JP2013208557A - Method for treating organic matter-containing water - Google Patents

Method for treating organic matter-containing water Download PDF

Info

Publication number
JP2013208557A
JP2013208557A JP2012080490A JP2012080490A JP2013208557A JP 2013208557 A JP2013208557 A JP 2013208557A JP 2012080490 A JP2012080490 A JP 2012080490A JP 2012080490 A JP2012080490 A JP 2012080490A JP 2013208557 A JP2013208557 A JP 2013208557A
Authority
JP
Japan
Prior art keywords
water
catalyst
organic matter
exchange resin
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012080490A
Other languages
Japanese (ja)
Other versions
JP5919960B2 (en
Inventor
Hiroto Tokoshima
裕人 床嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012080490A priority Critical patent/JP5919960B2/en
Publication of JP2013208557A publication Critical patent/JP2013208557A/en
Application granted granted Critical
Publication of JP5919960B2 publication Critical patent/JP5919960B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating organic matter-containing water by which organic matter contained in water to be treated can be decomposed at low energy consumption.SOLUTION: A method for treating organic matter-containing water in which water to be treated containing organic matter is brought into contact with a metallic catalyst of a platinum group to decompose the organic matter, repeats the following steps of: making hydrogen water run through the catalyst; making oxygen water run through the catalyst; and then, making organic matter-containing water run through the catalyst.

Description

本発明は有機物含有水の処理方法に係り、特に被処理水中の有機物を金属触媒によって分解する方法に関する。   The present invention relates to a method for treating organic substance-containing water, and more particularly to a method for decomposing organic substances in water to be treated with a metal catalyst.

電子部品の洗浄ないし表面処理のために、高濃度の薬液や洗剤が用いられており、それを濯ぐために多量の純水が用いられている。そして、純水の水質向上や排水の再利用率の向上のために、水中の有機物(TOC)を効率よく低濃度にまで分解処理することができる水処理技術の開発が望まれている。   A high concentration chemical solution or detergent is used for cleaning or surface treatment of electronic components, and a large amount of pure water is used for rinsing them. In order to improve the quality of pure water and the reuse rate of wastewater, it is desired to develop a water treatment technique that can efficiently decompose organic matter (TOC) in water to a low concentration.

超純水製造工程において被処理水中のTOC成分を分解する方法としては、周知の通り、生物処理又は物理化学処理が広く行われている。   As is well known, biological treatment or physicochemical treatment is widely performed as a method for decomposing a TOC component in water to be treated in an ultrapure water production process.

例えば、有機物含有排水を回収し、これをまず生物処理してTOC成分を除去した後、この生物処理水を逆浸透膜(RO膜)処理して浄化する方法がある(例えば、特許文献1)。この特許文献1のようにTOC含有排水を生物処理してRO膜分離装置に通水する方法にあっては、微生物による有機物分解で生成する生物代謝物によりRO膜の膜面が閉塞され、フラックスが低下するという問題がある。また、RO用のポンプの消費電力も大きい。   For example, there is a method of recovering organic matter-containing wastewater, first biologically treating it to remove the TOC component, and then purifying the biologically treated water by treating it with a reverse osmosis membrane (RO membrane) (for example, Patent Document 1). . In the method of biologically treating the TOC-containing wastewater and passing it through the RO membrane separation device as in Patent Document 1, the membrane surface of the RO membrane is blocked by the biological metabolite generated by the decomposition of organic matter by microorganisms, and the flux There is a problem that decreases. Further, the power consumption of the RO pump is large.

また、物理化学的処理としては、有機物含有排水を直接にRO膜分離装置に通水する方法;有機物含有排水に酸化剤を添加して加熱分解させる方法;有機物含有排水に紫外線を照射して分解させる方法(例えば、特許文献2);などがある。   In addition, as physicochemical treatment, wastewater containing organic matter is directly passed through RO membrane separator; oxidant is added to wastewater containing organic matter and thermally decomposed; wastewater containing organic matter is irradiated with ultraviolet rays for decomposition (For example, Patent Document 2);

しかしながら、これらの方法は、エネルギー消費量が多いという問題がある。また、RO処理やUV処理では、有機物含有排水中の有機物が、分子量の小さい窒素化合物(尿素など)に代表される難分解性有機物である場合、分解効率が極端に悪い。   However, these methods have a problem of high energy consumption. In addition, in RO treatment and UV treatment, when the organic matter in the organic matter-containing wastewater is a hardly decomposable organic matter represented by a nitrogen compound (such as urea) having a low molecular weight, the decomposition efficiency is extremely low.

特許文献3には、水素を吸着した白金族の金属触媒に酸素を溶解させた有機物含有水を接触させて該有機物を分解する有機物含有水の処理方法及び装置が記載されている。   Patent Document 3 describes a method and apparatus for treating organic substance-containing water in which organic substance-containing water in which oxygen is dissolved is brought into contact with a platinum group metal catalyst that has adsorbed hydrogen to decompose the organic substance.

この特許文献3の有機物含有水の処理方法及び装置にあっては、有機物を含有する被処理水を、白金族の金属触媒に接触させ、金属触媒の触媒作用によって該有機物を分解させるため、有機物を低エネルギーにて簡便に分解する。この有機物含有水の処理方法及び装置では、RO装置やUV照射処理を行わないので、エネルギー消費量が少ない。   In the method and apparatus for treating organic substance-containing water disclosed in Patent Document 3, water to be treated containing an organic substance is brought into contact with a platinum group metal catalyst, and the organic substance is decomposed by the catalytic action of the metal catalyst. Is easily decomposed at low energy. In the method and apparatus for treating organic substance-containing water, since the RO apparatus and UV irradiation treatment are not performed, the energy consumption is small.

特開2002−336886号JP 2002-336886 A 特開2007−185587号JP2007-185587 WO2010/013677A1WO2010 / 013677A1

本発明は、特許文献3よりも容易に、被処理水中の有機物を低消費エネルギーにて分解することができる有機物含有水の処理方法を提供することを目的とする。   An object of this invention is to provide the processing method of the organic substance containing water which can decompose | disassemble the organic substance in to-be-processed water with low consumption energy more easily than patent document 3. FIG.

本発明の有機物含有水の処理方法は、有機物を含有する被処理水を白金族の金属触媒に接触させ、該有機物を分解する有機物含有水の処理方法において、水素水を触媒に通水する工程と、次に酸素水を触媒に通水する工程と、その後、有機物含有水を触媒に通水する工程とを繰り返し行うことを特徴とするものである。   The method for treating organic matter-containing water of the present invention is a step of bringing hydrogen water through a catalyst in a treatment method for organic matter-containing water in which water to be treated containing an organic matter is brought into contact with a platinum group metal catalyst and the organic matter is decomposed. Then, the step of passing oxygen water through the catalyst and the step of passing organic substance-containing water through the catalyst are repeated.

本発明では、白金族の金属触媒に対し、水素水通水工程、酸素水通水工程及び有機物含有原水通水工程を繰り返し行う。   In the present invention, the hydrogen water flow step, the oxygen water flow step, and the organic matter-containing raw water flow step are repeatedly performed on the platinum group metal catalyst.

水素水を触媒に通水すると、触媒に水素が吸着する。触媒に水素が吸着した状態で酸素水を供給することにより、触媒上で水分子が生成し、一部の水分子が触媒上に留まる。次いで有機物含有水を供給すると、非共有電子対をもつ尿素のようなTOCと該水分子とが配位結合のような結合をして、有機物が触媒に吸着される。この吸着された有機物が白金族触媒の作用によって一部分解される。そして、次の水素水供給時に、触媒に水素が吸着すると同時に、分解生成物が触媒から離れる。   When hydrogen water is passed through the catalyst, hydrogen is adsorbed on the catalyst. By supplying oxygen water with hydrogen adsorbed on the catalyst, water molecules are generated on the catalyst, and some water molecules remain on the catalyst. Next, when the organic substance-containing water is supplied, the TOC such as urea having an unshared electron pair and the water molecule form a bond such as a coordination bond, and the organic substance is adsorbed on the catalyst. The adsorbed organic matter is partially decomposed by the action of the platinum group catalyst. And at the time of the next hydrogen water supply, hydrogen adsorb | sucks to a catalyst, and a decomposition product leaves | separates from a catalyst.

また、本発明において、金属触媒を複数個の反応容器に収容し、一部の反応容器で水素水通水工程又は酸素水通水工程を行っている間に、他の反応容器で有機物含有水通水工程を行うようにしてもよい。このようにすれば、被処理水中の有機物の分解処理を連続的に実施することができる。   In the present invention, the metal catalyst is accommodated in a plurality of reaction vessels, and while the hydrogen water flow step or the oxygen water flow step is performed in some of the reaction vessels, You may make it perform a water flow process. If it does in this way, the decomposition process of the organic substance in to-be-processed water can be implemented continuously.

この金属触媒は、白金族の金属微粒子よりなるものであってもよい。この白金族の金属微粒子をイオン交換樹脂に担持させることにより、効率よく有機物分解反応が進行する。   The metal catalyst may be made of platinum group metal fine particles. By supporting the platinum group metal fine particles on the ion exchange resin, the organic substance decomposition reaction proceeds efficiently.

本発明では、被処理水を該金属触媒に接触させた後、この水をアニオン交換樹脂及びカチオン交換樹脂の少なくとも一方と接触させてもよい。このようにすれば、TOCの分解によって生成した有機酸などのイオン性物質がイオン交換樹脂によって吸着除去される。   In the present invention, after water to be treated is brought into contact with the metal catalyst, this water may be brought into contact with at least one of an anion exchange resin and a cation exchange resin. If it does in this way, ionic substances, such as an organic acid generated by decomposition of TOC, will be adsorbed and removed by ion exchange resin.

なお、本発明は超純水を製造するための原水(市水、井水、表流水や、半導体又は電子部品等の製図工程からの排水など)を処理する場合に好適である。本発明は、この原水の有機物濃度がTOC(全有機炭素)として1〜1000ppb特に1〜50ppb程度である場合に適用するのに特に好適である。   The present invention is suitable for treating raw water for producing ultrapure water (city water, well water, surface water, drainage from a drawing process of semiconductors or electronic components, etc.). The present invention is particularly suitable for application when the organic matter concentration of the raw water is about 1 to 1000 ppb, particularly about 1 to 50 ppb as TOC (total organic carbon).

本発明の有機物含有水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the organic substance containing water of this invention.

以下に図面を参照して本発明の有機物含有水の処理方法の実施の形態を詳細に説明する。   Embodiments of the method for treating organic substance-containing water of the present invention will be described in detail below with reference to the drawings.

原水供給配管1が、触媒充填カラム(反応容器)4の流入口に接続されている。この触媒充填カラム4の流出部は、配管5を介してイオン交換樹脂カラム6の流入口に接続されている。イオン交換樹脂カラム6の流出口に、処理水配管7が接続されている。   A raw water supply pipe 1 is connected to an inlet of a catalyst packed column (reaction vessel) 4. The outflow part of the catalyst packed column 4 is connected to the inlet of the ion exchange resin column 6 through a pipe 5. A treated water pipe 7 is connected to the outlet of the ion exchange resin column 6.

この原水供給配管1に配管3を介してガス溶解用の膜モジュール2の液相室2aが接続されている。この膜モジュール2は、気体透過膜2cによって液相室2aと気相室2bに区画されている。   A liquid phase chamber 2 a of a gas dissolving membrane module 2 is connected to the raw water supply pipe 1 through a pipe 3. The membrane module 2 is partitioned into a liquid phase chamber 2a and a gas phase chamber 2b by a gas permeable membrane 2c.

この気体透過膜2cは、酸素、窒素、二酸化炭素、水蒸気などの気体は透過するが水は透過しない膜であり、例えば、シリコーン系膜、ポリテトラフルオロエチレン系膜、ポリオレフィン系膜、ポリウレタン系膜などを挙げることができる。   The gas permeable membrane 2c is a membrane that transmits gas such as oxygen, nitrogen, carbon dioxide, and water vapor but does not transmit water. For example, a silicone film, a polytetrafluoroethylene film, a polyolefin film, and a polyurethane film. And so on.

膜モジュール2の気相室2bに水素ガス供給管11が接続され、この水素ガス供給管11に酸素ガス供給管12及び窒素ガス供給管13が接続されている。窒素ガス供給管13から分岐した配管14が排気管15に接続されている。   A hydrogen gas supply pipe 11 is connected to the gas phase chamber 2 b of the membrane module 2, and an oxygen gas supply pipe 12 and a nitrogen gas supply pipe 13 are connected to the hydrogen gas supply pipe 11. A pipe 14 branched from the nitrogen gas supply pipe 13 is connected to the exhaust pipe 15.

気相室2bへの窒素などの気体の供給量は、通水量の5〜25体積%であることが好ましい。   The supply amount of a gas such as nitrogen to the gas phase chamber 2b is preferably 5 to 25% by volume of the water flow rate.

ガス溶解用の水は、触媒4aにTOC負荷をかけないために、触媒充填カラム4の処理水もしくは、触媒充填カラム4で処理しさらにイオン交換樹脂カラム6で処理した処理水を用いることが望ましい。   As the water for gas dissolution, in order not to apply a TOC load to the catalyst 4a, it is desirable to use treated water of the catalyst packed column 4 or treated water treated with the catalyst packed column 4 and further treated with the ion exchange resin column 6. .

触媒充填カラム4に充填される金属触媒4aに用いる白金族としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができる。こられの白金族は、1種を単独で用いることができ、2種以上を組み合わせて用いることもでき、2種以上の合金として用いることもでき、あるいは、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中で、白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物は、触媒活性が強いので特に好適に用いることができる。   Examples of the platinum group used for the metal catalyst 4a packed in the catalyst packed column 4 include ruthenium, rhodium, palladium, osmium, iridium and platinum. These platinum groups can be used alone, in combinations of two or more, can be used as alloys of two or more, or can be a naturally produced mixture of refined products. Can also be used without separating them into single bodies. Among these, platinum, palladium, a platinum / palladium alloy alone or a mixture of two or more of them is particularly suitable because of its strong catalytic activity.

この白金族の金属触媒4aは、白金族の金属微粒子でもよく、白金族の金属ナノコロイド粒子を担体の表面に担持させた金属担持触媒でもよい。   The platinum group metal catalyst 4a may be platinum group metal fine particles, or may be a metal supported catalyst in which platinum group metal nanocolloid particles are supported on the surface of a carrier.

白金族の金属ナノコロイド粒子を製造する方法に特に制限はなく、例えば、金属塩還元反応法、燃焼法などを挙げることができる。これらの中で、金属塩還元反応法は、製造が容易であり、安定した品質の金属ナノコロイド粒子を得ることができるので好適に用いることができる。金属塩還元反応法としては、例えば、白金などの塩化物、硝酸塩、硫酸塩、金属錯化物などの0.1〜0.4mmol/L水溶液に、アルコール、クエン酸又はその塩、ギ酸、アセトン、アセトアルデヒドなどの還元剤を4〜20当量倍添加し、1〜3時間煮沸することにより、金属ナノコロイド粒子を製造することができる。また、例えば、ポリビニルピロリドン水溶液に、ヘキサクロロ白金酸、ヘキサクロロ白金酸カリウムなどを1〜2mmol/L溶解し、エタノールなどの還元剤を加え、窒素雰囲気下で2〜3時間加熱還流することにより、白金ナノコロイド粒子を製造することができる。   There is no restriction | limiting in particular in the method of manufacturing a platinum group metal nano colloid particle, For example, a metal salt reduction reaction method, a combustion method, etc. can be mentioned. Among these, the metal salt reduction reaction method can be suitably used because it is easy to produce and stable metal nanocolloid particles can be obtained. As the metal salt reduction reaction method, for example, 0.1 to 0.4 mmol / L aqueous solution of chloride such as platinum, nitrate, sulfate, metal complex, etc., alcohol, citric acid or a salt thereof, formic acid, acetone, Metal nanocolloid particles can be produced by adding 4 to 20 equivalents of a reducing agent such as acetaldehyde and boiling for 1 to 3 hours. Further, for example, by dissolving 1-2 mmol / L of hexachloroplatinic acid, potassium hexachloroplatinate, etc. in an aqueous polyvinylpyrrolidone solution, adding a reducing agent such as ethanol, and heating and refluxing in a nitrogen atmosphere for 2 to 3 hours, Nanocolloid particles can be produced.

白金族の金属ナノコロイド粒子の平均粒子径は好ましくは1〜50nmであり、より好ましくは1.2〜20nmであり、さらに好ましくは1.4〜5nmである。金属ナノコロイド粒子の平均粒子径が1nm未満であると、TOCの分解除去に対する触媒活性が低下するおそれがある。金属ナノコロイド粒子の平均粒子径が50nmを超えると、ナノコロイド粒子の比表面積が小さくなって、TOCの分解除去に対する触媒活性が低下するおそれがある。   The average particle size of the platinum group metal nanocolloid particles is preferably 1 to 50 nm, more preferably 1.2 to 20 nm, and still more preferably 1.4 to 5 nm. If the average particle size of the metal nanocolloid particles is less than 1 nm, the catalytic activity for TOC decomposition and removal may be reduced. When the average particle diameter of the metal nanocolloid particles exceeds 50 nm, the specific surface area of the nanocolloid particles becomes small, and the catalytic activity for TOC decomposition and removal may be reduced.

白金族の金属ナノコロイド粒子を担持させる担体に特に制限はなく、例えば、マグネシア、チタニア、アルミナ、シリカ−アルミナ、ジルコニア、活性炭、ゼオライト、ケイソウ土、イオン交換樹脂などを挙げることができる。これらの中で、アニオン交換樹脂を特に好適に用いることができる。白金族の金属ナノコロイド粒子は電気二重層を有し、負に帯電しているので、アニオン交換樹脂に安定的に担持されて剥離しにくい。アニオン交換樹脂としては、スチレン−ジビニルベンゼン共重合体を母体とした強塩基性アニオン交換樹脂であることが好ましく、特にゲル型樹脂であることがより好ましい。また、アニオン交換樹脂の交換基は、OH形であることが好ましい。   There is no restriction | limiting in particular in the support | carrier which carry | supports the platinum group metal nano colloid particle, For example, a magnesia, a titania, an alumina, a silica-alumina, a zirconia, activated carbon, a zeolite, a diatomaceous earth, an ion exchange resin etc. can be mentioned. Among these, an anion exchange resin can be particularly preferably used. Since the platinum group metal nanocolloid particles have an electric double layer and are negatively charged, they are stably supported on the anion exchange resin and hardly peeled off. The anion exchange resin is preferably a strongly basic anion exchange resin based on a styrene-divinylbenzene copolymer, and more preferably a gel resin. The exchange group of the anion exchange resin is preferably in the OH form.

アニオン交換樹脂への白金族の金属ナノコロイド粒子の担持量は、0.01〜0.2重量%であることが好ましく、0.04〜0.1重量%であることがより好ましい。金属ナノコロイド粒子の担持量が0.01重量%未満であると、有機物の分解除去に対する触媒活性が不足するおそれがある。金属ナノコロイド粒子の担持量は0.2重量%以下で有機物の分解除去に対して十分な触媒活性が発現し、通常は0.2重量%を超える金属ナノコロイド粒子を担持させる必要はない。また、金属ナノコロイド粒子の担持量が増加すると、水中への金属の溶出のおそれも大きくなる。   The amount of platinum group metal nanocolloid particles supported on the anion exchange resin is preferably 0.01 to 0.2% by weight, and more preferably 0.04 to 0.1% by weight. If the supported amount of metal nanocolloid particles is less than 0.01% by weight, the catalytic activity for the decomposition and removal of organic substances may be insufficient. The supported amount of the metal nanocolloid particles is 0.2% by weight or less, and sufficient catalytic activity is exhibited for the decomposition and removal of the organic matter. Usually, it is not necessary to support the metal nanocolloid particles exceeding 0.2% by weight. In addition, when the amount of metal nanocolloid particles supported increases, the risk of metal elution into water also increases.

イオン交換樹脂カラム6内にはイオン交換樹脂6aが充填されている。このイオン交換樹脂カラムは、イオン交換樹脂6aとして強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とをイオン負荷に応じて混合充填した非再生型混床式イオン交換装置であることが好ましい。混床式イオン交換装置により、水中のカチオンとアニオンが完全に除去されて、電気伝導率が極めて低い超純水を得ることができる。また、未分解の有機物や、有機物の分解過程で生成する有機酸等も除去される。   The ion exchange resin column 6 is filled with an ion exchange resin 6a. This ion exchange resin column is preferably a non-regenerative mixed bed ion exchange apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are mixed and packed in accordance with the ion load as the ion exchange resin 6a. By using a mixed bed type ion exchange apparatus, cations and anions in water are completely removed, and ultrapure water having extremely low electrical conductivity can be obtained. Further, undecomposed organic substances and organic acids generated during the decomposition process of organic substances are also removed.

次に、図1の装置を用いて被処理水中の有機物(TOC成分)を分解する有機物分解方法について説明する。   Next, an organic matter decomposition method for decomposing organic matter (TOC component) in the water to be treated using the apparatus of FIG. 1 will be described.

まず、配管11から水素ガスを膜モジュール2の気相室2bへ供給し、液相に溶解させる。未溶解の余剰水素は排気管15から排出される。このとき、窒素ガスを配管13,14を介して排気管15へ供給し、排気管15内の水素ガスに合流させ、合流後の水素ガス濃度を4%(v/v)以下とすることにより、水素の爆発限界以下として、安全に排気することが望ましい。   First, hydrogen gas is supplied from the pipe 11 to the gas phase chamber 2b of the membrane module 2 and dissolved in the liquid phase. Undissolved surplus hydrogen is discharged from the exhaust pipe 15. At this time, nitrogen gas is supplied to the exhaust pipe 15 via the pipes 13 and 14 and merged with the hydrogen gas in the exhaust pipe 15 so that the hydrogen gas concentration after the merge is 4% (v / v) or less. It is desirable to discharge safely below the explosion limit of hydrogen.

水素水の濃度は0.1〜1.6mg/L(25℃)特に0.2〜1.0mg/L(25℃)程度が好ましい。   The concentration of hydrogen water is preferably about 0.1 to 1.6 mg / L (25 ° C.), particularly about 0.2 to 1.0 mg / L (25 ° C.).

触媒充填カラム4に供給する溶存水素量は、触媒4aの水素吸着量の1倍以上であればよいが、1〜5倍程度が望ましい。水素水を触媒充填カラム4へ供給することにより、触媒5aに水素を吸着させると同時に、それまで吸着していたTOC成分を触媒4aから脱着させる。TOC成分の少なくとも一部は分解してイオン化している。   Although the amount of dissolved hydrogen supplied to the catalyst packed column 4 should just be 1 time or more of the hydrogen adsorption amount of the catalyst 4a, about 1 to 5 times is desirable. By supplying hydrogen water to the catalyst packed column 4, hydrogen is adsorbed on the catalyst 5a, and at the same time, the TOC component adsorbed so far is desorbed from the catalyst 4a. At least a part of the TOC component is decomposed and ionized.

次に、触媒充填カラム4からTOC成分や分解物の排出を十分に行うために、配管13から気相室2bに窒素ガスを供給し、窒素水を触媒充填カラム4へ供給する。未溶解の窒素ガスは気相室2bから排気管15へ排出される。このとき、窒素ガス分岐配管14へは窒素ガスは供給しない。窒素ガス分岐配管14へは、水素ガスもしくは酸素ガスを気相室2bから排気するときのみ、排気ガスの希釈のために窒素ガスを供給する。   Next, in order to sufficiently discharge the TOC component and decomposition products from the catalyst packed column 4, nitrogen gas is supplied from the pipe 13 to the gas phase chamber 2 b and nitrogen water is supplied to the catalyst packed column 4. Undissolved nitrogen gas is discharged from the gas phase chamber 2b to the exhaust pipe 15. At this time, nitrogen gas is not supplied to the nitrogen gas branch pipe 14. Nitrogen gas is supplied to the nitrogen gas branch pipe 14 for dilution of exhaust gas only when hydrogen gas or oxygen gas is exhausted from the gas phase chamber 2b.

窒素水の濃度は2〜18mg/L(25℃)特に2〜12mg/L(25℃)程度が好ましい。窒素水の通水量は触媒充填カラム4の触媒量の1〜10倍が望ましく、2〜5倍程度が排出性と処理時間と両立の観点から好ましい。   The concentration of nitrogen water is preferably about 2 to 18 mg / L (25 ° C.), particularly about 2 to 12 mg / L (25 ° C.). The flow rate of nitrogen water is desirably 1 to 10 times the catalyst amount of the catalyst packed column 4 and is preferably about 2 to 5 times from the viewpoint of achieving both discharge properties and treatment time.

その後、酸素ガスを配管12から気相室2bに供給し、酸素水を触媒充填カラム4へ供給する。このとき未溶解酸素ガスとして排気管15から排出される酸素ガスは、支燃性があるために、窒素ガス分岐配管14からの窒素を合流させて酸素濃度20%(v/v)以下としたのちに排出することが望ましい。酸素水の濃度は1〜1000μg/L特に1〜100μg/L程度が好ましい。   Thereafter, oxygen gas is supplied from the pipe 12 to the gas phase chamber 2 b, and oxygen water is supplied to the catalyst packed column 4. At this time, since the oxygen gas discharged from the exhaust pipe 15 as undissolved oxygen gas has a flame-supporting property, the nitrogen from the nitrogen gas branch pipe 14 is merged so that the oxygen concentration is 20% (v / v) or less. It is desirable to discharge later. The concentration of oxygen water is preferably about 1 to 1000 μg / L, particularly about 1 to 100 μg / L.

触媒充填カラム4へ供給する酸素水量は、触媒4aへ吸着可能な水素量(水素吸着容量)の質量の1/2以上であればよいが、水素吸着容量の質量の1/2〜10倍程度が望ましく、1〜5倍程度が特に好ましい。   The amount of oxygen water supplied to the catalyst packed column 4 may be not less than ½ of the mass of the amount of hydrogen that can be adsorbed to the catalyst 4a (hydrogen adsorption capacity), but about 1/2 to 10 times the mass of the hydrogen adsorption capacity Is preferable, and about 1 to 5 times is particularly preferable.

次に、原水供給配管1から被処理水を触媒充填カラム4に供給し、触媒4aによる処理水を配管5からイオン交換樹脂カラム6へ供給する。触媒充填カラム4の流出水中に含まれるイオン性物質がイオン交換で除去され、処理水が配管7から流出する。   Next, water to be treated is supplied from the raw water supply pipe 1 to the catalyst packed column 4, and treated water from the catalyst 4 a is supplied from the pipe 5 to the ion exchange resin column 6. The ionic substances contained in the effluent of the catalyst packed column 4 are removed by ion exchange, and the treated water flows out from the pipe 7.

このように触媒充填カラム4に原水を通水する際のSVは30〜200h−1特に60〜180h−1程度が好ましい。 Thus, SV at the time of passing raw water through the catalyst packed column 4 is preferably about 30 to 200 h −1, particularly about 60 to 180 h −1 .

その後、水素水通水工程、酸素水通水工程及び原水通水工程を順次繰り返して有機物含有原水の処理を行う。この処理方法において、触媒4aに水素が吸着した状態で、酸素水を供給すると、水分子が生成し、一部の水分子が触媒4a上に留まる。次いで、原水が供給されると、非共有電子対をもつ尿素のような有機物と該水分子との配位結合のような結合により、有機物が触媒4aに吸着され、触媒作用によって該有機物が低分子物に分解される。そして、次の水素水供給時に、触媒に水素が吸着すると同時に分解物が触媒4aから離れて、触媒充填カラム4から排出される。   Thereafter, the organic material-containing raw water is treated by sequentially repeating the hydrogen water flow step, the oxygen water flow step, and the raw water flow step. In this treatment method, when oxygen water is supplied in a state where hydrogen is adsorbed on the catalyst 4a, water molecules are generated and some water molecules remain on the catalyst 4a. Next, when raw water is supplied, the organic substance is adsorbed on the catalyst 4a by a bond such as a coordinate bond between an organic substance such as urea having an unshared electron pair and the water molecule, and the organic substance is reduced by the catalytic action. Decomposed into molecular objects. Then, at the next hydrogen water supply, hydrogen is adsorbed on the catalyst, and at the same time, the decomposition product leaves the catalyst 4 a and is discharged from the catalyst packed column 4.

本発明では、複数の触媒充填カラムを並列に設置し、一部の反応容器で水素水通水工程又は酸素水通水工程を行っているときに他の反応容器で有機物含有水通水工程を行うことにより、被処理水の処理を連続して実施するようにしてもよい。   In the present invention, a plurality of catalyst-packed columns are installed in parallel, and when a hydrogen water flow step or an oxygen water flow step is performed in some reaction vessels, an organic substance-containing water flow step is performed in another reaction vessel. By performing, you may make it implement the process of to-be-processed water continuously.

以下に実施例及び比較例を用いて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail using examples and comparative examples.

[実施例1]
図1の装置を用い、以下の条件で原水の処理を行った。
金属触媒(触媒樹脂):栗田工業(株)製「ナノセイバー」(白金ナノコロイド担持
イオン交換樹脂)、2L
脱気膜モジュール:セルガード社製「リキセルG420」
イオン交換樹脂:栗田工業(株)製「KR−UA1」1Lと「KR−UC1」1L
との混合樹脂
水量:2L/min
原水としては、尿素を超純水に3ppb(asC)溶解させた合成排水を用いた。
[Example 1]
Using the apparatus of FIG. 1, the raw water was treated under the following conditions.
Metal catalyst (catalyst resin): “Nano Saver” manufactured by Kurita Kogyo Co., Ltd.
Ion exchange resin), 2L
Degassing membrane module: “Lixel G420” manufactured by Celgard
Ion exchange resin: Kurata Kogyo "KR-UA1" 1L and "KR-UC1" 1L
Mixed resin water amount: 2L / min
As raw water, synthetic waste water in which urea was dissolved in 3 ppb (asC) in ultrapure water was used.

原水に水素を1.0mg/L溶解させた水素水をSV=12h−1で触媒4aに10min通水した後、原水に窒素を16mg/L溶解させた窒素水をSV=60h−1で触媒4aに20min通水した。次いで、原水に酸素を100μg/L溶解させた酸素水をSV=60h−1で触媒4aに30min通水した。その後、原水をSV=60h−1で触媒4aに60min通水した。 After the hydrogen water hydrogen to the raw water was dissolved 1.0 mg / L was 10min Rohm catalyst 4a at SV = 12h -1, the catalytic nitrogen water nitrogen dissolved 16 mg / L to the raw water at SV = 60h -1 Water was passed through 4a for 20 min. Subsequently, oxygen water in which 100 μg / L of oxygen was dissolved in the raw water was passed through the catalyst 4 a for 30 min at SV = 60 h −1 . Thereafter, the raw water was passed through the catalyst 4a for 60 min at SV = 60h- 1 .

イオン交換樹脂カラム6の出口配管9内の処理水のTOC濃度を測定した結果、1ppb以下であった。   As a result of measuring the TOC concentration of the treated water in the outlet pipe 9 of the ion exchange resin column 6, it was 1 ppb or less.

[比較例1]
触媒充填カラム4に代えて低圧UVランプ装置(日本フォトサイエンス社製「AZ−26」)を設置したこと以外は図1と同一の装置を用い、原水を水量2L/minにて通水した。なお、水素水、窒素水、酸素水の通水は省略した。
[Comparative Example 1]
1 was used in place of the catalyst packed column 4 except that a low-pressure UV lamp device (“AZ-26” manufactured by Nippon Photo Science Co., Ltd.) was installed, and raw water was passed at a water volume of 2 L / min. In addition, water flow of hydrogen water, nitrogen water, and oxygen water was omitted.

イオン交換樹脂カラム6の出口配管9内の処理水のTOC濃度を測定した結果、3ppbであり、尿素は全く分解されなかった。   As a result of measuring the TOC concentration of the treated water in the outlet pipe 9 of the ion exchange resin column 6, it was 3 ppb, and urea was not decomposed at all.

2 ガス溶解用膜モジュール
4 触媒充填カラム
4a 金属触媒
6 イオン交換樹脂カラム
2 Gas dissolution membrane module 4 Catalyst packed column 4a Metal catalyst 6 Ion exchange resin column

Claims (4)

有機物を含有する被処理水を白金族の金属触媒に接触させ、該有機物を分解する有機物含有水の処理方法において、
水素水を触媒に通水する工程と、
次に酸素水を触媒に通水する工程と、
その後、有機物含有水を触媒に通水する工程と
を繰り返し行うことを特徴とする有機物含有水の処理方法。
In the method for treating organic matter-containing water, the water to be treated containing organic matter is brought into contact with a platinum group metal catalyst, and the organic matter is decomposed.
Passing hydrogen water through the catalyst;
Next, passing oxygen water through the catalyst;
Then, the process of passing organic substance containing water through a catalyst is performed repeatedly, The processing method of organic substance containing water characterized by the above-mentioned.
請求項1において、該金属触媒を収容した反応容器を複数個用い、一部の反応容器で水素水通水工程又は酸素水通水工程を行っているときに他の反応容器で有機物含有水通水工程を行うことを特徴とする有機物含有水の処理方法。   In claim 1, when a plurality of reaction containers containing the metal catalyst are used and a hydrogen water flow process or an oxygen water flow process is performed in some of the reaction containers, the organic substance-containing water flow is performed in another reaction container. A method for treating water containing organic matter, comprising performing a water step. 請求項1又は2において、該金属触媒が白金族の金属の微粒子よりなり、イオン交換樹脂に担持されていることを特徴とする有機物含有水の処理方法。   3. The method for treating organic substance-containing water according to claim 1, wherein the metal catalyst comprises platinum group metal fine particles and is supported on an ion exchange resin. 請求項1ないし3のいずれか1項において、該被処理水を該金属触媒に接触させた後、この水をアニオン交換樹脂及びカチオン交換樹脂の少なくとも一方と接触させることを特徴とする有機物含有水の処理方法。   The water containing organic matter according to any one of claims 1 to 3, wherein the water to be treated is brought into contact with the metal catalyst, and then the water is brought into contact with at least one of an anion exchange resin and a cation exchange resin. Processing method.
JP2012080490A 2012-03-30 2012-03-30 Treatment method for organic water Expired - Fee Related JP5919960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080490A JP5919960B2 (en) 2012-03-30 2012-03-30 Treatment method for organic water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080490A JP5919960B2 (en) 2012-03-30 2012-03-30 Treatment method for organic water

Publications (2)

Publication Number Publication Date
JP2013208557A true JP2013208557A (en) 2013-10-10
JP5919960B2 JP5919960B2 (en) 2016-05-18

Family

ID=49526969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080490A Expired - Fee Related JP5919960B2 (en) 2012-03-30 2012-03-30 Treatment method for organic water

Country Status (1)

Country Link
JP (1) JP5919960B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019115892A (en) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc removal device and toc removal method
WO2022219870A1 (en) * 2021-04-14 2022-10-20 オルガノ株式会社 Platinum group metal supported catalyst column and method for forming carbon-carbon bond

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175596A (en) * 1983-11-10 1985-09-09 ウエスチングハウス エレクトリック コ−ポレ−ション Removal of dissolved oxygen from aqueous medium
EP0441355A1 (en) * 1990-02-07 1991-08-14 Linde Aktiengesellschaft Process and device for removal of hydrogen from closed water loops
JPH078970A (en) * 1993-06-29 1995-01-13 Kurita Water Ind Ltd Removal of alcohol in water
JP2007268506A (en) * 2006-03-31 2007-10-18 Osaka Gas Co Ltd Method for treating wastewater
WO2010013677A1 (en) * 2008-07-28 2010-02-04 栗田工業株式会社 Process and equipment for the treatment of water containing organic matter
JP2010214322A (en) * 2009-03-18 2010-09-30 Japan Organo Co Ltd Supported catalyst of platinum group metal, method of producing treated water removed of hydrogen peroxide by decomposing the same, method of producing treated water removed of dissolved oxygen, and method of washing electronic parts
JP2011167633A (en) * 2010-02-18 2011-09-01 Kurita Water Ind Ltd Water treatment method and apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175596A (en) * 1983-11-10 1985-09-09 ウエスチングハウス エレクトリック コ−ポレ−ション Removal of dissolved oxygen from aqueous medium
EP0441355A1 (en) * 1990-02-07 1991-08-14 Linde Aktiengesellschaft Process and device for removal of hydrogen from closed water loops
JPH078970A (en) * 1993-06-29 1995-01-13 Kurita Water Ind Ltd Removal of alcohol in water
JP2007268506A (en) * 2006-03-31 2007-10-18 Osaka Gas Co Ltd Method for treating wastewater
WO2010013677A1 (en) * 2008-07-28 2010-02-04 栗田工業株式会社 Process and equipment for the treatment of water containing organic matter
JP2010214322A (en) * 2009-03-18 2010-09-30 Japan Organo Co Ltd Supported catalyst of platinum group metal, method of producing treated water removed of hydrogen peroxide by decomposing the same, method of producing treated water removed of dissolved oxygen, and method of washing electronic parts
JP2011167633A (en) * 2010-02-18 2011-09-01 Kurita Water Ind Ltd Water treatment method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019115892A (en) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc removal device and toc removal method
JP7040008B2 (en) 2017-12-27 2022-03-23 栗田工業株式会社 TOC removal device
WO2022219870A1 (en) * 2021-04-14 2022-10-20 オルガノ株式会社 Platinum group metal supported catalyst column and method for forming carbon-carbon bond

Also Published As

Publication number Publication date
JP5919960B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5447378B2 (en) Method and apparatus for treating water containing organic matter
JP5499753B2 (en) Water treatment method and apparatus
JP5124946B2 (en) Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
WO2000064568A1 (en) Apparatus for producing water containing dissolved ozone
WO2015068635A1 (en) Method and apparatus for manufacturing pure water
JP2008093606A (en) Method and apparatus for removing oxygen dissolved in water and catalyst for remvoing oxygen dissolved in water
TWI485114B (en) Wastewater treatment system
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
WO2018105188A1 (en) Ultrapure water production apparatus and operation method for ultrapure water production apparatus
TW201821371A (en) Water treatment method and apparatus
JP5919960B2 (en) Treatment method for organic water
JP5854163B2 (en) Ultrapure water production method and ultrapure water production facility
JP2000308815A (en) Producing device of ozone dissolved water
JP2022002830A (en) Pure water production device and pure water production method
JP7040008B2 (en) TOC removal device
WO2021261145A1 (en) Water treatment apparatus and water treatment method
JP2018094531A (en) Ultra pure water manufacturing apparatus and operation method of ultra pure water manufacturing apparatus
JP3239502B2 (en) Method for treating water containing volatile organic halogen compounds
TWI284117B (en) Method and system for treating wastewater containing hydrogen peroxide
JP2022036290A (en) Water treatment device, pure water production device, ultrapure water production device, and water treatment method
JP2022002831A (en) Pure water production device and pure water production method
JP2001044162A (en) Apparatus for manufacturing ozone dissolved water
JP2012058137A (en) Method and device for measuring dissolved substance concentration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5919960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees