JP2008173617A - Water treatment apparatus and water treating method - Google Patents

Water treatment apparatus and water treating method Download PDF

Info

Publication number
JP2008173617A
JP2008173617A JP2007021109A JP2007021109A JP2008173617A JP 2008173617 A JP2008173617 A JP 2008173617A JP 2007021109 A JP2007021109 A JP 2007021109A JP 2007021109 A JP2007021109 A JP 2007021109A JP 2008173617 A JP2008173617 A JP 2008173617A
Authority
JP
Japan
Prior art keywords
water
treated
nitrous oxide
exchange resin
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007021109A
Other languages
Japanese (ja)
Inventor
Nobukatsu Shibata
信勝 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2007021109A priority Critical patent/JP2008173617A/en
Publication of JP2008173617A publication Critical patent/JP2008173617A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment apparatus and a water treating method, capable of enhancing decomposition efficiency of organic compounds in water to be treated, and omitting arrangement of an oxidant removing device in the latter stage of an ultraviolet ray irradiation device. <P>SOLUTION: The water treatment apparatus is provided with a nitrous oxide adding means for adding nitrous oxide into the treating object water, the ultraviolet ray irradiation device irradiating the water to be treated in which nitrous oxide is added, with ultraviolet ray, for decomposing organic compounds in the water, and an ion exchange resin apparatus for removing ions in the water by introducing thereto the water treated in the ultraviolet ray irradiation device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水中の有機化合物を除去する水処理装置および水処理方法に係り、特に、超純水製造に好適な水処理装置および水処理方法に関する。   The present invention relates to a water treatment apparatus and a water treatment method for removing organic compounds in water, and more particularly, to a water treatment apparatus and a water treatment method suitable for ultrapure water production.

従来から、イオン交換処理や逆浸透膜処理の施された一次純水に、紫外線照射装置により紫外線を照射して有機化合物を分解し、混床式のイオン交換樹脂装置や限外濾過膜装置で仕上げ処理する超純水製造装置が知られている。   Conventionally, primary pure water that has been subjected to ion exchange treatment or reverse osmosis membrane treatment is irradiated with ultraviolet rays by an ultraviolet irradiation device to decompose organic compounds, and mixed bed type ion exchange resin devices and ultrafiltration membrane devices are used. 2. Description of the Related Art Ultrapure water production apparatuses that perform finishing treatment are known.

この有機化合物の分解にあたっては、有機化合物を効率よく分解するため、被処理水に過酸化水素を溶解させた状態で紫外線を照射する超純水製造装置が知られている。また、有機化合物を効率よく分解するため、被処理水にオゾンを添加して紫外線照射を行う超純水製造装置も提案されている(例えば、特許文献1)。
特開平7−241598号公報
In order to decompose the organic compound efficiently, an ultrapure water production apparatus that irradiates ultraviolet rays in a state where hydrogen peroxide is dissolved in water to be treated is known. Moreover, in order to decompose | disassemble an organic compound efficiently, the ultrapure water manufacturing apparatus which adds ozone to to-be-processed water and irradiates with an ultraviolet-ray is proposed (for example, patent document 1).
JP-A-7-241598

しかしながら、紫外線照射装置出口での被処理水中に残存したオゾンや過酸化水素は、イオン交換樹脂装置を構成するイオン交換樹脂や限外濾過膜を構成する膜素材を酸化劣化させる。そのため、劣化成分が被処理水中に混入して水質が低下する、イオン交換樹脂の交換が頻繁になる等の問題を有していた。
このため、紫外線照射装置により紫外線を照射して被処理水中の有機化合物を分解するに際して、オゾンや過酸化水素を被処理水中に添加して有機化合物の分解効率を向上させる場合には、紫外線照射装置の後段、かつイオン交換樹脂装置の前段に、オゾンや過酸化水素を除去する酸化剤除去装置を設ける必要があった。酸化剤除去装置としては、例えば紫外線を照射する手段を挙げることができるが、紫外線を照射する手段はかさばるため、空きスペースの確保の関係から設置することが困難な場合も多かった。また、酸化剤除去装置として、活性炭を挙げることもできるが、過酸化水素の分解が不十分であったり、使用寿命が短い、微粉炭を溶出させる等の問題があった。そのため、被処理水中の有機化合物の分解効率を向上させるとともに、酸化剤除去装置の配置を省略することが可能な水処理の技術が求められていた。
However, ozone and hydrogen peroxide remaining in the water to be treated at the exit of the ultraviolet irradiation device cause oxidative degradation of the ion exchange resin constituting the ion exchange resin device and the membrane material constituting the ultrafiltration membrane. For this reason, there are problems such as deterioration components mixed into the water to be treated and water quality being lowered, and frequent exchange of ion exchange resins.
For this reason, when decomposing organic compounds in the treated water by irradiating ultraviolet rays with an ultraviolet irradiating device, ultraviolet radiation is used when ozone or hydrogen peroxide is added to the treated water to improve the decomposition efficiency of the organic compounds. It was necessary to provide an oxidant removing device for removing ozone and hydrogen peroxide at the subsequent stage of the apparatus and the preceding stage of the ion exchange resin apparatus. Examples of the oxidant removing device include a means for irradiating ultraviolet rays, but the means for irradiating ultraviolet rays is bulky, so that there are many cases where it is difficult to install it because of securing an empty space. Moreover, activated carbon can be cited as an oxidant removing device, but there are problems such as insufficient decomposition of hydrogen peroxide, short service life, and elution of pulverized coal. Therefore, there has been a demand for a water treatment technique that can improve the decomposition efficiency of the organic compound in the water to be treated and can omit the arrangement of the oxidant removing device.

上記に鑑み、本発明は、被処理水中の有機化合物の分解効率を向上させるとともに、紫外線照射装置の後段に酸化剤除去装置を配置することを省略可能な水処理装置および水処理方法を提供することを目的とする。   In view of the above, the present invention provides a water treatment device and a water treatment method that can improve the decomposition efficiency of organic compounds in the water to be treated and can omit the disposition of the oxidant removing device after the ultraviolet irradiation device. For the purpose.

上記目的を達成するため、本発明に係る水処理装置は、被処理水に亜酸化窒素を添加する亜酸化窒素添加手段と、前記亜酸化窒素を添加された被処理水に紫外線を照射し、水中の有機化合物を分解する紫外線照射装置と、前記紫外線照射装置によって処理された被処理水を導入し、水中のイオンを除去するイオン交換樹脂装置と、を具備することを特徴とする。   In order to achieve the above object, a water treatment apparatus according to the present invention irradiates ultraviolet light to water to be treated to which nitrous oxide is added, nitrous oxide addition means for adding nitrous oxide to the water to be treated, An ultraviolet irradiation device that decomposes an organic compound in water, and an ion exchange resin device that introduces water to be treated treated by the ultraviolet irradiation device and removes ions in water.

本発明によれば、被処理水中の有機化合物の分解効率を向上させるとともに、紫外線照射装置の後段に酸化剤除去装置を配置することを省略可能な水処理装置および水処理方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, while improving the decomposition | disassembly efficiency of the organic compound in to-be-processed water, it can provide the water treatment apparatus and water treatment method which can abbreviate | omit to arrange | position an oxidizing agent removal apparatus in the back | latter stage of an ultraviolet irradiation device.

以下、図面を参照して、本発明の実施の形態を、具体的に説明する。   Embodiments of the present invention will be specifically described below with reference to the drawings.

本発明は、水処理装置および水処理方法に関するものであるが、超純水製造装置および超純水製造方法を例にして説明する。
図1は、本発明の超純水製造装置1の構成の一例を示す図である。図1に示すように、超純水製造装置1は、前処理装置2と、2床3塔型イオン交換装置3と、逆浸透装置4と、脱気装置5と、亜酸化窒素添加手段6と、紫外線照射装置7と、イオン交換樹脂装置8と、限外濾過膜装置9とを備えている。超純水製造装置1は、必要に応じて、紫外線照射装置7の後段に(例えば紫外線照射装置7とイオン交換樹脂装置8との間に)亜酸化窒素除去手段(図示せず)を備えることもできる。
The present invention relates to a water treatment apparatus and a water treatment method, and will be described using an example of an ultrapure water production apparatus and an ultrapure water production method.
FIG. 1 is a diagram showing an example of the configuration of an ultrapure water production apparatus 1 according to the present invention. As shown in FIG. 1, the ultrapure water production apparatus 1 includes a pretreatment device 2, a two-bed / three-column ion exchange device 3, a reverse osmosis device 4, a deaeration device 5, and a nitrous oxide addition means 6. And an ultraviolet irradiation device 7, an ion exchange resin device 8, and an ultrafiltration membrane device 9. The ultrapure water production apparatus 1 is provided with a nitrous oxide removing means (not shown) downstream of the ultraviolet irradiation device 7 (for example, between the ultraviolet irradiation device 7 and the ion exchange resin device 8) as necessary. You can also.

原水は、前処理装置2に導入され、原水中の懸濁物質等が分離、除去される。次いで、前処理装置2で処理された被処理水は、カチオン交換樹脂塔、脱炭酸塔およびアニオン交換樹脂塔からなる2床3塔型イオン交換装置3によりイオン成分が除去された後、逆浸透装置4に導入されて微粒子およびコロイド状物質等の除去が行われる。次に、被処理水は、例えば窒素ガス添加方式の真空脱気装置のような脱気装置5に導入されて溶存酸素等の溶存気体が除去される。   The raw water is introduced into the pretreatment device 2, and suspended substances and the like in the raw water are separated and removed. Next, the water to be treated treated by the pretreatment device 2 is reverse osmosis after the ionic components are removed by the two-bed / three-column ion exchange device 3 comprising a cation exchange resin tower, a decarboxylation tower and an anion exchange resin tower. The fine particles and colloidal substances are removed by being introduced into the apparatus 4. Next, the water to be treated is introduced into a degassing device 5 such as a nitrogen gas addition type vacuum degassing device to remove dissolved gases such as dissolved oxygen.

続いて、亜酸化窒素添加手段6によって被処理水に亜酸化窒素が添加された後、紫外線照射装置7に導入されて被処理水中の有機化合物が分解され、例えば混床式イオン交換装置のようなイオン交換樹脂装置8により被処理水中のイオン成分が除去される。最後に、被処理水は限外濾過膜装置9に導入され、極微量の微粒子等が除去される。   Subsequently, after nitrous oxide is added to the water to be treated by the nitrous oxide addition means 6, the organic compound in the water to be treated is decomposed by being introduced into the ultraviolet irradiation device 7, for example, as in a mixed bed ion exchange device. The ion component in the water to be treated is removed by the ion exchange resin device 8. Finally, the water to be treated is introduced into the ultrafiltration membrane device 9 to remove a very small amount of fine particles and the like.

なお、ここでは前処理装置2が前処理システム、2床3塔型イオン交換装置3から脱気装置5までが一次純水システム、亜酸化窒素添加手段6から限外濾過膜装置9までが二次純水システムと区分される。   Here, the pretreatment device 2 is the pretreatment system, the two-bed three-column ion exchange device 3 to the deaeration device 5 are the primary pure water system, and the nitrous oxide addition means 6 to the ultrafiltration membrane device 9 are the two. Separated from the next pure water system.

超純水製造装置1が二次純水システムにおいて備える、亜酸化窒素添加手段6と、紫外線照射装置7と、イオン交換樹脂装置8と、限外濾過膜装置9と、必要に応じて配置される亜酸化窒素除去手段について、以下に詳細に説明する。   Nitrous oxide addition means 6, ultraviolet irradiation device 7, ion exchange resin device 8, ultrafiltration membrane device 9, and ultrafiltration membrane device 9 provided in the ultrapure water production apparatus 1 in the secondary pure water system, are arranged as necessary. The nitrous oxide removing means will be described in detail below.

亜酸化窒素添加手段6は、紫外線照射装置7の前段の被処理水又は紫外線照射装置7内の被処理水に、亜酸化窒素(NO)ガスを添加するものである。亜酸化窒素添加手段6としては、例えば、亜酸化窒素ガスが充填されたガスボンベからの供給によるものを挙げることができる。
亜酸化窒素添加手段6により被処理水中に亜酸化窒素が添加されると、紫外線照射装置7での紫外線の照射によって、被処理水中の有機化合物の分解効率を向上させることができる。
また、有機化合物の分解効率の向上のために従来用いられていたオゾンや過酸化水素に代えて亜酸化窒素を用いれば、紫外線照射装置7の後段、かつイオン交換樹脂装置8の前段に従来配置されていた酸化剤除去装置を省略することができる。
The nitrous oxide addition means 6 adds nitrous oxide (N 2 O) gas to the water to be treated before the ultraviolet irradiation device 7 or the water to be treated in the ultraviolet irradiation device 7. As the nitrous oxide addition means 6, for example, there can be mentioned one by supply from a gas cylinder filled with nitrous oxide gas.
When nitrous oxide is added to the water to be treated by the nitrous oxide addition means 6, the decomposition efficiency of the organic compound in the water to be treated can be improved by irradiating the ultraviolet rays with the ultraviolet irradiation device 7.
Further, if nitrous oxide is used instead of ozone or hydrogen peroxide which has been conventionally used for improving the decomposition efficiency of organic compounds, it is conventionally arranged in the subsequent stage of the ultraviolet irradiation device 7 and the previous stage of the ion exchange resin device 8. The oxidant removing device that has been used can be omitted.

また、有機化合物の分解効率の向上のために従来用いられていたオゾンや過酸化水素に代えて亜酸化窒素を用いれば、紫外線照射装置7出口や、イオン交換樹脂装置8出口及び限外濾過膜装置9出口における被処理水の溶存酸素濃度の増加を低減できる。
また、亜酸化窒素を添加して紫外線照射装置7により紫外線を照射することによって、従来の通常の超純水製造装置では除去することが困難であった原水(被処理水)中の尿素等の有機態窒素を効率的に分解することができる。
なお、亜酸化窒素による有機化合物の分解効率の向上や、酸化剤除去装置の配置の省略、紫外線照射装置7出口等における被処理水の溶存酸素濃度の増加の低減、被処理水中の尿素等の有機態窒素の除去については、詳細を後述する。
Further, if nitrous oxide is used instead of ozone or hydrogen peroxide which has been conventionally used for improving the decomposition efficiency of organic compounds, the ultraviolet irradiation device 7 outlet, the ion exchange resin device 8 outlet and the ultrafiltration membrane are used. An increase in the dissolved oxygen concentration of the water to be treated at the outlet of the apparatus 9 can be reduced.
Moreover, by adding nitrous oxide and irradiating ultraviolet rays with the ultraviolet irradiation device 7, it is difficult to remove such as urea in raw water (treated water), which has been difficult to remove with a conventional normal ultrapure water production device. Organic nitrogen can be decomposed efficiently.
In addition, improvement of decomposition efficiency of organic compounds by nitrous oxide, omission of arrangement of oxidant removing device, reduction of increase in dissolved oxygen concentration of treated water at outlet of ultraviolet irradiation device 7, etc., urea in treated water, etc. Details of the removal of organic nitrogen will be described later.

紫外線照射装置7は、被処理水に紫外線を照射して被処理水中の有機化合物を分解するもので、亜酸化窒素を解離(後述する)可能な240nm以下の波長を含む紫外線を照射する光源を備えている。紫外線照射装置7の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、エキシマランプ等を挙げることができる。
低圧水銀ランプ等の光源は、被処理水中に配置してもよいし、被処理水の外部に空間を介して配置してもよい。光源を被処理水の外部に配置する場合には、光源と被処理水との間の空間に不活性ガスを充填することが好ましい。光源から発せられた紫外線が、被処理水に照射される前に大気中の酸素分子等によって吸収されて照射量が減じたり、オゾンが発生することを防止できるためである。
The ultraviolet irradiation device 7 irradiates the water to be treated with ultraviolet rays to decompose organic compounds in the water to be treated. A light source for irradiating ultraviolet rays having a wavelength of 240 nm or less capable of dissociating nitrous oxide (described later). I have. Examples of the light source of the ultraviolet irradiation device 7 include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, and an excimer lamp.
A light source such as a low-pressure mercury lamp may be disposed in the water to be treated, or may be disposed outside the water to be treated through a space. When the light source is disposed outside the water to be treated, it is preferable to fill the space between the light source and the water to be treated with an inert gas. This is because ultraviolet rays emitted from the light source can be absorbed by oxygen molecules in the atmosphere before being irradiated onto the water to be treated, thereby reducing the irradiation amount and generating ozone.

亜酸化窒素は不活性ガスのため、被処理水中に残留した場合でも酸化性物質として機能せず、また、被処理水のpH変化の影響も無視できる。そのため、必ずしも超純水製造装置1に亜酸化窒素除去手段を設ける必要はない。しかし、必要に応じて、紫外線照射装置7の後段に(例えば紫外線照射装置7とイオン交換樹脂装置8との間に)亜酸化窒素除去手段(図示せず)を備えてもよい。
亜酸化窒素除去手段は、紫外線照射装置7の後段の被処理水中に残留した亜酸化窒素を分解するものである。亜酸化窒素除去手段としては、例えば、亜酸化窒素を残留する被処理水に240nm以下の波長を含む紫外線を照射する装置や、減圧脱気装置等を挙げることができる。
Since nitrous oxide is an inert gas, it does not function as an oxidizing substance even when it remains in the water to be treated, and the influence of pH change in the water to be treated can be ignored. Therefore, it is not always necessary to provide the ultrapure water production apparatus 1 with nitrous oxide removing means. However, if necessary, a nitrous oxide removing means (not shown) may be provided downstream of the ultraviolet irradiation device 7 (for example, between the ultraviolet irradiation device 7 and the ion exchange resin device 8).
The nitrous oxide removing means is for decomposing nitrous oxide remaining in the water to be treated after the ultraviolet irradiation device 7. Examples of the nitrous oxide removing means include an apparatus that irradiates the water to be treated with nitrous oxide remaining with ultraviolet light having a wavelength of 240 nm or less, a vacuum degassing apparatus, and the like.

イオン交換樹脂装置8は、紫外線照射装置7において分解生成された有機酸等を含む被処理水中のイオン成分を除去する装置であり、例えば、アニオン交換樹脂を充填したアニオン交換樹脂装置、又はアニオン交換樹脂とカチオン交換樹脂の混合型装置を挙げることができる。
限外濾過膜装置9は、イオン交換樹脂装置8において処理された被処理水中に残存している微粒子等を除去する装置であり、例えば、PAN(ポリアクリロニトリル)、セルロースアセテート、あるいはフッ素系等の各種限外濾過膜を装備した一般的な限外濾過膜装置を適宜用いることができる。
The ion exchange resin device 8 is a device that removes ion components in the water to be treated including organic acids and the like decomposed and generated in the ultraviolet irradiation device 7, and for example, an anion exchange resin device filled with an anion exchange resin, or anion exchange A mixed type apparatus of resin and cation exchange resin can be mentioned.
The ultrafiltration membrane device 9 is a device that removes fine particles remaining in the water to be treated that has been treated in the ion exchange resin device 8, and is, for example, PAN (polyacrylonitrile), cellulose acetate, or fluorine-based one. A general ultrafiltration membrane device equipped with various ultrafiltration membranes can be used as appropriate.

亜酸化窒素添加手段6により、有機化合物を含んだ被処理水(1次純水)に亜酸化窒素が添加される。被処理水中に溶解させる亜酸化窒素(NO)濃度は、5mg/L以上、1000mg/L以下であることが好ましく、10mg/L以上、100mg/L以下がさらに好ましい。亜酸化窒素濃度が5mg/L未満であると、亜酸化窒素の添加による有機化合物の分解効率の向上が十分でないおそれがある。亜酸化窒素濃度が高いほど有機化合物の分解効率は向上するものの、亜酸化窒素濃度が1000mg/Lを超えると、亜酸化窒素が雰囲気中に散逸してコストが高くなってしまうおそれがあり、また、気泡が発生するおそれがある。 By the nitrous oxide addition means 6, nitrous oxide is added to the water to be treated (primary pure water) containing the organic compound. The concentration of nitrous oxide (N 2 O) dissolved in the water to be treated is preferably 5 mg / L or more and 1000 mg / L or less, more preferably 10 mg / L or more and 100 mg / L or less. If the concentration of nitrous oxide is less than 5 mg / L, the decomposition efficiency of the organic compound by adding nitrous oxide may not be sufficiently improved. Although the decomposition efficiency of organic compounds increases as the nitrous oxide concentration increases, if the nitrous oxide concentration exceeds 1000 mg / L, the nitrous oxide may be dissipated into the atmosphere and the cost may increase. There is a risk of bubbles being generated.

紫外線照射装置7により、亜酸化窒素が添加された被処理水に240nm以下の波長を含む紫外線が照射されると、亜酸化窒素は反応式(1)で示す反応をして、被処理水中に励起状酸素原子(O)が発生する。
O → N+O ……(1)
励起状酸素原子(O)は直ちに水と反応式(2)で示す反応をして、ヒドロキシラジカル(・OH)を生成する。
O+HO → 2・OH ……(2)
亜酸化窒素を被処理水に添加して紫外線を照射すると、このように亜酸化窒素からヒドロキシラジカルが生成するため、水中でのヒドロキシラジカル生成が加速化され、亜酸化窒素を添加せずに紫外線を照射した場合と比較して、有機化合物の分解効率が向上できる。
When ultraviolet light containing a wavelength of 240 nm or less is irradiated to the water to be treated to which nitrous oxide has been added by the ultraviolet irradiation device 7, the nitrous oxide reacts as shown in the reaction formula (1), and enters the water to be treated. Excited oxygen atoms (O) are generated.
N 2 O → N 2 + O (1)
The excited oxygen atom (O) immediately reacts with water as shown in the reaction formula (2) to generate a hydroxy radical (.OH).
O + H 2 O → 2.OH (2)
When nitrous oxide is added to the water to be treated and irradiated with ultraviolet rays, hydroxy radicals are generated from nitrous oxide in this way, so the generation of hydroxy radicals in water is accelerated, and ultraviolet rays are added without adding nitrous oxide. Compared with the case of irradiation, the decomposition efficiency of the organic compound can be improved.

また、以下の反応式(3)、(4)によっても、ヒドロキシラジカルが生成する。
被処理水に紫外線が照射されると、水は反応式(3)で示す分解をして、ヒドロキシラジカル(・OH)と水素ラジカル(・H)を発生する。
O → ・OH+・H ……(3)
従来、この・Hは、有機化合物の・OH分解過程における中間生成物である有機ラジカルと反応して、有機化合物の分解過程を妨げることが知られていた。本実施形態では、被処理水中に亜酸化窒素が添加されているため、紫外線によって分解されていない亜酸化窒素と、・Hが、反応式(4)で示す反応をすることが可能である。
O+・H → N+・OH ……(4)
これにより、・Hと有機ラジカルとの反応を抑制できるとともに、ヒドロキシラジカルを生成させ、有機化合物の分解効率を向上させることができる。
In addition, hydroxy radicals are also generated by the following reaction formulas (3) and (4).
When the water to be treated is irradiated with ultraviolet rays, the water is decomposed by the reaction formula (3) to generate hydroxy radicals (.OH) and hydrogen radicals (.H).
H 2 O → OH + H (3)
Heretofore, it has been known that this .H reacts with an organic radical, which is an intermediate product in the .OH decomposition process of an organic compound, to hinder the decomposition process of the organic compound. In this embodiment, since nitrous oxide is added to the water to be treated, nitrous oxide that has not been decomposed by ultraviolet rays can react with .H as represented by the reaction formula (4).
N 2 O + · H → N 2 + · OH (4)
As a result, the reaction between .H and an organic radical can be suppressed, a hydroxy radical can be generated, and the decomposition efficiency of the organic compound can be improved.

反応式(1)〜(4)によって生成したヒドロキシラジカルは、被処理水中の有機化合物を酸化分解し、有機化合物はカルボン酸等の有機酸に酸化分解され、一部は二酸化炭素にまで分解される。   The hydroxy radicals generated by the reaction formulas (1) to (4) oxidize and decompose organic compounds in the water to be treated. The organic compounds are oxidatively decomposed into organic acids such as carboxylic acids, and some of them are decomposed into carbon dioxide. The

紫外線照射装置7により紫外線を照射して被処理水中の有機化合物を分解するに際して、有機化合物の分解効率の向上のために従来用いられていたオゾンや過酸化水素に代えて、亜酸化窒素を被処理水中に添加している。
従来用いられていたオゾンは、紫外線照射装置7による紫外線の照射によりOを発生し、紫外線照射装置7出口での被処理水中の溶存酸素濃度を増加させる。また、従来用いられていた過酸化水素は、イオン交換樹脂装置8に充填されたイオン交換樹脂表面近傍において酸素と水に分解され、イオン交換樹脂装置8を通過した被処理水中の溶存酸素濃度を増加させる。また、後述する酸化剤除去装置を用いて、紫外線照射装置7の後段において残留するオゾンや過酸化水素を分解する際にも酸素を生成し、被処理水中の溶存酸素を増加させる。
これに対して、本発明に用いられる亜酸化窒素は、反応式(1)、(2)に示すように、紫外線の照射によってOを発生しない。また、亜酸化窒素は、安定な物質であるためイオン交換樹脂装置8に充填されたイオン交換樹脂との反応性は低く、イオン交換樹脂近傍での分解によるOの発生は殆どない。そのため、本発明の超純水製造装置1では、紫外線照射装置7出口や、イオン交換樹脂装置8出口及び限外濾過膜装置9出口での被処理水の溶存酸素濃度の増加を低減することができる。
When the organic compound in the water to be treated is decomposed by irradiating the ultraviolet ray with the ultraviolet irradiation device 7, nitrous oxide is used instead of ozone and hydrogen peroxide which are conventionally used to improve the decomposition efficiency of the organic compound. It is added to the treated water.
Conventionally used ozone generates O 2 by the irradiation of ultraviolet rays by the ultraviolet irradiation device 7 and increases the dissolved oxygen concentration in the water to be treated at the outlet of the ultraviolet irradiation device 7. Further, hydrogen peroxide that has been conventionally used is decomposed into oxygen and water in the vicinity of the surface of the ion exchange resin filled in the ion exchange resin device 8, and the dissolved oxygen concentration in the treated water that has passed through the ion exchange resin device 8 is reduced. increase. Moreover, oxygen is also generated when ozone or hydrogen peroxide remaining in the subsequent stage of the ultraviolet irradiation device 7 is decomposed using an oxidant removing device described later, and dissolved oxygen in the water to be treated is increased.
In contrast, nitrous oxide used in the present invention does not generate O 2 by irradiation with ultraviolet rays, as shown in reaction formulas (1) and (2). Moreover, since nitrous oxide is a stable substance, its reactivity with the ion exchange resin filled in the ion exchange resin device 8 is low, and there is almost no generation of O 2 due to decomposition in the vicinity of the ion exchange resin. Therefore, in the ultrapure water production apparatus 1 of the present invention, it is possible to reduce the increase in the dissolved oxygen concentration of the water to be treated at the outlet of the ultraviolet irradiation device 7, the outlet of the ion exchange resin device 8, and the outlet of the ultrafiltration membrane device 9. it can.

亜酸化窒素を含む被処理水に照射される紫外線は、173nm以上、240nm以下の範囲内の波長を含むものが好ましい。紫外線の波長が240nmを超えると、亜酸化窒素は240nmを超える光を吸収しないため、亜酸化窒素(NO)はNとOに解離せず、有機化合物の分解効率を向上させることが困難である。また、紫外線の波長が173nm未満であると、水による紫外線の吸収ピークが167nmであり、亜酸化窒素の紫外線の吸収ピークが190nmであることから、水による紫外線の吸収の割合が大きくなり、その結果、電力コストが大きくなるおそれがある。 The ultraviolet rays irradiated to the water to be treated containing nitrous oxide preferably have a wavelength in the range of 173 nm to 240 nm. When the wavelength of ultraviolet rays exceeds 240 nm, nitrous oxide does not absorb light exceeding 240 nm, so that nitrous oxide (N 2 O) does not dissociate into N 2 and O, which can improve the decomposition efficiency of organic compounds. Have difficulty. Further, when the wavelength of ultraviolet rays is less than 173 nm, the absorption peak of ultraviolet rays by water is 167 nm, and the absorption peak of ultraviolet rays of nitrous oxide is 190 nm, so that the proportion of absorption of ultraviolet rays by water increases. As a result, the power cost may increase.

亜酸化窒素を含む被処理水の温度は、15℃以上、30℃以下が好ましい。被処理水の温度が15℃未満であると、有機化合物の分解速度が低下するおそれがあり、被処理水の温度が30℃を超えると、被処理水への亜酸化窒素の溶解濃度が低下してしまうおそれがある。   The temperature of the water to be treated containing nitrous oxide is preferably 15 ° C. or higher and 30 ° C. or lower. If the temperature of the water to be treated is less than 15 ° C, the decomposition rate of the organic compound may be reduced. If the temperature of the water to be treated exceeds 30 ° C, the concentration of nitrous oxide dissolved in the water to be treated is reduced. There is a risk of it.

必要に応じて紫外線照射装置7の後段に亜酸化窒素除去手段(図示せず)を設けて、紫外線照射装置7によって処理された被処理水中に残存する亜酸化窒素を除去してもよい。   If necessary, a nitrous oxide removing means (not shown) may be provided downstream of the ultraviolet irradiation device 7 to remove nitrous oxide remaining in the water to be treated treated by the ultraviolet irradiation device 7.

紫外線照射装置7において分解生成された有機酸、二酸化炭素等の被処理水中のイオン成分は、イオン交換樹脂装置8によって除去され、最後に限外濾過膜装置9によって極微量の微粒子等が除去され、全有機性炭素濃度(TOC)の少ない超純水(2次純水)を得ることができる。   Ionic components in the water to be treated such as organic acid and carbon dioxide decomposed and generated in the ultraviolet irradiation device 7 are removed by the ion exchange resin device 8, and finally, an extremely small amount of fine particles and the like are removed by the ultrafiltration membrane device 9. Ultrapure water (secondary pure water) having a low total organic carbon concentration (TOC) can be obtained.

紫外線照射装置7により紫外線を照射して被処理水中の有機化合物を分解するに際して、有機化合物の分解効率の向上のために従来用いられていたオゾンや過酸化水素に代えて、亜酸化窒素を被処理水中に添加している。
従来用いられていたオゾンや過酸化水素は、紫外線照射装置7出口での被処理水中に残存すると、イオン交換樹脂装置8を構成するイオン交換樹脂や、限外濾過膜装置9の中空糸等を酸化劣化させ、劣化成分が被処理水中に混入して水質を低下させたり、イオン交換樹脂の交換が頻繁になる等の問題を有していた。このため、従来は、紫外線照射装置の後段、かつイオン交換樹脂装置の前段に、オゾンや過酸化水素を除去する酸化剤除去装置(例えば、紫外線を照射する手段や活性炭等)を設ける必要があった。
これに対して、本発明に用いられる亜酸化窒素は不活性ガスのために酸化剤として機能しないので、紫外線照射装置7出口での被処理水中に亜酸化窒素が残存していたとしても、イオン交換樹脂装置8を構成するイオン交換樹脂や、限外濾過膜装置9の中空糸等を酸化劣化させることはない。そのため、本発明の超純水製造装置1では、紫外線照射装置7の後段、かつイオン交換樹脂装置8の前段に従来配置されていた酸化剤除去装置を省略することができる。
When the organic compound in the water to be treated is decomposed by irradiating the ultraviolet ray with the ultraviolet irradiation device 7, nitrous oxide is used instead of ozone and hydrogen peroxide which are conventionally used to improve the decomposition efficiency of the organic compound. It is added to the treated water.
If ozone or hydrogen peroxide used in the past remains in the water to be treated at the exit of the ultraviolet irradiation device 7, the ion exchange resin constituting the ion exchange resin device 8, the hollow fiber of the ultrafiltration membrane device 9, etc. There have been problems such as oxidative deterioration, deterioration components mixed into the water to be treated and water quality being lowered, and frequent exchange of ion exchange resins. For this reason, conventionally, it has been necessary to provide an oxidizing agent removing device (for example, means for irradiating ultraviolet rays or activated carbon) to remove ozone and hydrogen peroxide after the ultraviolet irradiation device and before the ion exchange resin device. It was.
On the other hand, since nitrous oxide used in the present invention does not function as an oxidizing agent because of the inert gas, even if nitrous oxide remains in the water to be treated at the outlet of the ultraviolet irradiation device 7, The ion exchange resin constituting the exchange resin device 8 and the hollow fiber of the ultrafiltration membrane device 9 are not oxidatively deteriorated. Therefore, in the ultrapure water production apparatus 1 of the present invention, the oxidant removing apparatus that has been conventionally arranged in the subsequent stage of the ultraviolet irradiation apparatus 7 and the previous stage of the ion exchange resin apparatus 8 can be omitted.

本発明の超純水製造装置1は、亜酸化窒素添加手段6を備えているため、従来の通常の超純水製造装置によって除去することが困難であった原水(被処理水)中の尿素等の有機態窒素を、分解除去することが可能である。
超純水製造用の原水(河川水、地下水等)中には、例えば、窒素肥料や医薬品の原料等に由来して、尿素(NHCONH)が含まれている。しかしながら、尿素は、従来の通常の超純水製造装置では、その除去が容易でない。逆浸透装置での尿素の除去率は、例えば約60%であり、紫外線照射装置では尿素の分解が困難であり、また、イオン交換樹脂装置では尿素は交換されない。そのため、超純水中の全有機性炭素(TOC)のうち、通常50%以上を尿素が占めており、原水中の尿素は、超純水中のTOCの低減を阻む原因となっていた。
これに対し、本発明の超純水製造装置1は、亜酸化窒素添加手段6により亜酸化窒素を添加した状態で紫外線照射装置7により紫外線を照射して尿素を分解し、イオン交換樹脂装置8によって尿素の分解成分を除去して、被処理水中の尿素を効率的に分解除去することができる。
Since the ultrapure water production apparatus 1 of the present invention includes the nitrous oxide addition means 6, urea in raw water (treated water) that has been difficult to remove by a conventional normal ultrapure water production apparatus. It is possible to decompose and remove organic nitrogen such as.
In raw water (river water, groundwater, etc.) for producing ultrapure water, urea (NH 2 CONH 2 ) is contained, for example, derived from nitrogen fertilizer, pharmaceutical raw materials, and the like. However, it is not easy to remove urea with a conventional normal ultrapure water production apparatus. The removal rate of urea in the reverse osmosis device is, for example, about 60%, it is difficult to decompose urea in the ultraviolet irradiation device, and urea is not exchanged in the ion exchange resin device. For this reason, urea accounts for 50% or more of all organic carbon (TOC) in ultrapure water, and urea in raw water has been a cause of hindering the reduction of TOC in ultrapure water.
On the other hand, the ultrapure water production apparatus 1 of the present invention decomposes urea by irradiating ultraviolet rays with the ultraviolet irradiation device 7 in a state where nitrous oxide is added by the nitrous oxide addition means 6, and the ion exchange resin device 8. By removing the decomposition component of urea, the urea in the water to be treated can be efficiently decomposed and removed.

このように、亜酸化窒素添加手段6を備えた超純水製造装置1を用いることによって、被処理水中の全有機性炭素(TOC)濃度を、原水(被処理水)中の例えば0.5mg/Lから、例えば1μg/Lにまで低減することができる。   Thus, by using the ultrapure water production apparatus 1 provided with the nitrous oxide addition means 6, the total organic carbon (TOC) concentration in the for-treatment water is set to 0.5 mg in the raw water (the for-treatment water), for example. / L to, for example, 1 μg / L.

以上のように、本発明の超純水製造装置1は、紫外線照射装置7により紫外線を照射して被処理水中の有機化合物を分解するに際して、亜酸化窒素を被処理水中に添加することにより、被処理水中の有機化合物の分解効率を向上させることができる。   As described above, when the ultrapure water production apparatus 1 of the present invention decomposes an organic compound in water to be treated by irradiating ultraviolet rays with the ultraviolet ray irradiating device 7, it adds nitrous oxide to the water to be treated. The decomposition efficiency of the organic compound in the for-treatment water can be improved.

また、紫外線照射装置7により紫外線を照射して被処理水中の有機化合物を分解するに際して、有機化合物の分解効率の向上のために従来用いられていたオゾンや過酸化水素に代えて、亜酸化窒素を被処理水中に添加している。亜酸化窒素は不活性ガスのために酸化剤として機能しないので、紫外線照射装置7出口での被処理水中に亜酸化窒素が残存していたとしても、イオン交換樹脂装置8を構成するイオン交換樹脂等を酸化劣化させることはない。これに対して、従来用いられていたオゾンや過酸化水素を添加した場合には、紫外線照射装置7出口での被処理水中にオゾンや過酸化水素が残存すると、オゾンや過酸化水素は酸化剤として機能するため、イオン交換樹脂装置8を構成するイオン交換樹脂等を酸化劣化させてしまう。したがって、本発明の超純水製造装置1では、酸化剤として機能しない亜酸化窒素を添加しているので、イオン交換樹脂等の酸化劣化を防止でき、紫外線照射装置7の後段、かつイオン交換樹脂装置8の前段に酸化剤除去装置(例えば、紫外線を照射する手段や活性炭等)を配置することを省略することができる。このように、本発明の水処理装置及び水処理方法は、水処理装置の構成や、製造工程の簡略化が可能である。   In addition, when the organic compound in the water to be treated is decomposed by irradiating the ultraviolet ray with the ultraviolet irradiation device 7, nitrous oxide is used in place of ozone or hydrogen peroxide conventionally used for improving the decomposition efficiency of the organic compound. Is added to the water to be treated. Since nitrous oxide does not function as an oxidizing agent because of inert gas, even if nitrous oxide remains in the water to be treated at the outlet of the ultraviolet irradiation device 7, the ion exchange resin that constitutes the ion exchange resin device 8 Etc. are not deteriorated by oxidation. On the other hand, when ozone or hydrogen peroxide that has been conventionally used is added, if ozone or hydrogen peroxide remains in the water to be treated at the outlet of the ultraviolet irradiation device 7, ozone or hydrogen peroxide is oxidized. As a result, the ion exchange resin or the like constituting the ion exchange resin device 8 is oxidized and deteriorated. Therefore, in the ultrapure water production apparatus 1 of the present invention, since nitrous oxide that does not function as an oxidant is added, oxidative deterioration of the ion exchange resin or the like can be prevented, the latter stage of the ultraviolet irradiation apparatus 7 and the ion exchange resin. Arranging an oxidant removing device (for example, a means for irradiating ultraviolet rays or activated carbon) in front of the device 8 can be omitted. Thus, the water treatment apparatus and the water treatment method of the present invention can simplify the configuration of the water treatment apparatus and the manufacturing process.

また、従来用いられていたオゾンや過酸化水素に代えて酸化剤として機能しない亜酸化窒素を添加すれば、イオン交換樹脂装置8に充填されたイオン交換樹脂等の酸化劣化を防止できるため、イオン交換樹脂等の劣化成分が超純水中に混入することを低減できる。このため、本発明の水処理装置及び水処理方法は、安定した品質の超純水を得ることが可能であり、超純水の製造に好適である。   In addition, if nitrous oxide that does not function as an oxidant is added instead of ozone or hydrogen peroxide that has been used in the past, oxidative deterioration of the ion exchange resin or the like charged in the ion exchange resin device 8 can be prevented. It can reduce that deterioration components, such as exchange resin, mix in ultrapure water. For this reason, the water treatment apparatus and water treatment method of the present invention can obtain ultrapure water with stable quality, and are suitable for the production of ultrapure water.

また、本発明の超純水製造装置1は、紫外線照射装置7出口や、イオン交換樹脂装置8出口及び限外濾過膜装置9出口での被処理水の溶存酸素濃度の増加を低減できるので、溶存酸素を除去するために、紫外線照射装置の後段(例えば紫外線照射装置7とイオン交換樹脂装置8の間)に、例えば脱気装置のような溶存酸素除去手段を設けなくてもよい。そのため、本発明の水処理装置及び水処理方法は、水処理装置の構成や、製造工程の簡略化が可能である。
また、本発明の超純水製造装置1によれば、紫外線照射装置7出口での被処理水の溶存酸素濃度の増加を低減できるので、紫外線照射装置の後段(例えば紫外線照射装置7とイオン交換樹脂装置8の間)に、例えば脱気装置のような溶存酸素除去手段を設けた場合にも、この溶存酸素除去手段の負荷を低減することができる。
超純水中の溶存酸素濃度は、超純水の使用量の多い半導体洗浄において、3μg/L以下であることが要求されている(国際半導体技術ロードマップ、ITRS:International Technology Roadmap for Semiconductors)。本発明の水処理装置及び水処理方法は、紫外線照射装置7の後段への溶存酸素除去手段の配置を省略したり、溶存酸素除去手段を設けた場合にも溶存酸素除去手段の負荷を低減することができるので、超純水の製造に好適である。
Moreover, since the ultrapure water production apparatus 1 of the present invention can reduce the increase in the dissolved oxygen concentration of the water to be treated at the outlet of the ultraviolet irradiation device 7, the outlet of the ion exchange resin device 8, and the outlet of the ultrafiltration membrane device 9, In order to remove dissolved oxygen, it is not necessary to provide a dissolved oxygen removing means such as a deaeration device in the subsequent stage of the ultraviolet irradiation device (for example, between the ultraviolet irradiation device 7 and the ion exchange resin device 8). Therefore, the water treatment apparatus and the water treatment method of the present invention can simplify the configuration of the water treatment apparatus and the manufacturing process.
Further, according to the ultrapure water production apparatus 1 of the present invention, the increase in dissolved oxygen concentration of the water to be treated at the outlet of the ultraviolet irradiation apparatus 7 can be reduced, so that the latter stage of the ultraviolet irradiation apparatus (for example, ion exchange with the ultraviolet irradiation apparatus 7). Even when a dissolved oxygen removing means such as a deaerator is provided between the resin devices 8), the load of the dissolved oxygen removing means can be reduced.
The dissolved oxygen concentration in ultrapure water is required to be 3 μg / L or less in semiconductor cleaning with a large amount of ultrapure water used (International Semiconductor Technology Roadmap, ITRS: International Technology Roadmap for Semiconductors). The water treatment apparatus and the water treatment method of the present invention reduce the load of the dissolved oxygen removing means even when the arrangement of the dissolved oxygen removing means in the subsequent stage of the ultraviolet irradiation device 7 is omitted or when the dissolved oxygen removing means is provided. Therefore, it is suitable for the production of ultrapure water.

また、本発明の超純水製造装置1によれば、従来の通常の超純水製造装置によって除去することが困難であった原水(被処理水)中の尿素等の有機態窒素を、効率的に分解除去することが可能である。すなわち、亜酸化窒素添加手段6により亜酸化窒素を添加した状態で紫外線照射装置7により紫外線を照射して尿素を分解し、イオン交換樹脂装置8によって尿素の分解成分を除去して、被処理水中の尿素を効率的に分解除去することができる。これにより、本発明の超純水製造装置1では、超純水中のTOCを、従来よりも低減することができる。
また、本発明の超純水製造装置1によれば、TOCの目標値以下の超純水を安定して製造することが可能である。原水中の尿素の濃度は、地域や季節等の様々な要因によって変動する。従来の通常の超純水製造装置では、尿素を除去することが困難であったため、原水中の尿素濃度が増加するにつれ、得られる超純水中のTOCが上昇する。本発明の超純水製造装置1によれば、原水中の尿素濃度が高い場合にも、尿素を分解除去して超純水中のTOCを低減することができるので、高品質の超純水の安定した製造が可能である。
Moreover, according to the ultrapure water production apparatus 1 of the present invention, organic nitrogen such as urea in raw water (treated water), which has been difficult to remove by a conventional normal ultrapure water production apparatus, is efficiently used. Can be decomposed and removed. That is, in a state in which nitrous oxide is added by the nitrous oxide addition means 6, ultraviolet rays are irradiated by the ultraviolet irradiation device 7 to decompose urea, and urea decomposition components are removed by the ion exchange resin device 8, and the treated water is removed. The urea can be efficiently decomposed and removed. Thereby, in the ultrapure water manufacturing apparatus 1 of this invention, TOC in ultrapure water can be reduced rather than before.
Moreover, according to the ultrapure water production apparatus 1 of the present invention, it is possible to stably produce ultrapure water below the TOC target value. The concentration of urea in the raw water varies depending on various factors such as region and season. In the conventional normal ultrapure water production apparatus, since it was difficult to remove urea, the TOC in the obtained ultrapure water increases as the urea concentration in the raw water increases. According to the ultrapure water production apparatus 1 of the present invention, even when the concentration of urea in the raw water is high, urea can be decomposed and removed to reduce the TOC in the ultrapure water. Can be manufactured stably.

なお、本発明の実施形態は上記の実施形態に限られず、拡張、変更可能であり、拡張、変更した実施形態も本発明の技術的範囲に含まれる。
例えば、紫外線照射装置、及び紫外線照射装置の後段に配置されるイオン交換樹脂装置を、例えば、一次純水システムに設けてもよく、一次純水システム及び二次純水システムの両方に設けてもよい。
また、上述した実施の形態にあっては、亜酸化窒素添加手段6、紫外線照射装置7、及びイオン交換樹脂装置8を備える水処理装置として超純水製造装置1を例にして説明したが、超純水製造装置に限られるものではなく、例えば、純水製造装置、廃水処理装置、浄水処理装置等として構成してもよい。
In addition, embodiment of this invention is not restricted to said embodiment, It can expand and change, Embodiment which expanded and changed is also contained in the technical scope of this invention.
For example, the ultraviolet irradiation device and the ion exchange resin device arranged at the subsequent stage of the ultraviolet irradiation device may be provided in, for example, the primary pure water system, or may be provided in both the primary pure water system and the secondary pure water system. Good.
In the above-described embodiment, the ultrapure water production apparatus 1 has been described as an example of the water treatment apparatus including the nitrous oxide addition means 6, the ultraviolet irradiation apparatus 7, and the ion exchange resin apparatus 8. The apparatus is not limited to the ultrapure water production apparatus, and may be configured as, for example, a pure water production apparatus, a waste water treatment apparatus, a water purification treatment apparatus, or the like.

以下に、実施例を用いて本発明の内容を説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the content of the present invention will be described using examples, but the present invention is not limited to these examples.

(実施例1)
図2は、亜酸化窒素添加手段及び紫外線照射装置を備えた、有機化合物の模擬分解装置10の構成を示す図である。有機化合物の模擬分解装置10は、模擬水溶液である尿素水溶液を貯槽したガラス製の容器11と、尿素水溶液を攪拌する攪拌子12と、尿素水溶液中に配置され、かつ240nm以下の波長を含む紫外線を照射する紫外線照射装置13(石英試験管14と、石英試験管14内に配置される低圧紫外線ランプ15とで構成される)と、尿素水溶液中に亜酸化窒素ガスを添加する亜酸化窒素添加手段16(NOガス供給ライン17と、NOガス供給ライン17に接続され尿素水溶液中に亜酸化窒素ガスをバブリングするガラス製散気管18とで構成される)を備えている。
(Example 1)
FIG. 2 is a diagram illustrating a configuration of a simulated organic compound decomposition apparatus 10 including a nitrous oxide addition unit and an ultraviolet irradiation device. The organic compound simulated decomposition apparatus 10 includes a glass container 11 storing a urea aqueous solution as a simulated aqueous solution, a stirrer 12 for stirring the urea aqueous solution, and an ultraviolet ray disposed in the urea aqueous solution and having a wavelength of 240 nm or less. UV irradiation device 13 (comprised of quartz test tube 14 and low-pressure ultraviolet lamp 15 disposed in quartz test tube 14), and nitrous oxide addition for adding nitrous oxide gas to aqueous urea solution Means 16 (comprised of an N 2 O gas supply line 17 and a glass diffuser pipe 18 connected to the N 2 O gas supply line 17 for bubbling nitrous oxide gas into the urea aqueous solution).

尿素水溶液を容器11に収容し、NOガス供給ライン17により亜酸化窒素ガスを供給し、ガラス製散気管18を通じて尿素水溶液中にバブリングさせながら添加し、紫外線照射装置13により紫外線を照射して、有機化合物の分解模擬装置10を用いた有機化合物の分解試験を行った。試験条件は、初期尿素濃度1mg・C/L、尿素水溶液量3L、温度23℃、紫外線出力1.32W、NOガス純度99.999vol%以上、注入NOガス流量5mL/minである。
尿素水溶液中の全有機性炭素濃度(TOC)を測定し、紫外線照射量に対するTOC残存率(100×残存有機性炭素濃度/初期有機性炭素濃度)の変化を求めた。図3は、有機化合物の模擬分解装置10を用いて、尿素を分解した結果を示す図である。図3では、比較例として、亜酸化窒素を添加しなかったこと以外は、実施例1と全く同一にして、紫外線を照射した場合も示している。図3の縦軸は、TOC残存率(100×残存有機性炭素濃度/初期有機性炭素濃度)(%)、横軸は、紫外線の照射量(kW・hr/m)を示す。
An aqueous urea solution is accommodated in the container 11, nitrous oxide gas is supplied from the N 2 O gas supply line 17, added while being bubbled into the aqueous urea solution through the glass diffuser 18, and irradiated with ultraviolet rays by the ultraviolet irradiation device 13. The organic compound decomposition test using the organic compound decomposition simulation apparatus 10 was performed. The test conditions are initial urea concentration 1 mg · C / L, urea aqueous solution amount 3 L, temperature 23 ° C., UV output 1.32 W, N 2 O gas purity 99.999 vol% or more, injection N 2 O gas flow rate 5 mL / min. .
The total organic carbon concentration (TOC) in the urea aqueous solution was measured, and the change in the TOC residual rate (100 × residual organic carbon concentration / initial organic carbon concentration) with respect to the amount of ultraviolet irradiation was determined. FIG. 3 is a diagram showing a result of decomposing urea using the simulated decomposition apparatus 10 for organic compounds. In FIG. 3, as a comparative example, the case of irradiating ultraviolet rays is also shown in exactly the same manner as in Example 1 except that nitrous oxide was not added. The vertical axis of FIG. 3 indicates the TOC residual rate (100 × residual organic carbon concentration / initial organic carbon concentration) (%), and the horizontal axis indicates the amount of ultraviolet irradiation (kW · hr / m 3 ).

図3から明らかなように、尿素水溶液に亜酸化窒素を添加せずに4kW・hr/mの紫外線を照射した場合(比較例)には、TOC濃度の減少が4%程度であるのに対して、亜酸化窒素を添加して4kW・hr/mの紫外線を照射した場合には、TOC濃度の減少が20%を超えていた。
したがって、被処理水に亜酸化窒素を添加することにより、紫外線照射による有機化合物の分解効率が向上することが確認できた。
また、被処理水に亜酸化窒素を添加して紫外線を照射することにより、従来の通常の超純水製造装置では除去することが困難であった被処理水中の尿素を、効率的に分解できることが確認できた。
As apparent from FIG. 3, when the urea aqueous solution was irradiated with ultraviolet rays of 4 kW · hr / m 3 without adding nitrous oxide (comparative example), the decrease in the TOC concentration was about 4%. On the other hand, when nitrous oxide was added and irradiated with ultraviolet rays of 4 kW · hr / m 3 , the decrease in TOC concentration exceeded 20%.
Therefore, it was confirmed that by adding nitrous oxide to the water to be treated, the decomposition efficiency of the organic compound by ultraviolet irradiation was improved.
In addition, by adding nitrous oxide to the water to be treated and irradiating it with ultraviolet rays, it is possible to efficiently decompose urea in the water to be treated, which was difficult to remove with conventional conventional ultrapure water production equipment. Was confirmed.

(実施例2)
図1の超純水製造装置1を用いて超純水を経時的に連続して製造した。前処理装置2に供給する原水として、水道水を使用した。脱気装置5は、窒素ガスと被処理水との体積比率を0.03:1とした窒素ガス添加方式の真空脱気装置である。亜酸化窒素添加手段6は、亜酸化窒素ガスが充填されたガスボンベからの供給によるものであり、亜酸化窒素添加直後の被処理水中の亜酸化窒素濃度は、20mg/Lである。紫外線照射装置7は、低圧紫外線ランプ(千代田化工株式会社、低圧UV酸化用ランプ、照射量0.25KWh/m)であり、185nm付近の波長をピークとする紫外線を発生する。温度は、23℃で実施した。
(Example 2)
Using the ultrapure water production apparatus 1 of FIG. 1, ultrapure water was produced continuously over time. Tap water was used as raw water supplied to the pretreatment device 2. The degassing device 5 is a nitrogen gas addition type vacuum degassing device in which the volume ratio of nitrogen gas to water to be treated is 0.03: 1. The nitrous oxide addition means 6 is based on supply from a gas cylinder filled with nitrous oxide gas, and the concentration of nitrous oxide in the water to be treated immediately after the addition of nitrous oxide is 20 mg / L. The ultraviolet irradiation device 7 is a low-pressure ultraviolet lamp (Chiyoda Chemical Co., Ltd., low-pressure UV oxidation lamp, irradiation amount 0.25 kWh / m 3 ), and generates ultraviolet light having a peak at a wavelength around 185 nm. The temperature was 23 ° C.

また、比較のため、紫外線照射装置7の前段において亜酸化窒素を添加せずに、オゾンガス、又は過酸化水素を添加したこと以外は、実施例2と全く同一にして、超純水をそれぞれ経時的に連続して製造した。なお、オゾン添加直後の被処理水中のオゾン濃度は、7.3mg/L、過酸化水素添加直後の被処理水中の過酸化水素濃度は、7mg/Lである。   For comparison, the ultrapure water was treated in the same manner as in Example 2 except that ozone gas or hydrogen peroxide was added without adding nitrous oxide in the previous stage of the ultraviolet irradiation device 7. Manufactured continuously. The ozone concentration in the treated water immediately after the addition of ozone is 7.3 mg / L, and the hydrogen peroxide concentration in the treated water immediately after the addition of hydrogen peroxide is 7 mg / L.

限外濾過膜装置9出口での被処理水中の溶存酸素濃度を、亜酸化窒素、オゾン(比較例)、又は過酸化水素(比較例)を添加したそれぞれの場合について、隔膜式の溶存酸素計を用いてそれぞれ測定した。   For each case where nitrous oxide, ozone (comparative example), or hydrogen peroxide (comparative example) was added to the dissolved oxygen concentration in the water to be treated at the outlet of the ultrafiltration membrane device 9, a diaphragm type dissolved oxygen meter Was measured respectively.

亜酸化窒素を添加した場合には、限外濾過膜装置9の出口における被処理水中の溶存酸素濃度が1.0mg/L以下であったのに対し、オゾンを添加した場合(比較例)においては8.2mg/L、過酸化水素を添加した場合(比較例)においては7.1mg/Lであった。
したがって、紫外線照射装置7により紫外線を照射して被処理水中の有機化合物を分解するに際して、有機化合物の分解効率の向上のために従来用いられていたオゾンや過酸化水素に代えて、亜酸化窒素を被処理水中に添加すれば、限外濾過膜装置9出口での被処理水の溶存酸素濃度の増加を低減できることが確認できた。
また、亜酸化窒素を添加した場合には、イオン交換樹脂装置8に充填されたイオン交換樹脂や、限外濾過膜装置9を構成する中空糸の劣化や分解は確認されなかった。
また、亜酸化窒素を添加した場合に、得られた超純水のTOCは1μg/L以下であり、超純水製造装置1により高品質の超純水が得られることが確認できた。
When nitrous oxide was added, the dissolved oxygen concentration in the water to be treated at the outlet of the ultrafiltration membrane device 9 was 1.0 mg / L or less, whereas when ozone was added (comparative example) Was 8.2 mg / L, and 7.1 mg / L when hydrogen peroxide was added (Comparative Example).
Therefore, when the organic compound in the water to be treated is decomposed by irradiating the ultraviolet ray with the ultraviolet irradiation device 7, nitrous oxide is used in place of ozone or hydrogen peroxide conventionally used for improving the decomposition efficiency of the organic compound. It was confirmed that the increase in the dissolved oxygen concentration of the water to be treated at the outlet of the ultrafiltration membrane device 9 can be reduced by adding to the water to be treated.
Further, when nitrous oxide was added, no deterioration or decomposition of the ion exchange resin filled in the ion exchange resin device 8 or the hollow fibers constituting the ultrafiltration membrane device 9 was confirmed.
In addition, when nitrous oxide was added, the TOC of the obtained ultrapure water was 1 μg / L or less, and it was confirmed that high quality ultrapure water was obtained by the ultrapure water production apparatus 1.

(実施例3)
図2の有機化合物の模擬分解装置10によって模擬水溶液である尿素水溶液中の尿素を分解処理した後、この分解処理後の模擬水溶液をアニオン交換樹脂に通液して、尿素の分解除去試験を行った。
模擬分解装置10での試験条件は、初期尿素濃度1mg・C/L、尿素水溶液量3L、温度23℃、紫外線出力1.32W、NOガス純度99.999vol%以上、注入NOガス流量5mL/minであり、紫外線照射量が異なる2つの条件(1.1kW・hr/m、2.3kW・hr/m)でそれぞれ実施した。亜酸化窒素添加直後の尿素水溶液中の亜酸化窒素濃度は、98mg/Lであった。
アニオン交換樹脂としてA101(ローム・アンド・ハース・ジャパン社製)を100mL使用し、アニオン交換樹脂への通液は流速10mL/minであった。
(Example 3)
After the urea in the urea aqueous solution, which is a simulated aqueous solution, is decomposed by the simulated organic compound decomposition apparatus 10 in FIG. 2, the simulated aqueous solution after the decomposition treatment is passed through an anion exchange resin to perform a decomposition removal test of urea. It was.
The test conditions in the simulated decomposition apparatus 10 are: initial urea concentration 1 mg · C / L, urea aqueous solution amount 3 L, temperature 23 ° C., UV output 1.32 W, N 2 O gas purity 99.999 vol% or more, injected N 2 O gas It was carried out under two conditions (1.1 kW · hr / m 3 , 2.3 kW · hr / m 3 ) with a flow rate of 5 mL / min and different ultraviolet irradiation amounts. The nitrous oxide concentration in the urea aqueous solution immediately after the addition of nitrous oxide was 98 mg / L.
100 mL of A101 (Rohm and Haas Japan) was used as the anion exchange resin, and the liquid flow rate through the anion exchange resin was 10 mL / min.

有機化合物の模擬分解装置10によって尿素の分解処理がなされ、かつアニオン交換樹脂通液前の模擬水溶液のTOC(U1)と、アニオン交換樹脂通液後の模擬水溶液のTOC(U2)を測定し、尿素由来のTOC除去濃度(U1−U2)を求めた。図4は、有機化合物の模擬分解装置10及びアニオン交換樹脂を用いて、尿素水溶液中の尿素を分解除去した結果を示す図である。図4では、比較例として、有機化合物の模擬分解装置10において亜酸化窒素を添加しなかったこと以外は、実施例3と全く同一にして、尿素を分解除去した場合も示している。図4の縦軸は、尿素由来のTOC除去濃度(μg/L)、横軸は、紫外線照射量(kW・hr/m)を示す。 Urea is decomposed by the organic compound simulated decomposition apparatus 10 and the TOC (U1) of the simulated aqueous solution before passing through the anion exchange resin and the TOC (U2) of the simulated aqueous solution after passing through the anion exchange resin are measured. The urea-derived TOC removal concentration (U1-U2) was determined. FIG. 4 is a diagram showing a result of decomposing and removing urea in an aqueous urea solution using the simulated organic compound decomposition apparatus 10 and an anion exchange resin. FIG. 4 shows a case where urea is decomposed and removed in the same manner as in Example 3 except that nitrous oxide is not added in the simulated organic compound decomposition apparatus 10 as a comparative example. The vertical axis in FIG. 4 represents the urea-derived TOC removal concentration (μg / L), and the horizontal axis represents the ultraviolet irradiation amount (kW · hr / m 3 ).

図4から明らかなように、尿素水溶液に亜酸化窒素を添加して紫外線を照射した場合では、尿素水溶液に亜酸化窒素を添加せずに紫外線を照射した場合と比較して、尿素由来のTOC除去濃度が、約3〜5倍増加した。
したがって、被処理水に亜酸化窒素を添加して紫外線を照射した後、イオン交換樹脂装置に通液することにより、被処理水中の尿素を効率的に分解除去できることが確認できた。
As is clear from FIG. 4, when nitrous oxide is added to an aqueous urea solution and irradiated with ultraviolet light, the TOC derived from urea is compared with the case of irradiating ultraviolet light without adding nitrous oxide to the aqueous urea solution. The removal concentration increased about 3-5 times.
Therefore, it was confirmed that urea in the water to be treated can be efficiently decomposed and removed by adding nitrous oxide to the water to be treated and irradiating it with ultraviolet rays and then passing it through an ion exchange resin apparatus.

本発明の超純水製造装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the ultrapure water manufacturing apparatus of this invention. 亜酸化窒素添加手段及び紫外線照射装置を備えた、有機化合物の模擬分解装置の構成を示す図である。It is a figure which shows the structure of the simulated decomposition apparatus of the organic compound provided with the nitrous oxide addition means and the ultraviolet irradiation device. 有機化合物の模擬分解装置を用いて、尿素を分解した結果を示す図である。It is a figure which shows the result of having decomposed | disassembled urea using the simulation decomposition apparatus of the organic compound. 有機化合物の模擬分解装置及びアニオン交換樹脂を用いて、被処理水中の尿素を分解除去した結果を示す図である。It is a figure which shows the result of decomposing | disassembling and removing urea in to-be-processed water using the simulated decomposition apparatus and anion exchange resin of an organic compound.

符号の説明Explanation of symbols

1…超純水製造装置、2…前処理装置、3…2床3塔型イオン交換装置、4…逆浸透装置、5…脱気装置、6…亜酸化窒素添加手段、7…紫外線照射装置、8…イオン交換樹脂装置、9…限外濾過膜装置、10…有機化合物の模擬分解装置、11…容器、12…攪拌子、13…紫外線照射装置、14…石英試験管、15…低圧紫外線ランプ、16…亜酸化窒素添加手段、17…NOガス供給ライン、18…ガラス製散気管。 DESCRIPTION OF SYMBOLS 1 ... Ultrapure water manufacturing apparatus, 2 ... Pretreatment apparatus, 3 ... Two bed 3 tower type ion exchange apparatus, 4 ... Reverse osmosis apparatus, 5 ... Deaeration apparatus, 6 ... Nitrous oxide addition means, 7 ... Ultraviolet irradiation apparatus , 8 ... ion exchange resin device, 9 ... ultrafiltration membrane device, 10 ... simulated decomposition device of organic compound, 11 ... container, 12 ... stirrer, 13 ... ultraviolet irradiation device, 14 ... quartz test tube, 15 ... low pressure ultraviolet light lamp, 16 ... nitrous oxide adding means, 17 ... N 2 O gas supply line, 18 ... glass diffuser tube.

Claims (10)

被処理水に亜酸化窒素を添加する亜酸化窒素添加手段と、
前記亜酸化窒素を添加された被処理水に紫外線を照射し、水中の有機化合物を分解する紫外線照射装置と、
前記紫外線照射装置によって処理された被処理水を導入し、水中のイオンを除去するイオン交換樹脂装置と、
を具備することを特徴とする水処理装置。
Nitrous oxide addition means for adding nitrous oxide to the water to be treated;
An ultraviolet irradiation device that irradiates the water to be treated with the nitrous oxide added with ultraviolet rays, and decomposes organic compounds in the water;
An ion exchange resin device for introducing treated water treated by the ultraviolet irradiation device and removing ions in the water;
A water treatment apparatus comprising:
前記紫外線照射装置より発生する紫外線が、173nm〜240nmの波長範囲内の波長を有することを特徴とする請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein ultraviolet rays generated from the ultraviolet irradiation device have a wavelength within a wavelength range of 173 nm to 240 nm. 前記イオン交換樹脂装置は、アニオン交換樹脂装置、又はアニオン交換樹脂とカチオン交換樹脂の混合型装置であることを特徴とする請求項1又は2に記載の水処理装置。   The water treatment apparatus according to claim 1 or 2, wherein the ion exchange resin apparatus is an anion exchange resin apparatus or a mixed type apparatus of an anion exchange resin and a cation exchange resin. 前記有機化合物が、尿素を含むことを特徴とする請求項1乃至3のいずれか1項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 3, wherein the organic compound contains urea. 前記水処理装置が、超純水製造装置であることを特徴とする請求項1乃至4のいずれか1項に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the water treatment apparatus is an ultrapure water production apparatus. 被処理水に亜酸化窒素を添加する工程と、
前記亜酸化窒素が添加された被処理水に紫外線を照射して有機化合物を分解する工程と、
前記有機化合物が分解された被処理水をイオン交換樹脂装置で処理する工程と、
を具備することを特徴とする水処理方法。
Adding nitrous oxide to the water to be treated;
Irradiating ultraviolet rays to the water to be treated to which the nitrous oxide is added, and decomposing the organic compound;
Treating the water to be treated in which the organic compound is decomposed with an ion exchange resin device;
Water treatment method characterized by comprising.
前記紫外線が、173nm〜240nmの波長範囲内の波長を有することを特徴とする請求項6に記載の水処理方法。   The water treatment method according to claim 6, wherein the ultraviolet ray has a wavelength within a wavelength range of 173 nm to 240 nm. 前記イオン交換樹脂装置は、アニオン交換樹脂装置、又はアニオン交換樹脂とカチオン交換樹脂の混合型装置であることを特徴とする請求項6又は7に記載の水処理方法。   The water treatment method according to claim 6 or 7, wherein the ion exchange resin device is an anion exchange resin device or a mixed type device of an anion exchange resin and a cation exchange resin. 前記有機化合物が、尿素を含むことを特徴とする請求項6乃至8のいずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 6 to 8, wherein the organic compound contains urea. 前記水処理方法が、超純水製造方法であることを特徴とする請求項6乃至9のいずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 6 to 9, wherein the water treatment method is an ultrapure water production method.
JP2007021109A 2006-12-22 2007-01-31 Water treatment apparatus and water treating method Withdrawn JP2008173617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021109A JP2008173617A (en) 2006-12-22 2007-01-31 Water treatment apparatus and water treating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006346400 2006-12-22
JP2007021109A JP2008173617A (en) 2006-12-22 2007-01-31 Water treatment apparatus and water treating method

Publications (1)

Publication Number Publication Date
JP2008173617A true JP2008173617A (en) 2008-07-31

Family

ID=39701044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021109A Withdrawn JP2008173617A (en) 2006-12-22 2007-01-31 Water treatment apparatus and water treating method

Country Status (1)

Country Link
JP (1) JP2008173617A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230093A (en) * 2010-04-30 2011-11-17 Kurita Water Ind Ltd Water treatment method and method for producing ultrapure water
CN102381740A (en) * 2011-11-02 2012-03-21 哈尔滨工业大学 Method for removing nitrogenous disinfection byproducts in water on basis of persulfate/light combination
WO2016199435A1 (en) * 2015-06-11 2016-12-15 野村マイクロ・サイエンス株式会社 Ultrapure water manufacturing system and ultrapure water manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230093A (en) * 2010-04-30 2011-11-17 Kurita Water Ind Ltd Water treatment method and method for producing ultrapure water
CN102381740A (en) * 2011-11-02 2012-03-21 哈尔滨工业大学 Method for removing nitrogenous disinfection byproducts in water on basis of persulfate/light combination
WO2016199435A1 (en) * 2015-06-11 2016-12-15 野村マイクロ・サイエンス株式会社 Ultrapure water manufacturing system and ultrapure water manufacturing method

Similar Documents

Publication Publication Date Title
JP4932757B2 (en) Ultrapure water production method and ultrapure water production apparatus
WO2000064568A1 (en) Apparatus for producing water containing dissolved ozone
TWI732970B (en) Water treatment method and apparatus
JP3491666B2 (en) Method and apparatus for controlling TOC component removal
JPH11290878A (en) Control method for removing toc component
WO2018092831A1 (en) Water treatment method and device
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP2014168743A (en) Pure water manufacturing method
JP5512357B2 (en) Pure water production method and apparatus
JP4635827B2 (en) Ultrapure water production method and apparatus
JP2008173617A (en) Water treatment apparatus and water treating method
JP4978275B2 (en) Primary pure water production process water treatment method and apparatus
JP3506171B2 (en) Method and apparatus for removing TOC component
JPH1199394A (en) Method for removing organic matter in water
JP4835498B2 (en) Water treatment apparatus for ultrapure water production and water treatment system for ultrapure water production
JP2000308815A (en) Producing device of ozone dissolved water
JP5512358B2 (en) Pure water production method and apparatus
JPH0889976A (en) Method for removing organic matter in water
JPH09192658A (en) Manufacturing device of ultrapure water
JP2011240344A (en) Water treatment apparatus for manufacturing ultrapure water
JP2005161138A (en) Water treatment method and water treatment apparatus
JPH09253639A (en) Ultrapure water making apparatus
JPH10180243A (en) Ultrapure water production device
JPH09220560A (en) Ultrapure water making apparatus
JPH09174048A (en) Method for removing organic substance in water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406