合、TOC分解能を有する触媒の担時は表面のみで起こるので、アニオン交換樹脂の内部のアニオン交換能力は有したままとなる。そのため連続式電気脱イオン装置の脱塩室に充填するアニオン交換樹脂を上記の金属触媒担持アニオン交換樹脂としても、イオン交換能が損なわれることはない。 In this case, since the catalyst having the TOC resolution occurs only on the surface, the anion exchange capacity inside the anion exchange resin remains. Therefore, even if the anion exchange resin filled in the desalting chamber of the continuous electrodeionizer is used as the above-mentioned metal catalyst-supported anion exchange resin, the ion exchange ability is not impaired.

なお、本発明の連続式電気脱イオン装置は、濃縮室にもアニオン交換体及びカチオン交換体を充填したものであってもよい。 In the continuous electrodeionization apparatus of the present invention, the concentration chamber may also be filled with an anion exchanger and a cation exchanger.

特許文献1に記載されるようにTOC分解能を有する触媒によるTOCの分解には、予め水素を供給し、次いで酸素を供給する必要がある。
従って、本発明のTOC除去装置では、原水であるTOC含有水に水素ガス又は酸素ガスを溶解させるガス溶解手段と、該ガス溶解手段で水素ガスを溶解させたTOC含有水と酸素ガスを溶解させたTOC含有水とを本発明の連続式電気脱イオン装置の脱塩室に交互に導入する手段とを設けることが好ましい。このガス溶解手段として、連続式電気脱イオン装置の前段にガス溶解膜モジュールを設け、ガス溶解膜モジュールの気相室に水素ガスを供給する水素ガス供給手段と酸素ガスを供給する酸素ガス供給手段と、水素ガス供給手段及び酸素ガス供給手段によるガスの供給を交互に切り換える切換手段と、ガス溶解膜モジュールの液相室にTOC含有水を供給する手段とを設け、ガス溶解膜モジュールの液相室から流出するガス溶解TOC含有水を連続式電気脱イオン装置の脱塩室に導入するようにすることが好ましい。
前述の通り、特許文献1の方法では、水素水通水工程、酸素水通水工程及び有機物含有原水通水工程を繰り返し行う必要があったのに対して、本発明では、水素ガスと酸素ガスを切り換えることで、水素水、酸素水を交互に通水することが可能であるため、水素ガス溶解TOC含有水と酸素ガス溶解TOC含有水との交互通水でTOCを分解除去できる。
As described in Patent Document 1, in order to decompose TOC by a catalyst having TOC resolution, it is necessary to supply hydrogen in advance and then oxygen.
Therefore, in the TOC removing device of the present invention, a gas dissolving means for dissolving hydrogen gas or oxygen gas in the TOC-containing water which is raw water, and the TOC-containing water and oxygen gas in which hydrogen gas is dissolved by the gas dissolving means are dissolved. It is preferable to provide a means for alternately introducing the TOC-containing water into the desalting chamber of the continuous electrodeionizer of the present invention. As this gas dissolution means, a gas dissolution film module is provided in front of the continuous electric deionization device, and a hydrogen gas supply means for supplying hydrogen gas to the gas phase chamber of the gas dissolution film module and an oxygen gas supply means for supplying oxygen gas. A switching means for alternately switching the gas supply by the hydrogen gas supply means and the oxygen gas supply means, and a means for supplying TOC-containing water to the liquid phase chamber of the gas dissolution film module are provided, and the liquid phase of the gas dissolution film module is provided. It is preferable to introduce the gas-dissolved TOC-containing water flowing out of the chamber into the desalting chamber of the continuous electrodeionizer.
As described above, in the method of Patent Document 1, it was necessary to repeatedly carry out the hydrogen water passing step, the oxygen water passing step and the organic substance-containing raw water passing step, whereas in the present invention, hydrogen gas and oxygen gas are used. Since it is possible to alternately pass hydrogen water and oxygen water by switching between, the TOC can be decomposed and removed by alternating water passing between the hydrogen gas-dissolved TOC-containing water and the oxygen gas-dissolved TOC-containing water.

また、連続式電気脱イオン装置では、水に直流電圧を印加することから、陽極で酸素が、陰極で水素がそれぞれ発生するため、陽極で発生した酸素ガスを原水のTOC含有水に溶解させる酸素ガスとして、陰極で発生した水素ガスを原水のTOC含有水に溶解させる水素ガスとして、それぞれガス溶解膜モジュール等のガス溶解手段に送給して有効利用することが好ましい。 Further, in the continuous electric deionizer, since a DC voltage is applied to water, oxygen is generated at the anode and hydrogen is generated at the cathode, so that the oxygen gas generated at the anode is dissolved in the TOC-containing water of the raw water. As the gas, it is preferable that the hydrogen gas generated at the cathode is supplied to a gas dissolving means such as a gas dissolving film module as a hydrogen gas for dissolving the hydrogen gas generated in the raw water in the TOC-containing water of the raw water for effective use.

図1は、このような好適態様を組み込んだ本発明のTOC除去装置の実施の形態を示す系統図である。
原水のTOC除去装置は、原水供給配管L1を経て、ガス溶解手段であるガス溶解膜モジュール1へ供給される。ガス溶解手段はTOC含有水にガスを溶解することができるものであれば制限はなく、膜、エゼクター、散気機構などが用いられる。ここでは取り扱いが簡便なガス溶解膜モジュール1を例示した。原水はガス溶解膜モジュール1にて適宜、窒素ガスと水素ガス又は酸素ガスとが溶解され、ガス溶解膜モジュール1の液相室1Bよりガス溶解水として給水配管L2を経て、連続式電気脱イオン装置2へ供給される。窒素ガスタンク3内の窒素ガスはキャリアガスとして窒素ガス流量調整弁V1を有する窒素ガス配管L3及びガス供給本管L6を経てガス溶解膜モジュール1の気相室1Aに供給される。窒素ガスは、ガス溶解膜モジュール1の膜の型式により10~1000NL/min程度を供給することが望ましいが、水量と膜本数に依存するためその限りではない。窒素ガスの供給は、水素ガスが爆発性があるため希釈の意味があるが、防爆対策が施されていればその限りではない。
FIG. 1 is a system diagram showing an embodiment of the TOC removing device of the present invention incorporating such a preferred embodiment.
The raw water TOC removing device is supplied to the gas dissolving membrane module 1 which is a gas dissolving means via the raw water supply pipe L1. The gas dissolving means is not limited as long as it can dissolve the gas in the TOC-containing water, and a membrane, an ejector, an air diffuser, or the like is used. Here, the gas dissolution membrane module 1 which is easy to handle is exemplified. The raw water is appropriately dissolved with nitrogen gas and hydrogen gas or oxygen gas in the gas dissolution film module 1, and is continuously electrodeionized from the liquid phase chamber 1B of the gas dissolution film module 1 through the water supply pipe L2 as gas dissolution water. It is supplied to the device 2. The nitrogen gas in the nitrogen gas tank 3 is supplied as a carrier gas to the gas phase chamber 1A of the gas dissolution film module 1 via the nitrogen gas pipe L3 having the nitrogen gas flow rate adjusting valve V1 and the gas supply main L6. It is desirable to supply about 10 to 1000 NL / min of nitrogen gas depending on the type of the membrane of the gas dissolution membrane module 1, but this is not the case because it depends on the amount of water and the number of membranes. The supply of nitrogen gas has the meaning of dilution because hydrogen gas is explosive, but this is not the case if explosion-proof measures are taken.

水素ガスタンク5内の水素ガスは窒素ガス流量の0.1~4.0体積%、例えば1体積%程度が、水素ガス流量調整弁V3を有する水素ガス配管L5及びガス供給本管L6を経てガス溶解膜モジュール1の気相室1Aに供給される。水素ガスの供給量は、水素ガスの爆発限界が窒素ガス流量の4体積%以上であることから、安全をみて窒素ガス流量の1体積%程度が好ましいが、既述の通り、防爆対策を施していればその限りではない。 The hydrogen gas in the hydrogen gas tank 5 is 0.1 to 4.0% by volume of the nitrogen gas flow rate, for example, about 1% by volume is gas through the hydrogen gas pipe L5 having the hydrogen gas flow rate adjusting valve V3 and the gas supply main L6. It is supplied to the gas phase chamber 1A of the dissolution film module 1. Since the explosion limit of hydrogen gas is 4% by volume or more of the nitrogen gas flow rate, the amount of hydrogen gas supplied is preferably about 1% by volume of the nitrogen gas flow rate for safety, but as described above, explosion-proof measures are taken. If so, that is not the case.

酸素ガスタンク4内の酸素ガスは、酸素ガス流量調整弁V2を有する酸素ガス配管L4及びガス供給本管L6を経てガス溶解膜モジュール1の気相室1Aに供給される。酸素ガスの供給量も、水素ガスと同様に窒素ガス流量の0.1~20体積%、例えば1体積%程度の供給で十分なので望ましい。L7はガス溶解膜モジュール1の気相室1Aからの排気配管である。 The oxygen gas in the oxygen gas tank 4 is supplied to the gas phase chamber 1A of the gas dissolution film module 1 via the oxygen gas pipe L4 having the oxygen gas flow rate adjusting valve V2 and the gas supply main L6. As for the supply amount of oxygen gas, it is desirable to supply 0.1 to 20% by volume of the nitrogen gas flow rate, for example, about 1% by volume, as in the case of hydrogen gas. L7 is an exhaust pipe from the gas phase chamber 1A of the gas dissolution membrane module 1.

このように、キャリアガスとしての窒素ガスと共に水素ガスと酸素ガスを交互に供給して、連続式電気脱イオン装置2への供給を水素ガス溶解原水→酸素ガス溶解原水→水素ガス溶解ガス→酸素ガス溶解原水………と交互に繰り返すことで、連続式電気脱イオン装置2の脱塩室内の触媒でTOCを吸脱着することができる。
また、脱着の際に約1/2のTOCがイオン化するが、生成したイオン性分解物は連続通水で吸脱着を繰り返すことで、連続式電気脱イオン装置2の脱塩室内のイオン交換体に捕捉され、連続式電気脱イオン装置2の濃縮室を経て系外へ排出される。
In this way, hydrogen gas and oxygen gas are alternately supplied together with nitrogen gas as a carrier gas, and the supply to the continuous electrodeionizer 2 is supplied from hydrogen gas-dissolved raw water → oxygen gas-dissolved raw water → hydrogen gas-dissolved gas → oxygen. By alternately repeating the process of gas-dissolved raw water ..., the TOC can be absorbed and desorbed by the catalyst in the desalting chamber of the continuous electrodeionizer 2.
In addition, about 1/2 of the TOC is ionized during desorption, but the generated ionic decomposition product is repeatedly absorbed and desorbed by continuous water flow, so that the ion exchanger in the desalting chamber of the continuous electric deionizer 2 is used. It is trapped in the system and discharged to the outside of the system through the concentration chamber of the continuous electrodeionizer 2.

ここで、TOCがTOC分解能を有する触媒に吸脱着するメカニズムは以下の通りである。
まず、金属触媒に水素ガス溶解水が供給されると触媒に水素が吸蔵され、表面には触媒金属と水素の弱い結合が生じる。その状態で酸素ガスとTOCの共存系が金属触媒に接触すると、触媒金属表面に存在する水素原子と酸素原子が結合するときに、酸素原子中の電子が水素(金属)方向に引っ張られて電子が欠乏し、そことTOCの非共有電子対が結合すると考えられる。その状態で、再び水素ガス溶解水を接触すると、酸素原子から脱離が起こり、TOCの一部はイオン化して脱離すると考えられている。そのため、水素ガス溶解水と酸素ガス溶解水は交互に金属触媒に接触させる必要があるが、上記のようにガス溶解手段へのガス供給を酸素ガスと水素ガスで切り替えることで対応することができ、通水流路を切り替える必要はなく、圧力変動などを伴うことなく簡便に対応することができる。この場合、交互にガスを切り替えるタイミングは1~600秒程度、特に10~300秒程度の間隔が好ましく、酸素ガスの供給時間は水素ガスの供給時間の0.5~2.0倍程度とすることが好ましい。
Here, the mechanism by which the TOC is attached to and detached from the catalyst having the TOC resolution is as follows.
First, when hydrogen gas-dissolved water is supplied to the metal catalyst, hydrogen is occluded in the catalyst, and a weak bond between the catalyst metal and hydrogen is formed on the surface. When the coexistence system of oxygen gas and TOC comes into contact with the metal catalyst in that state, when the hydrogen atom and the oxygen atom existing on the surface of the catalyst metal are bonded, the electrons in the oxygen atom are pulled in the hydrogen (metal) direction and become an electron. Is deficient, and it is thought that the unshared electron pair of TOC binds to it. It is thought that when hydrogen gas-dissolved water is brought into contact again in this state, desorption occurs from the oxygen atom, and a part of the TOC is ionized and desorbed. Therefore, it is necessary to alternately bring the hydrogen gas-dissolved water and the oxygen gas-dissolved water into contact with the metal catalyst, but it can be dealt with by switching the gas supply to the gas dissolving means between oxygen gas and hydrogen gas as described above. , It is not necessary to switch the water flow path, and it is possible to easily deal with it without accompanied by pressure fluctuations. In this case, the timing of alternately switching the gas is preferably about 1 to 600 seconds, particularly preferably about 10 to 300 seconds, and the oxygen gas supply time is about 0.5 to 2.0 times the hydrogen gas supply time. Is preferable.

なお、連続式電気脱イオン装置2の脱塩室には、まず最初に水素ガス溶解原水が供給される。ここで供給された水素ガス溶解原水中のTOCは、酸素が存在しないため、そのまま流出してしまうが、この初回の給水で得られる処理水については初期ブローすることが望ましい。また、水素ガス溶解原水と酸素ガス溶解原水とを交互に繰り返した場合、水素ガス溶解原水の給水のTOCは酸素が吸着した樹脂層を通ることで瞬間的に吸脱離が起こることにより問題なく処理される。 First, hydrogen gas-dissolved raw water is supplied to the desalting chamber of the continuous electric deionization device 2. The TOC in the hydrogen gas-dissolved raw water supplied here flows out as it is because oxygen does not exist, but it is desirable to initially blow the treated water obtained by this initial water supply. In addition, when hydrogen gas-dissolved raw water and oxygen gas-dissolved raw water are alternately repeated, there is no problem because the TOC of the hydrogen gas-dissolved raw water is instantaneously absorbed and desorbed by passing through the resin layer on which oxygen is adsorbed. It is processed.

このようにして、連続式電気脱イオン装置1で原水中のTOCが分解され、分解により生成したイオン性物質は脱塩室内のイオン交換体によるイオン交換により除去された処理水は、連続式電気脱イオン装置1の処理水排出配管L8より系外へ排出される。 In this way, the TOC in the raw water was decomposed by the continuous electrodeionizer 1, and the ionic substances generated by the decomposition were removed by ion exchange by the ion exchanger in the desalination chamber. It is discharged to the outside of the system from the treated water discharge pipe L8 of the deionization device 1.

前述の通り、連続式電気脱イオン装置2では水に直流電圧を印加することから、陽極で酸素ガス、陰極で水素ガスがそれぞれ発生するため、陽極で発生した酸素ガスを原水に溶解させる酸素ガスとして、陰極で発生した水素ガスを原水に溶解させる水素ガスとしてそれぞれ有効利用するため、図1のTOC除去装置では、連続式電気脱イオン装置2の陽極で発生した酸素ガスを酸素ガス排気配管L9を経て酸素ガスタンク4に送給し、陰極で発生した水素ガスを水素ガス排気配管L10を経て水素ガスタンク5に送給するように構成されている。L11及びL12は、各々のガスを系外に排気するための配管である。 As described above, since the continuous electrodeionizer 2 applies a DC voltage to water, oxygen gas is generated at the anode and hydrogen gas is generated at the cathode. Therefore, the oxygen gas generated at the anode is dissolved in the raw water. In order to effectively utilize the hydrogen gas generated at the cathode as hydrogen gas for dissolving in raw water, in the TOC removing device of FIG. 1, the oxygen gas generated at the anode of the continuous electrodeionization device 2 is used in the oxygen gas exhaust pipe L9. It is configured to supply the hydrogen gas generated at the cathode to the oxygen gas tank 4 via the hydrogen gas exhaust pipe L10 and to the hydrogen gas tank 5 via the hydrogen gas exhaust pipe L10. L11 and L12 are pipes for exhausting each gas to the outside of the system.

このような本発明のTOC除去装置によれば、TOC含有水中のTOCを難分解性のTOCを含めて簡便に連続処理して高度に分解除去することができる。特に本発明は、TOC濃度1~10ppb程度の超純水中のTOC成分を更に低濃度化するシステムとして好適である。 According to such a TOC removing device of the present invention, TOC in TOC-containing water can be easily continuously treated including persistent TOC to be highly decomposed and removed. In particular, the present invention is suitable as a system for further reducing the concentration of TOC components in ultrapure water having a TOC concentration of about 1 to 10 ppb.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

以下の実施例及び比較例では、いずれも、尿素をTOC源として含むTOC濃度3ppbのTOC含有水を原水として1m/hrの流量で処理を行った。 In both the following examples and comparative examples, treatment was performed using TOC-containing water having a TOC concentration of 3 ppb containing urea as a TOC source as raw water at a flow rate of 1 m 3 / hr.

[実施例1]
図1に示す本発明のTOC除去装置により原水を処理した。
試験に用いた装置仕様は次の通りである。
ガス溶解膜モジュール:セルガード社製「リキセルG284」(4×28インチ)
連続式電気脱イオン装置:栗田工業(株)製「KCDI」
連続式電気脱イオン装置の脱塩室内の充填樹脂:
アニオン交換樹脂:栗田工業(株)製「ナノセイバー」
(白金ナノコロイド担体アニオン交換樹脂)10L
カチオン交換樹脂:栗田工業(株)製「KR-UC1」10L
[Example 1]
Raw water was treated with the TOC removing device of the present invention shown in FIG.
The equipment specifications used in the test are as follows.
Gas dissolution membrane module: "Lixel G284" manufactured by Cellguard (4 x 28 inches)
Continuous electric deionization device: "CKDI" manufactured by Kurita Water Industries, Ltd.
Filling resin in the desalination chamber of the continuous electric deionizer:
Anion exchange resin: "Nano Saver" manufactured by Kurita Water Industries, Ltd.
(Platinum nanocolloid carrier anion exchange resin) 10L
Cation exchange resin: "KR-UC1" manufactured by Kurita Water Industries, Ltd. 10L

窒素ガス流量は10NL/minで一定とし、水素ガス流量は0.1NL/min、酸素ガス流量は0.5NL/minとし、水素ガス30秒供給、酸素ガス60秒供給で水素ガスと酸素ガスの供給を交互に切り換えた。 The nitrogen gas flow rate is constant at 10 NL / min, the hydrogen gas flow rate is 0.1 NL / min, the oxygen gas flow rate is 0.5 NL / min, and hydrogen gas and oxygen gas are supplied for 30 seconds and oxygen gas for 60 seconds. The supply was switched alternately.

その結果、連続式電気脱イオン装置の処理水のTOC濃度は1ppb以下であり、連続運転にてTOCを高度に分解除去することができた。 As a result, the TOC concentration of the treated water of the continuous electrodeionization device was 1 ppb or less, and the TOC could be highly decomposed and removed by continuous operation.

[比較例1]
原水を低圧紫外線ランプ装置(日本フォトサイエンス社製「AZ-26」)を用いて処理し、さらにイオン交換樹脂カラム(栗田工業(株)製「KR-UA1」と「KR-UC1」の混合樹脂)処理したところ、処理水のTOC濃度は3ppbであり、尿素が主成分であるため全く分解されなかった。
[Comparative Example 1]
Raw water is treated using a low-pressure ultraviolet lamp device (“AZ-26” manufactured by Nippon Photo Science Co., Ltd.), and further, a mixed resin of an ion exchange resin column (“KR-UA1” and “KR-UC1” manufactured by Kurita Kogyo Co., Ltd.). ) When the treatment was carried out, the TOC concentration of the treated water was 3 ppb, and since urea was the main component, it was not decomposed at all.

[比較例2]
特許文献1に記載の方法で原水の処理を行った。即ち、連続式電気脱イオン装置の代りに栗田工業(株)製「ナノセイバー」(白金ナノコロイド担体アニオン交換樹脂)を充填した触媒カラムを用い、その後段にイオン交換樹脂カラム(栗田工業(株)製「KR-UA1」と「KR-UC1」の混合樹脂)を設置した。
その結果、イオン交換樹脂カラムの処理水のTOC濃度は1ppb以下であったが、触媒カラムを水素処理から酸素処理に切りかえる際に、10kPa程度の圧力変動が起こり、連続処理が行えなかった。またイオン交換樹脂の吸着量が20日程度で破過し、樹脂交換が必要となり連続処理が行えなかった。
[Comparative Example 2]
Raw water was treated by the method described in Patent Document 1. That is, instead of the continuous electrodeionization device, a catalyst column filled with "Nano Saver" (platinum nanocolloid carrier anion exchange resin) manufactured by Kurita Kogyo Co., Ltd. is used, and an ion exchange resin column (Kurita Kogyo Co., Ltd.) is used in the subsequent stage. ) Made "KR-UA1" and "KR-UC1" mixed resin) was installed.
As a result, the TOC concentration of the treated water of the ion exchange resin column was 1 ppb or less, but when the catalyst column was switched from hydrogen treatment to oxygen treatment, a pressure fluctuation of about 10 kPa occurred and continuous treatment could not be performed. Further, the amount of the ion exchange resin adsorbed broke in about 20 days, and the resin exchange was required, so that continuous treatment could not be performed.

1 ガス溶解膜モジュール
2 連続式電気脱イオン装置
10 イオン交換体
11 陽極
12 陰極
13 アニオン交換膜
14 カチオン交換膜
15 濃縮室
16 脱塩室
17 陽極室
18 陰極室
1 Gas dissolution film module 2 Continuous electric deionizer 10 Ion exchanger 11 Anode 12 Cathode 13 Anion exchange film 14 Cation exchange film 15 Concentration chamber 16 Desalting chamber 17 Anode chamber 18 Cathode chamber

Claims (4)

脱塩室内に、TOC分解能を有する触媒を含む連続式電気脱イオン装置を有するTOC除去装置であって、
TOC含有水に水素ガス又は酸素ガスを溶解させるガス溶解手段と、
該ガス溶解手段で水素ガスを溶解させたTOC含有水と酸素ガスを溶解させたTOC含有水とを前記連続式電気脱イオン装置の前記脱塩室に交互に導入する手段と
を有し、
前記連続式電気脱イオン装置の陽極で発生した酸素ガスを前記TOC含有水に溶解させる酸素ガスとして前記ガス溶解手段に送給する酸素ガス送給手段、及び/又は、前記連続式電気脱イオン装置の陰極で発生した水素ガスを前記TOC含有水に溶解させる水素ガスとして前記ガス溶解手段に送給する水素ガス送給手段を有することを特徴とするTOC除去装置。
A TOC removing device having a continuous electric deionizing device including a catalyst having TOC resolution in a desalting chamber.
A gas dissolving means for dissolving hydrogen gas or oxygen gas in TOC-containing water,
A means for alternately introducing TOC-containing water in which hydrogen gas is dissolved and TOC-containing water in which oxygen gas is dissolved into the desalting chamber of the continuous electric deionizer by the gas dissolving means.
Have,
An oxygen gas feeding means that feeds an oxygen gas generated at the anode of the continuous electric deionizing device to the gas dissolving means as an oxygen gas that dissolves the TOC-containing water, and / or the continuous electric deionizing device. A TOC removing device comprising a hydrogen gas feeding means for feeding the hydrogen gas generated at the cathode of the gas to the gas dissolving means as a hydrogen gas for dissolving the hydrogen gas in the TOC-containing water .
前記ガス溶解手段が、前記連続式電気脱イオン装置の前段に設けられたガス溶解膜モジュールと、該ガス溶解膜モジュールの気相室に水素ガスを供給する水素ガス供給手段と該気相室に酸素ガスを供給する酸素ガス供給手段と、該水素ガス供給手段及び酸素ガス供給手段によるガスの供給を交互に切り換える切換手段と、該ガス溶解膜モジュールの液相室に前記TOC含有水を供給する手段とを有し、該液相室から流出するガス溶解TOC含有水が前記連続式電気脱イオン装置の脱塩室に導入されることを特徴とする請求項に記載のTOC除去装置。 The gas dissolving means is provided in the gas dissolving film module provided in front of the continuous electric deionizing device, the hydrogen gas supplying means for supplying hydrogen gas to the gas phase chamber of the gas dissolving film module, and the gas phase chamber. The TOC-containing water is supplied to the oxygen gas supply means for supplying the oxygen gas, the switching means for alternately switching the gas supply by the hydrogen gas supply means and the oxygen gas supply means, and the liquid phase chamber of the gas dissolution film module. The TOC removing device according to claim 1 , further comprising means, wherein the gas-dissolved TOC-containing water flowing out of the liquid phase chamber is introduced into the desalting chamber of the continuous electric deionizing device. 前記TOC分解能を有する触媒が白金族金属の微粒子よりなり、イオン交換樹脂に担持されていることを特徴とする請求項1又は2に記載のTOC除去装置。 The TOC removing device according to claim 1 or 2 , wherein the catalyst having a TOC resolution is made of fine particles of a platinum group metal and is supported on an ion exchange resin. 前記連続式電気脱イオン装置の脱塩室に、カチオン交換樹脂と、前記TOC分解能を有する金属が担持されたアニオン交換樹脂とが充填されていることを特徴とする請求項1ないしのいずれか1項に記載のTOC除去装置。 One of claims 1 to 3 , wherein the desalting chamber of the continuous electrodeionizer is filled with a cation exchange resin and an anion exchange resin carrying a metal having TOC resolution. The TOC removing device according to item 1.
JP2017251628A 2017-12-27 2017-12-27 TOC removal device Active JP7040008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017251628A JP7040008B2 (en) 2017-12-27 2017-12-27 TOC removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017251628A JP7040008B2 (en) 2017-12-27 2017-12-27 TOC removal device

Publications (2)

Publication Number Publication Date
JP2019115892A JP2019115892A (en) 2019-07-18
JP7040008B2 true JP7040008B2 (en) 2022-03-23

Family

ID=67303779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017251628A Active JP7040008B2 (en) 2017-12-27 2017-12-27 TOC removal device

Country Status (1)

Country Link
JP (1) JP7040008B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001258A (en) 2001-06-15 2003-01-07 Kurita Water Ind Ltd Electrolytic deionizing apparatus
JP2008132492A (en) 2002-12-27 2008-06-12 Ebara Corp Electric demineralizer
WO2010013677A1 (en) 2008-07-28 2010-02-04 栗田工業株式会社 Process and equipment for the treatment of water containing organic matter
JP2011167633A (en) 2010-02-18 2011-09-01 Kurita Water Ind Ltd Water treatment method and apparatus
JP2011224440A (en) 2010-04-16 2011-11-10 Japan Organo Co Ltd Electrical apparatus for producing deionized water
JP2013208557A (en) 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating organic matter-containing water
JP2014133225A (en) 2013-01-11 2014-07-24 Kankyo Joka Kenkyusho:Kk Method for removing urea within pure water
JP2015083286A (en) 2013-10-25 2015-04-30 オルガノ株式会社 Deionized water production system and method for operating the same
JP2017018847A (en) 2015-07-07 2017-01-26 オルガノ株式会社 Electric type deionized water production apparatus and deionized water production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272474A (en) * 1997-03-28 1998-10-13 Kurita Water Ind Ltd Electric deionization device
US6780328B1 (en) * 1997-06-20 2004-08-24 Li Zhang Fluid purification devices and methods employing deionization followed by ionization followed by deionization

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001258A (en) 2001-06-15 2003-01-07 Kurita Water Ind Ltd Electrolytic deionizing apparatus
JP2008132492A (en) 2002-12-27 2008-06-12 Ebara Corp Electric demineralizer
WO2010013677A1 (en) 2008-07-28 2010-02-04 栗田工業株式会社 Process and equipment for the treatment of water containing organic matter
JP2011167633A (en) 2010-02-18 2011-09-01 Kurita Water Ind Ltd Water treatment method and apparatus
JP2011224440A (en) 2010-04-16 2011-11-10 Japan Organo Co Ltd Electrical apparatus for producing deionized water
JP2013208557A (en) 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating organic matter-containing water
JP2014133225A (en) 2013-01-11 2014-07-24 Kankyo Joka Kenkyusho:Kk Method for removing urea within pure water
JP2015083286A (en) 2013-10-25 2015-04-30 オルガノ株式会社 Deionized water production system and method for operating the same
JP2017018847A (en) 2015-07-07 2017-01-26 オルガノ株式会社 Electric type deionized water production apparatus and deionized water production method

Also Published As

Publication number Publication date
JP2019115892A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP5447378B2 (en) Method and apparatus for treating water containing organic matter
JP4648307B2 (en) Continuous electrodeionization apparatus and method
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
JP5499753B2 (en) Water treatment method and apparatus
US6780328B1 (en) Fluid purification devices and methods employing deionization followed by ionization followed by deionization
TWI408107B (en) Extra-pure water production equipment and operating method thereof
WO2015068635A1 (en) Method and apparatus for manufacturing pure water
JP4599803B2 (en) Demineralized water production equipment
JP4552327B2 (en) Ultrapure water production equipment
JP7129965B2 (en) Pure water production method, pure water production system, ultrapure water production method, and ultrapure water production system
JP7040008B2 (en) TOC removal device
JP2003266097A (en) Ultrapure water making apparatus
JPH11226569A (en) Apparatus for removing organic substance in water and apparatus for producing ultrapure water
WO2021235107A1 (en) Boron removal device and boron removal method, and pure water production device and pure water production method
CN112424128B (en) Pure water production system and pure water production method
JP5919960B2 (en) Treatment method for organic water
JP5854163B2 (en) Ultrapure water production method and ultrapure water production facility
JP2000308815A (en) Producing device of ozone dissolved water
WO2022190608A1 (en) Method and apparatus for treating water
JP3674475B2 (en) Pure water production method
WO2022190727A1 (en) Water treatment method and water treatment apparatus
WO2024053305A1 (en) Ultrapure water production device and ultrapure water production method
JP2022138430A (en) Water treatment method and water treatment apparatus
CN116964006A (en) Water treatment method and water treatment device
JP2022124773A (en) Water treatment system and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7040008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150