JP6439777B2 - Ultrapure water production apparatus and operation method of ultrapure water production apparatus - Google Patents

Ultrapure water production apparatus and operation method of ultrapure water production apparatus Download PDF

Info

Publication number
JP6439777B2
JP6439777B2 JP2016236235A JP2016236235A JP6439777B2 JP 6439777 B2 JP6439777 B2 JP 6439777B2 JP 2016236235 A JP2016236235 A JP 2016236235A JP 2016236235 A JP2016236235 A JP 2016236235A JP 6439777 B2 JP6439777 B2 JP 6439777B2
Authority
JP
Japan
Prior art keywords
group metal
platinum group
water
metal catalyst
ultrapure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016236235A
Other languages
Japanese (ja)
Other versions
JP2018089587A (en
Inventor
康晴 港
康晴 港
中馬 高明
高明 中馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016236235A priority Critical patent/JP6439777B2/en
Priority to CN201780076079.8A priority patent/CN110049952A/en
Priority to PCT/JP2017/032788 priority patent/WO2018105188A1/en
Priority to KR1020197014908A priority patent/KR102497591B1/en
Priority to TW106131337A priority patent/TW201821375A/en
Publication of JP2018089587A publication Critical patent/JP2018089587A/en
Application granted granted Critical
Publication of JP6439777B2 publication Critical patent/JP6439777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は一次純水装置とサブシステムとを備えた超純水製造装置及びこの超純水製造装置の運転方法に関し、特にサブシステムに紫外線酸化装置と白金族金属触媒樹脂塔とを有する超純水製造装置及びこの超純水製造装置の運転方法に関する。   The present invention relates to an ultrapure water production apparatus provided with a primary pure water apparatus and a subsystem, and an operation method of the ultrapure water production apparatus, and more particularly to an ultrapure water having an ultraviolet oxidation apparatus and a platinum group metal catalyst resin tower in the subsystem. The present invention relates to a water production apparatus and a method for operating the ultrapure water production apparatus.

従来、半導体等の電子産業分野で用いられている超純水は、前処理システム、一次純水装置及び一次純水を処理するサブシステムで構成される超純水製造装置で原水を処理することにより製造されている。   Conventionally, ultrapure water used in the field of electronic industries such as semiconductors is to treat raw water with an ultrapure water production system composed of a pretreatment system, a primary pure water device, and a subsystem for processing primary pure water. It is manufactured by.

図2に示すように従来の超純水製造装置21は、一般に前処理装置22、一次純水製造装置23、及び二次純水製造装置(サブシステム)24といった3段の装置で構成されている。このような超純水製造装置21の前処理装置22では、原水Wの濾過、凝集沈殿、精密濾過膜などによる前処理が施され、主に懸濁物質が除去される。   As shown in FIG. 2, the conventional ultrapure water production apparatus 21 is generally composed of three-stage apparatuses such as a pretreatment apparatus 22, a primary pure water production apparatus 23, and a secondary pure water production apparatus (subsystem) 24. Yes. In such a pretreatment device 22 of the ultrapure water production device 21, the raw water W is subjected to pretreatment such as filtration, coagulation sedimentation, and a microfiltration membrane, and mainly suspended substances are removed.

一次純水製造装置23は、前処理水W1のタンク25と紫外線(UV)酸化装置26と再生型イオン交換装置(混床式又は4床5塔式など)27と膜式脱気装置28とを有し、その他必要に応じてRO膜分離装置や電気脱イオン装置等を備えていてもよい。ここで前処理水W1中の大半の電解質、微粒子、生菌等の除去を行うとともに有機物を分解する。   The primary pure water production apparatus 23 includes a tank 25 for pretreatment water W1, an ultraviolet (UV) oxidation apparatus 26, a regenerative ion exchange apparatus (such as a mixed bed type or a 4-bed 5-to-column type) 27, a membrane type deaerator 28, In addition, an RO membrane separation device, an electrodeionization device, or the like may be provided as necessary. Here, most of the electrolyte, fine particles, viable bacteria, etc. in the pretreated water W1 are removed and the organic matter is decomposed.

サブシステム24は、前述した一次純水製造装置23で製造された一次純水W2を貯留するサブタンク31とこのサブタンク31から図示しないポンプを介して送給される一次純水W2を処理する紫外線酸化装置32と白金族金属触媒樹脂塔33と膜式脱気装置34と非再生型混床式イオン交換装置35と膜濾過装置としての限外濾過(UF)膜36とで構成され、さらに必要に応じてRO膜分離装置等が設けられている場合もある。このサブシステム24では、紫外線酸化装置32で一次純水W2中に含まれる微量の有機物(TOC成分)を紫外線により酸化分解し、この紫外線の照射により生じた過酸化水素を白金族金属触媒樹脂塔33で分解し、その後段の膜式脱気装置34で混入しているDO(溶存酸素)などの溶存ガスを除去する。続いて非再生型混床式イオン交換装置35で処理することで、残留した炭酸イオン、有機酸類、アニオン性物質、さらには金属イオンやカチオン性物質をイオン交換によって除去する。そして、限外濾過(UF)膜36で微粒子を除去して超純水W3とし、これをユースポイント37に供給して、未使用の超純水はサブタンク31に還流する。   The sub system 24 includes a sub tank 31 that stores the primary pure water W2 produced by the primary pure water production apparatus 23 described above, and an ultraviolet oxidation that processes the primary pure water W2 fed from the sub tank 31 via a pump (not shown). It comprises an apparatus 32, a platinum group metal catalyst resin tower 33, a membrane deaerator 34, a non-regenerative mixed bed ion exchanger 35, and an ultrafiltration (UF) membrane 36 as a membrane filtration device. Depending on the case, an RO membrane separation device or the like may be provided. In this subsystem 24, a trace amount of organic matter (TOC component) contained in the primary pure water W2 is oxidized and decomposed by ultraviolet rays in the ultraviolet oxidizer 32, and the hydrogen peroxide generated by the irradiation of the ultraviolet rays is converted into a platinum group metal catalyst resin tower. It decomposes | disassembles by 33 and removes dissolved gas, such as DO (dissolved oxygen) which is mixed in the film | membrane type deaerator 34 of the subsequent stage. Subsequently, the remaining carbonate ions, organic acids, anionic substances, as well as metal ions and cationic substances are removed by ion exchange by processing in the non-regenerative mixed bed ion exchange apparatus 35. Fine particles are removed by an ultrafiltration (UF) membrane 36 to obtain ultrapure water W 3, which is supplied to a use point 37, and unused ultrapure water returns to the sub tank 31.

上述したような従来の超純水製造装置21では、紫外線酸化装置32におけるTOC成分の酸化分解機構は、水を酸化分解してOHラジカルを生成させ、このOHラジカルによりTOC成分を酸化分解するものであり、通常、この紫外線酸化装置32における紫外線は、水中のTOCを十分に酸化分解できるような過剰量が照射される。このように紫外線酸化装置32の紫外線照射量が多いと、水の分解で生成したOHラジカルが過剰となるため、余剰のOHラジカルが会合することで過酸化水素となる。発生した過酸化水素は後段の白金族金属触媒樹脂塔33と接触することで分解される。   In the conventional ultrapure water production apparatus 21 as described above, the oxidative decomposition mechanism of the TOC component in the ultraviolet oxidizer 32 oxidizes and decomposes water to generate OH radicals, and oxidizes and decomposes the TOC components by the OH radicals. In general, the ultraviolet rays in the ultraviolet oxidizer 32 are irradiated with an excessive amount capable of sufficiently oxidizing and decomposing TOC in water. As described above, when the ultraviolet ray irradiation amount of the ultraviolet oxidizer 32 is large, OH radicals generated by the decomposition of water become excessive, so that excessive OH radicals associate to become hydrogen peroxide. The generated hydrogen peroxide is decomposed by contacting with the platinum group metal catalyst resin tower 33 in the subsequent stage.

しかしながら、本発明者らの検討の結果、サブシステム24の紫外線酸化装置32が長期間の過酸化水素の分解を行うと過酸化水素の除去能力が低下することがあることがわかった。この結果、超純水W3中に過酸化水素が残存すると水質低下の原因となるだけでなく、非再生型混床式イオン交換装置35や後段の限外濾過(UF)膜36を劣化させるおそれがある。さらに、過酸化水素が分解すると酸素を生成することで水中のDOが増加する原因ともなる。   However, as a result of the study by the present inventors, it has been found that when the ultraviolet oxidizer 32 of the subsystem 24 decomposes hydrogen peroxide for a long period of time, the ability to remove hydrogen peroxide may decrease. As a result, hydrogen peroxide remaining in the ultrapure water W3 not only causes deterioration of water quality, but also may deteriorate the non-regenerative mixed bed ion exchange device 35 and the subsequent ultrafiltration (UF) membrane 36. There is. Furthermore, when hydrogen peroxide decomposes, oxygen is generated, which causes an increase in DO in water.

本発明は、上記課題に鑑みてなされたものであり、一次純水装置とサブシステムとを備え、このサブシステムに紫外線酸化装置と白金族金属触媒樹脂塔とを有する超純水製造装置における白金族金属触媒樹脂塔の過酸化水素除去能力の低下を抑制した超純水製造装置及びこの超純水製造装置の運転方法を提供することを目的とする。   The present invention has been made in view of the above problems, and includes platinum in an ultrapure water production apparatus that includes a primary pure water apparatus and a subsystem, and includes an ultraviolet oxidation apparatus and a platinum group metal catalyst resin tower in the subsystem. It is an object of the present invention to provide an ultrapure water production apparatus and a method for operating the ultrapure water production apparatus in which a decrease in the hydrogen peroxide removal ability of the group metal catalyst resin tower is suppressed.

本発明は第一に、紫外線酸化装置、再生型混床式イオン交換塔又は電気脱イオン装置及び膜式脱気装置を有する一次純水装置と、紫外線酸化装置、白金族金属触媒樹脂塔及び膜式脱気装置を有し、該一次純水装置から得られた一次純水を処理するサブシステムとを備える超純水製造装置において、前記一次純水装置の紫外線酸化装置の後段に白金族金属触媒樹脂塔を設けた、超純水製造装置を提供する(発明1)。   First, the present invention provides a primary pure water apparatus having an ultraviolet oxidation apparatus, a regenerative mixed bed ion exchange tower or an electrodeionization apparatus and a membrane deaeration apparatus, an ultraviolet oxidation apparatus, a platinum group metal catalyst resin tower and a membrane. An ultrapure water production apparatus comprising a sub-system for treating primary pure water obtained from the primary pure water apparatus, wherein a platinum group metal is disposed after the ultraviolet oxidation apparatus of the primary pure water apparatus Provided is an ultrapure water production apparatus provided with a catalyst resin tower (Invention 1).

かかる発明(発明1)によれば、一次純水装置の紫外線酸化装置の後段に白金族金属触媒樹脂塔を設けることにより、サブシステムの紫外線酸化装置の後段の白金族金属触媒樹脂塔の過酸化水素除去能力の低下を抑制することができる。これは以下のような理由による。すなわち、サブシステムの紫外線酸化装置の後段の白金族金属触媒樹脂塔の過酸化水素除去能力の低下は、被処理水中の過酸化水素に対して水素が当量未満であり、白金族金属触媒が酸化するためであると考えられる。次に過酸化水素に対して水素が不足する原因について本発明者らが検討した結果、一次純水装置の紫外線酸化装置において、有機物の分解に伴い過酸化水素と水素が生じ、水素は膜式脱気装置で除去される一方、過酸化水素はサブシステムに流入することが原因であることがわかった。そこで、一次純水装置の紫外線酸化装置の後段に白金族金属触媒樹脂塔を設けて、一次純水装置の紫外線酸化装置で生じる過酸化水素を分解してやれば、サブシステムの紫外線酸化装置の後段での被処理水中の過酸化水素が減少し、水素が過酸化水素に対して当量に近づき、白金族金属触媒の劣化を防止することができる。   According to this invention (Invention 1), by providing a platinum group metal catalyst resin tower in the subsequent stage of the ultraviolet oxidation apparatus of the primary pure water apparatus, the peroxidation of the platinum group metal catalyst resin tower in the subsequent stage of the subsystem ultraviolet oxidation apparatus A decrease in hydrogen removal capability can be suppressed. This is due to the following reasons. That is, the decrease in the hydrogen peroxide removal ability of the platinum group metal catalyst resin tower in the latter stage of the subsystem UV oxidation apparatus is that the hydrogen is less than equivalent to hydrogen peroxide in the water to be treated, and the platinum group metal catalyst is oxidized. It is thought that it is to do. Next, as a result of examination by the present inventors on the cause of the shortage of hydrogen relative to hydrogen peroxide, hydrogen peroxide and hydrogen are generated along with the decomposition of organic substances in the ultraviolet oxidation apparatus of the primary pure water apparatus. It was found that hydrogen peroxide was caused to flow into the subsystem while being removed by the deaerator. Therefore, if a platinum group metal catalyst resin tower is installed after the UV oxidizer of the primary deionizer and hydrogen peroxide generated in the UV oxidizer of the primary deionizer is decomposed, the sub-system UV oxidizer will be The amount of hydrogen peroxide in the water to be treated is reduced, the hydrogen approaches the equivalent to hydrogen peroxide, and deterioration of the platinum group metal catalyst can be prevented.

上記発明(発明1)においては、前記サブシステムが非再生型混床式イオン交換塔をさらに有することが好ましい(発明2)。   In the said invention (invention 1), it is preferable that the said subsystem further has a non-regenerative type mixed bed type ion exchange column (invention 2).

かかる発明(発明2)によれば、被処理水中に含まれる微量の有機物が紫外線酸化装置によって分解され、残留した炭酸イオン、有機酸類、アニオン性物質や前段より流入してくる金属イオンやカチオン性物質をイオン交換によって除去することができる。   According to this invention (Invention 2), a trace amount of organic matter contained in the water to be treated is decomposed by the ultraviolet oxidizer, remaining carbonate ions, organic acids, anionic substances, metal ions entering from the previous stage, and cationic properties. The material can be removed by ion exchange.

上記発明(発明1,2)においては、前記一次純水装置の白金族金属触媒樹脂塔及び前記サブシステムの白金族金属触媒樹脂塔における白金族金属が白金、パラジウム又は白金/パラジウム合金であることが好ましい(発明3)。   In the said invention (invention 1 and 2), the platinum group metal in the platinum group metal catalyst resin tower of the said primary pure water apparatus and the platinum group metal catalyst resin tower of the said subsystem is platinum, palladium, or a platinum / palladium alloy. Is preferred (Invention 3).

かかる発明(発明3)によれば、処理水中に含まれる微量の過酸化水素を効率的に分解除去することができる。   According to this invention (Invention 3), a trace amount of hydrogen peroxide contained in the treated water can be efficiently decomposed and removed.

上記発明(発明1〜3)においては、前記白金族金属が平均粒子径1〜50nmの白金族の金属の粒子であることが好ましい(発明4)。   In the said invention (invention 1-3), it is preferable that the said platinum group metal is a particle | grain of the platinum group metal with an average particle diameter of 1-50 nm (invention 4).

かかる発明(発明4)によれば、処理水中に含まれる過酸化水素を特に効率的に分解除去することができる。   According to this invention (invention 4), hydrogen peroxide contained in the treated water can be decomposed and removed particularly efficiently.

本発明は第二に、紫外線酸化装置、白金族金属触媒樹脂塔、再生型混床式イオン交換塔又は電気脱イオン装置、及び膜式脱気装置を有する一次純水装置と、紫外線酸化装置、白金族金属触媒樹脂塔及び膜式脱気装置を有し、該一次純水装置から得られた一次純水を処理するサブシステムとを備える超純水製造装置の運転方法であって、被処理水を前記一次純水装置及び前記サブシステムに連続して通水して超純水を製造する、超純水製造装置の運転方法を提供する(発明5)。   The present invention secondly, an ultraviolet oxidation apparatus, a platinum group metal catalyst resin tower, a regenerative mixed bed ion exchange tower or electrodeionization apparatus, a primary pure water apparatus having a membrane degassing apparatus, an ultraviolet oxidation apparatus, A method for operating an ultrapure water production apparatus comprising a platinum group metal catalyst resin tower and a membrane deaerator, and a subsystem for treating primary pure water obtained from the primary pure water apparatus, comprising: Provided is an operation method of an ultrapure water production apparatus for producing ultrapure water by continuously passing water through the primary pure water apparatus and the subsystem (Invention 5).

かかる発明(発明5)によれば、一次純水装置の前記紫外線酸化装置の後段に白金族金属触媒樹脂塔を設けることにより、一次純水装置の紫外線酸化装置で生じる過酸化水素を分解することができるので、サブシステムの紫外線酸化装置の後段での被処理水中の過酸化水素が減少し、水素が過酸化水素に対して当量に近づくため、白金族金属触媒の劣化を防止しながら超純水を製造することができる。   According to this invention (invention 5), by disposing a platinum group metal catalyst resin tower after the ultraviolet oxidation device of the primary pure water device, hydrogen peroxide generated in the ultraviolet oxidation device of the primary pure water device is decomposed. Therefore, the amount of hydrogen peroxide in the water to be treated in the latter stage of the UV oxidizer of the subsystem is reduced, and hydrogen approaches the equivalent of hydrogen peroxide. Water can be produced.

上記発明(発明5)においては、前記一次純水装置の白金族金属触媒樹脂塔及び前記サブシステムの白金族金属触媒樹脂塔における白金族金属が白金、パラジウム又は白金/パラジウム合金であることが好ましい(発明6)。   In the said invention (invention 5), it is preferable that the platinum group metal in the platinum group metal catalyst resin tower of the said primary pure water apparatus and the platinum group metal catalyst resin tower of the said subsystem is platinum, palladium, or a platinum / palladium alloy. (Invention 6).

かかる発明(発明6)によれば、処理水中に含まれる微量の過酸化水素を効率的に分解除去することができる。   According to this invention (invention 6), a trace amount of hydrogen peroxide contained in the treated water can be efficiently decomposed and removed.

上記発明(発明5又は6)においては、前記白金族金属が平均粒子径1〜50nmの白金族の金属の粒子であることが好ましい(発明7)。   In the said invention (invention 5 or 6), it is preferable that the said platinum group metal is a platinum group metal particle | grain with an average particle diameter of 1-50 nm (invention 7).

かかる発明(発明7)によれば、処理水中に含まれる過酸化水素を特に効率的に分解除去することができる。   According to this invention (invention 7), hydrogen peroxide contained in the treated water can be decomposed and removed particularly efficiently.

上記発明(発明5〜7)においては、前記サブシステムの紫外線酸化装置の処理水のH濃度が10〜100μg/Lであり、該サブシステムの白金族金属触媒樹脂塔の処理水のH濃度が0.1〜10μg/Lであることが好ましい(発明8)。 In the above invention (invention 5~7), H 2 O 2 concentration in the treated water of the ultraviolet oxidation device of the subsystem is 10-100 [mu] g / L, of the subsystems of the treated water of a platinum group metal catalyst resin column The H 2 O 2 concentration is preferably 0.1 to 10 μg / L (Invention 8).

かかる発明(発明8)によれば、サブシステムの紫外線酸化装置及び白金族金属触媒樹脂塔の処理水のH濃度が上記範囲内となるように紫外線酸化装置及び白金族金属触媒樹脂塔での処理条件を制御することにより、該白金族金属触媒樹脂塔の後段の膜式脱気装置などへの悪影響を最小限に抑制するとともに、得られる超純水の過酸化水素濃度及び溶存酸素濃度を極めて低いレベルとすることができる。 According to this invention (Invention 8), the ultraviolet oxidation apparatus and the platinum group metal catalyst resin tower so that the H 2 O 2 concentration of the treated water in the subsystem ultraviolet oxidation apparatus and the platinum group metal catalyst resin tower is within the above range. By controlling the treatment conditions in the above, the adverse effect of the platinum group metal catalyst resin tower on the membrane deaerator in the subsequent stage is suppressed to a minimum, and the hydrogen peroxide concentration and dissolved oxygen of the obtained ultrapure water are reduced. The concentration can be very low.

本発明によれば、紫外線酸化装置で生じた過酸化水素を分解した一次純水をサブシステムに供給しており、随伴してくる過酸化水素が少ないため、該サブシステムの紫外線酸化装置の後段での処理水中の過酸化水素濃度が減少し、相対的に水素が過酸化水素に対して当量に近づくので、白金族金属触媒の劣化を防止しながら超純水を製造することができる。   According to the present invention, the primary pure water obtained by decomposing hydrogen peroxide generated in the ultraviolet oxidizer is supplied to the subsystem, and the accompanying hydrogen peroxide is small. Since the concentration of hydrogen peroxide in the treated water decreases and hydrogen is relatively close to the equivalent to hydrogen peroxide, it is possible to produce ultrapure water while preventing deterioration of the platinum group metal catalyst.

本発明の一実施形態による超純水製造装置を示すフロー図である。It is a flowchart which shows the ultrapure water manufacturing apparatus by one Embodiment of this invention. 従来の超純水製造装置を示すフロー図である。It is a flowchart which shows the conventional ultrapure water manufacturing apparatus.

以下、本発明の一実施形態による超純水製造装置及びこの装置の運転方法について図1を参照して詳細に説明する。   Hereinafter, an ultrapure water production apparatus according to an embodiment of the present invention and a method for operating the apparatus will be described in detail with reference to FIG.

図1は本発明の一実施形態による超純水製造装置を示すフロー図であり、図1において、超純水製造装置1は、前処理装置2と一次純水製造装置3と二次純水製造装置(サブシステム)4との3段の装置で構成されていて、前処理装置2は、工水、井水、市水などの原水Wの濾過、凝集沈殿、精密濾過膜などにより構成されている。   FIG. 1 is a flowchart showing an ultrapure water production apparatus according to an embodiment of the present invention. In FIG. 1, an ultrapure water production apparatus 1 includes a pretreatment device 2, a primary pure water production device 3, and secondary pure water. The pretreatment device 2 is constituted by filtration of raw water W such as industrial water, well water, city water, coagulation sedimentation, a microfiltration membrane, and the like. ing.

一次純水製造装置3は、被処理水としての前処理水W1のタンク5と紫外線(UV)酸化装置6と白金族金属触媒樹脂塔7と再生型イオン交換装置(混床式又は4床5塔式など)8と膜式脱気装置9とを備える。   The primary pure water production apparatus 3 includes a tank 5 of pretreated water W1 as water to be treated, an ultraviolet (UV) oxidizer 6, a platinum group metal catalyst resin tower 7, a regenerative ion exchanger (mixed bed type or four beds 5). A tower type or the like) 8 and a membrane type deaerator 9.

サブシステム4は、前述した一次純水製造装置3で製造された一次純水W2を貯留するサブタンク11とこのサブタンク11から送給される一次純水を処理する紫外線酸化装置12と白金族金属触媒樹脂塔13と膜式脱気装置14と非再生型混床式イオン交換装置15と膜濾過装置としての限外濾過(UF)膜16とを備えており、限外濾過(UF)膜16を通過した超純水W3がユースポイント17に供給された後、未使用の超純水W3がサブタンク11に還流するように構成されている。   The sub-system 4 includes a sub-tank 11 for storing the primary pure water W2 produced by the primary pure water production apparatus 3 described above, an ultraviolet oxidizer 12 for treating the primary pure water supplied from the sub-tank 11, and a platinum group metal catalyst. A resin tower 13, a membrane deaerator 14, a non-regenerative mixed bed ion exchanger 15, and an ultrafiltration (UF) membrane 16 as a membrane filtration device are provided. After the passed ultrapure water W3 is supplied to the use point 17, the unused ultrapure water W3 is returned to the sub tank 11.

上述したような超純水製造装置1において、白金族金属触媒樹脂塔7及び白金族金属触媒樹脂塔13に充填する白金族金属触媒樹脂は、担体樹脂に白金族金属を担持させたものである。   In the ultrapure water production apparatus 1 as described above, the platinum group metal catalyst resin charged in the platinum group metal catalyst resin tower 7 and the platinum group metal catalyst resin tower 13 is obtained by supporting a platinum group metal on a carrier resin. .

この白金族金属を担持させる担体樹脂としては、イオン交換樹脂を用いることができ、特にアニオン交換樹脂を好適に用いることができる。本実施形態において用いるアニオン交換樹脂は、スチレン−ジビニルベンゼン共重合体を母体とした強塩基性アニオン交換樹脂であることが好ましく、特にゲル型樹脂であることが好ましい。白金族金属は、負に帯電しているので、アニオン交換樹脂に安定に担持されて剥離しにくいものとなる。アニオン交換樹脂の交換基は、OH形であることが好ましい。OH形アニオン交換樹脂は、樹脂表面がアルカリ性となり、過酸化水素の分解を促進する。   As the carrier resin for supporting the platinum group metal, an ion exchange resin can be used, and an anion exchange resin can be particularly preferably used. The anion exchange resin used in the present embodiment is preferably a strongly basic anion exchange resin based on a styrene-divinylbenzene copolymer, and particularly preferably a gel type resin. Since the platinum group metal is negatively charged, it is stably supported on the anion exchange resin and hardly peels off. The exchange group of the anion exchange resin is preferably in the OH form. In the OH-type anion exchange resin, the resin surface becomes alkaline and promotes decomposition of hydrogen peroxide.

また、担持する白金族金属は、超純水に対する溶出性が低くかつ触媒活性が高いため、高い通水速度で通水できるので何らかの溶出が起こったとしても溶出物濃度が抑制され、早期の水質悪化が抑制される点において好ましい。この白金族金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができる。これらの白金族金属は、1種を単独で用いることができ、2種以上を組み合わせて用いることもでき、2種以上の合金として用いることもでき、あるいは、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中で白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物は、触媒活性が高いので特に好適に用いることができる。   The supported platinum group metal has low elution to ultrapure water and high catalytic activity, so it can be passed at a high water flow rate, so even if any elution occurs, the eluate concentration is suppressed and early water quality is reduced. This is preferable in that deterioration is suppressed. Examples of the platinum group metal include ruthenium, rhodium, palladium, osmium, iridium, and platinum. These platinum group metals can be used individually by 1 type, can be used in combination of 2 or more types, can also be used as an alloy of 2 or more types, or the refined product of the naturally produced mixture Can also be used without separating them into single bodies. Among these, platinum, palladium, a platinum / palladium alloy alone or a mixture of two or more thereof can be used particularly suitably because of their high catalytic activity.

特に白金族金属触媒樹脂として、前述した担体樹脂に白金族の金属のナノオーダーの粒径の粒子を担持させたものを好適に用いることができる。   In particular, as the platinum group metal catalyst resin, the above-described carrier resin in which particles of a platinum group metal having a nano-order particle size are supported can be suitably used.

白金族の金属ナノ粒子を製造する方法に特に制限はなく、例えば、金属塩還元反応法、燃焼法などを挙げることができる。これらの中で、金属塩還元反応法は、製造が容易であり、安定した品質の金属ナノ粒子を得ることができるので好適に用いることができる。金属塩還元反応法であれば、例えば、白金などの塩化物、硝酸塩、硫酸塩、金属錯化物などの0.1〜0.4mmol/L水溶液に、アルコール、クエン酸又はその塩、ギ酸、アセトン、アセトアルデヒドなどの還元剤を4〜20当量倍添加し、1〜3時間煮沸することにより、金属ナノ粒子を製造することができる。また、例えば、ポリビニルピロリドン水溶液に、ヘキサクロロ白金酸、ヘキサクロロ白金酸カリウムなどを1〜2mmol/L溶解し、エタノールなどの還元剤を加え、窒素雰囲気下で2〜3時間加熱還流することにより、白金ナノコロイド粒子を製造することもできる。   There is no restriction | limiting in particular in the method of manufacturing a platinum group metal nanoparticle, For example, a metal salt reduction reaction method, a combustion method, etc. can be mentioned. Among these, the metal salt reduction reaction method can be suitably used because it is easy to produce and stable metal nanoparticles can be obtained. In the case of a metal salt reduction reaction method, for example, 0.1 to 0.4 mmol / L aqueous solution of chloride such as platinum, nitrate, sulfate, metal complex, etc., alcohol, citric acid or a salt thereof, formic acid, acetone Metal nanoparticles can be produced by adding 4 to 20 equivalents of a reducing agent such as acetaldehyde and boiling for 1 to 3 hours. Further, for example, by dissolving 1-2 mmol / L of hexachloroplatinic acid, potassium hexachloroplatinate, etc. in an aqueous polyvinylpyrrolidone solution, adding a reducing agent such as ethanol, and heating and refluxing in a nitrogen atmosphere for 2 to 3 hours, platinum is obtained. Nano colloidal particles can also be produced.

白金族の金属ナノ粒子の平均粒子径は1〜50nmが好ましく、より好ましくは1.2〜20nmであり、更に好ましくは1.4〜5nmである。金属ナノ粒子の平均粒子径が50nmを超えると、ナノ粒子の比表面積が小さくなって、過酸化水素の分解除去に対する触媒活性が低下するおそれがある。一方、金属ナノ粒子の平均粒子径が1nm未満であると、過酸化水素の分解除去に対する触媒活性がかえって低下するおそれがある。   The average particle diameter of the platinum group metal nanoparticles is preferably 1 to 50 nm, more preferably 1.2 to 20 nm, and still more preferably 1.4 to 5 nm. When the average particle diameter of the metal nanoparticles exceeds 50 nm, the specific surface area of the nanoparticles becomes small, and the catalytic activity for the decomposition and removal of hydrogen peroxide may be reduced. On the other hand, if the average particle size of the metal nanoparticles is less than 1 nm, the catalytic activity for the decomposition and removal of hydrogen peroxide may be lowered.

上述したようなアニオン交換樹脂への白金族の金属ナノ粒子の担持量は、0.01〜0.2重量%であることが好ましく、特に0.04〜0.1重量%であることが好ましい。金属ナノ粒子の担持量が0.01重量%未満であると、過酸化水素の分解除去に対する触媒活性が不足するおそれがある。金属ナノ粒子の担持量は0.2重量%以下で過酸化水素の分解除去に対して十分な触媒活性が発現し、通常は0.2重量%を超える金属ナノ粒子を担持させる必要はなく、かえって経済的でない。また、金属ナノ粒子の担持量が増加すると、水中への金属の溶出のおそれも大きくなる。   The amount of platinum group metal nanoparticles supported on the anion exchange resin as described above is preferably 0.01 to 0.2% by weight, more preferably 0.04 to 0.1% by weight. . If the supported amount of metal nanoparticles is less than 0.01% by weight, the catalytic activity for the decomposition and removal of hydrogen peroxide may be insufficient. The amount of metal nanoparticles supported is less than 0.2% by weight, and sufficient catalytic activity is exhibited for the decomposition and removal of hydrogen peroxide. Usually, it is not necessary to support more than 0.2% by weight of metal nanoparticles. It is not economical. Moreover, when the loading amount of metal nanoparticles increases, the risk of metal elution into water also increases.

次に上述したような構成を有する本実施形態の超純水製造装置1の運転方法について説明する。   Next, an operation method of the ultrapure water production apparatus 1 according to this embodiment having the above-described configuration will be described.

まず、原水Wを前処理装置2で凝集沈殿、凝集ろ過、凝集加圧浮上などの操作により処理することで、主として原水W中の濁質を除去する。この前処理水W1は一旦タンク5に貯留され、図示しないポンプにより一次純水装置3に送給される。   First, the turbidity in the raw water W is mainly removed by processing the raw water W by operations such as coagulation sedimentation, coagulation filtration, and coagulation pressure levitation. The pretreated water W1 is temporarily stored in the tank 5 and is supplied to the primary pure water device 3 by a pump (not shown).

一次純水装置3において、紫外線(UV)酸化装置6で前処理水W1中の有機物(TOC)が酸化されて有機酸となり、さらに二酸化炭素となる。また、紫外線酸化処理装置6で過剰に照射された紫外線により、前処理水W1の水分の分解によりOHラジカルと水素とが発生し、余剰のOHラジカルが会合することで過酸化水素となる。この結果、紫外線酸化装置6の処理水のH濃度は10〜100μg/Lとなる。さらに、水素は後述する膜式脱気装置9で除去される。この結果、従来は過酸化水素濃度が高く水素が減少した処理水が、一次純水としてサブシステム4に供給され、これがサブシステム側の白金族金属触媒樹脂塔13の機能の低下の原因となっていた。 In the primary pure water device 3, the organic matter (TOC) in the pretreated water W <b> 1 is oxidized by the ultraviolet (UV) oxidation device 6 to become an organic acid, and further to carbon dioxide. Moreover, OH radicals and hydrogen are generated by the decomposition of the water in the pretreatment water W1 due to the ultraviolet rays excessively irradiated by the ultraviolet oxidation treatment apparatus 6, and the excess OH radicals associate to become hydrogen peroxide. As a result, the H 2 O 2 concentration of the treated water of the ultraviolet oxidizer 6 is 10 to 100 μg / L. Further, hydrogen is removed by a membrane deaerator 9 described later. As a result, conventionally, treated water having a high hydrogen peroxide concentration and reduced hydrogen is supplied to the subsystem 4 as primary pure water, which causes a deterioration in the function of the platinum group metal catalyst resin tower 13 on the subsystem side. It was.

そこで、本実施形態においては、この紫外線酸化装置6の後段に白金族金属触媒樹脂塔7を設けることにより、発生した過酸化水素を分解する。これによりH濃度は0.1〜10μg/L程度、特に白金族の金属ナノ粒子を用いた場合には、H濃度は0.1〜1μg/L程度で、紫外線酸化装置6の処理水より低減する。そして、再生型イオン交換装置(混床式又は4床5塔式など)8で前処理水W1中の大半の電解質(イオン性成分)を除去し、さらに膜式脱気装置9で溶存酸素等の溶存ガスを除去して、有機物(TOC)2ppb以下、H濃度0.1〜10μg/Lの一次純水W2を得る。この一次純水W2は、一旦サブタンク11に貯留されたのち、図示しないポンプによりサブシステム4に送られる。 Therefore, in the present embodiment, the generated hydrogen peroxide is decomposed by providing a platinum group metal catalyst resin tower 7 in the subsequent stage of the ultraviolet oxidizer 6. Accordingly, the H 2 O 2 concentration is about 0.1 to 10 μg / L, and particularly when platinum group metal nanoparticles are used, the H 2 O 2 concentration is about 0.1 to 1 μg / L. 6 treated water. Then, most of the electrolyte (ionic components) in the pretreated water W1 is removed by a regenerative ion exchange device (mixed bed type or 4 bed 5 tower type) 8 and further dissolved oxygen etc. by a membrane type deaerator 9 dissolved gas to remove the organic matter (TOC) 2 ppb or less, to obtain a concentration of H 2 O 2 0.1-10 / L of primary pure water W2. The primary pure water W2 is once stored in the sub tank 11, and then sent to the subsystem 4 by a pump (not shown).

次にサブシステム4では、紫外線(UV)酸化装置12において一次純水W2中に残存する微量の有機物が酸化されて有機酸となり、さらに二酸化炭素となる。このとき有機物を極限まで除去するために紫外線酸化処理装置12では過剰に紫外線が照射されるので、一次純水W2の水分の分解で生成したOHラジカルが過剰となるため、余剰のOHラジカルが会合することで過酸化水素が発生する。これにより一次純水W2中のH濃度は0.1〜10μg/L程度から10〜100μg/L程度となり、一次純水W2よりも増加する。 Next, in the subsystem 4, a trace amount of organic matter remaining in the primary pure water W2 is oxidized in the ultraviolet (UV) oxidizer 12 to become an organic acid, and further to carbon dioxide. At this time, in order to remove the organic matter to the utmost limit, the ultraviolet oxidation treatment device 12 is irradiated with excessive ultraviolet rays, so that the OH radicals generated by the decomposition of the water in the primary pure water W2 become excessive, so that the excess OH radicals associate By doing so, hydrogen peroxide is generated. As a result, the H 2 O 2 concentration in the primary pure water W2 is about 0.1 to 10 μg / L to about 10 to 100 μg / L, which is higher than that of the primary pure water W2.

そして、発生した過酸化水素は後段の白金族金属触媒樹脂塔13で分解され、H濃度は10μg/L以下程度、特に白金族の金属ナノ粒子を用いた場合には、H濃度は5μg/L以下、特に1μg/L以下で、紫外線酸化処理装置12の処理水よりも低下する。 Then, the generated hydrogen peroxide is decomposed at a later stage of the platinum group metal catalyst resin tower 13, when the concentration of H 2 O 2 is using 10 [mu] g / L degrees or less, especially platinum group metal nanoparticles, H 2 O The concentration of 2 is 5 μg / L or less, particularly 1 μg / L or less, which is lower than the treated water of the ultraviolet oxidation treatment apparatus 12.

一方、過酸化水素の分解により酸素も発生し、これに起因して溶存酸素が増加するので、後段に設けられた膜式脱気装置14で溶存酸素を除去する。そして、微量残留している炭酸イオン、有機酸類、アニオン性物質や前段より流入してくる金属イオンやカチオン性物質を非再生型混床式イオン交換装置15で除去し、さらに限外濾過(UF)膜16で微粒子を除去して超純水W3を製造することができる。この、この超純水W3をユースポイント17に供給して、未使用の超純水W3はサブタンク11に還流する。   On the other hand, oxygen is also generated by the decomposition of hydrogen peroxide, and the dissolved oxygen increases due to this, so the dissolved oxygen is removed by the membrane type deaerator 14 provided in the subsequent stage. Then, trace amounts of carbonate ions, organic acids, anionic substances, metal ions and cationic substances flowing in from the previous stage are removed by the non-regenerative mixed bed ion exchanger 15 and ultrafiltration (UF) is performed. It is possible to produce ultrapure water W3 by removing fine particles with the film 16. This ultrapure water W3 is supplied to the use point 17, and the unused ultrapure water W3 is returned to the sub tank 11.

なお、本実施形態における超純水W3は、例えば、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリカ:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下の性状を有するものである。   The ultrapure water W3 in the present embodiment is, for example, resistivity: 18.1 MΩ · cm or more, fine particles: particle size of 50 nm or more and 1000 / L or less, viable bacteria: 1 / L or less, TOC (Total Organic) Carbon): 1 μg / L or less, Total silica: 0.1 μg / L or less, Metals: 1 ng / L or less, Ions: 10 ng / L or less.

特に白金族金属触媒樹脂塔13の白金族金属触媒樹脂として、白金族の金属ナノ粒子をアニオン交換樹脂に担持したものを用いた場合、この白金族の金属ナノ粒子を担持したアニオン交換樹脂は、比表面積が大きいので、過酸化水素分解の反応速度が非常に速く、通水空間速度を高くすることができる。触媒の量に比べて通水量が多いために、触媒から処理水に溶出する金属の影響を非常に小さくすることができる。さらに水中の過酸化水素は、アニオン交換樹脂に担持された白金族の金属ナノコロイド粒子と接触して速やかに分解し、アニオン交換樹脂に作用することがないので、アニオン交換樹脂が過酸化水素に侵されて有機体炭素(TOC)が溶出するおそれもない。   In particular, when the platinum group metal catalyst resin of the platinum group metal catalyst resin tower 13 is used in which platinum group metal nanoparticles are supported on an anion exchange resin, the anion exchange resin supporting the platinum group metal nanoparticles is: Since the specific surface area is large, the reaction rate of hydrogen peroxide decomposition is very fast, and the water passing space velocity can be increased. Since the amount of water flow is larger than the amount of the catalyst, the influence of the metal eluted from the catalyst into the treated water can be greatly reduced. Furthermore, hydrogen peroxide in water decomposes rapidly upon contact with the platinum group metal nanocolloid particles supported on the anion exchange resin and does not act on the anion exchange resin. There is no risk that organic carbon (TOC) will be eluted.

以上、本発明の一実施形態について添付図面を参照して説明してきたが、本発明は前記実施形態に限定されず、一次純水装置3の紫外線(UV)酸化装置6の後段に白金族金属触媒樹脂塔7を設ければよく、種々の変形実施が可能である。例えば、サブシステム4の白金族金属触媒樹脂塔13の白金族金属触媒樹脂としては、白金族の金属ナノ粒子を担持したアニオン交換樹脂を用いるのが好ましいが、この場合一次純水装置3の紫外線(UV)酸化装置6の後段の白金族金属触媒樹脂塔7としては、同様に白金族の金属ナノ粒子を担持したアニオン交換樹脂を用いてもよいし、あるいは汎用的な白金族金属触媒樹脂を用いて、両者を異ならせてもよい。また、一次純水装置3及びサブシステム4には必要に応じRO膜分離装置や電気脱イオン装置等の脱塩手段や他の各種エレメントを設けてもよいし、一次純水装置3の前段にさらに純水製造装置を設けて純水製造装置を3段構成としてもよい。   As mentioned above, although one embodiment of the present invention has been described with reference to the accompanying drawings, the present invention is not limited to the above embodiment, and a platinum group metal is disposed downstream of the ultraviolet (UV) oxidizer 6 of the primary pure water apparatus 3. A catalyst resin tower 7 may be provided, and various modifications can be made. For example, as the platinum group metal catalyst resin of the platinum group metal catalyst resin tower 13 of the subsystem 4, it is preferable to use an anion exchange resin carrying platinum group metal nanoparticles. In this case, the ultraviolet light of the primary pure water device 3 is used. As the platinum group metal catalyst resin tower 7 in the latter stage of the (UV) oxidizer 6, an anion exchange resin supporting platinum group metal nanoparticles may be used, or a general platinum group metal catalyst resin may be used. It may be used to make them different. In addition, the primary pure water device 3 and the sub-system 4 may be provided with desalting means such as an RO membrane separation device and an electrodeionization device and other various elements as necessary. Further, a pure water production apparatus may be provided to have a three-stage configuration.

以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.

[実施例1]
平均粒子径3.5nmの白金ナノコロイド粒子を、0.07重量%の担持量で強塩基性ゲル型アニオン交換樹脂に担持させ、白金族金属触媒樹脂として、白金族の金属ナノ粒子を担持したアニオン交換樹脂を調製した。
[Example 1]
Platinum nano colloidal particles having an average particle diameter of 3.5 nm were supported on a strongly basic gel type anion exchange resin at a supported amount of 0.07% by weight, and platinum group metal nanoparticles were supported as a platinum group metal catalyst resin. An anion exchange resin was prepared.

図1に示す装置構成の超純水製造装置1において、上述した白金族金属触媒樹脂を用いて白金族金属触媒樹脂塔7、13を構成して超純水W3を製造し、サブシステム4の白金族金属触媒樹脂塔13の入口水及び出口水の過酸化水素濃度(初期)を測定した。結果を表1に示す。また、この超純水製造装置1の運転を長期間継続した後の白金族金属触媒樹脂塔13の出口水の過酸化水素濃度(末期)を測定した。結果を表1にあわせて示す。なお、過酸化水素濃度は、フェノールフタレイン4.8mg、硫酸銅(無水)8mg及び水酸化ナトリウム48mgに硫酸ナトリウム(無水)を添加して10gとし、微量過酸化水素濃度定量用試薬を調製する。試験水10mLに該試薬0.5gを添加、溶解し、室温で10分間静置したのちの552nmにおける吸光度の測定値に基づき算定した。   In the ultrapure water production apparatus 1 having the apparatus configuration shown in FIG. 1, the platinum group metal catalyst resin towers 7 and 13 are constructed using the platinum group metal catalyst resin described above to produce ultrapure water W3. The hydrogen peroxide concentration (initial) of the inlet water and outlet water of the platinum group metal catalyst resin tower 13 was measured. The results are shown in Table 1. In addition, the hydrogen peroxide concentration (end stage) of the outlet water of the platinum group metal catalyst resin tower 13 after the operation of the ultrapure water production apparatus 1 was continued for a long period of time was measured. The results are shown in Table 1. The hydrogen peroxide concentration is adjusted to 10 g by adding sodium sulfate (anhydrous) to 4.8 mg of phenolphthalein, 8 mg of copper sulfate (anhydrous) and 48 mg of sodium hydroxide to prepare a reagent for quantitative determination of the hydrogen peroxide concentration. . 0.5 g of the reagent was added to 10 mL of test water, dissolved, and allowed to stand at room temperature for 10 minutes, and then calculated based on the measured absorbance at 552 nm.

[比較例1]
実施例1において、一次純水装置3の紫外線酸化装置6の後段に白金族金属触媒樹脂塔7を設けなかった以外は同様にして超純水製造装置を構成して超純水W3を製造し、サブシステム4の白金族金属触媒樹脂塔13の入口水及び出口水の過酸化水素濃度(初期)を測定した結果を表1に示す。また、この超純水製造装置1の運転を長期間継続した後の白金族金属触媒樹脂塔13の出口水の過酸化水素濃度(末期)を測定した。結果を表1にあわせて示す。
[Comparative Example 1]
In Example 1, the ultrapure water production apparatus was constructed in the same manner except that the platinum group metal catalyst resin tower 7 was not provided after the ultraviolet oxidation apparatus 6 of the primary pure water apparatus 3 to produce ultrapure water W3. Table 1 shows the results of measuring the hydrogen peroxide concentration (initial stage) of the inlet water and outlet water of the platinum group metal catalyst resin tower 13 of the subsystem 4. In addition, the hydrogen peroxide concentration (end stage) of the outlet water of the platinum group metal catalyst resin tower 13 after the operation of the ultrapure water production apparatus 1 was continued for a long period of time was measured. The results are shown in Table 1.

Figure 0006439777
Figure 0006439777

表1から明らかな通り、一次純水装置3の紫外線酸化装置6の後段に白金族金属触媒樹脂塔7を有しない比較例1では長期間運転後の超純水W3の過酸化水素濃度の上昇が顕著であるのに対し、実施例1ではほとんど変化がなかった。   As is apparent from Table 1, in Comparative Example 1 having no platinum group metal catalyst resin tower 7 in the subsequent stage of the ultraviolet oxidation device 6 of the primary pure water device 3, the hydrogen peroxide concentration of the ultrapure water W3 after long-term operation is increased. However, in Example 1, there was almost no change.

[比較例2、3及び参考例]
比較例1において、長期間運転後の白金族金属触媒樹脂塔13の樹脂を表層部、中部、下部の3領域に分別して取り出し、表層部及び中部の樹脂をそれぞれの試験用のカラムに充填し、試験用の白金族金属触媒樹脂塔とした。また、参考例として新品の樹脂を同様に試験用のカラムに充填し、白金族金属触媒樹脂塔とした。
[Comparative Examples 2 and 3 and Reference Example]
In Comparative Example 1, the resin of the platinum group metal catalyst resin tower 13 after long-term operation is separated and taken out into three regions of a surface layer portion, a middle portion, and a lower portion, and the resin for the surface layer portion and the middle portion are packed in respective test columns. A platinum group metal catalyst resin tower for testing was used. As a reference example, a new resin was similarly packed in a test column to obtain a platinum group metal catalyst resin tower.

超純水(過酸化水素1μg/L未満)に過酸化水素をそれぞれ300μg/L及び1000μg/L添加して試験用入口水を調製し、この試験用入口水を上述した試験用カラムに通水速度(SV) 300hr−1で下向流通水した後の出口水の過酸化水素濃度を測定した。結果を表2に示す。 Hydrogen peroxide was added to ultrapure water (less than 1 μg / L hydrogen peroxide) at 300 μg / L and 1000 μg / L, respectively, to prepare test inlet water, and this test inlet water was passed through the test column described above. Velocity (SV) The hydrogen peroxide concentration in the outlet water after downward flowing water at 300 hr −1 was measured. The results are shown in Table 2.

Figure 0006439777
Figure 0006439777

表2から明らかなとおり、長期間運転後の白金族金属触媒樹脂塔13の表層部の樹脂をカラムに充填した比較例2の方が中部の樹脂をカラムに充填した比較例3よりも処理水の過酸化水素の濃度が低かった。これにより中部の樹脂の方が過酸化水素分解能の低下が大きいことがわかる。白金族金属触媒樹脂塔13に下向流で通水した場合には、表層部から下方に行くにしたがい過酸化水素濃度は低くなる一方、溶存水素濃度は低減していくことから、過酸化水素分解能の低下は、水素不足に起因する酸化劣化によるものと推測される。   As is clear from Table 2, the treated water in Comparative Example 2 in which the column was filled with the resin of the surface layer portion of the platinum group metal catalyst resin tower 13 after long-term operation was more effective than Comparative Example 3 in which the middle resin was packed in the column. The concentration of hydrogen peroxide was low. As a result, it can be seen that the middle resin has a greater reduction in hydrogen peroxide resolution. When water flows downward through the platinum group metal catalyst resin tower 13, the hydrogen peroxide concentration decreases as it goes downward from the surface layer, while the dissolved hydrogen concentration decreases. The decrease in resolution is presumed to be due to oxidative degradation due to hydrogen shortage.

1 超純水製造装置
3 一次純水製造装置
4 サブシステム(二次純水製造装置)
6 紫外線酸化装置
7 白金族金属触媒樹脂塔
8 再生型イオン交換装置
9 膜式脱気装置
12 紫外線酸化装置
13 白金族金属触媒樹脂塔
14 膜式脱気装置
15 非再生型混床式イオン交換装置
W 原水
W1 前処理水
W2 一次純水
W3 超純水(二次純水)
1 Ultrapure water production equipment 3 Primary pure water production equipment 4 Subsystem (secondary pure water production equipment)
6 UV Oxidation Device 7 Platinum Group Metal Catalyst Resin Tower 8 Regenerative Ion Exchange Device 9 Membrane Deaerator 12 UV Oxidizer 13 Platinum Group Metal Catalyst Resin Tower 14 Membrane Deaerator 15 Non-regenerative Mixed Bed Ion Exchange Device W Raw water W1 Pretreatment water W2 Primary pure water W3 Ultrapure water (secondary pure water)

Claims (8)

紫外線酸化装置、再生型混床式イオン交換塔又は電気脱イオン装置及び膜式脱気装置を有し、被処理水(前処理水)に含まれるイオン成分やTOC成分等の不純物を除去するための一次純水装置と、
紫外線酸化装置、白金族金属触媒樹脂塔及び膜式脱気装置を有し、該一次純水装置から得られた一次純水に含まれる極微量の微粒子や微量イオン等の不純物を除去するためのサブシステムとを備える超純水製造装置において、
前記一次純水装置の紫外線酸化装置の後段に白金族金属触媒樹脂塔を設けた、超純水製造装置。
Ultraviolet oxidation device, have a regenerative mixed bed ion exchange column or electrodeionization apparatus and membrane type degassing apparatus, for removing impurities of ionic components and TOC components or the like contained in the water to be treated (pre-treated water) A primary pure water device,
An ultraviolet oxidation device, a platinum group metal catalyst resin tower, and a membrane type deaeration device, for removing impurities such as trace amounts of fine particles and trace ions contained in the primary pure water obtained from the primary pure water device In an ultrapure water production apparatus equipped with a subsystem,
An ultrapure water production apparatus in which a platinum group metal catalyst resin tower is provided after the ultraviolet oxidation apparatus of the primary pure water apparatus.
前記サブシステムが非再生型混床式イオン交換塔をさらに有する、請求項1に記載の超純水製造装置。   The ultrapure water production apparatus according to claim 1, wherein the subsystem further includes a non-regenerative mixed bed ion exchange tower. 前記一次純水装置の白金族金属触媒樹脂塔及び前記サブシステムの白金族金属触媒樹脂塔における白金族金属が白金、パラジウム又は白金/パラジウム合金である、請求項1又は2に記載の超純水製造装置。   The ultrapure water according to claim 1 or 2, wherein the platinum group metal in the platinum group metal catalyst resin tower of the primary pure water device and the platinum group metal catalyst resin tower of the subsystem is platinum, palladium, or a platinum / palladium alloy. manufacturing device. 前記白金族金属が平均粒子径1〜50nmの白金族の金属の粒子である、請求項1〜3のいずれかに記載の超純水製造装置。   The ultrapure water manufacturing apparatus according to any one of claims 1 to 3, wherein the platinum group metal is a platinum group metal particle having an average particle diameter of 1 to 50 nm. 紫外線酸化装置、白金族金属触媒樹脂塔、再生型混床式イオン交換塔又は電気脱イオン装置、及び膜式脱気装置を有し、被処理水(前処理水)に含まれるイオン成分やTOC成分等の不純物を除去するための一次純水装置と、
紫外線酸化装置、白金族金属触媒樹脂塔及び膜式脱気装置を有し、該一次純水装置から得られた一次純水に含まれる極微量の微粒子や微量イオン等の不純物を除去するためのサブシステムとを備える超純水製造装置の運転方法であって、
被処理水を前記一次純水装置及び前記サブシステムに連続して通水して超純水を製造する、超純水製造装置の運転方法。
Ultraviolet oxidation device, the platinum group metal catalyst resin column, have a regenerative mixed bed ion exchange column or electrodeionization apparatus, and a film-type deaerator, ionic components and TOC contained in the water to be treated (pre-treated water) A primary pure water device for removing impurities such as components ;
An ultraviolet oxidation device, a platinum group metal catalyst resin tower, and a membrane type deaeration device, for removing impurities such as trace amounts of fine particles and trace ions contained in the primary pure water obtained from the primary pure water device A method of operating an ultrapure water production apparatus comprising a subsystem,
A method for operating an ultrapure water production apparatus, wherein ultrapure water is produced by continuously passing water to be treated through the primary pure water apparatus and the subsystem.
前記一次純水装置の白金族金属触媒樹脂塔及び前記サブシステムの白金族金属触媒樹脂塔における白金族金属が白金、パラジウム又は白金/パラジウム合金である、請求項5に記載の超純水製造装置の運転方法。   The ultrapure water production apparatus according to claim 5, wherein the platinum group metal in the platinum group metal catalyst resin tower of the primary pure water apparatus and the platinum group metal catalyst resin tower of the subsystem is platinum, palladium, or a platinum / palladium alloy. Driving method. 前記白金族金属が平均粒子径1〜50nmの白金族の金属の粒子である、請求項5又は6に記載の超純水製造装置の運転方法。   The operation method of the ultrapure water manufacturing apparatus according to claim 5 or 6, wherein the platinum group metal is a platinum group metal particle having an average particle diameter of 1 to 50 nm. 前記サブシステムの紫外線酸化装置の処理水のH濃度が10〜100μg/Lであり、該サブシステムの白金族金属触媒樹脂塔の処理水のH濃度が0.1〜10μg/Lである、請求項5〜7のいずれかに記載の超純水製造装置の運転方法。 The H 2 O 2 concentration of the treated water of the ultraviolet oxidizer of the subsystem is 10 to 100 μg / L, and the H 2 O 2 concentration of the treated water of the platinum group metal catalyst resin tower of the subsystem is 0.1 to 10 μg. The operation method of the ultrapure water production apparatus according to claim 5, which is / L.
JP2016236235A 2016-12-05 2016-12-05 Ultrapure water production apparatus and operation method of ultrapure water production apparatus Active JP6439777B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016236235A JP6439777B2 (en) 2016-12-05 2016-12-05 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
CN201780076079.8A CN110049952A (en) 2016-12-05 2017-09-12 The method of operation of Ultrapure Water Purifiers and Ultrapure Water Purifiers
PCT/JP2017/032788 WO2018105188A1 (en) 2016-12-05 2017-09-12 Ultrapure water production apparatus and operation method for ultrapure water production apparatus
KR1020197014908A KR102497591B1 (en) 2016-12-05 2017-09-12 Ultrapure water production device and operation method of ultrapure water production device
TW106131337A TW201821375A (en) 2016-12-05 2017-09-13 Ultrapure water production apparatus and operation method for ultrapure water production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236235A JP6439777B2 (en) 2016-12-05 2016-12-05 Ultrapure water production apparatus and operation method of ultrapure water production apparatus

Publications (2)

Publication Number Publication Date
JP2018089587A JP2018089587A (en) 2018-06-14
JP6439777B2 true JP6439777B2 (en) 2018-12-19

Family

ID=62490905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236235A Active JP6439777B2 (en) 2016-12-05 2016-12-05 Ultrapure water production apparatus and operation method of ultrapure water production apparatus

Country Status (5)

Country Link
JP (1) JP6439777B2 (en)
KR (1) KR102497591B1 (en)
CN (1) CN110049952A (en)
TW (1) TW201821375A (en)
WO (1) WO2018105188A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142178A (en) * 2019-03-05 2020-09-10 栗田工業株式会社 Ultrapure water production apparatus and method for operating the ultrapure water production apparatus
JP7368310B2 (en) * 2020-05-20 2023-10-24 オルガノ株式会社 Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
US20230264985A1 (en) * 2020-06-23 2023-08-24 Organo Corporation Water treatment apparatus, apparatus for producing ultrapure water and water treatment method
WO2024014218A1 (en) * 2022-07-14 2024-01-18 栗田工業株式会社 Ultrapure water production apparatus and method for operating ultrapure water production apparatus
CN115893769B (en) * 2023-01-09 2023-06-20 中国电子工程设计院有限公司 System for purifying water by fine treatment loop

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101292A (en) * 1984-10-24 1986-05-20 Kurita Water Ind Ltd Apparatus for making pure water
JPH0639366A (en) * 1992-07-22 1994-02-15 Japan Organo Co Ltd Method and equipment for producing ultrapure water
JP3539992B2 (en) * 1993-09-07 2004-07-07 野村マイクロ・サイエンス株式会社 Ultrapure water production equipment
JP3560631B2 (en) * 1994-03-04 2004-09-02 野村マイクロ・サイエンス株式会社 Water treatment equipment
JPH0938671A (en) * 1995-07-31 1997-02-10 Japan Organo Co Ltd Water treatment and water treating device
JP3734207B2 (en) * 1998-07-03 2006-01-11 オルガノ株式会社 Ozone water production method
JP4552327B2 (en) * 2001-01-18 2010-09-29 栗田工業株式会社 Ultrapure water production equipment
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
JP5045099B2 (en) * 2004-03-31 2012-10-10 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP5124946B2 (en) * 2006-01-12 2013-01-23 栗田工業株式会社 Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
CN105217853A (en) * 2008-03-31 2016-01-06 栗田工业株式会社 Pure water production method and Water Purifiers
JP4920019B2 (en) * 2008-09-22 2012-04-18 オルガノ株式会社 Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JP5512357B2 (en) * 2010-04-05 2014-06-04 オルガノ株式会社 Pure water production method and apparatus
JP2015093226A (en) * 2013-11-11 2015-05-18 栗田工業株式会社 Method and apparatus for manufacturing pure water
JP2016107249A (en) * 2014-12-10 2016-06-20 野村マイクロ・サイエンス株式会社 Ultrapure water production system and method
JP5854163B2 (en) * 2015-06-08 2016-02-09 栗田工業株式会社 Ultrapure water production method and ultrapure water production facility

Also Published As

Publication number Publication date
JP2018089587A (en) 2018-06-14
WO2018105188A1 (en) 2018-06-14
KR20190089877A (en) 2019-07-31
CN110049952A (en) 2019-07-23
KR102497591B1 (en) 2023-02-07
TW201821375A (en) 2018-06-16

Similar Documents

Publication Publication Date Title
JP5454468B2 (en) Pure water production method and pure water production apparatus
JP5124946B2 (en) Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
JP6439777B2 (en) Ultrapure water production apparatus and operation method of ultrapure water production apparatus
KR101978080B1 (en) Method and apparatus for manufacturing pure water
JP4978144B2 (en) Method and apparatus for removing dissolved oxygen in water
JP5499753B2 (en) Water treatment method and apparatus
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
CN111183118B (en) Method and device for removing hydrogen peroxide
JP5854163B2 (en) Ultrapure water production method and ultrapure water production facility
JP6848415B2 (en) Operation method of ultrapure water production equipment and ultrapure water production equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6439777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250