JP4920019B2 - Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method - Google Patents

Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method Download PDF

Info

Publication number
JP4920019B2
JP4920019B2 JP2008242572A JP2008242572A JP4920019B2 JP 4920019 B2 JP4920019 B2 JP 4920019B2 JP 2008242572 A JP2008242572 A JP 2008242572A JP 2008242572 A JP2008242572 A JP 2008242572A JP 4920019 B2 JP4920019 B2 JP 4920019B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
catalyst
water
anion exchange
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008242572A
Other languages
Japanese (ja)
Other versions
JP2010069460A (en
Inventor
一重 高橋
広 菅原
美和 伊藤
六良 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2008242572A priority Critical patent/JP4920019B2/en
Publication of JP2010069460A publication Critical patent/JP2010069460A/en
Application granted granted Critical
Publication of JP4920019B2 publication Critical patent/JP4920019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

本発明は、被処理水中の過酸化水素を低減するための方法、装置及び当該装置を備える超純水製造装置並びに洗浄方法の技術に関する。   The present invention relates to a method and apparatus for reducing hydrogen peroxide in water to be treated, and an ultrapure water production apparatus including the apparatus and a cleaning method.

従来から、被処理水中の過酸化水素を低減する方法として、還元剤を添加する方法、活性炭と接触させる方法、金属を担持した樹脂と接触させる方法等がある。還元剤を添加する方法では、過酸化水素を含む被処理水に、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム等の還元剤を添加する。還元剤と過酸化水素との反応速度は非常に速く、確実に過酸化水素を分解除去することが可能であるが、還元剤の添加量を制御することが難しく、また、過酸化水素を確実に除去するためには過剰量の添加が必要であるため、還元剤の残留が問題となる。また、還元剤を添加する方法では、還元剤が液中のイオン量を増加させ、水質悪化を招きかねないために、超純水の製造には好ましくない。   Conventionally, as a method for reducing hydrogen peroxide in water to be treated, there are a method of adding a reducing agent, a method of contacting with activated carbon, a method of contacting with a metal-supported resin, and the like. In the method of adding a reducing agent, a reducing agent such as sodium sulfite, sodium hydrogen sulfite, or sodium thiosulfate is added to the water to be treated containing hydrogen peroxide. Although the reaction rate between the reducing agent and hydrogen peroxide is very fast, it is possible to reliably decompose and remove hydrogen peroxide. However, it is difficult to control the amount of reducing agent added, and hydrogen peroxide is reliably removed. In order to remove it, it is necessary to add an excessive amount, so that the remaining reducing agent becomes a problem. Moreover, the method of adding a reducing agent is not preferable for the production of ultrapure water because the reducing agent increases the amount of ions in the liquid and may cause deterioration of water quality.

活性炭と接触させる方法では、通常、活性炭の充填槽を設置して通水するが、反応速度が遅いために、通水空間速度SVが最大でも20hr−1程度しかとれず、装置が大型化する問題がある。また、活性炭は、過酸化水素の分解に伴って、自身も酸化されて粒子の崩壊が起き、処理水中へ流出するために、超純水の製造には好ましくない。 In the method of contacting with activated carbon, the activated carbon filling tank is usually installed and water is passed. However, since the reaction rate is slow, the water passing space velocity SV is only about 20 hr -1 at the maximum, and the apparatus is enlarged. There's a problem. In addition, activated carbon is not preferable for the production of ultrapure water because it decomposes hydrogen peroxide and itself is oxidized to cause particle collapse and outflow into the treated water.

樹脂に金属を担持させる方法としては、例えば、パラジウム触媒金属をOH形又はCl形アニオン交換樹脂に担持させた触媒樹脂に過酸化水素を含有する被処理水を接触させる方法が提案されている(例えば、特許文献1参照)。この方法によれば、過酸化水素は2H→2HO+Oの反応により分解される。しかし、特許文献1の方法は、廃水処理に関するものであるため、パラジウム担持量が高くコストが増大すること、通水空間速度SVが低いため、被処理水中の過酸化水素を確実に処理するには装置が大型化してしまう問題がある。 As a method for supporting a metal on a resin, for example, a method in which water to be treated containing hydrogen peroxide is brought into contact with a catalyst resin in which a palladium catalyst metal is supported on an OH-type or Cl-type anion exchange resin ( For example, see Patent Document 1). According to this method, hydrogen peroxide is decomposed by a reaction of 2H 2 O 2 → 2H 2 O + O 2 . However, since the method of Patent Document 1 relates to wastewater treatment, the amount of palladium supported is high, the cost is increased, and the water passing space velocity SV is low, so that hydrogen peroxide in the water to be treated can be reliably treated. However, there is a problem that the apparatus becomes large.

特開昭60−71085号公報JP-A-60-71085 特開平8−168756号公報JP-A-8-168756 特開2002−210494号公報Japanese Patent Laid-Open No. 2002-210494 特開2006−192352号公報JP 2006-192352 A 特開2007−185587号公報JP 2007-185587 A

本発明は、少量の触媒金属を担持した触媒樹脂で被処理水中の過酸化水素を迅速かつ確実に処理することができる過酸化水素低減方法及び装置、並びに当該装置を備える超純水製造装置を提供することを目的とする。   The present invention relates to a hydrogen peroxide reduction method and apparatus capable of quickly and reliably treating hydrogen peroxide in water to be treated with a catalyst resin carrying a small amount of catalyst metal, and an ultrapure water production apparatus equipped with the apparatus. The purpose is to provide.

本発明は、過酸化水素分解能力を有する触媒金属をアニオン交換樹脂に担持させた触媒樹脂に過酸化水素を含む被処理水を接触させて、被処理水中の過酸化水素を低減する過酸化水素低減方法であって、前記アニオン交換樹脂の総交換容量の70%以上がOH形である。   The present invention relates to hydrogen peroxide for reducing hydrogen peroxide in water to be treated by bringing the water to be treated into contact with a catalyst resin in which a catalyst metal having hydrogen peroxide decomposition ability is supported on an anion exchange resin. In the reduction method, 70% or more of the total exchange capacity of the anion exchange resin is in the OH form.

また、前記過酸化水素低減方法において、前記アニオン交換樹脂がゲル形であることが好ましい。   In the hydrogen peroxide reduction method, the anion exchange resin is preferably in a gel form.

また、前記過酸化水素低減方法において、前記触媒金属は白金族であり、前記アニオン交換樹脂への触媒金属の担持量は、10mg−触媒/L−R〜500mg−触媒/L−R以下であることが好ましい。   In the hydrogen peroxide reduction method, the catalyst metal is a platinum group, and the amount of the catalyst metal supported on the anion exchange resin is 10 mg-catalyst / LR to 500 mg-catalyst / LR or less. It is preferable.

また、前記過酸化水素低減方法において、前記触媒樹脂に前記被処理水を通水空間速度SV30〜2000hr−1の範囲で接触させることが好ましい。 Moreover, in the said hydrogen peroxide reduction method, it is preferable to make the said to-be-processed water contact the said catalyst resin in the range of the water space velocity SV30-2000hr- 1 .

また、前記過酸化水素低減方法において、前記被処理水は、紫外線を照射して有機物を酸化分解した処理水であることが好ましい。   In the hydrogen peroxide reduction method, the water to be treated is preferably treated water obtained by oxidizing and decomposing organic matter by irradiating ultraviolet rays.

また、前記過酸化水素低減方法において、前記触媒樹脂接触後の処理水中の過酸化水素濃度は、5ppb以下であることが好ましい。   In the hydrogen peroxide reduction method, the hydrogen peroxide concentration in the treated water after contacting the catalyst resin is preferably 5 ppb or less.

また、前記過酸化水素低減方法において、前記被処理水に水素を添加することが好ましい。   In the hydrogen peroxide reduction method, it is preferable to add hydrogen to the water to be treated.

また、前記過酸化水素低減方法において、前記触媒樹脂接触後の処理水に脱気処理、イオン交換処理のうちすくなくともいずれか一方を施すことが好ましい。   In the hydrogen peroxide reduction method, it is preferable that at least one of a degassing treatment and an ion exchange treatment is performed on the treated water after contacting the catalyst resin.

また、本発明は、過酸化水素分解能力を有する触媒金属をアニオン交換樹脂に担持させた触媒樹脂に過酸化水素を含む被処理水を接触させて、被処理水中の過酸化水素を低減する過酸化水素低減装置であって、前記アニオン交換樹脂の総交換容量の70%以上がOH形である。   Further, the present invention is a process for reducing hydrogen peroxide in water to be treated by bringing water to be treated containing hydrogen peroxide into contact with a catalyst resin in which a catalyst metal having hydrogen peroxide decomposition ability is supported on an anion exchange resin. In the hydrogen oxide reduction device, 70% or more of the total exchange capacity of the anion exchange resin is OH type.

また、本発明の超純水製造装置は、紫外線酸化装置と、前記過酸化水素低減装置と、膜式脱気装置と、非再生型イオン交換装置と、微粒子分離膜装置とを備え、当該順序で被処理水を通水する。   The ultrapure water production apparatus of the present invention includes an ultraviolet oxidation apparatus, the hydrogen peroxide reduction apparatus, a membrane deaeration apparatus, a non-regenerative ion exchange apparatus, and a particulate separation membrane apparatus, and the order Pass the water to be treated.

また、本発明の超純水製造装置は、紫外線酸化装置と、前記過酸化水素低減装置と、非再生型イオン交換装置と、膜式脱気装置と、微粒子分離膜装置とを備え、当該順序で被処理水を通水する。   The ultrapure water production apparatus of the present invention includes an ultraviolet oxidation apparatus, the hydrogen peroxide reduction apparatus, a non-regenerative ion exchange apparatus, a membrane deaeration apparatus, and a particulate separation membrane apparatus, and the order Pass the water to be treated.

また、本発明の洗浄方法は、前記過酸化水素低減方法により得られる処理水で、電子部品または電子部品の製造器具を洗浄する。   Moreover, the cleaning method of the present invention cleans an electronic component or an electronic component manufacturing instrument with treated water obtained by the hydrogen peroxide reduction method.

本発明によれば、少量の触媒金属を担持した触媒樹脂で被処理水中の過酸化水素を迅速かつ確実に除去することができる。   According to the present invention, hydrogen peroxide in water to be treated can be quickly and reliably removed with a catalyst resin carrying a small amount of catalyst metal.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る超純水製造装置の構成の一例を示す模式図である。図1に示すように、超純水製造装置1は、前処理システム2、一次純水システム3、サブシステム4を備える。前処理システム2は、例えば凝集、加圧浮上(沈殿)、ろ過装置等を備えており、一次純水システム3は、例えばイオン交換装置、逆浸透膜装置、真空脱気装置、再生型イオン交換装置(混床式、2床3塔式又は4床5塔式等)等を備えている。   FIG. 1 is a schematic diagram illustrating an example of a configuration of an ultrapure water production apparatus according to the present embodiment. As shown in FIG. 1, the ultrapure water production apparatus 1 includes a pretreatment system 2, a primary pure water system 3, and a subsystem 4. The pretreatment system 2 includes, for example, agglomeration, pressurized flotation (precipitation), and a filtration device. The primary pure water system 3 includes, for example, an ion exchange device, a reverse osmosis membrane device, a vacuum deaeration device, and a regenerative ion exchange. Equipment (mixed bed type, 2 bed 3 tower type, 4 bed 5 tower type, etc.) etc. are provided.

まず、前処理システム2に工業用水等の原水を通水して、原水中の懸濁物質及び有機物の一部を除去し、その後、一次純水システム3に供給する。一次純水システム3では、前処理システム2において処理された処理水をイオン交換装置(不図示)に通水させ、水中の不純物イオンの除去を行い、次に、逆浸透膜装置(不図示)に通水させ、水中の無機イオン、有機物、微粒子等の除去を行い、次に、真空脱気装置(不図示)に通水させ、水中の溶存酸素等のガスの除去を行い、さらに、再生型イオン交換装置(不図示)に通水させ、水中に残存するイオン等を除去することにより、一次純水を得ることができる。   First, raw water such as industrial water is passed through the pretreatment system 2 to remove some suspended substances and organic substances in the raw water, and then supplied to the primary pure water system 3. In the primary pure water system 3, the treated water treated in the pretreatment system 2 is passed through an ion exchange device (not shown) to remove impurity ions in the water, and then a reverse osmosis membrane device (not shown). Water to remove inorganic ions, organic substances, fine particles, etc. in water, and then pass water through a vacuum deaerator (not shown) to remove dissolved oxygen and other gases in the water, followed by regeneration. Primary pure water can be obtained by passing water through a type ion exchanger (not shown) and removing ions remaining in the water.

図1に示すように、サブシステム4は、純水貯槽と、紫外線酸化装置(UV酸化装置)と、過酸化水素低減装置と、膜式脱気装置と、非再生型イオン交換装置と、微粒子分離膜装置と、を備える。サブシステム4により、一次純水システム3で得られた一次純水より、純度の高い超純水を得ることができる。上記各装置は配管により接続されており、当該順序で一次純水を通水する。   As shown in FIG. 1, the subsystem 4 includes a pure water storage tank, an ultraviolet oxidation device (UV oxidation device), a hydrogen peroxide reduction device, a membrane type deaeration device, a non-regenerative ion exchange device, and fine particles. A separation membrane device. By the subsystem 4, ultrapure water having higher purity than the primary pure water obtained by the primary pure water system 3 can be obtained. Each said apparatus is connected by piping, and primary primary water is passed in the said order.

図1に示すように、一次純水システム3により得られた一次純水を純水貯槽に供給する。そして、純水貯槽に蓄えられた一次純水を紫外線酸化装置に供給する。紫外線酸化装置は、一次純水に少なくとも100〜200nm付近の波長の紫外線を照射可能な紫外線ランプを備え、一次純水中の有機物を酸化分解するものである。有機物は、有機酸、さらにはCOまで酸化分解される。紫外線酸化装置は、例えば、185nm付近の波長の紫外線を照射可能な紫外線ランプを備えることが好ましい。なお、紫外線酸化装置の前段又は後段には、主に被処理水の殺菌を目的とする紫外線殺菌装置を設けてもよい。紫外線殺菌装置は、少なくとも254nm付近の波長の紫外線を照射可能な紫外線ランプを備えるものである。紫外線酸化装置等に用いられる紫外線ランプは、特に制限されるものではないが、例えば低圧水銀ランプ等が好ましい。また、紫外線酸化装置としては、流通型、浸漬型等があるが、処理効率の点で流通型が好ましい。 As shown in FIG. 1, the primary pure water obtained by the primary pure water system 3 is supplied to a pure water storage tank. And the primary pure water stored in the pure water storage tank is supplied to the ultraviolet oxidizer. The ultraviolet oxidation apparatus includes an ultraviolet lamp capable of irradiating primary pure water with ultraviolet rays having a wavelength of at least about 100 to 200 nm, and oxidizes and decomposes organic substances in the primary pure water. Organic substances are oxidatively decomposed to organic acids and further to CO 2 . For example, the ultraviolet oxidation apparatus preferably includes an ultraviolet lamp capable of irradiating ultraviolet rays having a wavelength near 185 nm. Note that an ultraviolet sterilizer mainly for the purpose of sterilizing the water to be treated may be provided in the front stage or the rear stage of the ultraviolet oxidizer. The ultraviolet sterilizer includes an ultraviolet lamp capable of irradiating ultraviolet rays having a wavelength of at least about 254 nm. Although the ultraviolet lamp used for an ultraviolet oxidation apparatus etc. is not specifically limited, For example, a low pressure mercury lamp etc. are preferable. In addition, as the ultraviolet oxidation apparatus, there are a distribution type and an immersion type, but the distribution type is preferable in terms of processing efficiency.

紫外線酸化装置により照射される紫外線により、水が分解してOHラジカルが生成する。生成したOHラジカルの大部分は、一次純水中の有機物の分解に使用されるが、余剰のOHラジカル同士は重合して、過酸化水素を生成する。   Water is decomposed and OH radicals are generated by the ultraviolet rays irradiated by the ultraviolet oxidizer. Most of the generated OH radicals are used for decomposing organic substances in primary pure water, but surplus OH radicals are polymerized to generate hydrogen peroxide.

本実施形態では、過酸化水素低減装置を紫外線酸化装置の後段に設置し、紫外線酸化装置から排出される処理水を過酸化水素低減装置に供給することが好ましい。これにより、紫外線酸化装置で生成した過酸化水素を効率的に除去することができる。過酸化水素低減装置は、過酸化水素分解能力を有する触媒金属をアニオン交換樹脂に担持させた触媒樹脂に過酸化水素を含む被処理水を接触させ、被処理水中の過酸化水素を低減させるものである。被処理水中の過酸化水素は、2H →2HO+Oの反応により、分解される。 In the present embodiment, it is preferable that the hydrogen peroxide reducing device is installed at the subsequent stage of the ultraviolet oxidizing device, and the treated water discharged from the ultraviolet oxidizing device is supplied to the hydrogen peroxide reducing device. Thereby, the hydrogen peroxide produced | generated with the ultraviolet-ray oxidation apparatus can be removed efficiently. The hydrogen peroxide reduction device reduces the hydrogen peroxide in the treated water by bringing the treated water containing hydrogen peroxide into contact with the catalyst resin in which the catalytic metal having the ability to decompose hydrogen peroxide is supported on the anion exchange resin. It is. Hydrogen peroxide in the water to be treated is decomposed by a reaction of 2H 2 O 2 → 2H 2 O + O 2 .

ここで、本実施形態に用いるアニオン交換樹脂として、アニオン交換樹脂の総交換容量の70%以上がOH形である。これにより、樹脂の塩基度が高くなるため、被処理水中の過酸化水素を効率的に捕捉することができ、また、過酸化水素の分解を促進することができる。樹脂の塩基度をより高くし、過酸化水素の分解をより促進することができる点で、アニオン交換樹脂の総交換容量の90%以上がOH形であることが好ましく、95%以上がOH形であることがより好ましい。OH形の割合が上記範囲より低くなると、過酸化水素の分解効率を向上させるために、過酸化水素分解能力を有する触媒金属の担持量を増加させる必要があり、コストの増加、触媒金属の溶出等の問題が生じる。   Here, as the anion exchange resin used in this embodiment, 70% or more of the total exchange capacity of the anion exchange resin is in the OH form. Thereby, since the basicity of the resin is increased, hydrogen peroxide in the water to be treated can be efficiently captured, and decomposition of hydrogen peroxide can be promoted. 90% or more of the total exchange capacity of the anion exchange resin is preferably in the OH form, and 95% or more is in the OH form in that the basicity of the resin can be further increased and the decomposition of hydrogen peroxide can be further promoted. It is more preferable that When the proportion of OH form is lower than the above range, it is necessary to increase the amount of catalytic metal supported with hydrogen peroxide decomposition capability in order to improve the decomposition efficiency of hydrogen peroxide, resulting in an increase in cost and elution of catalyst metal. Such problems arise.

また、アニオン交換樹脂には、弱塩基性アニオン交換樹脂を一部含んでいても良いが、強塩基性アニオン交換樹脂の方が弱塩基性アニオン交換樹脂に比べて塩基度が高く、過酸化水素の分解をより促進することができるため、強塩基性アニオン交換樹脂のみで構成されていることが好ましい。また、強塩基性アニオン交換樹脂のうち、塩基性が強い点、有機炭素(TOC)成分の溶出を抑えることができる点で、II型強塩基性アニオン交換樹脂よりも、I型強塩基性アニオン交換樹脂のほうがより好ましい。   The anion exchange resin may contain a part of a weakly basic anion exchange resin, but the strong basic anion exchange resin has a higher basicity than the weakly basic anion exchange resin, and hydrogen peroxide. Since decomposition | disassembly of can be accelerated | stimulated more, it is preferable to be comprised only with strong basic anion exchange resin. In addition, among strong basic anion exchange resins, type I strong basic anions are superior to type II strong basic anion exchange resins in that elution of organic carbon (TOC) components can be suppressed. An exchange resin is more preferable.

また、アニオン交換樹脂の形態には、ゲル形、ポーラス形、MR形等があるが、アニオン交換樹脂からの有機炭素(TOC)成分の溶出を抑えることができる点で、ゲル形が好ましい。さらに、理由は定かではないが、ポーラス形、MR形等では、架橋度が高く母体内部への拡散がしづらいため、反応速度が低下する。しかしながら、ゲル形では、ポーラス形、MR形等に比べて架橋度が低く、母体内部への拡散が起こり易く、反応速度がポーラス形、MR形等より高いため、過酸化水素の分解効率を向上させることができる。   In addition, examples of the form of the anion exchange resin include a gel form, a porous form, and an MR form. The gel form is preferable in that elution of the organic carbon (TOC) component from the anion exchange resin can be suppressed. Furthermore, although the reason is not clear, the porous type, the MR type, and the like have a high degree of cross-linking and are difficult to diffuse into the matrix, resulting in a decrease in the reaction rate. However, the gel type has a lower degree of cross-linking than the porous type, MR type, etc., easily diffuses into the matrix, and the reaction rate is higher than that of the porous type, MR type, etc., thus improving the decomposition efficiency of hydrogen peroxide. Can be made.

本実施形態に用いる触媒金属は、過酸化水素分解能力を有するものであれば特に制限されるものではないが、触媒効率の高い白金族を用いることが好ましい。白金族としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができる。これらの白金族は、1種を単独で用いることができ、2種以上を組み合わせて用いることもでき、2種以上の合金として用いることもでき、あるいは、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中では、触媒効率が高い点で白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物が好ましく、コストの点でパラジウムがより好ましい。   The catalyst metal used in the present embodiment is not particularly limited as long as it has hydrogen peroxide decomposition ability, but it is preferable to use a platinum group having high catalyst efficiency. Examples of the platinum group include ruthenium, rhodium, palladium, osmium, iridium and platinum. These platinum groups can be used alone, in combination of two or more, can be used as two or more alloys, or can be a naturally produced mixture of purified products. It can also be used without being separated into a single substance. Among these, platinum, palladium, platinum / palladium alloy alone or a mixture of two or more of these is preferable from the viewpoint of high catalyst efficiency, and palladium is more preferable from the viewpoint of cost.

アニオン交換樹脂への触媒金属の担持方法は、特に制限されるものではないが、例えば、アニオン交換樹脂にヘキサクロロ白金酸、塩化パラジウム酸等の溶液を通水した後、ホルマリン等の還元剤を通水し、触媒金属を担持させる方法等がある。   The method of supporting the catalytic metal on the anion exchange resin is not particularly limited. For example, after passing a solution of hexachloroplatinic acid, chloropalladic acid or the like through the anion exchange resin, a reducing agent such as formalin is passed. There is a method of watering and supporting a catalyst metal.

本実施形態では、アニオン交換樹脂の総交換容量の70%以上がOH形であるため、触媒金属の担持量が少量であっても、効果的に過酸化水素を分解することができる。その結果、コスト低減、触媒金属の溶出低減等の効果を有する。本実施形態では、アニオン交換樹脂への白金族の触媒金属の担持量は、特に制限されるものではないが、10mg−触媒/L−R(RはOH形基準のアニオン交換樹脂である)〜500mg−触媒/L−Rの範囲とすることが好ましく、10mg−触媒/L−R〜50mg−触媒/L−Rの範囲とすることがより好ましい。触媒金属の担持量が、10mg−触媒/L−R未満であると、過酸化水素の分解効率が低下する場合があり、500mg−触媒/L−Rを超えると、コストの増加、触媒金属の溶出等の問題が生じる場合がある。   In this embodiment, since 70% or more of the total exchange capacity of the anion exchange resin is in the OH form, hydrogen peroxide can be effectively decomposed even if the amount of catalyst metal supported is small. As a result, it has effects such as cost reduction and catalytic metal elution reduction. In this embodiment, the amount of the platinum group catalyst metal supported on the anion exchange resin is not particularly limited, but is 10 mg-catalyst / LR (R is an anion exchange resin based on the OH form) to A range of 500 mg-catalyst / LR is preferable, and a range of 10 mg-catalyst / LR to 50 mg-catalyst / LR is more preferable. If the supported amount of the catalyst metal is less than 10 mg-catalyst / LR, the decomposition efficiency of hydrogen peroxide may be reduced, and if it exceeds 500 mg-catalyst / LR, the cost increases, Problems such as elution may occur.

本実施形態の触媒樹脂は高い過酸化水素の分解効率を有するため、触媒樹脂への被処理水の通水空間速度SVを高くしても、高度な過酸化水素除去性能を示す。本実施形態における通水空間速度SVの好ましい範囲は、30〜2000hr−1の範囲である。通常、通水空間速度SVが30hr−1未満だと超純水製造では、樹脂からの不純物の溶出が増加するおそれがあるため好ましくない。また、通水空間速度SVが2000hr−1を超えると、通水の圧力損失が過大になる。 Since the catalyst resin of the present embodiment has a high hydrogen peroxide decomposition efficiency, even if the water passing space velocity SV of the water to be treated to the catalyst resin is increased, a high hydrogen peroxide removal performance is exhibited. A preferable range of the water passing space velocity SV in the present embodiment is a range of 30 to 2000 hr −1 . Usually, when the water passing space velocity SV is less than 30 hr −1 , it is not preferable in the production of ultrapure water because the elution of impurities from the resin may increase. Moreover, when the water flow space velocity SV exceeds 2000 hr −1 , the pressure loss of water flow becomes excessive.

本実施形態の過酸化水素低減方法は、サブシステムで紫外線を照射して有機物を酸化分解した処理水、すなわち、紫外線酸化装置の処理で発生した微量の過酸化水素(例えば、10ppb〜50ppb)を含む処理水に好適に適用できる。   The hydrogen peroxide reduction method of the present embodiment uses treated water obtained by oxidatively decomposing organic substances by irradiating ultraviolet rays in a subsystem, that is, a small amount of hydrogen peroxide (for example, 10 ppb to 50 ppb) generated by the treatment of the ultraviolet oxidation apparatus. It can be suitably applied to the treated water.

本実施形態の過酸化水素低減方法により得られる処理水中の過酸化水素濃度は、5ppb以下であることが好ましく、1ppb以下であることがより好ましい。処理水中に含まれる過酸化水素の濃度が5ppb以下であれば、半導体製造工業等における電子部品類の洗浄や医薬用水等に好適に使用することができる。   The hydrogen peroxide concentration in the treated water obtained by the hydrogen peroxide reduction method of the present embodiment is preferably 5 ppb or less, and more preferably 1 ppb or less. If the concentration of hydrogen peroxide contained in the treated water is 5 ppb or less, it can be suitably used for washing electronic components, medical water, etc. in the semiconductor manufacturing industry.

また、本実施形態では、過酸化水素低減装置に、水素供給手段を設けて、過酸化水素を含む被処理水中に水素を供給することが好ましい。これにより、過酸化水素の分解と共に、過酸化水素の分解により生じる酸素等のガスを除去する脱気処理を行うことが可能となる。   Moreover, in this embodiment, it is preferable to provide hydrogen supply means in the hydrogen peroxide reducing device to supply hydrogen into the water to be treated containing hydrogen peroxide. Accordingly, it is possible to perform a deaeration process for removing a gas such as oxygen generated by the decomposition of hydrogen peroxide together with the decomposition of hydrogen peroxide.

本実施形態では、過酸化水素低減装置の後段に膜式脱気装置、非再生型イオン交換装置のうち少なくともいずれか一方を設置し、本実施形態の過酸化水素低減方法により得られる処理水に脱気処理、イオン交換処理のうち少なくともいずれか一方を施すことが好ましい。これにより、処理水中のガス、不純物を効果的に除去することができる。   In the present embodiment, at least one of a membrane deaeration device and a non-regenerative ion exchange device is installed at the subsequent stage of the hydrogen peroxide reduction device, and the treated water obtained by the hydrogen peroxide reduction method of the present embodiment is used. It is preferable to perform at least one of a deaeration process and an ion exchange process. Thereby, the gas and impurities in treated water can be removed effectively.

膜式脱気装置は、気体分離膜で仕切られた一方の室に過酸化水素低減装置から排出される処理水を流すとともに、他方の室を減圧することにより、気体分離膜を通して処理水中に含まれるガスを他方の室に移行させて除去する装置である。気体分離膜としては、例えばテトラフルオロエチレン系、ポリオレフィン系等の疎水性の高分子膜を中空糸膜状等の形状に形成したもの等を用いる。過酸化水素低減装置から排出される処理水中に含まれるガスを除去する装置としては、膜式脱気装置に制限されるものではなく、例えば真空脱気装置、加熱脱気装置等であってもよい。しかし、真空脱気装置、加熱脱気装置等を用いた場合、これらの装置から水中に不純物が混入したり、装置の充填物から水中に不純物が溶出したりする虞がある。これに対し、膜式脱気装置を用いれば、このような問題は生じない。   Membrane type deaerators contain treated water discharged from the hydrogen peroxide reducing device in one chamber partitioned by a gas separation membrane and are decompressed in the other chamber so that they are contained in the treated water through the gas separation membrane. It is a device that removes the generated gas by transferring it to the other chamber. As the gas separation membrane, for example, a membrane formed by forming a hydrophobic polymer membrane such as tetrafluoroethylene or polyolefin into a hollow fiber membrane or the like is used. The device for removing the gas contained in the treated water discharged from the hydrogen peroxide reduction device is not limited to the membrane type deaeration device. For example, a vacuum deaeration device, a heating deaeration device, etc. Good. However, when using a vacuum deaeration device, a heating deaeration device, or the like, impurities may be mixed into water from these devices, or impurities may be eluted into water from the filling of the device. On the other hand, if a membrane type deaerator is used, such a problem does not occur.

非再生型イオン交換装置(カートリッジポリッシャー)としては、過酸化水素低減装置から排出される処理水中のカチオン、アニオン等の不純物を除去するものであれば特に制限されるものではないが、例えば、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂との混床によるイオン交換装置(混床1塔式)、強塩基性アニオン交換樹脂の単床によるイオン交換装置(単床1塔式)、強塩基性アニオン交換樹脂の単床層を入口側、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂との混床層を出口側に設けた複層式イオン交換装置(複層1塔式)及び強塩基性アニオン交換樹脂の単床による樹脂塔を前段側、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂との混床による樹脂塔を後段側に設けたイオン交換装置(2塔式)等が挙げられる。このうち、装置内のいずれの位置においても処理水のpHの変化が少なく、効率良くイオン交換ができる点で、混床1塔式イオン交換装置を用いることが好ましい。   The non-regenerative ion exchange device (cartridge polisher) is not particularly limited as long as it can remove impurities such as cations and anions in the treated water discharged from the hydrogen peroxide reduction device. Ion exchange apparatus (single-bed type) with a mixed bed of basic cation exchange resin and strong base anion exchange resin, ion exchange apparatus (single-bed type with one tower) using a single bed of strong basic anion exchange resin, strong base Multi-layer type ion exchange device (single-layer type with one tower) and a strong bed provided with a single bed layer of functional anion exchange resin on the inlet side and a mixed bed layer of strong acid cation exchange resin and strongly basic anion exchange resin on the outlet side An ion exchange apparatus (two-column type) in which a resin tower with a single bed of basic anion exchange resin is provided on the front side, and a resin tower with a mixed bed of strongly acidic cation exchange resin and strong base anion exchange resin is provided on the rear stage. It is below. Among these, it is preferable to use a mixed-bed single-column ion exchange apparatus in that the pH of the treated water is small at any position in the apparatus and ion exchange can be performed efficiently.

図2は、本発明の他の実施形態に係る超純水製造装置の構成の一例を示す模式図である。図2に示すように、サブシステム4は、純水貯槽と、紫外線酸化装置(UV酸化装置)と、過酸化水素低減装置と、非再生型イオン交換装置と、膜式脱気装置と、微粒子分離膜装置と、を備える。そして、上記各装置は配管により接続されており、当該順序で一次純水を通水する。ここで、過酸化水素低減装置のSVが高く、多少の過酸化水素のリークがある場合には、過酸化水素低減装置のすぐ後段に非再生型イオン交換装置があると、過酸化水素の分解反応により酸素が生成するため、図2に示すように、非再生型イオン交換装置の後段に膜式脱気装置を設置することが好ましい。過酸化水素のリークがない場合には、膜式脱気装置から微量の不純物が溶出した際に、非再生型イオン交換装置で除去することが可能となるため、図1に示すように膜式脱気装置の後段に非再生型イオン交換装置を設置することが好ましい。   FIG. 2 is a schematic diagram showing an example of the configuration of an ultrapure water production apparatus according to another embodiment of the present invention. As shown in FIG. 2, the subsystem 4 includes a pure water storage tank, an ultraviolet oxidation device (UV oxidation device), a hydrogen peroxide reduction device, a non-regenerative ion exchange device, a membrane deaeration device, and fine particles. A separation membrane device. And each said apparatus is connected by piping, and passes primary pure water in the said order. Here, when the SV of the hydrogen peroxide reducing device is high and there is a slight amount of hydrogen peroxide leakage, if there is a non-regenerative ion exchange device immediately after the hydrogen peroxide reducing device, the decomposition of hydrogen peroxide Since oxygen is generated by the reaction, it is preferable to install a membrane type deaerator at the subsequent stage of the non-regenerative ion exchanger as shown in FIG. When there is no leakage of hydrogen peroxide, when a small amount of impurities are eluted from the membrane deaerator, it can be removed by a non-regenerative ion exchange device. Therefore, as shown in FIG. It is preferable to install a non-regenerative ion exchange device after the deaeration device.

次に、非再生型イオン交換装置(又は膜式脱気装置)から排出された処理水を微粒子分離膜装置に供給する。微粒子分離膜としては、限外ろ過膜等を用いることができる。微粒子分離膜装置により、非再生型イオン交換装置等から流出する微粒子等を除去することができる。上記構成により、有機物、過酸化水素、溶存ガス(酸素等)、二酸化炭素、イオン性物質(不純物)及び微粒子等が除去された高純度の超純水を得ることができる。このようにして得られた超純水をユースポイント5に送液する。なお、超純水を使用する場合でも、使用しない場合でも、得られた超純水の一部を循環路6から純水貯槽に供給し、常時循環させことが好ましい。これにより、高純度の超純水を安定して得ることができる。   Next, the treated water discharged from the non-regenerative ion exchange device (or membrane deaeration device) is supplied to the particulate separation membrane device. As the fine particle separation membrane, an ultrafiltration membrane or the like can be used. The fine particle separation membrane device can remove fine particles flowing out from a non-regenerative ion exchange device or the like. With the above structure, high-purity ultrapure water from which organic substances, hydrogen peroxide, dissolved gas (oxygen, etc.), carbon dioxide, ionic substances (impurities), and fine particles are removed can be obtained. The ultrapure water thus obtained is fed to the use point 5. In addition, it is preferable to supply a part of the obtained ultrapure water from the circulation path 6 to the pure water storage tank and circulate it constantly, regardless of whether ultrapure water is used or not. Thereby, highly pure ultrapure water can be obtained stably.

そして、このような本実施形態の方法により得られる処理水を電子部品や電子部品の製造器具の洗浄に用いることが好ましい。電子部品の製造、例えば、半導体製造工程では、シリコン、SiO、Al、Cu等、様々な材料面が形成、加工された後、洗浄が行われる。しかし、材料によっては、酸化性物質と反応しやすく、予期せぬ酸化(変化・変質)が起こる。近年のデバイスの微細化、高度化に伴い、わずかな酸化であってもその影響は大きく、歩留まりの低下等が起こる。例えば、酸化性物質である過酸化水素が存在すると、Si→SiO、Al→Al、Cu→CuOのように、酸化されやすい材料表面で予期せぬ酸化が起こり、歩留まり低下の原因となることがある。そこで、本実施形態の方法により、過酸化水素を予め低減除去した処理水で洗浄することで、これら予期せぬ酸化を防止し、歩留まりを高めることができる。この処理水は、超純水リンス用水として使用する他、水素水等の機能水製造用水、又は薬液希釈用水として洗浄に使用してもよい。 And it is preferable to use the process water obtained by such a method of this embodiment for washing | cleaning of the electronic component and the manufacture tool of an electronic component. In the manufacture of electronic components, for example, semiconductor manufacturing processes, cleaning is performed after various material surfaces such as silicon, SiO 2 , Al, and Cu are formed and processed. However, depending on the material, it easily reacts with an oxidizing substance, and unexpected oxidation (change / degeneration) occurs. With the recent miniaturization and sophistication of devices, even a slight amount of oxidation has a great effect, resulting in a decrease in yield. For example, in the presence of hydrogen peroxide as an oxidizing substance, unexpected oxidation occurs on the surface of a material that is easily oxidized, such as Si → SiO 2 , Al → Al 2 O 3 , Cu → CuO, and the cause of yield reduction It may become. Therefore, by the method of the present embodiment, washing with treated water from which hydrogen peroxide has been reduced and removed in advance can prevent such unexpected oxidation and increase the yield. This treated water may be used for washing as water for functional water production such as hydrogen water or water for chemical solution dilution, in addition to being used as ultrapure water rinsing water.

ここで、本実施形態の方法により得られる処理水で洗浄する電子部品としては、例えば、シリコン基板、半導体ウエハ等の半導体基板、液晶用ガラス基板等の基板材料、メモリ素子、CPU、センサー素子、太陽電池、銅や銀からなる電気接点等の電子部品の完成品やその半製品が挙げられるが、これらに限られない。また、電子部品の製造器具としては、例えば、石英管、洗浄槽、基板キャリア等が挙げられるが、これらに限られない。   Here, examples of the electronic component to be cleaned with the treated water obtained by the method of the present embodiment include a silicon substrate, a semiconductor substrate such as a semiconductor wafer, a substrate material such as a glass substrate for liquid crystal, a memory element, a CPU, a sensor element, Examples include, but are not limited to, finished products and semi-finished products such as solar cells, electrical contacts made of copper and silver. In addition, examples of the electronic device manufacturing tool include, but are not limited to, a quartz tube, a cleaning tank, and a substrate carrier.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1)
内径25mm、高さ30cmのアクリルカラムに触媒樹脂を40mL(層高8cm)充填し、約30ppbの過酸化水素を含む純水をSV200〜1000hr−1の条件で通水した。実施例1の触媒樹脂として、水分保有能力がOH形基準において60〜70%であり、ゲル形である強塩基アニオン交換樹脂(I型)にパラジウムを5,30,970mg−Pd/L−R担持したものを用いた。また、ゲル形アニオン交換樹脂の総交換容量の95%以上をOH形となるように調製した。また、通水期間中の純水の水質は、抵抗率が18MΩcm以上、TOC濃度が1ppb以下であった。実施例1のアクリルカラム出口における過酸化水素除去率の結果を表1にまとめた。また、図3に、実施例1のSV400hr−1における過酸化水素の除去率とパラジウム担持量との関係を表した。なお、表1及び図3では、アクリルカラム出口の処理水の除去率が過酸化水素分析定量下限未満(<1ppb)である場合には、除去率を>97%と表示した。
Example 1
An acrylic column having an inner diameter of 25 mm and a height of 30 cm was filled with 40 mL of catalyst resin (layer height: 8 cm), and pure water containing about 30 ppb of hydrogen peroxide was passed under conditions of SV200 to 1000 hr −1 . As the catalyst resin of Example 1, the moisture retention ability is 60 to 70% on the basis of OH form, and palladium is added to a strong base anion exchange resin (form I) in a gel form, 5,30,970 mg-Pd / LR. The supported one was used. Further, 95% or more of the total exchange capacity of the gel-type anion exchange resin was prepared to be in the OH form. Moreover, the water quality of the pure water during the water flow period had a resistivity of 18 MΩcm or more and a TOC concentration of 1 ppb or less. The results of the hydrogen peroxide removal rate at the acrylic column outlet in Example 1 are summarized in Table 1. FIG. 3 shows the relationship between the removal rate of hydrogen peroxide and the amount of palladium supported in SV400hr −1 of Example 1. In Table 1 and FIG. 3, when the removal rate of the treated water at the outlet of the acrylic column was less than the lower limit of hydrogen peroxide analysis quantitative determination (<1 ppb), the removal rate was indicated as> 97%.

Figure 0004920019
Figure 0004920019

表1及び図3から、パラジウム担持量が多いほど、過酸化水素の除去率も高くなることがわかる。また、図3から判るように、パラジウム担持量が30mg−Pd/L−R以上では、過酸化水素の除去効率は変わらなかった。また、純水中の過酸化水素濃度を約30ppbから5ppb以下(過酸化水素除去率83%以上)に低減するためには、パラジウムの担持量が10mg−Pd/L−R以上であれば十分であることがわかった。   It can be seen from Table 1 and FIG. 3 that the higher the amount of palladium supported, the higher the removal rate of hydrogen peroxide. Further, as can be seen from FIG. 3, the removal efficiency of hydrogen peroxide did not change when the amount of palladium supported was 30 mg-Pd / LR or more. Further, in order to reduce the hydrogen peroxide concentration in pure water from about 30 ppb to 5 ppb or less (hydrogen peroxide removal rate of 83% or more), it is sufficient that the supported amount of palladium is 10 mg-Pd / LR or more. I found out that

(実施例2〜4)
内径25mm、高さ30cmのアクリルカラムに触媒樹脂を40mL(層高8cm)充填し、約30ppbの過酸化水素を含む純水をSV1000〜2500hr−1の条件で通水した。実施例2の触媒樹脂として、水分保有能力がOH形基準において60〜70%であり、ゲル形である強塩基アニオン交換樹脂(I型)にパラジウムを170mg−Pd/L−R担持したものを用いた。実施例3の触媒樹脂として、水分保有能力がOH形基準において60〜70%であり、ゲル形である強塩基アニオン交換樹脂(I型)にパラジウムを970mg−Pd/L−R担持したものを用いた。また実施例2,3においては、ゲル形アニオン交換樹脂の総交換容量の95%以上をOH形となるように調製した。実施例4の触媒樹脂として、水分保有能力がOH形基準において60〜70%であり、ゲル形である強塩基アニオン交換樹脂(I型)にパラジウムを970mg−Pd/L−R(OH形基準)担持したものを用いた。また、実施例4においては、ゲル形アニオン交換樹脂の総交換容量の70%をOH形、30%をCl形となるように調製した。また、通水期間中の純水の水質は、抵抗率が18MΩcm以上、TOC濃度が1ppb以下であった。表2に、実施例2〜4のアクリルカラム出口における過酸化水素の濃度結果をまとめた。
(Examples 2 to 4)
An acrylic column having an inner diameter of 25 mm and a height of 30 cm was packed with 40 mL of catalyst resin (layer height: 8 cm), and pure water containing about 30 ppb of hydrogen peroxide was passed under conditions of SV1000 to 2500 hr −1 . As the catalyst resin of Example 2, a water-holding capacity of 60 to 70% on the basis of OH type, and a strong base anion exchange resin (type I) in a gel form carrying 170 mg-Pd / LR of palladium. Using. As the catalyst resin of Example 3, a strong base anion exchange resin (type I) having a water retention capacity of 60 to 70% on the basis of OH type and palladium supported on 970 mg-Pd / LR Using. In Examples 2 and 3, 95% or more of the total exchange capacity of the gel-type anion exchange resin was prepared to be in the OH form. As the catalyst resin of Example 4, the water retention capacity is 60 to 70% on the basis of the OH form, and 970 mg-Pd / LR (palladium) is added to the strong base anion exchange resin (form I) in the gel form. ) A supported one was used. Further, in Example 4, 70% of the total exchange capacity of the gel-type anion exchange resin was prepared in the OH form and 30% in the Cl form. Moreover, the water quality of the pure water during the water flow period had a resistivity of 18 MΩcm or more and a TOC concentration of 1 ppb or less. Table 2 summarizes the concentration results of hydrogen peroxide at the acrylic column outlets of Examples 2 to 4.

(比較例)
比較例の触媒樹脂として、水分保有能力がOH形基準において60〜70%であり、ゲル形である強塩基アニオン交換樹脂(I型)にパラジウムを970mg−Pd/L−R(OH形基準)担持したものを用いた。また、比較例においては、ゲル形アニオン交換樹脂の総交換容量の99%以上をCl形となるように調製した。それ以外は、実施例2〜4と同様の条件で試験を行った。表2に、比較例のアクリルカラム出口における過酸化水素の濃度結果をまとめた。
(Comparative example)
As a catalyst resin of a comparative example, the water retention capacity is 60 to 70% on the basis of the OH form, and 970 mg-Pd / LR (on the basis of the OH form) of palladium is added to the strong base anion exchange resin (form I) in the gel form The supported one was used. In the comparative example, 99% or more of the total exchange capacity of the gel-type anion exchange resin was prepared to be in the Cl form. Otherwise, the test was performed under the same conditions as in Examples 2-4. Table 2 summarizes the hydrogen peroxide concentration results at the outlet of the acrylic column of the comparative example.

Figure 0004920019
Figure 0004920019

表2より、パラジウム担持量が同程度であれば、アニオン交換樹脂のOH形の割合が高いほど、過酸化水素の除去効率が高いことがわかる。このように、OH形の割合が高いほど、高効率で過酸化水素を除去することができるため、触媒金属の担持量が低い場合でも、高流速での処理が可能となる。すなわち、触媒金属の担持量が少量であっても、効果的に過酸化水素を分解することができるため、コスト低減、触媒金属の溶出を低減させることができる。   From Table 2, it can be seen that the hydrogen peroxide removal efficiency increases as the proportion of the OH form of the anion exchange resin increases as the palladium loading is the same. Thus, hydrogen peroxide can be removed with higher efficiency as the proportion of the OH form is higher, so that even when the amount of catalyst metal supported is low, processing at a high flow rate is possible. That is, even if the amount of catalyst metal supported is small, hydrogen peroxide can be effectively decomposed, so that cost reduction and elution of catalyst metal can be reduced.

(実施例5〜8)
内径25mm、高さ30cmのアクリルカラムに触媒樹脂を40mL(層高8cm)充填し、約30ppbの過酸化水素を含む純水をSV250〜2000hr−1の条件で通水した。実施例5の触媒樹脂として、水分保有能力がOH形基準において60〜70%であり、ゲル形である強塩基アニオン交換樹脂(I型)にパラジウムを60mg−Pd/L−R担持したものを用いた。実施例6の触媒樹脂として、MR形アニオン交換樹脂(ローム・アンド・ハース社製、IRA900)にパラジウムを60mg−Pd/L−R担持したものを用いた。実施例7の触媒樹脂として、MR形アニオン交換樹脂(ローム・アンド・ハース社製、IRA900)にパラジウムを120mg−Pd/L−R担持したものを用いた。実施例8の触媒樹脂として、MR形アニオン交換樹脂(ローム・アンド・ハース社製、IRA900)にパラジウムを550mg−Pd/L−R担持したものを用いた。また実施例5〜8においては、ゲル形又はMR形アニオン交換樹脂の総交換容量の95%以上をOH形となるように調製した。また、通水期間中の純水の水質は、抵抗率が18MΩcm以上、TOC濃度が1ppb以下であった。表3に実施例5〜8のアクリルカラム出口における過酸化水素の濃度結果をまとめた。
(Examples 5 to 8)
An acrylic column having an inner diameter of 25 mm and a height of 30 cm was filled with 40 mL of catalyst resin (layer height: 8 cm), and pure water containing about 30 ppb of hydrogen peroxide was passed under conditions of SV250 to 2000 hr −1 . As a catalyst resin of Example 5, a water-holding capacity of 60 to 70% in terms of OH type, and a strong base anion exchange resin (type I) in a gel form carrying 60 mg-Pd / LR of palladium. Using. As the catalyst resin of Example 6, MR type anion exchange resin (Rohm and Haas, IRA900) carrying 60 mg-Pd / LR of palladium was used. As the catalyst resin of Example 7, MR type anion exchange resin (Rohm and Haas, IRA900) carrying 120 mg-Pd / LR of palladium was used. As the catalyst resin of Example 8, MR type anion exchange resin (Rohm and Haas, IRA900) carrying palladium on 550 mg-Pd / LR was used. In Examples 5 to 8, 95% or more of the total exchange capacity of the gel-type or MR-type anion exchange resin was prepared to be in the OH form. Moreover, the water quality of the pure water during the water flow period had a resistivity of 18 MΩcm or more and a TOC concentration of 1 ppb or less. Table 3 summarizes the hydrogen peroxide concentration results at the acrylic column outlets of Examples 5 to 8.

Figure 0004920019
Figure 0004920019

表3より、パラジウム担持量が同程度であれば、ゲル形のアニオン交換樹脂の方が、MR形のアニオン交換樹脂より過酸化水素の除去効率が高いことがわかる。すなわち、ゲル形にすれば、触媒金属の担持量をさらに低減させることができる。なお、上記でも説明したように、ゲル形は、MR形と比べてイオン交換樹脂からの有機炭素成分及び微粒子等の溶出を低減することも可能である。   From Table 3, it can be seen that if the amount of palladium supported is the same, the gel-type anion exchange resin has higher hydrogen peroxide removal efficiency than the MR-type anion exchange resin. That is, when the gel is used, the amount of catalyst metal supported can be further reduced. As described above, the gel form can also reduce the elution of organic carbon components and fine particles from the ion exchange resin as compared with the MR form.

本実施形態に係る超純水製造装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the ultrapure water manufacturing apparatus which concerns on this embodiment. 本発明の他の実施形態に係る超純水製造装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the ultrapure water manufacturing apparatus which concerns on other embodiment of this invention. 実施例1のSV400hr−1における過酸化水素の除去率とパラジウム担持量との関係を示す図である。It is a figure which shows the relationship between the removal rate of hydrogen peroxide in SV400hr -1 of Example 1, and a palladium load.

符号の説明Explanation of symbols

1 超純水製造装置、2 前処理システム、3 一次純水システム、4 サブシステム、5 ユースポイント、6 循環路。   1 ultrapure water production equipment, 2 pretreatment system, 3 primary pure water system, 4 subsystems, 5 points of use, 6 circuit.

Claims (7)

過酸化水素分解能力を有する触媒金属を強塩基性アニオン交換樹脂に担持させた触媒樹脂に過酸化水素を含む被処理水を接触させて、被処理水中の過酸化水素を低減する過酸化水素低減方法であって、
前記触媒金属は白金族であり、
前記強塩基性アニオン交換樹脂の総交換容量の95%以上がOH形であり、
前記強塩基性アニオン交換樹脂への前記触媒金属の担持量は、10mg−触媒/L−R〜170mg−触媒/L−Rの範囲であることを特徴とする過酸化水素低減方法。
Reduction of hydrogen peroxide by reducing the hydrogen peroxide in the treated water by bringing the treated water containing hydrogen peroxide into contact with the catalyst resin in which the catalytic metal having the ability to decompose hydrogen peroxide is supported on a strongly basic anion exchange resin A method,
The catalytic metal is a platinum group;
Wherein more than 95% of the total exchange capacity of the strongly basic anion exchange resin Ri OH Katachidea,
The method for reducing hydrogen peroxide , wherein the amount of the catalytic metal supported on the strongly basic anion exchange resin is in the range of 10 mg-catalyst / LR to 170 mg-catalyst / LR .
前記強塩基性アニオン交換樹脂がゲル形であることを特徴とする、請求項1に記載の過酸化水素低減方法。 The method for reducing hydrogen peroxide according to claim 1, wherein the strongly basic anion exchange resin is in a gel form. 前記触媒樹脂は、前記強塩基性アニオン交換樹脂に白金族のイオン溶液を通液した後、還元剤を通液して前記白金族を触媒金属として前記強塩基性アニオン交換樹脂に担持させたものであることを特徴とする請求項1又は2記載の過酸化水素低減方法。 The catalyst resin is obtained by passing a platinum group ion solution through the strong base anion exchange resin, and then passing a reducing agent and supporting the platinum group as a catalyst metal on the strong base anion exchange resin. The method for reducing hydrogen peroxide according to claim 1 or 2, wherein: 前記触媒樹脂に前記被処理水を通水空間速度SV200〜2000hr-1の範囲で接触させることを特徴とする、請求項1〜3のいずれか1項に記載の過酸化水素低減方法。 The method for reducing hydrogen peroxide according to any one of claims 1 to 3, wherein the water to be treated is brought into contact with the catalyst resin at a water space velocity of SV 200 to 2000 hr -1 . 前記被処理水は、紫外線を照射して有機物を酸化分解した処理水であることを特徴とする、請求項1〜4のいずれか1項に記載の過酸化水素低減方法。   The method for reducing hydrogen peroxide according to any one of claims 1 to 4, wherein the water to be treated is treated water obtained by irradiating ultraviolet rays to oxidatively decompose organic substances. 過酸化水素分解能力を有する触媒金属を強塩基性アニオン交換樹脂に担持させた触媒樹脂に過酸化水素を含む被処理水を接触させて、被処理水中の過酸化水素を低減する過酸化水素低減装置であって、
前記触媒金属は白金族であり、
前記強塩基性アニオン交換樹脂の総交換容量の95%以上がOH形であり、
前記強塩基性アニオン交換樹脂への前記触媒金属の担持量は、10mg−触媒/L−R〜170mg−触媒/L−Rの範囲であることを特徴とする過酸化水素低減装置。
Reduction of hydrogen peroxide by reducing the hydrogen peroxide in the treated water by bringing the treated water containing hydrogen peroxide into contact with the catalyst resin in which the catalytic metal having the ability to decompose hydrogen peroxide is supported on a strongly basic anion exchange resin A device,
The catalytic metal is a platinum group;
Wherein more than 95% of the total exchange capacity of the strongly basic anion exchange resin Ri OH Katachidea,
The hydrogen peroxide reducing apparatus , wherein the amount of the catalyst metal supported on the strongly basic anion exchange resin is in the range of 10 mg-catalyst / LR to 170 mg-catalyst / LR .
前記触媒樹脂は、前記強塩基性アニオン交換樹脂に白金族のイオン溶液を通液した後、還元剤を通水して前記白金族を触媒金属として前記強塩基性アニオン交換樹脂に担持させたものであることを特徴とする請求項6記載の過酸化水素低減装置。The catalyst resin is obtained by passing a platinum group ion solution through the strong base anion exchange resin and then passing a reducing agent to carry the platinum group as a catalyst metal on the strong base anion exchange resin. The hydrogen peroxide reducing device according to claim 6, wherein
JP2008242572A 2008-09-22 2008-09-22 Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method Active JP4920019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008242572A JP4920019B2 (en) 2008-09-22 2008-09-22 Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242572A JP4920019B2 (en) 2008-09-22 2008-09-22 Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method

Publications (2)

Publication Number Publication Date
JP2010069460A JP2010069460A (en) 2010-04-02
JP4920019B2 true JP4920019B2 (en) 2012-04-18

Family

ID=42201736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242572A Active JP4920019B2 (en) 2008-09-22 2008-09-22 Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method

Country Status (1)

Country Link
JP (1) JP4920019B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109715568A (en) * 2016-09-20 2019-05-03 栗田工业株式会社 Dilute liquid medicine manufacturing device and dilute liquid medicine manufacturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5750236B2 (en) * 2010-05-25 2015-07-15 オルガノ株式会社 Pure water production method and apparatus
JP5484277B2 (en) * 2010-09-17 2014-05-07 オルガノ株式会社 System and method for measuring total organic carbon content in ultrapure water
JP5484278B2 (en) * 2010-09-17 2014-05-07 オルガノ株式会社 Hydrogen peroxide concentration measuring device and measuring method
JP6066769B2 (en) * 2013-02-28 2017-01-25 オルガノ株式会社 Waste water treatment apparatus and waste water treatment method
US10434546B2 (en) 2013-04-30 2019-10-08 Organo Corporation Method and system for cleaning copper-exposed substrate
JP6439777B2 (en) * 2016-12-05 2018-12-19 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP7143595B2 (en) * 2018-02-07 2022-09-29 栗田工業株式会社 Particle control method for ultrapure water production system
WO2021261144A1 (en) * 2020-06-23 2021-12-30 オルガノ株式会社 Water treatment apparatus, ultrapure water production apparatus, and water treatment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071085A (en) * 1983-09-28 1985-04-22 Kurita Water Ind Ltd Removal of hydrogen peroxide
JPH09192658A (en) * 1996-01-19 1997-07-29 Nomura Micro Sci Co Ltd Manufacturing device of ultrapure water
JP4552327B2 (en) * 2001-01-18 2010-09-29 栗田工業株式会社 Ultrapure water production equipment
WO2005095280A1 (en) * 2004-03-31 2005-10-13 Kurita Water Industries Ltd. Apparatus for producing ultrapure water
JP5124946B2 (en) * 2006-01-12 2013-01-23 栗田工業株式会社 Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109715568A (en) * 2016-09-20 2019-05-03 栗田工业株式会社 Dilute liquid medicine manufacturing device and dilute liquid medicine manufacturing method

Also Published As

Publication number Publication date
JP2010069460A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JP5124946B2 (en) Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
TWI408107B (en) Extra-pure water production equipment and operating method thereof
JP4109455B2 (en) Hydrogen dissolved water production equipment
JP5454468B2 (en) Pure water production method and pure water production apparatus
KR101692212B1 (en) Process and equipment for the treatment of water containing organic matter
JP5499753B2 (en) Water treatment method and apparatus
KR101978080B1 (en) Method and apparatus for manufacturing pure water
WO2018105188A1 (en) Ultrapure water production apparatus and operation method for ultrapure water production apparatus
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
WO2019116653A1 (en) Method and apparatus for removing hydrogen peroxide
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP2002210494A (en) Device for manufacturing extrapure water
WO2016199435A1 (en) Ultrapure water manufacturing system and ultrapure water manufacturing method
TW202216611A (en) Pure water production device, ultra pure water production device, pure water production method, and ultra pure water production method
JP2000308815A (en) Producing device of ozone dissolved water
JP6848415B2 (en) Operation method of ultrapure water production equipment and ultrapure water production equipment
JP3856493B2 (en) Ultrapure water production equipment
JP3580648B2 (en) Ultrapure water production equipment
JP7171671B2 (en) Ultrapure water production system and ultrapure water production method
JP6728913B2 (en) Ultrapure water production method
JP2022124773A (en) Water treatment system and water treatment method
JP2022036290A (en) Water treatment device, pure water production device, ultrapure water production device, and water treatment method
CN117321007A (en) Pure water production apparatus and pure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4920019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250