JPS61101292A - Apparatus for making pure water - Google Patents

Apparatus for making pure water

Info

Publication number
JPS61101292A
JPS61101292A JP22328084A JP22328084A JPS61101292A JP S61101292 A JPS61101292 A JP S61101292A JP 22328084 A JP22328084 A JP 22328084A JP 22328084 A JP22328084 A JP 22328084A JP S61101292 A JPS61101292 A JP S61101292A
Authority
JP
Japan
Prior art keywords
ion exchange
water
ultraviolet irradiation
pure water
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22328084A
Other languages
Japanese (ja)
Other versions
JPH05115B2 (en
Inventor
Masabumi Imaizumi
今泉 正文
Shigeaki Sato
重明 佐藤
Kashu Obata
嘉修 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP22328084A priority Critical patent/JPS61101292A/en
Publication of JPS61101292A publication Critical patent/JPS61101292A/en
Publication of JPH05115B2 publication Critical patent/JPH05115B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To conserve power consumption, by connecting a plurality of apparatus units each consisting of an ultraviolet ray irradiation apparatus and an ion exchange apparatus in series. CONSTITUTION:Raw water is introduced into a first ultraviolet ray irradiation apparatus 11a and irradiated with ultraviolet rays to oxidize the greater part of the org. substance therein to an org. acid. The treated water is introduced into a first ion exchange apparatus 12a to remove the org. acid and subsequently passes through a second ultraviolet ray irradiation apparatus 11b and a second iron exchange apparatus 12b or treated plural times by these apparatuses to perfectly remove the org. substance, to obtain pure water with high purity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は純米製造装置に係り、特に紫外線照射装置とイ
オン交換装置とを組合せた水処理装置において、所定の
処理水質を維持しながらこの紫外線照射装置における電
力消費を低減することができるよう改良された純水製造
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pure rice production device, and particularly to a water treatment device that combines an ultraviolet irradiation device and an ion exchange device. The present invention relates to a pure water production device that has been improved to reduce power consumption in an ultraviolet irradiation device.

[従来の技術〕 近年、LSIや超LSIの開発・量産が盛んに行われて
いる。このLSIやaLS Iの製造においては、多く
の洗浄工程で純水が用いられていることから、純水の製
造技術についても種々研究がなされており、超純水(理
論純水に極めて近い純水)の製造技術が開発されている
[Prior Art] In recent years, the development and mass production of LSIs and super LSIs have been actively carried out. In the manufacturing of LSI and aLSI, pure water is used in many cleaning processes, and various studies have been conducted on pure water production technology. Water) production technology has been developed.

純水は、通常、凝集、il!過、イオン交換処理法など
によって製造されている。しかしながらこのような方法
では細菌の除去は不可能であり、かつ有機物、特に微量
の有機物が処理水に残留するため、たとえば半導体製造
に使用される超純水の要求水質としては不十分であった
Pure water usually coagulates, il! It is manufactured by filtration, ion exchange treatment, etc. However, with this method, it is impossible to remove bacteria, and organic substances, especially trace amounts of organic substances, remain in the treated water, which is insufficient to meet the required water quality of ultrapure water used in semiconductor manufacturing, for example. .

即ち、一般に天然水はタンニンやリグニンなどの腐敗し
た動植物から由来する有機物質、微生物たとえばシュー
ドモナス、アクロモバクタ−。
That is, natural water generally contains organic substances derived from decayed animals and plants, such as tannin and lignin, and microorganisms such as Pseudomonas and Achromobacter.

エアロバクターなどを含有する。これらの有機物は凝集
濾過、逆浸透膜による処理、限外濾過膜による処理、イ
オン交換法など、あるいはこれらを組合せた処理方法に
よっても完全には除去できず、処理水中にはなお微量の
有機物が残存するのである。
Contains Aerobacter, etc. These organic substances cannot be completely removed by coagulation filtration, treatment with reverse osmosis membranes, treatment with ultrafiltration membranes, ion exchange methods, or treatment methods that combine these, and trace amounts of organic substances still remain in the treated water. It remains.

純水中の残存有機物濃度を減少させる処理方法として、
イオン交換処理や逆浸透処理された1次処理水に紫外線
を照射した後、陽イオン交換樹脂と陰イオン交換樹脂か
らなる混合床にて仕上げ処理する方法が公知である(例
えば特公昭54−19227、同56−28191)。
As a treatment method to reduce the concentration of residual organic matter in pure water,
A method is known in which primary treated water that has been subjected to ion exchange treatment or reverse osmosis treatment is irradiated with ultraviolet rays and then subjected to finishing treatment in a mixed bed consisting of a cation exchange resin and an anion exchange resin (for example, , 56-28191).

かかる、紫外線照射工程を内包する純水製造プロセスに
よれば、1次処理水中に残存する微量有機物質がイオン
化され、この生じたイオン化物質が混合イオン交換樹脂
床にて除去されるので、それだけ有機物濃度の低い純水
が製造される。
According to such a pure water production process that includes an ultraviolet irradiation step, trace amounts of organic substances remaining in the primary treated water are ionized, and the generated ionized substances are removed in the mixed ion exchange resin bed, so that the organic substances are reduced accordingly. Pure water with low concentration is produced.

[従来の問題点] しかしながら、従来の紫外線照射工程を内包する純水製
造プロセスにおいて、残存有機物濃度を下げるには、極
めて多量の紫外線を照射せねばならず、紫外線照射装置
の電力消費量が多くならざるを得なかった。
[Conventional problems] However, in the conventional pure water production process that includes an ultraviolet irradiation process, in order to reduce the concentration of residual organic matter, an extremely large amount of ultraviolet rays must be irradiated, and the power consumption of the ultraviolet irradiation equipment is high. I had no choice but to do it.

即ち、紫外線を照射することにより、有機物質はイオン
化物質に酸化分解され、紫外線照射量を増加させればそ
れだけ多くの有機物質をイオン化させ得る。ところが、
照射された紫外線のエネルギーにより、イオン化物質は
さらに低分子化合物にまで分解されるようになり、多量
に照射された紫外線のエネルギー量のうち少なからぬ部
分がイオン化反応以外の低分子化反応に使用されてしま
うのである。(例えば、タンニンやリグニンなどに由来
する有機物質は紫外線によりギ酸。
That is, by irradiating ultraviolet rays, organic substances are oxidized and decomposed into ionized substances, and as the amount of ultraviolet rays is increased, more organic substances can be ionized. However,
Due to the energy of the irradiated ultraviolet rays, the ionized substance is further decomposed into low-molecular compounds, and a considerable portion of the energy of the irradiated ultraviolet rays is used for low-molecular-weight reactions other than ionization reactions. That's what happens. (For example, organic substances derived from tannins and lignins are converted to formic acid by ultraviolet light.

酢酸等の有機酸に分解される。そして、さらに紫外線エ
ネルギーが系に供給される場合には。
Decomposed into organic acids such as acetic acid. And if further UV energy is supplied to the system.

CO2、N2 、H20にまで分解される。)このよう
な、紫外線エネルギーの無駄な消費を抑制するために紫
外線照射量を減少させた場合には、イオン化物質生成量
が少なくなり、残存有機物質濃度が高くなってしまう。
It is decomposed into CO2, N2, and H20. ) If the amount of ultraviolet irradiation is reduced in order to suppress such wasteful consumption of ultraviolet energy, the amount of ionized substances produced will decrease and the concentration of residual organic substances will increase.

以上のように、従来装置においては、高純度な処理水を
得るために原水中の有機物の酸化分解率が高くなるよう
に装置を運転した場合、紫外線照射により、原水中の*
機物が有機酸に醸化分解されるにとどまらず、さらにC
O2、N2、H2O等にまで酸化分解される、いわば過
剰酸化が行なわれることとなり、電力効率が悪いという
問題が生じていた。
As described above, in conventional equipment, when the equipment is operated to increase the oxidative decomposition rate of organic matter in raw water in order to obtain high-purity treated water, ultraviolet irradiation causes *
Not only is the organic material fermented and decomposed into organic acids, but also C
This results in oxidative decomposition to O2, N2, H2O, etc., so to speak, excessive oxidation, resulting in a problem of poor power efficiency.

[問題点を解決するための手段] 本発明は上記従来の問題点を解決するために、紫外線照
射とこれにより生じたイオン化物質の除去を行なう1処
理工程を複数回行ない得るよう構成したものであって、 被処理水に紫外線を照射する紫外線照射装置と、該紫外
線照射装置からの処理水を処理するイオン交換装置とか
ら成る純氷製造装置単位体を。
[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, the present invention is configured so that one treatment step of ultraviolet irradiation and removal of the ionized substances generated thereby can be performed multiple times. There is a pure ice production equipment unit consisting of an ultraviolet irradiation device that irradiates water to be treated with ultraviolet rays, and an ion exchange device that treats the treated water from the ultraviolet irradiation device.

複数個直列にJ6続してなることを特徴とする純水製造
装置、 を要旨とするものである。
The gist of the present invention is a pure water production device characterized by having a plurality of J6 connected in series.

以下に本発明を本発明の純水製造装置の一実施例を示す
第1図を参照しながら詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to FIG. 1, which shows an embodiment of a pure water production apparatus according to the present invention.

本発明の純水製造装置は、第1図に示す如く、紫外線照
射装置とイオン交換装置とからなる純水製造?C4単位
体1.2を複数個(!lI’s1図においては2個)直
列に接続してなるものである。
As shown in FIG. 1, the pure water production apparatus of the present invention comprises an ultraviolet irradiation device and an ion exchange device. It is formed by connecting a plurality of C4 units 1.2 (two in the diagram!lI's1) in series.

第1図の純水製造装置においては、原水はまず第1の紫
外線照射装置11aに導入されて紫外線照射され、これ
により、含有される有機物の多くが有機酸に酸化される
In the pure water production apparatus shown in FIG. 1, raw water is first introduced into the first ultraviolet irradiation device 11a and irradiated with ultraviolet rays, thereby oxidizing most of the organic substances contained therein into organic acids.

有機酸を含む液は、次に第1のイオン交換装置12aに
導入され、有機酸が除去される。第1のイオン交換装置
12aを通過した液は、なお少最の有機物を含有するが
、この残留有機物は第2の紫外線照射装置11bにおい
て紫外線照射されてほぼ完全に有機酸に分解され、分解
された有機酸は第2のイオン文換装2tlZbにおいて
除去される。
The liquid containing the organic acid is then introduced into the first ion exchange device 12a, where the organic acid is removed. The liquid that has passed through the first ion exchange device 12a still contains a small amount of organic matter, but this residual organic matter is irradiated with ultraviolet rays in the second ultraviolet irradiation device 11b and is almost completely decomposed into organic acids. The organic acids are removed in a second ionic culture exchanger 2tlZb.

このように、紫外線照射及びイオン交換処理を複数回施
された液は、有機物を殆ど含まない純度の高い純水とな
るが、第1図の如く更に混床式イオン交換装置13を付
設し、この混床式イオン交換装置13を通過させること
により、より純度の高い純水とすることができる。
In this way, the liquid that has been subjected to ultraviolet irradiation and ion exchange treatment multiple times becomes highly purified water containing almost no organic matter, but as shown in FIG. By passing the water through this mixed bed type ion exchange device 13, it is possible to obtain pure water with higher purity.

第1図においては、純水製造装置単位体を2個りする装
置を記したが、本発明の装置は、この単位体を3個以上
有するものでもよい。
Although FIG. 1 shows an apparatus having two pure water production apparatus units, the apparatus of the present invention may have three or more of these units.

単位体の設置数は、原水中の有機物組成及び濃度、目的
とする処理水のTOC濃度等に基き、最も効率的な処理
が行われる段数を適宜選定すれば良い。
The number of units installed may be appropriately selected based on the composition and concentration of organic matter in the raw water, the TOC concentration of the target treated water, etc., so that the most efficient treatment can be performed.

また紫外線照射量f14における、有機物の酸化分解を
より完全なものとするために、酸化剤として過酸化水素
を添加し、過酸化水素存在下で紫外線を照射して処理す
るのが好ましい。
Further, in order to further complete the oxidative decomposition of the organic matter at the amount of ultraviolet irradiation f14, it is preferable to add hydrogen peroxide as an oxidizing agent and perform the treatment by irradiating ultraviolet rays in the presence of hydrogen peroxide.

この場合には、イオン交換装置には過酸化水素を分解し
得る触媒樹脂を充填し、紫外線照射装置からの液を触媒
樹脂と接触させ過酸化水素を除去するのが好ましい。
In this case, it is preferable that the ion exchange device is filled with a catalyst resin capable of decomposing hydrogen peroxide, and the liquid from the ultraviolet irradiation device is brought into contact with the catalyst resin to remove hydrogen peroxide.

触媒樹脂としてはイオン交換樹脂にパラジウムを担持さ
せたものが用いられ、その担持量はイオン交換樹脂に対
し0.1−1o%程度とするのが好ましい。
As the catalyst resin, an ion exchange resin supported with palladium is used, and the amount supported is preferably about 0.1-10% based on the ion exchange resin.

この触媒樹脂に用いるイオン交換樹脂とじてアニオン交
換樹脂を用いると、少ないパラジウム担持量で優れた効
果を発揮するので好ましい、アニオン交換樹脂としては
、スチレン−ジビニルベンゼン共重合体を母体とした強
塩基性アニオン交換樹脂が好適である。アニオン交換樹
脂のイオン形は、C1形でもOH形でも良いが、OH形
の方が処理能力が大きくより好ましい、OH形の7ニオ
ン交換樹脂をOH形とするには、これに水酸化ナトリウ
ム等のアルカリを通液するのが良い。
It is preferable to use an anion exchange resin as the ion exchange resin used in this catalyst resin because it exhibits an excellent effect with a small amount of supported palladium. Polymer anion exchange resins are preferred. The ionic form of the anion exchange resin may be either the C1 type or the OH type, but the OH type has a higher processing capacity and is more preferable. It is better to pass the alkaline liquid through it.

アニオン交換樹脂にパラジウムを担持させるには、アニ
オン交換樹脂をカラムに充填し、次いで塩化パラジウム
の酸性溶液を通水するのが良い。
In order to support palladium on an anion exchange resin, it is preferable to fill a column with the anion exchange resin and then pass water through an acidic solution of palladium chloride.

そ の際、パラジウム担持量は(12〜LOg−Pd/
l−樹脂程度とするのが好適である。
At that time, the amount of palladium supported was (12~LOg-Pd/
It is preferable that the amount is about l-resin.

触媒樹脂としては具体的にはLewait■QC−LO
45(パラジウムを担持したC1形強塩基性7ニオン交
換樹脂、バイエル社製)あるいはこれをOH形としたも
のなどが挙げられる。
Specifically, the catalyst resin is Lewait QC-LO.
45 (C1 type strongly basic 7 anion exchange resin supporting palladium, manufactured by Bayer) or its OH type.

なお第1図の如く、混床式イオン交換装置i13を設置
する場合、この温床を構成する樹脂とじては1強酸性カ
チオン交換樹脂のH形と強塩基性アニオン交換樹脂のO
H形とを混合して用いる。具体的にはダイヤイオン■P
A312(三菱化成工業株社製)とダイヤイオン@PK
228(同社製)とを混合したものが好適である。
As shown in Figure 1, when installing a mixed bed type ion exchanger i13, the resins constituting this hotbed are H type of strongly acidic cation exchange resin and O type of strongly basic anion exchange resin.
Used in combination with H type. Specifically, Diamond Aeon ■P
A312 (manufactured by Mitsubishi Chemical Industries, Ltd.) and Diaion @PK
228 (manufactured by the same company) is suitable.

[作用] 本発明の純水製造装置によれば、紫外線照射による酸化
処理とイオン交換処理とからなる処理を、複数回施す。
[Function] According to the pure water production apparatus of the present invention, the treatment consisting of the oxidation treatment by ultraviolet irradiation and the ion exchange treatment is performed multiple times.

即ち、本発明の装置においては、第1段目の紫外線照射
により原水中の有機物は有機酸の段階まで分解され、こ
の有a酸は後続のイオン交換装置で除去される。イオン
交換装置を通過した液になお残留する有機物は、その殆
どが、第2段目又はそれ以降の紫外線照射により有機酸
に分解され、第2段目又はそれ以降のイオン交換装置に
より除去される。
That is, in the apparatus of the present invention, the organic matter in the raw water is decomposed to the organic acid stage by the first stage of ultraviolet irradiation, and this aqueous acid is removed by the subsequent ion exchange device. Most of the organic matter still remaining in the liquid that has passed through the ion exchange device is decomposed into organic acids by ultraviolet irradiation in the second stage or later, and then removed by the second or subsequent ion exchange device. .

従って1本発明装置においては、従来装置の如<、1つ
の紫外線照射装置において、原水中の有機物をほぼ完全
に分解するために紫外線照射量を高める必要がなく、電
力効率の向上及び使用電力量の低減を図ることが可能と
なる。また、各々の紫外線照射装置に対する原水負荷が
大幅に低減されることから、これを小型化することがで
き、全体の装置の小型化を図ることも可能となる。
Therefore, in the device of the present invention, there is no need to increase the amount of ultraviolet irradiation in order to almost completely decompose organic matter in raw water in one ultraviolet irradiation device, unlike conventional devices, and it is possible to improve power efficiency and reduce power consumption. This makes it possible to reduce the Furthermore, since the raw water load on each ultraviolet irradiation device is significantly reduced, it is possible to downsize the device, and it is also possible to downsize the entire device.

[実施例] 以下に比較例及び実施例を挙げて、本発明を更に具体的
に説明するが1本発明はその要旨を越えない限り以下の
実施例に限定されるものではない。
[Examples] The present invention will be described in more detail with reference to comparative examples and examples, but the present invention is not limited to the following examples unless the gist thereof is exceeded.

なお実施例及び比較例で用いた原水の組成。The composition of raw water used in Examples and Comparative Examples.

紫外線酸化装置及びイオン交換装置の使用は以下の通り
である。
The use of ultraviolet oxidation equipment and ion exchange equipment is as follows.

(イ)原水組成 電気室導度     1.0弘s / mメタール  
    5sppm TOC20ppm (ロ)紫外線照射装置 反応槽容量     12.5見 紫外線ランプ    0 、4KW (ハ)イオン交換装置 樹脂塔   215mmΦX500mmMイオン交換樹
脂 0C1045 触媒樹脂    Lewait  200m1再生剤 
    NaOH 比較例1 第2図の従来装置を用い、原水12.51にH2027
1P pm (理論量の66%)を添加し、まず紫外線
照射装置llにおいて25分間紫外線照射し、その後イ
オン交換装置12に通水し、あ理水を得た。
(a) Raw water composition Electric chamber conductivity 1.0 hiros/mmetal
5 sppm TOC 20 ppm (b) Ultraviolet irradiation device reaction tank capacity 12.5 mm Ultraviolet lamp 0, 4KW (c) Ion exchange device resin tower 215mmΦX500mmM Ion exchange resin 0C1045 Catalyst resin Lewait 200ml Regenerant
NaOH Comparative Example 1 Using the conventional equipment shown in Figure 2, H2027 was added to raw water 12.51.
1P pm (66% of the theoretical amount) was added and first irradiated with ultraviolet rays for 25 minutes in ultraviolet irradiation device 11, and then water was passed through ion exchange device 12 to obtain alimentized water.

紫外線照射の前後の液及び処理水について、Toca度
、H2O2濃度、電気型導度及びPHを測定した結果を
表1に示す。
Table 1 shows the results of measuring Toca degree, H2O2 concentration, electric type conductivity, and PH for the liquid and treated water before and after UV irradiation.

表  1 比較例2 原水12.51にH2H2O2120pP理論必要1)
を添加し、イオン交換装置を使用せず紫外線照射装置の
みによりTOC除去を行なったところ、処理水のTOC
濃度が1.7ppmになるのに60分間の紫外線照射が
必要であった。
Table 1 Comparative Example 2 120 pP of H2H2O2 in raw water 12.51 theoretically required 1)
When TOC was removed using only an ultraviolet irradiation device without using an ion exchange device, the TOC of the treated water was
It took 60 minutes of ultraviolet irradiation to reach a concentration of 1.7 ppm.

実施例1 第1図に示す実施例装置を用いて原水の処理を行った。Example 1 Raw water was treated using the example apparatus shown in FIG.

即ち、原水12 、51ニH2O270ppmを添加し
、第1の紫外線照射装置において25分間紫外線照射し
、その後fj41のイオン交換装置に通水する。第2の
イオン交換装置から排出される液を第2の紫外線照射装
置において10分間紫外線照射し、その後第2のイオン
交換装置に通液した後、混床式イオン交換装置に通液し
処理水を得た。(即ち、本実施例における処理は、比較
例1で得られた処理水を更に10分間紫外線照射し、そ
の後、触媒樹脂床及び温床式イオン交換を行なったもの
に相当する。) 第2の紫外線照射前の液(比較例!で得られた処理水に
相当)、第2の紫外線照射後の液、第2のイオン交換装
置出口の液及び混床式イオン交換装置出口の液(処理水
)について、TOC濃度、H202濃度、電気型導度及
びpHを測定した結果を表2に示す。
That is, 70 ppm of H2O was added to raw water 12.51 ml, irradiated with ultraviolet rays for 25 minutes in the first ultraviolet irradiation device, and then passed through the ion exchange device of FJ41. The liquid discharged from the second ion exchange device is irradiated with ultraviolet rays for 10 minutes in the second ultraviolet irradiation device, and then passed through the second ion exchange device, and then passed through the mixed bed type ion exchange device to treat the treated water. I got it. (In other words, the treatment in this example corresponds to the treatment in which the treated water obtained in Comparative Example 1 was further irradiated with ultraviolet rays for 10 minutes, and then subjected to catalytic resin bed and hot bed ion exchange.) Second ultraviolet rays Liquid before irradiation (corresponding to the treated water obtained in Comparative Example!), liquid after second ultraviolet irradiation, liquid at the outlet of the second ion exchanger, and liquid at the outlet of the mixed bed ion exchanger (treated water) Table 2 shows the results of measuring TOC concentration, H202 concentration, electrical type conductivity, and pH.

表  2 表2より本発明の純水製造装置により紫外線照射とイオ
ン交換との処理を2回行なうことにより処理水中のTO
Cは0.O5ppm以下に低減され、極めて高純度な超
純水が得られることが認められる。また処理時間も短い
Table 2 Table 2 shows that by performing the treatment of ultraviolet ray irradiation and ion exchange twice with the pure water production apparatus of the present invention, TO in the treated water can be reduced.
C is 0. It is confirmed that the O content is reduced to 5 ppm or less, and ultrapure water with extremely high purity can be obtained. Also, the processing time is short.

比較例3 比較例1.2において、処理水のTOC濃度が0.O5
ppmとなるように紫外線照射を行った。
Comparative Example 3 In Comparative Example 1.2, the TOC concentration of the treated water was 0. O5
Ultraviolet rays were irradiated so that the amount was ppm.

そのときの照射時間及び紫外線照射装置の消費電力量の
計測結果を表3に示す。
Table 3 shows the measurement results of the irradiation time and the power consumption of the ultraviolet irradiation device at that time.

表  3 表3より、実施例装置における紫外線照射装置の消費電
力量は比較例に較べ著しく少ないことが明らかである。
Table 3 From Table 3, it is clear that the power consumption of the ultraviolet irradiation device in the example device is significantly lower than that in the comparative example.

[効果] 以上詳述した通り、本発明の純水製造装置によれば、紫
外線照射とイオン交換とからなる処理を複数回行なうこ
とができる。この処理により、TOC濃度の極めて低い
純度の高い純水を短時間で製造することが可能となる。
[Effects] As detailed above, according to the pure water production apparatus of the present invention, the treatment consisting of ultraviolet irradiation and ion exchange can be performed multiple times. This treatment makes it possible to produce highly purified water with extremely low TOC concentration in a short time.

しかも、有機物の過剰酸化による電力のムダな消費が回
避され、紫外線酸化に必要な電力量を低減することがで
きる。また、酸化剤の必要量も大幅に低減でき、未分解
の酸化剤(H202)も殆ど完全に除去することができ
る。従って、本発明の装置によれ【。
Moreover, wasteful consumption of power due to excessive oxidation of organic matter can be avoided, and the amount of power required for ultraviolet oxidation can be reduced. Furthermore, the amount of oxidizing agent required can be significantly reduced, and undecomposed oxidizing agent (H202) can be almost completely removed. Therefore, according to the device of the present invention.

装置のランニングコストを大幅に低減することができ、
また装置の小型化も可能となり、経済的。
The running cost of the equipment can be significantly reduced,
It also makes it possible to downsize the device, making it economical.

工業的に極めて有利である。It is extremely advantageous industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の純水製造装置の一実施例を示す系統図
、第2図は従来の装置を示す系統図である。 l、2・・・・・・純水製造装置単位体、11、lla
、llb・・・・・・紫外線照射装置、12.12&、
12b・・・・・・イオン交換装置、13・・・・・・
混床式イオン交換装置。
FIG. 1 is a system diagram showing an embodiment of the pure water production apparatus of the present invention, and FIG. 2 is a system diagram showing a conventional apparatus. l, 2... Pure water production equipment unit, 11, lla
, llb... Ultraviolet irradiation device, 12.12&,
12b...Ion exchange device, 13...
Mixed bed ion exchange equipment.

Claims (2)

【特許請求の範囲】[Claims] (1)被処理水に紫外線を照射する紫外線照射装置と、
該紫外線照射装置からの処理水を処理するイオン交換装
置とから成る純水製造装置単位体を、複数個直列に接続
してなることを特徴とする純水製造装置。
(1) An ultraviolet irradiation device that irradiates the water to be treated with ultraviolet rays,
A pure water production device comprising a plurality of pure water production device units each comprising an ion exchange device for treating treated water from the ultraviolet irradiation device and connected in series.
(2)紫外線が照射される被処理水に過酸化水素が添加
されており、イオン交換装置内には過酸化水素分解可能
なイオン交換樹脂が存在することを特徴とする特許請求
の範囲第1項に記載の純水製造装置。
(2) Hydrogen peroxide is added to the water to be treated that is irradiated with ultraviolet rays, and an ion exchange resin capable of decomposing hydrogen peroxide is present in the ion exchange device. The pure water production equipment described in section.
JP22328084A 1984-10-24 1984-10-24 Apparatus for making pure water Granted JPS61101292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22328084A JPS61101292A (en) 1984-10-24 1984-10-24 Apparatus for making pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22328084A JPS61101292A (en) 1984-10-24 1984-10-24 Apparatus for making pure water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3304622A Division JP2500968B2 (en) 1991-11-20 1991-11-20 Pure water production equipment

Publications (2)

Publication Number Publication Date
JPS61101292A true JPS61101292A (en) 1986-05-20
JPH05115B2 JPH05115B2 (en) 1993-01-05

Family

ID=16795650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22328084A Granted JPS61101292A (en) 1984-10-24 1984-10-24 Apparatus for making pure water

Country Status (1)

Country Link
JP (1) JPS61101292A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000369A1 (en) * 1990-01-09 1991-07-11 Layer & Knoedler Abwassertechn METHOD AND DEVICE FOR WATER TREATMENT
JPH05300A (en) * 1991-11-20 1993-01-08 Kurita Water Ind Ltd Apparatus for making pure water
JPH0871547A (en) * 1994-09-05 1996-03-19 Nomura Micro Sci Co Ltd Water treatment method
US6342105B1 (en) * 1997-11-21 2002-01-29 Fuji Xerox Co., Ltd. Washing solution for ink jet head, method for producing the same, and method for washing ink jet head using the same
JP2011194402A (en) * 2004-03-31 2011-10-06 Kurita Water Ind Ltd Ultrapure water production plant
JP2011218248A (en) * 2010-04-05 2011-11-04 Japan Organo Co Ltd Pure water production method and device
JP4878287B2 (en) * 2003-10-29 2012-02-15 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger
JP2012061443A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same
JP2016191619A (en) * 2015-03-31 2016-11-10 株式会社荏原製作所 Condensate demineralization apparatus and condensate demineralization method
JP2018089587A (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Apparatus for producing ultrapure water and method for operating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419227A (en) * 1977-07-14 1979-02-13 Hitachi Ltd Liquid fuel combustion device
JPS5628191A (en) * 1979-08-16 1981-03-19 Hitachi Construction Machinery Mast mounting and demounting device for climbing crane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419227A (en) * 1977-07-14 1979-02-13 Hitachi Ltd Liquid fuel combustion device
JPS5628191A (en) * 1979-08-16 1981-03-19 Hitachi Construction Machinery Mast mounting and demounting device for climbing crane

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000369A1 (en) * 1990-01-09 1991-07-11 Layer & Knoedler Abwassertechn METHOD AND DEVICE FOR WATER TREATMENT
JPH05300A (en) * 1991-11-20 1993-01-08 Kurita Water Ind Ltd Apparatus for making pure water
JP2500968B2 (en) * 1991-11-20 1996-05-29 栗田工業株式会社 Pure water production equipment
JPH0871547A (en) * 1994-09-05 1996-03-19 Nomura Micro Sci Co Ltd Water treatment method
US6342105B1 (en) * 1997-11-21 2002-01-29 Fuji Xerox Co., Ltd. Washing solution for ink jet head, method for producing the same, and method for washing ink jet head using the same
JP4878287B2 (en) * 2003-10-29 2012-02-15 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger
JP2011194402A (en) * 2004-03-31 2011-10-06 Kurita Water Ind Ltd Ultrapure water production plant
JP2011218248A (en) * 2010-04-05 2011-11-04 Japan Organo Co Ltd Pure water production method and device
JP2012061443A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same
JP2016191619A (en) * 2015-03-31 2016-11-10 株式会社荏原製作所 Condensate demineralization apparatus and condensate demineralization method
JP2018089587A (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Apparatus for producing ultrapure water and method for operating the same
WO2018105188A1 (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Ultrapure water production apparatus and operation method for ultrapure water production apparatus
KR20190089877A (en) * 2016-12-05 2019-07-31 쿠리타 고교 가부시키가이샤 Operation method of ultrapure water producing apparatus and ultrapure water producing apparatus

Also Published As

Publication number Publication date
JPH05115B2 (en) 1993-01-05

Similar Documents

Publication Publication Date Title
JP2568617B2 (en) Method for decomposing organic substances and bacteria in water supply
EP0634364B1 (en) Pure water manufacturing method
JPH11290878A (en) Control method for removing toc component
JPS61101292A (en) Apparatus for making pure water
JPH11226596A (en) Method and apparatus for treating electroless nickel plating waste solution
JP3506171B2 (en) Method and apparatus for removing TOC component
Magara et al. Application of ozone to water treatment and power consumption of ozone generating systems
JPS62176595A (en) Method for removing organic substance in waste water
JP3560631B2 (en) Water treatment equipment
JP2500968B2 (en) Pure water production equipment
JPH11226569A (en) Apparatus for removing organic substance in water and apparatus for producing ultrapure water
JP3259557B2 (en) How to remove organic matter
JP3216256B2 (en) Ultrapure water production equipment
JPS62282688A (en) Treatment of organic matter-containing water
JPH0889976A (en) Method for removing organic matter in water
JPH0839079A (en) Treatment of hydrogen peroxide-containing acidic water
JPH1119663A (en) Removing method for organic matter
JPH1128482A (en) Production of pure water
JP3528287B2 (en) Pure water production method
JP5753668B2 (en) Waste water treatment method and waste water treatment equipment
JPH1094785A (en) Ultrapure water producing method and device therefor
JPH09220560A (en) Ultrapure water making apparatus
JP2537586B2 (en) Advanced treatment method of organic matter and its equipment
JP3558378B2 (en) Water treatment method
JPH05293494A (en) Apparatus for producing pure water

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term