JPH09220560A - Ultrapure water making apparatus - Google Patents

Ultrapure water making apparatus

Info

Publication number
JPH09220560A
JPH09220560A JP2661996A JP2661996A JPH09220560A JP H09220560 A JPH09220560 A JP H09220560A JP 2661996 A JP2661996 A JP 2661996A JP 2661996 A JP2661996 A JP 2661996A JP H09220560 A JPH09220560 A JP H09220560A
Authority
JP
Japan
Prior art keywords
water
ion exchange
dissolved oxygen
treated
mixed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2661996A
Other languages
Japanese (ja)
Other versions
JP3856493B2 (en
Inventor
Tsugi Abe
嗣 阿部
Masahiko Kogure
雅彦 木暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2661996A priority Critical patent/JP3856493B2/en
Publication of JPH09220560A publication Critical patent/JPH09220560A/en
Application granted granted Critical
Publication of JP3856493B2 publication Critical patent/JP3856493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the increase of the concn. of TOC in ultrapure water and to reduce the concn. of dissolved oxygen by successively arranging an irradiation apparatus of ultraviolet rays with a specific wavelength and a mixed bed type ion exchange apparatus through a dissolved, oxygen removing apparatus along a flow passage so as to position both of them on the upstream and downstream sides of the dissolved oxygen removing apparatus. SOLUTION: Primary pure water subjected to primary treatment by a membrane pretreatment apparatus, a reverse osmosis membrane apparatus and a mixed bed type ion exchange apparatus is subjected to secondary treatment in a secondary system containing low pressure ultraviolet lamp oxidizing devices 4, 7. These low pressure ultraviolet lamps 4, 7 have a wavelength range of 180-190nm and a mixed bed type ion exchange apparatus 5 and a vacuum degassing device 6 are arranged between both ultraviolet lamps 4, 7. Further, a mixed bed type ion exchange apparatus 8 is arranged on the downstream side of the ultraviolet lamp 7. The mixed bed type ion exchange apparatuses 5, 8 are packed with a mixture of a cation exchange resin and an anion exchange resin. The vacuum degassing apparatus 6 is packed with a packing material and a nitrogen gas adding type one bringing nitrogen gas into contact with water to be treated can be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶や半導体素子
を製造する電子工業、原子力発電所あるいは医薬品製造
工場等で広く利用される超純水を製造する超純水製造装
置に係り、特に、有機物成分を効率的に除去するととも
に、溶存酸素濃度の低い超純水を安定してユースポイン
トに供給可能な超純水製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrapure water production system for producing ultrapure water, which is widely used in the electronics industry for producing liquid crystals and semiconductor devices, nuclear power plants, pharmaceutical production plants, etc. The present invention relates to an ultrapure water production apparatus capable of efficiently removing organic components and stably supplying ultrapure water having a low dissolved oxygen concentration to a point of use.

【0002】[0002]

【従来の技術】従来から、液晶や半導体素子(LS
I)、あるいは医薬品の製造工程においては、イオン状
物質、微粒子、有機物、溶存ガスおよび生菌等の含有量
の極めて少ない超純水が要求されている。この中でも、
電子工業においては、多量の超純水が使用されており、
LSIの集積度の増加に伴って超純水の純度に対する要
求は益々厳しくなってきている。特に、超純水中のΤO
C濃度および溶存酸素濃度の低減が大きな課題となって
いる。
2. Description of the Related Art Conventionally, liquid crystals and semiconductor elements (LS
In the process I) or the manufacturing process of pharmaceuticals, ultrapure water containing extremely small amounts of ionic substances, fine particles, organic substances, dissolved gases and viable bacteria is required. Among them,
In the electronic industry, a large amount of ultrapure water is used,
The demand for the purity of ultrapure water has become more and more strict as the integration degree of LSI has increased. In particular, ΤO in ultrapure water
Reducing the C concentration and the dissolved oxygen concentration has become a major issue.

【0003】一般に、超純水の製造は、原水中の濁質成
分を除去する前処理システム、イオン状物質、微粒子、
有機物、溶存ガスおよび生菌等を除去する一次系システ
ムおよび一次系システムより得られた一次純水の精密仕
上げを目的とした二次系システムの組み合わせにより行
われている。そして、通常、製造された超純水は、ユー
スポイントに供給されて必要量が消費されるとともに、
過剰量の超純水は二次系システムに還流され、再度処理
されている。
In general, ultrapure water is produced by a pretreatment system for removing suspended matter in raw water, ionic substances, fine particles,
It is performed by a combination of a primary system for removing organic substances, dissolved gas, viable bacteria, and the like, and a secondary system for the purpose of precision finishing of primary pure water obtained from the primary system. And normally, the produced ultrapure water is supplied to the point of use and consumed in a necessary amount,
The excess amount of ultrapure water is returned to the secondary system and treated again.

【0004】しかしながら、過剰量の超純水をユースポ
イントから二次系システムに還流すると、二次系システ
ム内における溶存酸素濃度が著しく上昇し、製造された
超純水の純度が悪化するという問題があった。
However, when an excessive amount of ultrapure water is refluxed from the point of use to the secondary system, the concentration of dissolved oxygen in the secondary system remarkably rises and the purity of the produced ultrapure water deteriorates. was there.

【0005】また、一次純水の精密仕上げを目的とした
二次系システムにおいては、超純水中の有機物濃度を減
少させるための処理方法として、イオン交換処理や逆浸
透法による膜処理の施された一次純水に紫外線を照射し
て溶存有機物を分解し、次いで、この分解した有機物を
混床式イオン交換装置により除去する方法が知られてい
る。また、一次純水に照射する紫外線として、180〜
190nm(特に184.9nm)の波長を有する紫外
線を用いることにより、効率的に溶存有機物の分解が達
成されることも知られている(特開平1−164488
号公報)。
Further, in a secondary system for the purpose of precision finishing of primary pure water, as a treatment method for reducing the concentration of organic substances in ultrapure water, a membrane treatment such as ion exchange treatment or reverse osmosis is performed. It is known that the primary pure water thus obtained is irradiated with ultraviolet rays to decompose the dissolved organic matter, and then the decomposed organic matter is removed by a mixed bed type ion exchange apparatus. In addition, as ultraviolet rays to irradiate primary pure water,
It is also known that the decomposition of dissolved organic matter can be efficiently achieved by using ultraviolet rays having a wavelength of 190 nm (particularly 184.9 nm) (JP-A-1-164488).
Issue).

【0006】ところが、一次系システムにより溶存酸素
濃度を低濃度にまで減少させた被処理水である一次純水
を、180〜190nmの波長を有する紫外線を発生す
る紫外線照射装置と混床式イオン交換装置とを有する二
次系システムにおいて処理した場合、溶存有機物の分解
効率が低いことから、被処理水中のTOC濃度が容易に
は減少せず、TOC濃度を減少させるために紫外線照射
装置による紫外線照射量を増やすことから、紫外線照射
装置の電力消費量が増加するという問題があった。
However, the primary pure water, which is the water to be treated whose dissolved oxygen concentration has been reduced to a low concentration by the primary system, is combined with an ultraviolet irradiation device for generating ultraviolet rays having a wavelength of 180 to 190 nm and a mixed bed type ion exchange. When treated in a secondary system having a device, the decomposition efficiency of dissolved organic matter is low, so the TOC concentration in the water to be treated does not easily decrease. To reduce the TOC concentration, ultraviolet irradiation by an ultraviolet irradiation device is performed. Since the amount is increased, there is a problem that the power consumption of the ultraviolet irradiation device is increased.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来の
問題を解決すべくなされたもので、超純水中のΤOC濃
度の増加をほぼ防止し、溶存酸素濃度を低減した、運転
コストの安価な超純水製造装置を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and substantially prevents the increase of TOC concentration in ultrapure water, reduces the dissolved oxygen concentration, and reduces the operating cost. It is an object to provide an inexpensive ultrapure water production system.

【0008】[0008]

【課題を解決するための手段】上述したように、ユース
ポイントから過剰の処理水(超純水)を二次系システム
に還流すると、二次系システム内における溶存酸素濃度
が著しく上昇し、製造された超純水の純度が悪化した。
[Means for Solving the Problems] As described above, when excess treated water (ultra pure water) is refluxed from the point of use to the secondary system, the concentration of dissolved oxygen in the secondary system remarkably rises, and The purity of the purified ultrapure water deteriorated.

【0009】また、溶存酸素を除去した一次純水に紫外
線を照射して混床式イオン交換装置で仕上げ処理する場
合、溶存有機物濃度を下げるために紫外線照射装置の電
力消費量が多くなり、イニシャルコストとランニングコ
ストの増加を招いていた。
In addition, when the primary pure water from which dissolved oxygen has been removed is irradiated with ultraviolet rays for finishing treatment with a mixed bed type ion exchange device, the amount of power consumed by the ultraviolet irradiation device is increased in order to reduce the concentration of dissolved organic matter, and the initial This caused an increase in costs and running costs.

【0010】そこで、これらの間題について本発明者ら
が鋭意研究した結果、ユースポイントから二次系システ
ムに還流される処理水中には、溶存酸素が数ppb〜数
十ppb程度混入していることが判明した。処理水中へ
の酸素の混入の原因は不明であるが、ユースポイントに
接続されている洗浄装置等の配管の接続部から混入する
ことが推測される。
Therefore, as a result of intensive studies by the present inventors on these subjects, dissolved oxygen is mixed in the treated water refluxed from the point of use to the secondary system by about several ppb to several tens of ppb. It has been found. The cause of the mixing of oxygen into the treated water is unknown, but it is presumed that it is mixed from the connection part of the piping such as the cleaning device connected to the point of use.

【0011】一方、180〜190nm、とりわけ18
4.9nmの波長を有する紫外線による溶存有機物の分
解反応は以下に示す通りであり、(1)一次純水より生
成したOHラジカル(ヒドロキシラジカル)により、
(2)被処理水である一次純水中の有機物がカルボン酸
等の有機酸の段階まで酸化分解され、(3)さらに一部
は二酸化炭素にまで酸化分解されるというものであると
いうものである。
On the other hand, 180 to 190 nm, especially 18
The decomposition reaction of dissolved organic matter by ultraviolet rays having a wavelength of 4.9 nm is as follows, and (1) OH radicals (hydroxy radicals) generated from primary pure water
(2) Organic matter in primary pure water, which is the water to be treated, is oxidatively decomposed to the stage of organic acids such as carboxylic acid, and (3) a part of it is further oxidatively decomposed to carbon dioxide. is there.

【0012】(1)H2 O+hν→・OH (2)R−C+・OH→RCOOΗ (3)RCOOΗ+・OH→CO2 +H2 O 上記の反応は、被処理水中の溶存酸素が極めて少ない条
件での反応であるが、被処理水中に溶存酸素の存在する
条件では、(4)酸素分子より生成したオゾン分子によ
り、(5)被処理水中の溶存有機物がカルボン酸等の有
機酸の段階まで酸化分解され、(6)さらに一部は二酸
化炭素にまで酸化分解される。
(1) H 2 O + hν → · OH (2) R−C + · OH → RCOOΗ (3) RCOOΗ + · OH → CO 2 + H 2 O The above reaction is carried out under the condition that dissolved oxygen in the water to be treated is extremely small. However, under the condition that dissolved oxygen exists in the water to be treated, (4) Ozone molecules generated from the oxygen molecules cause (5) dissolved organic matter in the water to be treated to the stage of organic acids such as carboxylic acid. It is decomposed, and (6) a part is further oxidatively decomposed to carbon dioxide.

【0013】(4)3O2 +hν→2O3 (5)R−C+O3 →RCOOΗ (6)RCOOΗ+O3 →CO2 +H2 O また、(7)生成したオゾンの一部が水と反応して生成
したOHラジカルにより、(8)被処理水中の溶存有機
物がカルボン酸等の有機酸の段階まで酸化分解され、
(9)さらに一部は二酸化炭素にまで酸化分解される。
(4) 3O 2 + hν → 2O 3 (5) RC-O 3 → RCOOΗ (6) RCOOΗ + O 3 → CO 2 + H 2 O (7) Part of the ozone produced reacts with water. By the OH radicals, (8) the dissolved organic matter in the water to be treated is oxidatively decomposed to the stage of the organic acid such as carboxylic acid,
(9) Further, a part is oxidatively decomposed to carbon dioxide.

【0014】 (7)O3 +H2 O→・OH+・OH・+O2 (8)R−C+・OH→RCOOΗ (9)RCOOΗ+・OH→CO2 +H2 O 本発明者らの実験によると、180〜190nmの波長
を有する紫外線を照射可能な紫外線照射装置において
は、被処理水中の溶存有機物を分解する際に溶存酸素が
同時に消費されており、上記(1)〜(3)の反応に比
べて、(4)〜(6)、もしくは(7)〜(9)の反応
が優先的に進行していることが示唆された。
(7) O 3 + H 2 O → · OH + · OH · + O 2 (8) RC − · OH → RCOOΗ (9) RCOOΗ + · OH → CO 2 + H 2 O According to the experiments by the inventors, In an ultraviolet irradiation device capable of irradiating ultraviolet rays having a wavelength of 180 to 190 nm, dissolved oxygen is simultaneously consumed when decomposing dissolved organic matter in the water to be treated, and compared with the reactions (1) to (3) above. It was suggested that the reactions (4) to (6) or (7) to (9) proceed preferentially.

【0015】即ち、従来の超純水製造装置のように、例
えば、真空脱気塔の後段に180〜190nmの波長を
有する紫外線を照射可能な紫外線照射装置を設置してい
る場合には、被処理水中の溶存酸素量が著しく低下して
いるので、溶存酸素の存在下にて180〜190nmの
波長を有する紫外線を照射して溶存有機物を分解する場
合と比べて、被処理水中の溶存有機物の分解効率が低く
なるものと推測されたのである。
That is, in the case where an ultraviolet irradiating device capable of irradiating ultraviolet rays having a wavelength of 180 to 190 nm is installed at the subsequent stage of the vacuum degassing tower, as in the conventional ultrapure water producing device, for example, Since the amount of dissolved oxygen in the treated water is remarkably reduced, compared with the case of decomposing the dissolved organic matter by irradiating ultraviolet rays having a wavelength of 180 to 190 nm in the presence of dissolved oxygen, the dissolved organic matter in the treated water is decomposed. It was speculated that the decomposition efficiency would be low.

【0016】そこで、本発明に係る超純水製造装置は、
180〜190nmの波長を有する紫外線を発生する第
1の紫外線照射装置と、第1の混床式イオン交換装置
と、溶存酸素除去装置と、180〜190nmの波長を
有する紫外線を発生する第2の紫外線照射装置と、第2
の混床式イオン交換装置とを流路に沿って配置したこと
を特微としている。
Therefore, the ultrapure water production system according to the present invention is
A first ultraviolet irradiation device that emits ultraviolet rays having a wavelength of 180 to 190 nm, a first mixed bed ion exchange device, a dissolved oxygen removing device, and a second ultraviolet ray generator that emits ultraviolet rays having a wavelength of 180 to 190 nm. UV irradiation device, second
The mixed-bed ion exchange device of No. 1 is arranged along the flow path.

【0017】本発明においては、被処理水が180〜1
90nmの波長を有する紫外線を発生する第1の紫外線
照射装置に導入され、被処理水中の溶存有機物が効率的
に分解される。次に、被処理水は第1の混床式イオン交
換装置に導入され、被処理水中のイオン成分等が除去さ
れる。次いで、被処理水は溶存酸素除去装置に導入さ
れ、被処理水中の酸素等が除去される。次に、被処理水
は180〜190nmの波長を有する紫外線を発生する
第2の紫外線照射装置に導入され、被処理水中の微量の
溶存有機物がほぼ完全に有機酸あるいは二酸化炭素にま
で効率的に分解される。最後に、被処理水は第2の混床
式イオン交換装置に導入され、被処理水中の微量のイオ
ン成分等が除去される。
In the present invention, the amount of water to be treated is 180 to 1
It is introduced into the first ultraviolet irradiation device that generates ultraviolet rays having a wavelength of 90 nm, and the dissolved organic matter in the water to be treated is efficiently decomposed. Next, the water to be treated is introduced into the first mixed bed type ion exchange device, and the ionic components and the like in the water to be treated are removed. Next, the water to be treated is introduced into the dissolved oxygen removing device to remove oxygen and the like in the water to be treated. Next, the water to be treated is introduced into a second ultraviolet irradiation device that emits ultraviolet rays having a wavelength of 180 to 190 nm, and a trace amount of dissolved organic matter in the water to be treated is almost completely converted to an organic acid or carbon dioxide. Be disassembled. Finally, the water to be treated is introduced into the second mixed bed type ion exchange device, and a trace amount of ionic components and the like in the water to be treated are removed.

【0018】また、本発明に係る超純水製造装置は、1
80〜190nmの波長を有する紫外線を発生する第1
の紫外線照射装置と、第1の混床式イオン交換装置と、
溶存酸素除去装置と、180〜190nmの波長を有す
る紫外線を発生する第2の紫外線照射装置と、第2の混
床式イオン交換装置と、限外濾過膜装置とを流路に沿っ
て配置したことを特微としている。
The ultrapure water producing system according to the present invention is
First to generate ultraviolet rays having a wavelength of 80 to 190 nm
Ultraviolet irradiation device, and a first mixed bed type ion exchange device,
A dissolved oxygen removing device, a second ultraviolet irradiation device for generating ultraviolet light having a wavelength of 180 to 190 nm, a second mixed bed ion exchange device, and an ultrafiltration membrane device were arranged along the flow path. The feature is that.

【0019】本発明においては、被処理水が180〜1
90nmの波長を有する紫外線を発生する第1の紫外線
照射装置に導入され、被処理水中の溶存有機物が効率的
に分解される。次に、被処理水は第1の混床式イオン交
換装置に導入され、被処理水中のイオン成分等が除去さ
れる。次いで、被処理水は溶存酸素除去装置に導入さ
れ、被処理水中の酸素等が除去される。次に、被処理水
は180〜190nmの波長を有する紫外線を発生する
第2の紫外線照射装置に導入され、被処理水中の微量の
溶存有機物がほぼ完全に有機酸あるいは二酸化炭素にま
で効率的に分解される。次いで、被処理水は第2の混床
式イオン交換装置に導入され、被処理水中の微量のイオ
ン成分等が除去される。最後に、被処理水は限外濾過膜
装置に導入されて、被処理水中に残存している微細な非
イオン状物質を主体とする微粒子等が除去される。
In the present invention, the water to be treated is 180 to 1
It is introduced into the first ultraviolet irradiation device that generates ultraviolet rays having a wavelength of 90 nm, and the dissolved organic matter in the water to be treated is efficiently decomposed. Next, the water to be treated is introduced into the first mixed bed type ion exchange device, and the ionic components and the like in the water to be treated are removed. Next, the water to be treated is introduced into the dissolved oxygen removing device to remove oxygen and the like in the water to be treated. Next, the water to be treated is introduced into a second ultraviolet irradiation device that emits ultraviolet rays having a wavelength of 180 to 190 nm, and a trace amount of dissolved organic matter in the water to be treated is almost completely converted to an organic acid or carbon dioxide. Be disassembled. Next, the water to be treated is introduced into the second mixed-bed ion exchange device, and a trace amount of ionic components in the water to be treated is removed. Finally, the water to be treated is introduced into the ultrafiltration membrane device, and the fine particles mainly containing fine nonionic substances remaining in the water to be treated are removed.

【0020】さらに、本発明に係る超純水製造装置は、
180〜190nmの波長を有する紫外線を発生する第
1の紫外線照射装置と、第1の混床式イオン交換装置
と、溶存酸素除去装置と、180〜190nmの波長を
有する紫外線を発生する第2の紫外線照射装置と、第2
の混床式イオン交換装置と、処理水を必要量供給するユ
ースポイントとを流路に沿って配置し、前記ユースポイ
ントから過剰量の処理水を前記溶存酸素除去装置の前段
に還流するようにしたことを特徴としている。
Furthermore, the ultrapure water production system according to the present invention is
A first ultraviolet irradiation device that emits ultraviolet rays having a wavelength of 180 to 190 nm, a first mixed bed ion exchange device, a dissolved oxygen removing device, and a second ultraviolet ray generator that emits ultraviolet rays having a wavelength of 180 to 190 nm. UV irradiation device, second
The mixed bed type ion exchange device and the use point for supplying the required amount of the treated water are arranged along the flow path so that an excessive amount of the treated water is refluxed from the use point to the preceding stage of the dissolved oxygen removing device. It is characterized by having done.

【0021】本発明においては、被処理水が180〜1
90nmの波長を有する紫外線を発生する第1の紫外線
照射装置に導入され、被処理水中の溶存有機物が効率的
に分解される。次に、被処理水は第1の混床式イオン交
換装置に導入され、被処理水中のイオン成分等が除去さ
れる。次いで、被処理水は溶存酸素除去装置に導入さ
れ、被処理水中の酸素等が除去される。次に、被処理水
は180〜190nmの波長を有する紫外線を発生する
第2の紫外線照射装置に導入され、被処理水中の微量の
溶存有機物がほぼ完全に有機酸あるいは二酸化炭素にま
で効率的に分解される。次いで、被処理水は第2の混床
式イオン交換装置に導入され、被処理水中の微量のイオ
ン成分等が除去される。次に、処理水は、ユースポイン
トに供給され、必要量が消費されるとともに、過剰量の
処理水は溶存酸素除去装置の前段に還流され、混入した
溶存酸素は溶存酸素除去装置により除去される。
In the present invention, the water to be treated is 180 to 1
It is introduced into the first ultraviolet irradiation device that generates ultraviolet rays having a wavelength of 90 nm, and the dissolved organic matter in the water to be treated is efficiently decomposed. Next, the water to be treated is introduced into the first mixed bed type ion exchange device, and the ionic components and the like in the water to be treated are removed. Next, the water to be treated is introduced into the dissolved oxygen removing device to remove oxygen and the like in the water to be treated. Next, the water to be treated is introduced into a second ultraviolet irradiation device that emits ultraviolet rays having a wavelength of 180 to 190 nm, and a trace amount of dissolved organic matter in the water to be treated is almost completely converted to an organic acid or carbon dioxide. Be disassembled. Next, the water to be treated is introduced into the second mixed-bed ion exchange device, and a trace amount of ionic components in the water to be treated is removed. Next, the treated water is supplied to a point of use, a necessary amount is consumed, an excess amount of the treated water is refluxed to a stage before the dissolved oxygen removing device, and the dissolved oxygen mixed in is removed by the dissolved oxygen removing device. .

【0022】また、本発明に係る超純水製造装置は、1
80〜190nmの波長を有する紫外線を発生する第1
の紫外線照射装置と、第1の混床式イオン交換装置と、
溶存酸素除去装置と、180〜190nmの波長を有す
る紫外線を発生する第2の紫外線照射装置と、第2の混
床式イオン交換装置と、限外濾過膜装置と、処理水を必
要量供給するユースポイントとを流路に沿って配置し、
前記ユースポイントから過剰量の処理水を前記溶存酸素
除去装置の前段に還流するようにしたことを特徴として
いる。
The ultrapure water producing system according to the present invention is
First to generate ultraviolet rays having a wavelength of 80 to 190 nm
Ultraviolet irradiation device, and a first mixed bed type ion exchange device,
Dissolved oxygen removal device, second ultraviolet irradiation device for generating ultraviolet light having a wavelength of 180 to 190 nm, second mixed bed ion exchange device, ultrafiltration membrane device, and supply of required amount of treated water Place points of use along the flow path,
It is characterized in that an excessive amount of treated water is refluxed from the point of use to a stage before the dissolved oxygen removing device.

【0023】本発明においては、被処理水が180〜1
90nmの波長を有する紫外線を発生する第1の紫外線
照射装置に導入され、被処理水中の溶存有機物が効率的
に分解される。次に、被処理水は第1の混床式イオン交
換装置に導入され、被処理水中のイオン成分等が除去さ
れる。次いで、被処理水は溶存酸素除去装置に導入さ
れ、被処理水中の酸素等が除去される。次に、被処理水
は180〜190nmの波長を有する紫外線を発生する
第2の紫外線照射装置に導入され、被処理水中の微量の
溶存有機物がほぼ完全に有機酸あるいは二酸化炭素にま
で効率的に分解される。次いで、被処理水は第2の混床
式イオン交換装置に導入され、被処理水中の微量のイオ
ン成分等が除去される。次に、被処理水は限外濾過膜装
置に導入されて、被処理水中に残存している微細な非イ
オン状物質を主体とする微粒子等が除去される。次い
で、処理水はユースポイントに供給され、必要量が消費
されるとともに、過剰量の処理水は溶存酸素除去装置の
前段に還流され、混入した溶存酸素は溶存酸素除去装置
により除去される。
In the present invention, the water to be treated is 180 to 1
It is introduced into the first ultraviolet irradiation device that generates ultraviolet rays having a wavelength of 90 nm, and the dissolved organic matter in the water to be treated is efficiently decomposed. Next, the water to be treated is introduced into the first mixed bed type ion exchange device, and the ionic components and the like in the water to be treated are removed. Next, the water to be treated is introduced into the dissolved oxygen removing device to remove oxygen and the like in the water to be treated. Next, the water to be treated is introduced into a second ultraviolet irradiation device that emits ultraviolet rays having a wavelength of 180 to 190 nm, and a trace amount of dissolved organic matter in the water to be treated is almost completely converted to an organic acid or carbon dioxide. Be disassembled. Next, the water to be treated is introduced into the second mixed-bed ion exchange device, and a trace amount of ionic components in the water to be treated is removed. Next, the water to be treated is introduced into the ultrafiltration membrane device to remove fine particles mainly composed of fine nonionic substances remaining in the water to be treated. Next, the treated water is supplied to a use point, a necessary amount is consumed, an excess amount of the treated water is refluxed to a stage before the dissolved oxygen removing device, and the dissolved oxygen mixed therein is removed by the dissolved oxygen removing device.

【0024】上述したように、本発明の本質は、被処理
水中の溶存有機物量や有機物種等に応じて溶存酸素濃度
を調整することで、紫外線照射による溶存有機物の分解
効率を高め、溶存酸素量の増加をも抑制するものであ
る。したがって、180〜190nmの波長を有する紫
外線を発生する紫外線照射装置、混床式イオン交換装置
および溶存酸素除去装置等の機器の選定や稼働条件およ
び被処理水の流量等の条件は、被処理水中の溶存有機物
量や有機物種によって適宜変更されるものであるが、本
発明の超純水製造装置の構成にしたがえば、どのような
被処理水に対しても確実に本発明の課題を達成可能な条
件を設定できるのである。
As described above, the essence of the present invention is to enhance the decomposition efficiency of dissolved organic matter by ultraviolet irradiation by adjusting the dissolved oxygen concentration according to the amount of dissolved organic matter in the water to be treated, the type of organic matter, etc. It also suppresses an increase in the amount. Therefore, the selection of equipment such as an ultraviolet irradiation device that generates ultraviolet rays having a wavelength of 180 to 190 nm, a mixed bed type ion exchange device, and a dissolved oxygen removing device, operating conditions, and conditions such as the flow rate of the treated water are the same as those of the treated water. It can be appropriately changed depending on the amount of dissolved organic matter and the kind of organic matter, but according to the configuration of the ultrapure water production system of the present invention, the subject of the present invention can be reliably achieved for any water to be treated. You can set the possible conditions.

【0025】本発明において、ユースポイントより超純
水製造装置へ過剰量の処理水を還流させる場合には、還
流場所は溶存酸素除去装置の前であれば特に限定はされ
ず、必要ならば原水と合流するように構成することも可
能である。
In the present invention, when an excessive amount of treated water is refluxed from the point of use to the ultrapure water producing apparatus, the reflux place is not particularly limited as long as it is before the dissolved oxygen removing apparatus, and if necessary, raw water It is also possible to configure so as to merge with.

【0026】本発明において、溶存酸素除去装置として
は、(A)不活性ガス添加型真空脱気装置、(B)気体
透過膜を装備した膜脱気装置あるいは(C)真空脱気装
置を被処理水の条件に応じて用いることができる。不活
性ガス添加型真空脱気装置を用いた場合には、真空度を
35torr以下とし、被処理水の体積を基準にして体
積流量比0.001〜1.0の不活性ガスを系内に送入
させて真空脱気処理を行うことが好ましい。不活性ガス
添加型真空脱気装置内の真空度が35Torrを越える
と、最終的に得られる超純水の溶存酸素濃度を1ppb
以下に保つことが困難となる。また、不活性ガス添加型
真空脱気装置に添加される不活性ガスの体積流量比が被
処理水の体積を基準として1.0をこえると、脱気効率
がほぼ頭打ちになるのに対してランニングコストのみが
上昇し、不活性ガス添加型真空脱気装置に添加される不
活性ガスの体積流量比が被処理水の体積を基準として
0.001を下回ると、被処理水から酸素等の溶存気体
を効果的に除去するのが困難となる。
In the present invention, as the dissolved oxygen removing apparatus, (A) an inert gas-added type vacuum deaerator, (B) a membrane deaerator equipped with a gas permeable membrane or (C) a vacuum deaerator is used. It can be used depending on the conditions of the treated water. When an inert gas-added type vacuum deaerator is used, the degree of vacuum is set to 35 torr or less, and an inert gas having a volume flow ratio of 0.001 to 1.0 based on the volume of the water to be treated is introduced into the system. It is preferable to carry out vacuum deaeration treatment by feeding. When the degree of vacuum in the inert gas addition type vacuum deaerator exceeds 35 Torr, the dissolved oxygen concentration of the ultrapure water finally obtained will be 1 ppb.
It will be difficult to keep below. Further, when the volume flow ratio of the inert gas added to the inert gas addition type vacuum degasser exceeds 1.0 with respect to the volume of the water to be treated, the degassing efficiency almost reaches the ceiling. If only the running cost rises and the volume flow ratio of the inert gas added to the inert gas addition type vacuum degassing device is less than 0.001 with respect to the volume of the water to be treated, oxygen such as oxygen will be removed from the water to be treated. It becomes difficult to effectively remove the dissolved gas.

【0027】不活性ガス添加型真空脱気装置に添加され
る不活性ガスとしては、通常、窒素ガス、アルゴンガス
等が好適に用いられる。
Usually, nitrogen gas, argon gas, etc. are preferably used as the inert gas added to the inert gas addition type vacuum degassing apparatus.

【0028】第一および第二の紫外線照射装置として
は、180〜190nm、とりわけ184.9nmの波
長を有する紫外線を発生するものであれば、254nm
の殺菌波長を有する紫外線を同時に発生していてもよ
く、特に制限は無いが、本発明においては、紫外線酸化
用低圧紫外線ランプを用いるのが好ましい。
As the first and second ultraviolet irradiation devices, 254 nm is used as long as it emits ultraviolet light having a wavelength of 180 to 190 nm, especially 184.9 nm.
The ultraviolet rays having the sterilization wavelength may be simultaneously generated, and there is no particular limitation, but in the present invention, it is preferable to use a low-pressure ultraviolet lamp for ultraviolet oxidation.

【0029】第一および第二の混床式イオン交換装置と
しては、被処理水中の有機酸、微量の二酸化炭素あるい
は他のイオン成分を除去するための強塩基性アニオン交
換樹脂及びカチオン交換樹脂を充填した再生型もしくは
非再生型の混床式イオン交換装置を好ましく用いること
ができる。これに用いるイオン交換樹脂としては、新品
もしくはそれに類する破砕が無く、イオン交換性能が高
く、また溶出の無いものが望ましい。
As the first and second mixed bed type ion exchange devices, a strongly basic anion exchange resin and a cation exchange resin for removing organic acid, a trace amount of carbon dioxide or other ionic components in the water to be treated are used. A packed regenerated type or non-regenerated type mixed bed type ion exchange device can be preferably used. As the ion exchange resin used for this purpose, it is desirable that the ion exchange resin is new or free from crushing similar to it, has high ion exchange performance, and does not elute.

【0030】また、限外濾過膜装置としては、PAN、
セルロースアセテートあるいはフッ素系等の各種限外濾
過膜を装備した一般的な限外濾過膜装置を適宜用いるこ
とができる。
As the ultrafiltration membrane device, PAN,
A general ultrafiltration membrane device equipped with various ultrafiltration membranes such as cellulose acetate or fluorine can be appropriately used.

【0031】[0031]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施例について詳細に説明する。なお、各図面におい
て、同一の構成には同一符号を付し、詳細な説明は省略
する。また、本発明は、その要旨を逸脱しないならば、
本発明に限定されるものではない。
Embodiments of the present invention will be described below in detail with reference to the drawings. In each of the drawings, the same components are denoted by the same reference numerals, and detailed description will be omitted. Further, the present invention, if not departing from the gist thereof,
The present invention is not limited to this.

【0032】(実施例1および比較例1)図3は、実施
例1および比較例1に用いた一次純水の製造装置を示し
た図である。
Example 1 and Comparative Example 1 FIG. 3 is a diagram showing an apparatus for producing primary pure water used in Example 1 and Comparative Example 1.

【0033】図3において、符号1は原水中の濁質成分
を除去するための膜前処理装置(野村マイクロ・サイエ
ンス(株)、NML−E)、符号2は逆浸透膜装置(東
レ(株)、SU−720)、符号3は混床式イオン交換
装置であって、アニオン交換樹脂として強塩基性アニオ
ン交換樹脂デュオライトA−113plus(ローム&
ハース社)を33l、カチオン交換樹脂として強酸性カ
チオン交換樹脂デュオライトC−20(ローム&ハース
社)を23l使用し、これらを予め再生してOH型とΗ
型とに変換した後に混合充填したものである。この混床
式イオン交換装置のイオン交換容量は0.9当量/l−
Resinである。
In FIG. 3, reference numeral 1 is a membrane pretreatment device (NML-E, Nomura Micro Science Co., Ltd.) for removing turbidity components in raw water, and reference numeral 2 is a reverse osmosis membrane device (Toray Industries, Inc. ), SU-720), reference numeral 3 is a mixed bed type ion exchange device, which is a strongly basic anion exchange resin Duolite A-113plus (ROHM &
33 liters of Haas Co., Ltd. and 23 liters of a strongly acidic cation exchange resin Duolite C-20 (Rohm & Haas Co.) as cation exchange resins, and these are regenerated in advance to obtain OH type and Η.
After being converted into a mold, it is mixed and filled. The ion exchange capacity of this mixed bed type ion exchange device is 0.9 equivalent / l-
It is Resin.

【0034】本実施例1および比較例1は、このように
構成された純水製造装置により製造された一次純水を対
象として実施された。なお、膜前処理装置1に供給され
る原水としては厚木市水を使用し、製造された一次純水
の平均水質は、電気伝導度16.0MΩ・cm、ΤOC
濃度120ppb、溶存酸素濃度7600ppbであっ
た。
The present Example 1 and Comparative Example 1 were carried out on the primary pure water produced by the pure water producing apparatus thus constructed. As the raw water supplied to the membrane pretreatment apparatus 1, Atsugi city water was used, and the average water quality of the primary pure water produced had an electric conductivity of 16.0 MΩ · cm, TOC
The concentration was 120 ppb and the dissolved oxygen concentration was 7600 ppb.

【0035】図1は、本発明の一実施例である超純水製
造装置(二次系システム)の構成を示した図である。図
1において、符号4および7は低圧紫外線ランプ酸化装
置(千代田工販(株)、TDFL−4、照射量0.25
kWh/m3 )であり、185nm付近の波長をピーク
とする紫外線が照射される。符号5および8は混床式イ
オン交換装置であって、アニオン交換樹脂として強塩基
性アニオン交換樹脂デュオライトA−113plus
(ローム&ハース社)を33l、カチオン交換樹脂とし
て強酸性カチオン交換樹脂デュオライトC−20(ロー
ム&ハース社)を23l使用し、これらを予め再生して
OΗ型とH型に変換した後に混合充填したものである。
この混床式イオン交換装置のイオン交換容量は0.9当
量/l−Resinである。符号6は、充填材としてテ
ラレットSタイプ(日鉄化工機(株)、充填径250m
m、充填層高2000mm)を充填し、窒素ガスと被処
理水との体積比率を0.03:1とした窒素ガス添加方
式の真空脱気装置であり真空度は25torrに保たれ
ている。
FIG. 1 is a diagram showing the construction of an ultrapure water production system (secondary system) which is an embodiment of the present invention. In FIG. 1, symbols 4 and 7 are low-pressure ultraviolet lamp oxidizers (Chiyoda Corporation, TDFL-4, irradiation amount 0.25).
kWh / m 3) and is, ultraviolet light with a peak wavelength around 185nm is irradiated. Reference numerals 5 and 8 are mixed bed type ion exchange devices, and as the anion exchange resin, a strongly basic anion exchange resin Duolite A-113plus
(Rohm & Haas Co.) 33 liters and 23 L of strong acid cation exchange resin Duolite C-20 (Rohm & Haas Co.) were used as cation exchange resins, and these were regenerated in advance and converted into OH type and H type and then mixed. It is filled.
The ion exchange capacity of this mixed bed type ion exchange device is 0.9 equivalent / l-Resin. Reference numeral 6 is a terraret S type (Nittetsu Kakohki Co., Ltd., a filling diameter of 250 m)
m, the height of the packed bed is 2000 mm) and the volume ratio of the nitrogen gas and the water to be treated is 0.03: 1, which is a nitrogen gas addition type vacuum deaerator and the degree of vacuum is maintained at 25 torr.

【0036】本実施例は、図3に示された純水製造装置
を用いて製造された一次純水を、流量2m3 /hで二次
系システムに供給し、超純水を経時的に連続して製造す
ることにより行われた(実施例1)。なお、実施例1に
おいて、被処理水の温度は、25℃一定に保たれてい
た。
In this example, primary pure water produced by using the pure water producing apparatus shown in FIG. 3 was supplied to a secondary system at a flow rate of 2 m 3 / h to supply ultrapure water over time. It was carried out by continuous production (Example 1). In Example 1, the temperature of the water to be treated was kept constant at 25 ° C.

【0037】また、図2は、本発明の比較例である超純
水製造装置(二次系システム)の構成を示した図であ
る。本比較例の超純水製造装置においては、実施例1と
同一の機器を使用し、窒素ガス添加方式の真空脱気装置
6を低圧紫外線ランプ酸化装置4の前段に設置したこと
以外は、実施例1と全く同一となっている。
FIG. 2 is a diagram showing the configuration of an ultrapure water production system (secondary system) which is a comparative example of the present invention. In the ultrapure water production system of this comparative example, the same equipment as in Example 1 was used, except that the nitrogen gas addition type vacuum deaeration system 6 was installed in the preceding stage of the low pressure ultraviolet lamp oxidation system 4. It is exactly the same as Example 1.

【0038】本比較例は、図3に示された純水製造装置
を用いて製造された一次純水を、流量2m3 /hで二次
系システムに供給し、超純水を経時的に連続して製造す
ることにより行われた(比較例1)。なお、比較例1に
おいても、被処理水の温度は25℃一定に保たれてい
た。
In this comparative example, primary pure water produced by using the pure water producing apparatus shown in FIG. 3 was supplied to a secondary system at a flow rate of 2 m 3 / h to obtain ultrapure water over time. It was carried out by manufacturing continuously (Comparative Example 1). In Comparative Example 1, the temperature of the water to be treated was kept constant at 25 ° C.

【0039】表1に、実施例1および比較例1のポイン
ト(ポイントBおよびポイントC)において測定された
TOC濃度および溶存酸素濃度の測定結果を示す。な
お、TOC濃度および溶存酸素濃度の測定には、オンラ
インTOC計(アナテル社、A−1000 S−20)
および高感度溶存酸素計(オービスフェア ラボラトリ
ーズ、モデル2713)を使用した。また、実施例1お
よび比較例1において得られた超純水の電気伝導度(ポ
イントBおよびCにおける電気伝導度)は、ともに1
8.2MΩ・cmであった。
Table 1 shows the measurement results of the TOC concentration and the dissolved oxygen concentration measured at the points of Example 1 and Comparative Example 1 (point B and point C). The TOC concentration and the dissolved oxygen concentration were measured by an online TOC meter (A-1000 S-20, Anatel).
And a sensitive dissolved oxygen meter (Orvis Fair Laboratories, Model 2713) was used. The electric conductivity of the ultrapure water obtained in Example 1 and Comparative Example 1 (electrical conductivity at points B and C) were both 1
It was 8.2 MΩ · cm.

【0040】[0040]

【表1】 実施例1においては、低圧紫外線ランプ酸化装置4に導
入される被処理水は一次純水そのものであるので、TO
C濃度と溶存酸素濃度がともに高いが、比較例1におい
ては、被処理水は真空脱気装置6で溶存酸素を脱気され
た後、低圧紫外線ランプ酸化装置4に導入されることか
ら、低圧紫外線ランプ酸化装置4に導入される被処理水
は、実施例1と比べてTOC濃度がほぼ変わらないもの
の溶存酸素濃度は低い。したがって、比較例1において
は、実施例1と比べて溶存有機物量に対する溶存酸素量
が低く、低圧紫外線ランプ酸化装置4による溶存有機物
の分解効率が低くなるものと推定される。
[Table 1] In the first embodiment, since the water to be treated introduced into the low-pressure ultraviolet lamp oxidizer 4 is the primary pure water itself, the TO
Although both the C concentration and the dissolved oxygen concentration are high, in Comparative Example 1, the treated water is degassed of the dissolved oxygen by the vacuum degassing device 6 and then introduced into the low-pressure ultraviolet lamp oxidizing device 4, so that the low pressure The water to be treated introduced into the ultraviolet lamp oxidizer 4 has a TOC concentration which is almost the same as that in Example 1, but the dissolved oxygen concentration is low. Therefore, it is estimated that in Comparative Example 1, the dissolved oxygen amount relative to the dissolved organic substance amount is lower than that in Example 1, and the decomposition efficiency of the dissolved organic substance by the low-pressure ultraviolet lamp oxidizing device 4 is low.

【0041】すなわち、実施例1においては、溶存有機
物の低圧紫外線ランプ酸化装置での分解に際し、溶存有
機物量に対する溶存酸素量が比較例1に比べてバランス
しているために溶存有機物の分解効率が高いと考えられ
る。
That is, in Example 1, when the dissolved organic matter was decomposed by the low-pressure ultraviolet lamp oxidizing device, the dissolved oxygen amount was more balanced with respect to the dissolved organic substance amount than in Comparative Example 1, so that the decomposition efficiency of the dissolved organic substance was improved. It is considered expensive.

【0042】そして、表1から明らかなように、実施例
1において得られた超純水は、比較例1において得られ
た超純水と比べて、溶存酸素濃度がほとんど変わらない
にも拘らず、TOC濃度が著しく低減される結果となっ
た。
As is clear from Table 1, the ultrapure water obtained in Example 1 has almost no change in the dissolved oxygen concentration as compared with the ultrapure water obtained in Comparative Example 1. , TOC concentration was remarkably reduced.

【0043】(実施例2および比較例2)図4は、本発
明の他の実施例である超純水製造装置の構成を示した図
である。図4において、原水は、前処理装置10に導入
され、原水中の懸濁物質等が分離、除去される。次い
で、前処理装置10で処理された被処理水は、カチオン
交換樹脂塔、脱炭酸塔およびアニオン交換樹脂塔からな
る2床3塔11によりイオン成分が除去された後、逆浸
透装置12に導入されて微粒子およびコロイド状物質等
の除去が行われる。
Example 2 and Comparative Example 2 FIG. 4 is a diagram showing the construction of an ultrapure water production system which is another example of the present invention. In FIG. 4, raw water is introduced into the pretreatment device 10, and suspended substances and the like in the raw water are separated and removed. Next, the water to be treated which has been treated by the pretreatment device 10 is introduced into the reverse osmosis device 12 after the ionic components are removed by the two beds and three columns 11 including the cation exchange resin tower, the decarboxylation tower and the anion exchange resin tower. Thus, fine particles and colloidal substances are removed.

【0044】次に、被処理水は、逆浸透装置12から低
圧紫外線ランプ酸化装置13に導入されて溶存有機物が
分解され、混床式イオン交換装置14により被処理水中
のイオン成分が除去される。続いて、被処理水は、窒素
ガス添加方式の真空脱気装置15に導入されて溶存酸素
等の溶存気体が除去されて、再び、低圧紫外線ランプ酸
化装置16に導入されて溶存有機物が分解され、混床式
イオン交換装置17により被処理水中のイオン成分が除
去される。最後に、被処理水は限外濾過膜装置18に導
入され、極微量の微粒子等が除去される。
Next, the water to be treated is introduced from the reverse osmosis device 12 into the low-pressure ultraviolet lamp oxidizing device 13 to dissolve dissolved organic matters, and the mixed bed type ion exchange device 14 removes the ionic components in the water to be treated. . Subsequently, the water to be treated is introduced into a vacuum degassing device 15 of a nitrogen gas addition system to remove dissolved gases such as dissolved oxygen, and again introduced into the low pressure ultraviolet lamp oxidizing device 16 to decompose dissolved organic matters. The mixed bed type ion exchange device 17 removes ionic components in the water to be treated. Finally, the water to be treated is introduced into the ultrafiltration membrane device 18 to remove a very small amount of fine particles and the like.

【0045】こうして製造された超純水は、ユースポイ
ント19に供給されるとともに、過剰量の超純水は真空
脱気装置15の前段に還流される構成となっている。ま
た、真空脱気装置15は、窒素ガスと被処理水との体積
比率を0.03:1とされており、真空度は25tor
rに保たれている。なお、ここでは膜前処理装置10が
前処理システム、2床3塔11から真空脱気装置15ま
でが一次系システム、低圧紫外線ランプ酸化装置16か
ら限外濾過膜装置18までが二次系システムと区分され
る。
The ultrapure water produced in this manner is supplied to the use point 19 and an excessive amount of ultrapure water is returned to the stage before the vacuum degassing device 15. Further, the vacuum degassing device 15 has a volume ratio of nitrogen gas and water to be treated of 0.03: 1 and a vacuum degree of 25 torr.
It is kept at r. In addition, here, the membrane pretreatment device 10 is a pretreatment system, the two-bed three towers 11 to the vacuum degassing device 15 are the primary system systems, and the low-pressure ultraviolet lamp oxidizing device 16 to the ultrafiltration membrane device 18 are the secondary system systems. It is classified as.

【0046】経路Aは、本発明の超純水製造方法との比
較のために、ユースポイント19において使用されなか
った過剰量の超純水を、真空脱気装置15の後段に還流
するためのラインである。
For comparison with the method for producing ultrapure water of the present invention, the route A is for returning the excess amount of ultrapure water not used at the use point 19 to the subsequent stage of the vacuum degassing device 15. It is a line.

【0047】膜前処理装置10に供給する原水として工
業用水を使用し、一次系システムにより一次純水を生成
し、次いで、真空脱気装置15より、一次純水を二次系
システムに供給し、超純水を経時的に連続して製造した
(実施例2)。
Industrial water is used as raw water to be supplied to the membrane pretreatment device 10, primary pure water is generated by the primary system, and then the primary pure water is supplied from the vacuum degassing device 15 to the secondary system. Then, ultrapure water was continuously produced over time (Example 2).

【0048】一方、経路Aにより、ユースポイント19
から過剰量の超純水を真空脱気装置15の後段に還流し
た以外は、実施例2と全く同一の条件で超純水を製造し
た。なお、被処理水の水温は、実施例2および比較例2
ともに25℃一定に保たれていた。
On the other hand, the route A leads to the use point 19
Ultra pure water was produced under exactly the same conditions as in Example 2, except that an excessive amount of ultra pure water was refluxed to the subsequent stage of the vacuum deaerator 15. The water temperature of the water to be treated is the same as in Example 2 and Comparative Example 2.
Both were kept constant at 25 ° C.

【0049】表2に、実施例2および比較例2におけ
る、ポイントDで測定されたTOC濃度および溶存酸素
濃度の測定結果を示す。なお、TOC濃度および溶存酸
素濃度の測定には、オンラインTOC計(アナテル社、
A−1000 S−20)および高感度溶存酸素計(オ
ービスフェア ラボラトリーズ、モデル2713)を使
用した。また、実施例2および比較例2において得られ
た超純水の電気伝導度(ポイントDにおける電気伝導
度)は、ともに18.2MΩ・cmであった。
Table 2 shows the measurement results of the TOC concentration and the dissolved oxygen concentration measured at Point D in Example 2 and Comparative Example 2. The TOC concentration and the dissolved oxygen concentration were measured using an online TOC meter (Anatel,
A-1000 S-20) and a high-sensitivity dissolved oxygen meter (Orvisfair Laboratories, model 2713). The electric conductivity (electric conductivity at point D) of the ultrapure water obtained in Example 2 and Comparative Example 2 were both 18.2 MΩ · cm.

【0050】[0050]

【表2】 実施例2においては、被処理水は、真空脱気装置15で
溶存酸素を脱気された後、低圧紫外線ランプ酸化装置1
6に導入されるので、TOC濃度と溶存酸素濃度がとも
に低いが、比較例2においては、経路Aによりユースポ
イント19からの被処理水がそのまま低圧紫外線ランプ
酸化装置16に導入されることから、低圧紫外線ランプ
酸化装置16に導入される被処理水は、実施例2と比べ
てTOC濃度がほぼ変わらないものの溶存酸素濃度は高
くなっている。したがって、比較例2においては、実施
例2と比べて、被処理水中の溶存酸素濃度が著しく高く
なる結果となった。
[Table 2] In the second embodiment, the water to be treated is degassed with dissolved oxygen by the vacuum degassing device 15, and then the low-pressure ultraviolet lamp oxidizing device 1 is used.
6, the TOC concentration and the dissolved oxygen concentration are both low, but in Comparative Example 2, since the water to be treated from the use point 19 is directly introduced into the low-pressure ultraviolet lamp oxidizing device 16 by the route A, Although the TOC concentration of the water to be treated introduced into the low-pressure ultraviolet lamp oxidizer 16 is almost the same as that of Example 2, the dissolved oxygen concentration is high. Therefore, in Comparative Example 2, the dissolved oxygen concentration in the water to be treated was significantly higher than that in Example 2.

【0051】[0051]

【発明の効果】本発明の超純水製造装置によれば、被処
理水である一次純水に、180〜190nmの波長を有
する紫外線を照射して溶存有機物を分解する際、被処理
水中の溶存有機物に対して溶存酸素量をほぼ最適に調整
するので、被処理水中の溶存有機物が効率的に分解され
る。さらに、ユースポイントからの過剰の処理水(超純
水)を溶存酸素除去装置の前段に還流するので、二次系
システム内における溶存酸素濃度の上昇が防止される。
したがって、超純水中の有機物成分および溶存酸素濃度
が低減された、運転コストの安価な超純水製造装置を提
供することができる。
According to the apparatus for producing ultrapure water of the present invention, when the primary pure water as the water to be treated is irradiated with ultraviolet rays having a wavelength of 180 to 190 nm to decompose the dissolved organic matter, Since the dissolved oxygen amount is adjusted to be almost optimal with respect to the dissolved organic matter, the dissolved organic matter in the water to be treated is efficiently decomposed. Furthermore, since excess treated water (ultra-pure water) from the point of use is refluxed to the preceding stage of the dissolved oxygen removing device, the dissolved oxygen concentration in the secondary system is prevented from increasing.
Therefore, it is possible to provide an ultrapure water production system in which the organic component and dissolved oxygen concentration in the ultrapure water are reduced and the operating cost is low.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超純水製造装置(二次系システ
ム)の一実施例を示した図。
FIG. 1 is a diagram showing an embodiment of an ultrapure water production system (secondary system) according to the present invention.

【図2】本発明の比較例である超純水製造装置(二次系
システム)の構成を示した図。
FIG. 2 is a diagram showing the configuration of an ultrapure water production system (secondary system) that is a comparative example of the present invention.

【図3】実施例1および比較例1に用いた一次純水の製
造装置(一次系システム)を示した図。
FIG. 3 is a diagram showing an apparatus (primary system) for producing primary pure water used in Example 1 and Comparative Example 1.

【図4】本発明の他の実施例である超純水製造装置の構
成を示した図。
FIG. 4 is a diagram showing the configuration of an ultrapure water production system that is another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1………膜前処理装置 2………逆浸透膜装置 3………混床式イオン交換装置 4………低圧紫外線
ランプ酸化装置 5………混床式イオン交換装置 6………真空脱気装
置 7………低圧紫外線ランプ酸化装置 8………混床式
イオン交換装置 9………真空ポンプ 10………前処理装置 11………2床3塔 12………逆浸透装置 13………低圧紫外線ランプ酸化装置 14………混
床式イオン交換装置 15………真空脱気装置 16………低圧紫外線ラン
プ酸化装置 17………混床式イオン交換装置 18………限外濾
過膜装置 19………ユースポイント
1 ………… Membrane pretreatment device 2 ………… Reverse osmosis membrane device 3 ………… Mixed bed ion exchange device 4 ………… Low-pressure UV lamp oxidation device 5 ………… Mixed bed ion exchange device 6 ………… Vacuum Degassing device 7 ... Low-pressure UV lamp oxidizing device 8 ... Mixed-bed ion exchange device 9 ... Vacuum pump 10 ... Pretreatment device 11 ... 2 beds 3 towers 12 ... Reverse osmosis device 13: Low-pressure UV lamp oxidizer 14: Mixed-bed ion exchanger 15: Vacuum degasser 16: Low-pressure UV lamp oxidizer 17: Mixed-bed ion exchanger 18: Ultrafiltration Membrane Device 19 ……… Use Point

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/44 C02F 1/44 J 1/58 1/58 T Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C02F 1/44 C02F 1/44 J 1/58 1/58 T

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 180〜190nmの波長を有する紫外
線を発生する第1の紫外線照射装置と、第1の混床式イ
オン交換装置と、溶存酸素除去装置と、180〜190
nmの波長を有する紫外線を発生する第2の紫外線照射
装置と、第2の混床式イオン交換装置とを流路に沿って
配置したことを特徴とする超純水製造装置。
1. A first ultraviolet irradiation device for generating ultraviolet light having a wavelength of 180 to 190 nm, a first mixed bed ion exchange device, a dissolved oxygen removing device, and 180 to 190.
An ultrapure water production system comprising a second ultraviolet irradiation device for generating ultraviolet rays having a wavelength of nm and a second mixed bed ion exchange device arranged along a flow path.
【請求項2】 180〜190nmの波長を有する紫外
線を発生する第1の紫外線照射装置と、第1の混床式イ
オン交換装置と、溶存酸素除去装置と、180〜190
nmの波長を有する紫外線を発生する第2の紫外線照射
装置と、第2の混床式イオン交換装置と、限外濾過膜装
置とを流路に沿って配置したことを特徴とする超純水製
造装置。
2. A first ultraviolet irradiation device for generating ultraviolet light having a wavelength of 180 to 190 nm, a first mixed bed ion exchange device, a dissolved oxygen removing device, and 180 to 190.
Ultrapure water characterized in that a second ultraviolet irradiation device for generating ultraviolet light having a wavelength of nm, a second mixed bed ion exchange device, and an ultrafiltration membrane device are arranged along the flow path. Manufacturing equipment.
【請求項3】 180〜190nmの波長を有する紫外
線を発生する第1の紫外線照射装置と、第1の混床式イ
オン交換装置と、溶存酸素除去装置と、180〜190
nmの波長を有する紫外線を発生する第2の紫外線照射
装置と、第2の混床式イオン交換装置と、処理水を必要
量供給するユースポイントとを流路に沿って配置し、前
記ユースポイントから過剰量の処理水を前記溶存酸素除
去装置の前段に還流するようにしたことを特徴とする超
純水製造装置。
3. A first ultraviolet irradiation device that generates ultraviolet light having a wavelength of 180 to 190 nm, a first mixed bed ion exchange device, a dissolved oxygen removing device, and 180 to 190.
A second ultraviolet irradiation device for generating ultraviolet rays having a wavelength of nm, a second mixed bed ion exchange device, and a use point for supplying a necessary amount of treated water are arranged along the flow path, and the use point An excessive amount of treated water is recirculated to the upstream side of the dissolved oxygen removing device from the ultra pure water producing device.
【請求項4】 180〜190nmの波長を有する紫外
線を発生する第1の紫外線照射装置と、第1の混床式イ
オン交換装置と、溶存酸素除去装置と、180〜190
nmの波長を有する紫外線を発生する第2の紫外線照射
装置と、第2の混床式イオン交換装置と、限外濾過膜装
置と、処理水を必要量供給するユースポイントとを流路
に沿って配置し、前記ユースポイントから過剰量の処理
水を前記溶存酸素除去装置の前段に還流するようにした
ことを特徴とする超純水製造装置。
4. A first ultraviolet irradiation device for generating ultraviolet light having a wavelength of 180 to 190 nm, a first mixed bed type ion exchange device, a dissolved oxygen removing device, and 180 to 190.
A second ultraviolet irradiation device that generates ultraviolet light having a wavelength of nm, a second mixed-bed ion exchange device, an ultrafiltration membrane device, and a point of use for supplying a required amount of treated water are provided along the flow path. An ultrapure water producing apparatus characterized in that an excessive amount of treated water is recirculated to the upstream of the dissolved oxygen removing apparatus from the point of use.
【請求項5】前記溶存酸素除去装置が、微量の不活性ガ
スを系内に送入して真空脱気を行う不活性ガス添加型真
空脱気装置であることを特微とする請求項1〜4に記載
の超純水製造装置。
5. The dissolved oxygen removing device is an inert gas-added type vacuum deaeration device for feeding a small amount of an inert gas into the system to perform vacuum deaeration. The ultrapure water production apparatus according to any one of items 1 to 4.
【請求項6】前記不活性ガス添加型真空脱気装置内の真
空度が35Torr以下であり、前記不活性ガス添加型
真空脱気装置に添加される不活性ガスの体積流量比が被
処理水の体積を基準として0.001〜1.0であるこ
とを特徴とする請求項5に記載の超純水製造装置。
6. The degree of vacuum in the inert gas addition type vacuum degassing apparatus is 35 Torr or less, and the volume flow ratio of the inert gas added to the inert gas addition type vacuum degassing apparatus is water to be treated. 6. The ultrapure water production system according to claim 5, wherein the volume is 0.001 to 1.0.
【請求項7】前記溶存酸素除去装置が膜脱気装置である
ことを特徴とする請求項1〜4に記載の超純水製造装
置。
7. The ultrapure water production system according to claim 1, wherein the dissolved oxygen removing device is a membrane degassing device.
【請求項8】前記溶存酸素除去装置が真空脱気装置であ
ることを特徴とする請求項1〜4に記載の超純水製造装
置。
8. The ultrapure water production system according to claim 1, wherein the dissolved oxygen removing device is a vacuum degassing device.
JP2661996A 1996-02-14 1996-02-14 Ultrapure water production equipment Expired - Lifetime JP3856493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2661996A JP3856493B2 (en) 1996-02-14 1996-02-14 Ultrapure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2661996A JP3856493B2 (en) 1996-02-14 1996-02-14 Ultrapure water production equipment

Publications (2)

Publication Number Publication Date
JPH09220560A true JPH09220560A (en) 1997-08-26
JP3856493B2 JP3856493B2 (en) 2006-12-13

Family

ID=12198499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2661996A Expired - Lifetime JP3856493B2 (en) 1996-02-14 1996-02-14 Ultrapure water production equipment

Country Status (1)

Country Link
JP (1) JP3856493B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122884A1 (en) * 2008-03-31 2009-10-08 栗田工業株式会社 Method for producing pure water and pure water production system
WO2010106925A1 (en) * 2009-03-18 2010-09-23 オルガノ株式会社 Catalyst with supported platinum-group metal, process for producing water in which hydrogen peroxide has been decomposed, process for producing water from which dissolved oxygen has been removed, and method of cleaning electronic part
JP2014168743A (en) * 2013-03-04 2014-09-18 Nomura Micro Sci Co Ltd Pure water manufacturing method
WO2020195235A1 (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Decarboxylation method, water treatment method, decarboxylation device, and water treatment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122884A1 (en) * 2008-03-31 2009-10-08 栗田工業株式会社 Method for producing pure water and pure water production system
US8480906B2 (en) 2008-03-31 2013-07-09 Kurita Water Industries Ltd. Pure water manufacturing method and pure water manufacturing apparatus
JP5454468B2 (en) * 2008-03-31 2014-03-26 栗田工業株式会社 Pure water production method and pure water production apparatus
KR101390441B1 (en) * 2008-03-31 2014-04-30 쿠리타 고교 가부시키가이샤 Method for producing pure water and pure water production system
WO2010106925A1 (en) * 2009-03-18 2010-09-23 オルガノ株式会社 Catalyst with supported platinum-group metal, process for producing water in which hydrogen peroxide has been decomposed, process for producing water from which dissolved oxygen has been removed, and method of cleaning electronic part
JP2010214322A (en) * 2009-03-18 2010-09-30 Japan Organo Co Ltd Supported catalyst of platinum group metal, method of producing treated water removed of hydrogen peroxide by decomposing the same, method of producing treated water removed of dissolved oxygen, and method of washing electronic parts
JP2014168743A (en) * 2013-03-04 2014-09-18 Nomura Micro Sci Co Ltd Pure water manufacturing method
WO2020195235A1 (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Decarboxylation method, water treatment method, decarboxylation device, and water treatment device

Also Published As

Publication number Publication date
JP3856493B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
US5554295A (en) Method for producing pure water
TWI408107B (en) Extra-pure water production equipment and operating method thereof
JP4932757B2 (en) Ultrapure water production method and ultrapure water production apparatus
CN109906206B (en) Water treatment method and apparatus
CN109890766B (en) Water treatment method and apparatus
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP2014168743A (en) Pure water manufacturing method
JPH0818040B2 (en) Purification method and device for pure water or ultrapure water
JP4635827B2 (en) Ultrapure water production method and apparatus
JP2002210494A (en) Device for manufacturing extrapure water
JPH09220560A (en) Ultrapure water making apparatus
JPH09253638A (en) Ultrapure water making apparatus
JP2001179252A (en) Method and apparatus for making pure water reduced in content of oxidizing substance
JP2008260017A (en) Method and apparatus for producing ultrapure water
JPH09192658A (en) Manufacturing device of ultrapure water
JPH0929251A (en) Ultrapure water preparing apparatus
JPH10202296A (en) Ultrapure water producer
JP2000308815A (en) Producing device of ozone dissolved water
JPH10216749A (en) Ultrapure water making apparatus
JP2008173617A (en) Water treatment apparatus and water treating method
JPH05305297A (en) Apparatus for treating acid drainage containing organic material
JPH0889976A (en) Method for removing organic matter in water
JPH0639366A (en) Method and equipment for producing ultrapure water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term