JPH10202296A - Ultrapure water producer - Google Patents
Ultrapure water producerInfo
- Publication number
- JPH10202296A JPH10202296A JP9319898A JP31989897A JPH10202296A JP H10202296 A JPH10202296 A JP H10202296A JP 9319898 A JP9319898 A JP 9319898A JP 31989897 A JP31989897 A JP 31989897A JP H10202296 A JPH10202296 A JP H10202296A
- Authority
- JP
- Japan
- Prior art keywords
- water
- treated
- ozone
- organic matter
- reverse osmosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Physical Water Treatments (AREA)
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば半導体産業
におけるシリコンウエハの洗浄等に用いられる超純水の
製造装置に関し、さらに詳述すると、有機物を含む被処
理水中の有機物除去を行う経路(例えば回収系や二次純
水系)における有機物除去の効率化を図った超純水製造
装置に関する。なお、本明細書においては、一般には必
ずしも明確に定義分けされていない純水、超純水等の語
で説明される高純度な水を総称して「超純水」という。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing ultrapure water used for cleaning silicon wafers in the semiconductor industry, for example. The present invention relates to an ultrapure water production apparatus for improving the efficiency of removing organic substances in a recovery system or a secondary pure water system. Note that, in this specification, high-purity water, which is generally described in terms of pure water, ultrapure water, and the like, which are not necessarily clearly defined, is collectively referred to as “ultrapure water”.
【0002】[0002]
【従来の技術】シリコンウエハの洗浄等に用いられる超
純水の製造装置は、一般に、図7に示すように、一次純
水系2、二次純水系(サブシステム)4及び排水回収系
の一部をなす純水用排水回収系6を備えている。一次純
水系2は、例えば逆浸透膜装置、真空脱気装置、イオン
交換装置などを備えた経路であり、市水、工業用水等の
原水中に含まれる懸濁物質及び有機物の一部が前処理系
(図示せず)で除去された後、その処理水8が一次純水
系2に供給される。二次純水系4は、例えば紫外線酸化
装置、カートリッジポリッシャ、限外濾過膜装置などを
備えた経路であり、一次純水系2の処理水3(一次純
水)が純水貯槽10を経由して二次純水系4に供給され
る。二次純水系4で得られた超純水12の一部は使用場
所14に送られて使用され、残部は純水貯槽10に循環
される。純水用排水回収系6は、例えば活性炭濾過装
置、イオン交換装置、紫外線酸化装置などを備えた経路
であり、使用場所14で超純水を使用することにより生
じた排水16の処理を行う。純水用排水回収系6の処理
水18は、一次純水系2に戻されて再利用される。2. Description of the Related Art As shown in FIG. 7, an apparatus for producing ultrapure water used for cleaning a silicon wafer or the like generally includes a primary pure water system 2, a secondary pure water system (subsystem) 4, and a wastewater recovery system. A pure water drainage recovery system 6 is provided. The primary pure water system 2 is a path provided with, for example, a reverse osmosis membrane device, a vacuum deaerator, an ion exchange device, and the like, and a part of suspended substances and organic substances contained in raw water such as city water and industrial water is used. After being removed by a treatment system (not shown), the treated water 8 is supplied to the primary pure water system 2. The secondary pure water system 4 is a path provided with, for example, an ultraviolet oxidation device, a cartridge polisher, an ultrafiltration membrane device, and the like. It is supplied to the secondary pure water system 4. Part of the ultrapure water 12 obtained in the secondary pure water system 4 is sent to a use place 14 for use, and the remainder is circulated to a pure water storage tank 10. The pure water wastewater recovery system 6 is a path provided with, for example, an activated carbon filtration device, an ion exchange device, an ultraviolet oxidation device, and the like, and performs a treatment of the wastewater 16 generated by using ultrapure water at the use place 14. The treated water 18 of the pure water drainage recovery system 6 is returned to the primary pure water system 2 and reused.
【0003】なお、一般的な超純水製造装置では、使用
場所14から排出された超純水を使用することにより生
じた排水16を処理する排水回収系として、適当な処理
を施してから一次純水系に戻す前記純水用排水回収系6
の外に、排水の清浄度に応じて、何ら処理を施すことな
く直接一次純水系に戻す経路、適当な処理を施してから
雑用水として使用する経路(雑用水用排水回収系)、及
び、適当な処理を施してから放流する経路(廃水処理
系)を備えている。[0003] In a general ultrapure water producing apparatus, as a wastewater recovery system for treating wastewater 16 generated by using ultrapure water discharged from the place of use 14, a primary treatment is performed after an appropriate treatment. The pure water drainage recovery system 6 for returning to the pure water system
In addition to the above, according to the cleanliness of the wastewater, a route to return directly to the primary pure water system without any treatment, a route to be used as miscellaneous water after performing appropriate treatment (miscellaneous wastewater collection system), and A route (wastewater treatment system) for discharging after appropriate treatment is provided.
【0004】[0004]
【発明が解決しようとする課題】半導体産業におけるシ
リコンウエハ等の洗浄工程では、イソプロピルアルコー
ル、メタノール、アセトン等の有機系洗浄剤が使用され
るため、使用場所からの超純水の排水中には微量の有機
物が含まれているのが通常であるが、この使用場所から
の排水は、市水、工業用水等に比べて不純物の濃度が極
めて低い。したがって、超純水製造装置の純水用排水回
収系で使用場所からの排水中の有機物濃度をできるだけ
低くし、その処理水を一次純水系に戻せば、純度の高い
超純水を得る点で非常に有利になる。そのため、純水用
排水回収系では、被処理水中から有機物を可能な限り除
去することが望まれている。In the process of cleaning silicon wafers and the like in the semiconductor industry, organic cleaning agents such as isopropyl alcohol, methanol, and acetone are used. Usually, a trace amount of organic matter is contained, but the concentration of impurities in the wastewater from this place of use is extremely low as compared with city water, industrial water and the like. Therefore, if the organic matter concentration in the wastewater from the place of use is reduced as much as possible in the pure water wastewater recovery system of the ultrapure water production equipment and the treated water is returned to the primary pure water system, high purity ultrapure water can be obtained. It will be very advantageous. Therefore, in the wastewater recovery system for pure water, it is desired to remove organic substances as much as possible from the water to be treated.
【0005】この場合、純水用排水回収系における有機
物の除去方法としては、従来、被処理水(排水)に酸化
剤であるオゾン又は過酸化水素を添加し、さらにオゾン
又は過酸化水素を含有する被処理水に紫外線を照射して
有機物を酸化分解する方法が知られている。[0005] In this case, as a method for removing organic substances in the pure water wastewater recovery system, conventionally, ozone or hydrogen peroxide as an oxidizing agent is added to the water to be treated (drainage), and further, ozone or hydrogen peroxide is contained. There is known a method in which water to be treated is irradiated with ultraviolet rays to oxidatively decompose organic substances.
【0006】しかし、この方法においては、有機物の分
解速度が遅いため処理時間が長くかかり、処理効率が悪
いという欠点があった。また、高圧紫外線ランプを使用
するため装置が大型化かつ複雑化する上、ランニングコ
ストが増大し、経済的に不利であった。However, this method has a drawback that the processing time is long because the decomposition rate of organic substances is low and the processing efficiency is low. Further, the use of a high-pressure ultraviolet lamp increases the size and complexity of the apparatus, increases the running cost, and is economically disadvantageous.
【0007】本発明は、上記事情に鑑みてなされたもの
で、被処理水中の有機物除去を行う経路における有機物
除去の効率化を図った超純水製造装置を提供することを
目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ultrapure water production apparatus which can efficiently remove organic substances in a path for removing organic substances from water to be treated.
【0008】[0008]
【課題を解決するための手段】本発明者らは、有機物を
含む被処理水のpHをアルカリ側の特定の範囲に調整す
るとともに、このアルカリ性の被処理水にオゾンを添加
した場合、紫外線照射を行うことなく被処理水中の有機
物を効率的に除去できることを知見した。この方法にお
いては、オゾンとアルカリとの反応によって生じるヒド
ロキシラジカルによって有機物が酸化分解されるもので
ある。Means for Solving the Problems The present inventors have adjusted the pH of water to be treated containing organic substances to a specific range on the alkali side, and added ozone to the alkaline water to be treated. It was found that the organic matter in the water to be treated can be efficiently removed without performing the treatment. In this method, an organic substance is oxidatively decomposed by a hydroxy radical generated by a reaction between ozone and an alkali.
【0009】本発明者らは、上述した有機物分解方法に
ついてさらに検討を行い、その結果、被処理水にアルカ
リ性条件下でオゾンを添加して有機物の酸化分解を行う
場合、被処理水中にイオン性不純物、特に塩化物イオ
ン、フッ化物イオン等の陰イオン性不純物が含まれてい
ると有機物の酸化分解反応が阻害され、有機物の除去効
率が低下すること、これに対し被処理水へのオゾン添加
を行う前に被処理水を逆浸透膜装置で処理すると、被処
理水中から有機物の酸化分解反応を阻害する陰イオン性
不純物が除去される上、被処理水中の有機物がかなり除
去されるため、オゾン添加時における有機物の除去効率
が向上することを知見した。The present inventors have further studied the above-mentioned organic substance decomposition method. As a result, when ozone is added to the water to be treated under alkaline conditions to oxidize and decompose organic substances, the ionic water is contained in the water to be treated. Impurities, especially anionic impurities such as chloride ions and fluoride ions, inhibit the oxidative decomposition reaction of organic substances and reduce the efficiency of removing organic substances. On the other hand, the addition of ozone to the water to be treated If the water to be treated is treated with a reverse osmosis membrane device before performing the above, anionic impurities that inhibit the oxidative decomposition reaction of organic substances are removed from the water to be treated, and organic substances in the water to be treated are considerably removed. It has been found that the removal efficiency of organic substances at the time of adding ozone is improved.
【0010】本発明は、上記知見に基づいてなされたも
ので、有機物を含有する被処理水を通水する逆浸透膜装
置と、前記逆浸透膜装置の透過水にアルカリ性条件下で
オゾンを添加することにより該透過水中に含まれる有機
物を酸化分解する有機物酸化装置とを具備することを特
徴とする超純水製造装置を提供する。[0010] The present invention has been made based on the above findings, and includes a reverse osmosis membrane device for passing water to be treated containing an organic substance, and adding ozone to the permeated water of the reverse osmosis membrane device under alkaline conditions. And an organic substance oxidizing apparatus for oxidizing and decomposing organic substances contained in the permeated water.
【0011】本発明の超純水装置は、有機物、特に微量
の有機物を含む被処理水中の有機物除去を行う経路、例
えば排水回収系の純水用排水回収系や二次純水系に、前
述した逆浸透膜装置及び有機物酸化装置を設置したもの
である。この場合、逆浸透膜装置の種類に制限はなく、
各種の逆浸透膜装置が使用可能であり、例えばポリアミ
ド系、アラミド系等の合成複合膜を用いた逆浸透膜装
置、酢酸セルローズ膜等のセルローズ系膜を用いた逆浸
透膜装置などを使用することができるが、有機物の除去
性能に優れている点でポリアミド系複合膜を用いた逆浸
透膜装置が特に好ましい。また、逆浸透膜装置として
は、スパイラル型、中空糸型、管状型等のいかなるタイ
プのものでもよい。[0011] The ultrapure water apparatus of the present invention is used in a path for removing organic substances, particularly organic substances in the water to be treated containing a trace amount of organic substances, such as a wastewater recovery system for pure water and a secondary pure water system. A reverse osmosis membrane device and an organic matter oxidation device are installed. In this case, there is no restriction on the type of reverse osmosis membrane device,
A variety of reverse osmosis membrane devices can be used, for example, a reverse osmosis membrane device using a synthetic composite membrane such as a polyamide-based or aramid-based membrane, or a reverse osmosis membrane device using a cellulose-based membrane such as a cellulose acetate membrane is used. However, a reverse osmosis membrane device using a polyamide-based composite membrane is particularly preferred in that it has excellent organic matter removal performance. Further, the reverse osmosis membrane device may be of any type such as a spiral type, a hollow fiber type, a tubular type and the like.
【0012】また、有機物酸化装置の構成に限定はない
が、下記〜の条件の1以上、特に全てを備えたもの
であることが好ましい。 気液撹拌混合手段によって被処理水にオゾンを添加す
ること。 被処理水のpHが9.7以上のアルカリ性条件下で被
処理水にオゾンを添加すること。 被処理水に対するオゾン添加量が3〜40ppmとな
るように被処理水にオゾンを添加すること。Although there is no limitation on the structure of the organic oxidation apparatus, it is preferable that the apparatus satisfies one or more, particularly all of the following conditions. Ozone is added to the water to be treated by gas-liquid stirring and mixing means. Ozone is added to the water to be treated under alkaline conditions where the pH of the water to be treated is 9.7 or more. Ozone is added to the water to be treated so that the amount of ozone added to the water to be treated is 3 to 40 ppm.
【0013】すなわち、被処理水にオゾンを添加する場
合、オゾンは水に対する溶解性が低いため、散気板を用
いるバブリングでは水に十分に溶解せず、有機物の酸化
分解反応が効率良く行われにくいが、気液撹拌混合手段
を用いれば被処理水にオゾンを十分に溶解させることが
でき、有機物の酸化分解反応が効率的に行われる。した
がって、有機物酸化装置としてはの条件を備えること
が好ましい。That is, when ozone is added to the water to be treated, ozone has low solubility in water, so that it is not sufficiently dissolved in water by bubbling using a diffuser plate, and the oxidative decomposition reaction of organic substances is efficiently performed. Although it is difficult, ozone can be sufficiently dissolved in the water to be treated by using the gas-liquid stirring and mixing means, and the oxidative decomposition reaction of organic substances is efficiently performed. Therefore, it is preferable that the organic material oxidizing device has the following conditions.
【0014】この場合、気液撹拌混合手段とは、気体と
液体とを撹拌しながら混同して、液体中に気体を溶解さ
せる手段をいう。このような手段を用いたオゾン溶解方
法としては、例えば、回転翼を備えたポンプの吸引側に
被処理水及びオゾンを導入し、回転翼の回転により被処
理水とオゾンを撹拌混合し、この撹拌混合により被処理
水中にオゾンを溶解せしめ、このオゾンを溶解した被処
理水をポンプの吐出側に連結された配管を通して処理系
に送液するという方法(オゾン溶解ポンプ)や、上記ポ
ンプに代えてエゼクター等で加圧水流を供給し、この水
流の動きで被処理水とオゾンとを撹拌混合し、被処理水
中にオゾンを溶解させる方法等がある。また、配管の途
中に密閉容器を形成し、この密閉容器の内部に回転翼を
備えた攪拌機構を有したラインミキサー等も用いること
ができる。In this case, the gas-liquid stirring and mixing means refers to a means for mixing a gas and a liquid while stirring them to dissolve the gas in the liquid. As a method for dissolving ozone using such a means, for example, water to be treated and ozone are introduced into the suction side of a pump equipped with a rotating blade, and the water to be treated and ozone are stirred and mixed by rotation of the rotating blade. Ozone is dissolved in the water to be treated by stirring and mixing, and the water to be treated in which the ozone is dissolved is sent to the treatment system through a pipe connected to the discharge side of the pump (ozone dissolving pump). Then, a pressurized water flow is supplied by an ejector or the like, and the water to be treated and ozone are stirred and mixed by the movement of the water flow to dissolve ozone in the water to be treated. Further, a line mixer having a stirring mechanism provided with a rotating blade inside a sealed container formed with a sealed blade in the middle of the pipe can also be used.
【0015】また、図6は有機物を含む水(TOC濃度
2000ppb)を複数用意し、それぞれにアルカリを
加えて種々の異なったpHに調整するとともに、オゾン
を9.6ppm添加して、有機物の酸化分解の程度が初
期pH値によってどのように変わるかをみたものであ
る。グラフの縦軸におけるTOCはオゾン反応10分後
の残留TOCを示す。同図によれば、pH9.7以上、
特にpH9.7〜11.0、中でもpH10.0〜1
0.5の範囲で有機物の分解速度が大きいことがわか
る。したがって、有機物酸化装置としてはの条件を備
えることが好ましい。FIG. 6 shows that a plurality of waters (TOC concentration: 2000 ppb) containing an organic substance are prepared, each of which is adjusted to various different pHs by adding an alkali, and 9.6 ppm of ozone is added to oxidize the organic substance. This shows how the degree of decomposition changes depending on the initial pH value. TOC on the vertical axis of the graph indicates the residual TOC after 10 minutes from the ozone reaction. According to the figure, pH 9.7 or more,
Especially pH 9.7 to 11.0, especially pH 10.0 to 1
It can be seen that the decomposition rate of organic matter is high in the range of 0.5. Therefore, it is preferable that the organic material oxidizing device has the following conditions.
【0016】さらに、被処理水に対するオゾン添加量が
3ppm未満では有機物の酸化分解が不十分となり、ま
た40ppmを超えて添加しても有機物の酸化分解はそ
れ以上促進されないばかりか反応に寄与しないオゾンが
増えて処理コスト面から望ましくない。したがって、有
機物酸化装置としてはの条件を備えることが好まし
い。被処理水に対するオゾン添加量のより好ましい範囲
は、7〜30ppmである。Further, if the amount of ozone added to the water to be treated is less than 3 ppm, the oxidative decomposition of organic substances becomes insufficient, and even if added in more than 40 ppm, the oxidative decomposition of organic substances is not further promoted, but also does not contribute to the reaction. Increases, which is not desirable in terms of processing cost. Therefore, it is preferable that the organic material oxidizing device has the following conditions. A more preferable range of the amount of ozone added to the water to be treated is 7 to 30 ppm.
【0017】本発明に用いる有機物酸化装置では、被処
理水のpH調整を行った後に被処理水へのオゾン溶解を
行ってもよく、被処理水へのオゾン溶解を行った後に被
処理水のpH調整を行ってもよく、被処理水のpH調整
と被処理水へのオゾン溶解とを同時に行ってもよい。ま
た、被処理水のpHが元々適当な値であるときには、被
処理水のpH調整を行うことなく被処理水へのオゾン溶
解を行ってもよい。被処理水にアルカリ性条件下でオゾ
ンを添加すると、被処理水中の有機物の酸化分解反応は
直ちに開始するが、被処理水を加熱することにより、有
機物の酸化分解速度を速めることができる。In the organic matter oxidizing apparatus used in the present invention, the pH of the water to be treated may be adjusted before dissolving ozone in the water to be treated. The pH may be adjusted, and the pH adjustment of the water to be treated and the ozone dissolution in the water to be treated may be performed simultaneously. When the pH of the water to be treated is originally an appropriate value, the ozone may be dissolved in the water to be treated without adjusting the pH of the water to be treated. When ozone is added to the water to be treated under alkaline conditions, the oxidative decomposition reaction of the organic matter in the water to be treated starts immediately. However, by heating the water to be treated, the oxidative decomposition rate of the organic matter can be increased.
【0018】本発明の超純水製造装置においては、逆浸
透膜装置の上流側又は逆浸透膜装置と有機物酸化装置と
の間に、OH形の陰イオン交換樹脂を用いた陰イオン交
換装置を設けることができる。これにより、有機物酸化
装置における有機物の酸化分解反応を阻害する陰イオン
性不純物をさらに高度に除去することができ、有機物酸
化装置における有機物の除去効率をさらに高めることが
できる。また、被処理水中にはナトリウムイオン等の陽
イオンが含まれており、被処理水を陰イオン交換装置に
通すと水酸化ナトリウム等が生成するため、該陰イオン
交換装置では出口水がアルカリ性となる。したがって、
後段の有機物酸化装置において、被処理水をアルカリ性
にするためのアルカリ剤の添加を不要としたり、添加量
を低減したりすることが可能となる。In the apparatus for producing ultrapure water according to the present invention, an anion exchange apparatus using an OH type anion exchange resin is provided upstream of the reverse osmosis membrane apparatus or between the reverse osmosis membrane apparatus and the organic matter oxidation apparatus. Can be provided. Thereby, anionic impurities that inhibit the oxidative decomposition reaction of the organic substance in the organic substance oxidizing apparatus can be more highly removed, and the removal efficiency of the organic substance in the organic substance oxidizing apparatus can be further increased. In addition, cations such as sodium ions are contained in the water to be treated, and when the water to be treated is passed through an anion exchange device, sodium hydroxide and the like are generated. Become. Therefore,
In the subsequent organic oxidation apparatus, it is not necessary to add an alkali agent for making the water to be treated alkaline, or it is possible to reduce the addition amount.
【0019】この場合、陰イオン交換装置の陰イオン交
換樹脂の種類に限定はなく、弱塩基性陰イオン交換樹脂
でも強塩基性陰イオン交換樹脂でも使用できるが、逆浸
透膜装置、有機物酸化装置及び陰イオン交換装置を排水
回収系の純水用排水回収系に設置するときには、弱塩基
性陰イオン交換樹脂が特に好ましい。その理由は、純水
用排水回収系に送られる被処理水中には通常フッ酸等の
酸が含まれているために被処理水は通常酸性であり、し
たがってOH形の弱塩基性陰イオン交換樹脂でフッ化物
イオン等の陰イオンを十分に除去することができ、しか
も弱塩基性陰イオン交換樹脂はイオン交換容量が強塩基
性陰イオン交換樹脂よりも大きいためである。In this case, the type of the anion exchange resin in the anion exchange apparatus is not limited, and either a weakly basic anion exchange resin or a strongly basic anion exchange resin can be used. When the anion exchange device is installed in the wastewater recovery system for pure water in the wastewater recovery system, a weakly basic anion exchange resin is particularly preferable. The reason is that the water to be treated sent to the wastewater recovery system for pure water usually contains acids such as hydrofluoric acid, so that the water to be treated is usually acidic. This is because the resin can sufficiently remove anions such as fluoride ions, and the weakly basic anion exchange resin has a larger ion exchange capacity than the strongly basic anion exchange resin.
【0020】また、陰イオン交換装置は上記作用を有す
るため、本発明の超純水製造装置は、逆浸透膜装置に代
えてOH形の陰イオン交換樹脂を用いた陰イオン交換装
置を設け、有機物を含有する被処理水を前記陰イオン交
換装置で処理するとともに、該陰イオン交換装置の処理
水中に含まれる有機物を有機物酸化装置で酸化分解する
ように構成することができる。この構成の装置では、被
処理水中から陰イオン性不純物を除去して有機物酸化装
置における有機物の除去効率を向上させることができ、
しかも被処理水をアルカリ性にするためのアルカリ剤の
添加を不要としたり、添加量を低減したりすることが可
能となる。Further, since the anion exchange apparatus has the above-mentioned action, the apparatus for producing ultrapure water of the present invention is provided with an anion exchange apparatus using an OH type anion exchange resin instead of the reverse osmosis membrane apparatus. The water to be treated containing an organic substance may be treated by the anion exchange device, and the organic matter contained in the treated water of the anion exchange device may be oxidatively decomposed by an organic matter oxidation device. In the apparatus having this configuration, it is possible to remove anionic impurities from the water to be treated, thereby improving the efficiency of removing organic substances in the organic substance oxidizing apparatus,
In addition, it is not necessary to add an alkali agent for making the water to be treated alkaline, or the amount of the alkali agent can be reduced.
【0021】本発明の超純水製造装置では、有機物酸化
装置の下流側に、少なくとも陰イオン交換樹脂を用いた
イオン交換装置を設けることができる。このようにする
と、有機物酸化装置で有機物が二酸化炭素まで分解され
なかったときでも、有機物酸化装置で有機物がイオン性
物質である有機酸にまで分解されていれば、後段のイオ
ン交換装置に用いられている陰イオン交換樹脂で上記イ
オン性物質が除去されるため、全体として有機物が効率
的に除去される。この場合、有機物酸化装置におけるp
Hやオゾン添加量を調整することにより、意図的に有機
物を二酸化炭素まで分解せず、有機酸に分解するように
してもよい。これにより、アルカリ剤の使用量やオゾン
添加量を低減できるため、ランニングコストを低くする
ことができる。イオン交換装置としては、例えば、陰イ
オン交換樹脂のみを用いた陰イオン交換装置や、陰イオ
ン交換樹脂と陽イオン交換樹脂とを組み合わせてなる混
床式純水製造装置、複床式純水製造装置、2床3塔式純
水製造装置等を用いることが可能である。In the apparatus for producing ultrapure water of the present invention, an ion exchange apparatus using at least an anion exchange resin can be provided downstream of the organic matter oxidation apparatus. In this way, even when the organic matter is not decomposed into carbon dioxide in the organic matter oxidizer, if the organic matter is decomposed into the organic acid which is an ionic substance in the organic matter oxidizer, the organic matter is used in the subsequent ion exchanger. Since the above-mentioned ionic substance is removed by the anion exchange resin used, organic substances are efficiently removed as a whole. In this case, p in the organic oxidation device
By adjusting the amount of H or ozone added, organic substances may be intentionally decomposed into organic acids without being decomposed into carbon dioxide. As a result, the amount of use of the alkali agent and the amount of ozone added can be reduced, so that the running cost can be reduced. Examples of the ion exchange apparatus include, for example, an anion exchange apparatus using only an anion exchange resin, a mixed bed pure water production apparatus combining an anion exchange resin and a cation exchange resin, and a double bed pure water production. It is possible to use an apparatus, a two-bed, three-tower type pure water production apparatus, or the like.
【0022】本発明の超純水製造装置では、有機物酸化
装置の下流側に、被処理水中のオゾンを分解するオゾン
分解手段を設けることができる。これにより、有機物酸
化装置の処理水中に残存するオゾンが後段のイオン交換
装置等に悪影響を及ぼすことを防止できる。オゾン分解
手段としては、例えば、被処理水を活性炭に通水してオ
ゾンを還元分解する手段、被処理水に還元剤を注入して
オゾンを還元分解する手段等が挙げられる。なお、オゾ
ン分解手段は、有機物酸化装置の直後に設置すること
が、オゾンが後段の装置に悪影響を及ぼすことを防止す
る点で好ましい。In the ultrapure water producing apparatus of the present invention, an ozone decomposing means for decomposing ozone in the water to be treated can be provided downstream of the organic matter oxidizing apparatus. Thereby, it is possible to prevent ozone remaining in the treated water of the organic matter oxidizing apparatus from adversely affecting the subsequent ion exchange apparatus and the like. Examples of the ozone decomposing means include a means for reducing the decomposition of ozone by passing treated water through activated carbon, and a means for reducing and decomposing ozone by injecting a reducing agent into the treated water. The ozone decomposing means is preferably provided immediately after the organic oxidizing device in order to prevent ozone from adversely affecting the subsequent device.
【0023】また、本発明の超純水製造装置では、有機
物酸化装置の下流側に、脱気装置を設けることができ
る。脱気装置は、本来被処理水中の溶存酸素を除去する
装置であるが、溶存酸素が被処理水中から除去される際
に被処理水中に存在する揮発性の有機物も一部除去され
る。したがって、有機物酸化装置の下流側に脱気装置を
設けることにより、有機物濃度がさらに低減した処理水
を得ることができる。脱気装置としては、例えば、真空
脱気装置、膜脱気装置等を用いることができる。膜脱気
装置とは、気体透過膜で仕切られた一方の室に被処理水
を流すとともに、他方の室を減圧することにより、被処
理水中に含まれるガスを気体透過膜を通して他方の室に
移行させて除去する装置である。In the apparatus for producing ultrapure water of the present invention, a deaerator can be provided downstream of the organic matter oxidizer. The deaerator is originally a device for removing dissolved oxygen in the water to be treated, but also removes a part of volatile organic substances present in the water to be treated when the dissolved oxygen is removed from the water to be treated. Therefore, by providing the deaerator on the downstream side of the organic matter oxidizing apparatus, it is possible to obtain treated water having a further reduced organic matter concentration. As the deaerator, for example, a vacuum deaerator, a membrane deaerator or the like can be used. Membrane deaerator is a system in which water to be treated flows into one chamber partitioned by a gas-permeable membrane, and the other chamber is decompressed to allow gas contained in the water to be treated to pass through the gas-permeable membrane to the other chamber. It is a device that moves and removes.
【0024】さらに、本発明の超純水製造装置では、逆
浸透膜装置の上流側に前処理用の活性炭濾過装置を設け
たり、有機物酸化装置の下流側にさらに逆浸透膜装置
(第2の逆浸透膜装置)を設けたりすることができる。
上記第2の逆浸透膜装置を設けた場合には、処理水中の
有機物濃度をより低減させることができる。Further, in the apparatus for producing ultrapure water of the present invention, an activated carbon filter for pretreatment is provided upstream of the reverse osmosis membrane apparatus, or a reverse osmosis membrane apparatus (second) is provided downstream of the organic matter oxidation apparatus. Or a reverse osmosis membrane device).
When the second reverse osmosis membrane device is provided, the concentration of organic substances in the treated water can be further reduced.
【0025】本発明の超純水製造装置は、逆浸透膜装置
及び有機物酸化装置を排水回収系の純水用排水回収系に
設置し、逆浸透膜装置の透過水を有機物酸化装置で処理
して一次純水系に導入するとともに、逆浸透膜装置の濃
縮水を前記排水回収系の雑用水用排水回収系又は廃水処
理系に導入することができる。また、廃水処理系を設け
ず、使用場所からの超純水の排水を放流することなく超
純水の原水又は雑用水として再利用するようにしたクロ
ーズドシステムの超純水製造装置では、上記と同様に逆
浸透膜装置及び有機物酸化装置を純水用排水回収系に設
置するとともに、逆浸透膜装置の濃縮水を雑用水用排水
回収系に導入することができる。上記のようにすると、
純水用排水回収系において被処理水中から有機物を高度
に除去することができるため、その処理水を再利用する
ことにより純度の高い超純水を得ることができるととも
に、逆浸透膜装置の濃縮水の有効利用あるいは適切な処
理を図ることができる。In the apparatus for producing ultrapure water of the present invention, a reverse osmosis membrane apparatus and an organic matter oxidizing apparatus are installed in a pure water wastewater recovery system of a wastewater recovery system, and the permeated water of the reverse osmosis membrane apparatus is treated by the organic matter oxidizing apparatus. And the concentrated water of the reverse osmosis membrane device can be introduced into the wastewater recovery system for waste water or the wastewater treatment system of the wastewater recovery system. Also, without providing a wastewater treatment system, the ultrapure water production apparatus of the closed system that is reused as ultrapure water raw water or miscellaneous water without discharging the ultrapure water drainage from the place of use, Similarly, the reverse osmosis membrane device and the organic matter oxidizing device can be installed in the wastewater recovery system for pure water, and the concentrated water of the reverse osmosis membrane device can be introduced into the wastewater recovery system for miscellaneous water. Doing the above,
Organic substances can be highly removed from the water to be treated in the wastewater recovery system for pure water, so that highly purified ultrapure water can be obtained by reusing the treated water and concentration of the reverse osmosis membrane device. Effective use of water or appropriate treatment can be achieved.
【0026】[0026]
【発明の実施の形態】図1は本発明に係る超純水製造装
置の一実施形態例を示す一部省略フロー図である。図1
の装置において、22は前処理系、24は一次純水系、
26は純水用排水回収系を示す。前処理系22には、凝
集濾過装置(F)及び活性炭濾過装置(CF)が設置さ
れている。一次純水系24には、上流側から下流側にか
けて活性炭濾過装置(CF)28、2床3塔式純水製造
装置(2B3T)30、混床式純水製造装置(MBP)
32、真空脱気塔(VD)34及び逆浸透膜装置(R
O)36が順次設置されている。回収系26には、上流
側から下流側にかけて活性炭濾過装置(CF)38、O
H形の弱塩基性陰イオン交換樹脂を用いた陰イオン交換
装置(WA)40、逆浸透膜装置(RO)42、有機物
酸化装置44が順次設置されている。FIG. 1 is a partially omitted flowchart showing an embodiment of an ultrapure water production apparatus according to the present invention. FIG.
22 is a pretreatment system, 24 is a primary pure water system,
Reference numeral 26 denotes a pure water drainage recovery system. The pretreatment system 22 is provided with a coagulation filtration device (F) and an activated carbon filtration device (CF). In the primary pure water system 24, from the upstream side to the downstream side, an activated carbon filtration device (CF) 28, a two-bed three-column pure water production device (2B3T) 30, a mixed-bed pure water production device (MBP)
32, vacuum degassing tower (VD) 34 and reverse osmosis membrane device (R
O) 36 are sequentially installed. In the recovery system 26, an activated carbon filtration device (CF) 38, O
An anion exchange device (WA) 40, a reverse osmosis membrane device (RO) 42, and an organic matter oxidation device 44 using an H-type weakly basic anion exchange resin are sequentially installed.
【0027】本装置において、前処理系22及び純水用
排水回収系26の処理水は、タンク46に貯留された
後、一次純水系24に導入される。一次純水系24の処
理水は二次純水系(図示せず)に送られ、二次純水系で
製造された超純水は使用場所(図示せず)に供給され
る。使用場所で超純水を使用することにより生じた排水
は、純水用排水回収系26で処理された後、タンク46
に送られて超純水製造装置の原水の一部として再利用さ
れる。In the present apparatus, the treated water in the pretreatment system 22 and the pure water drainage recovery system 26 is introduced into the primary pure water system 24 after being stored in a tank 46. The treated water in the primary pure water system 24 is sent to a secondary pure water system (not shown), and the ultrapure water produced in the secondary pure water system is supplied to a place of use (not shown). The wastewater generated by using ultrapure water at the place of use is treated in a pure water wastewater recovery system 26, and then treated in a tank 46.
And recycled as part of the raw water of the ultrapure water production equipment.
【0028】なお、本例の超純水製造装置において、一
次純水系24の活性炭濾過装置28は前述した有機物酸
化装置の下流側のオゾン分解手段に該当し、2床3塔式
純水製造装置30及び混床式純水製造装置32は前述し
た有機物酸化装置の下流側のイオン交換装置に該当し、
真空脱気塔34は前述した有機物酸化装置の下流側の脱
気装置に該当し、逆浸透膜装置36は前述した第2の逆
浸透膜装置に該当する。ただし、これらのオゾン分解手
段、イオン交換装置、脱気装置、第2の逆浸透膜装置
は、純水用排水回収系26に別途設けてもよく、これに
より一次純水系24の装置の負荷を低くすることができ
る。In the ultrapure water production apparatus of the present embodiment, the activated carbon filtration apparatus 28 of the primary pure water system 24 corresponds to the ozone decomposing means on the downstream side of the above-mentioned organic substance oxidizing apparatus, and is a two-bed three-column pure water production apparatus. 30 and the mixed-bed type pure water production apparatus 32 correspond to the ion exchange apparatus on the downstream side of the organic matter oxidization apparatus described above,
The vacuum degassing tower 34 corresponds to a deaerator on the downstream side of the organic matter oxidizing device described above, and the reverse osmosis membrane device 36 corresponds to the second reverse osmosis membrane device described above. However, these ozone decomposing means, the ion exchange device, the degassing device, and the second reverse osmosis membrane device may be separately provided in the pure water wastewater recovery system 26, thereby reducing the load on the primary pure water system 24. Can be lower.
【0029】本例の超純水製造装置では、使用場所から
の排水は、純水用排水回収系26及び一次純水系24に
おいて下記のように処理される。まず活性炭濾過装置3
8で前処理が行われ、逆浸透膜を劣化させる過酸化水素
等が除去された後、陰イオン交換装置40に通水され、
ここでOH形の弱塩基性陰イオン交換樹脂によって陰イ
オン性不純物が除去されるとともに、出口水がアルカリ
性になる。次に、逆浸透膜装置42で有機物の一部及び
陰イオン性不純物が除去された後、有機物酸化装置44
に導入され、ここで有機物の酸化分解が行われる。In the ultrapure water production apparatus of this embodiment, wastewater from the place of use is treated in the pure water wastewater recovery system 26 and the primary pure water system 24 as follows. First, activated carbon filter 3
After a pretreatment is performed in step 8 to remove hydrogen peroxide and the like that degrade the reverse osmosis membrane, water is passed through the anion exchange device 40,
Here, the anionic impurities are removed by the OH type weakly basic anion exchange resin, and the outlet water becomes alkaline. Next, after a part of organic matter and anionic impurities are removed by the reverse osmosis membrane device 42, the organic matter oxidizing device 44 is removed.
Where the organic matter is oxidatively decomposed.
【0030】有機物酸化装置44は、具体的には図2に
示す構造を有している。すなわち、図2において50は
純水用排水回収系26の被処理水が流れるラインであ
り、このライン50にはアルカリ注入装置52及びオゾ
ン供給装置54が連結されている。アルカリ注入装置5
2の注入管56とライン50との連結部58のやや後方
にはpH測定部(図示せず)が設置されており、このp
H測定部によって被処理水のpHを測定し、その測定結
果を電気信号としてアルカリ注入装置52に出力し、そ
れに基づき被処理水へのアルカリ注入量を自動的に制御
するようになっている。The organic substance oxidizing apparatus 44 has a structure shown in FIG. That is, in FIG. 2, reference numeral 50 denotes a line through which the water to be treated flows in the pure water drainage recovery system 26, and the alkali injection device 52 and the ozone supply device 54 are connected to the line 50. Alkali injection device 5
A pH measuring unit (not shown) is provided slightly behind a connecting portion 58 between the injection tube 56 and the line 50 of the second sample.
The pH of the water to be treated is measured by the H measuring unit, and the measurement result is output as an electric signal to the alkali injecting device 52, based on which the amount of alkali to be injected into the water to be treated is automatically controlled.
【0031】オゾン供給装置54としては、オゾン発生
機構を備えたオゾン発生装置や、オゾン発生装置で製造
されたオゾン含有ガスを充填したオゾンタンクが使用さ
れる。オゾン供給装置54の供給管60には気液撹拌混
合装置62(例えばラインミキサーやオゾン溶解ポン
プ)が連結されているとともに、この気液撹拌混合装置
62はライン50に連結されている。また、気液撹拌混
合装置62の出口側におけるライン50の所定長さ部分
が、有機物の酸化分解反応が行われる反応管部66とし
て構成されている。As the ozone supply device 54, an ozone generation device having an ozone generation mechanism or an ozone tank filled with an ozone-containing gas produced by the ozone generation device is used. A gas-liquid stirring / mixing device 62 (for example, a line mixer or an ozone dissolving pump) is connected to the supply pipe 60 of the ozone supply device 54, and the gas-liquid stirring / mixing device 62 is connected to the line 50. A predetermined length of the line 50 on the outlet side of the gas-liquid stirring and mixing device 62 is configured as a reaction tube portion 66 in which an oxidative decomposition reaction of an organic substance is performed.
【0032】本例の有機物酸化装置44では、まず、ラ
イン50を流れる被処理水にアルカリ注入装置52より
アルカリが注入されて被処理水のpHが9.7以上、好
ましくは9.7〜11.0に調整される。次いで、被処
理水にオゾン供給装置54よりオゾンが供給され、気液
撹拌混合装置62によってオゾンと被処理水とが撹拌混
合され、オゾンの大部分が被処理水中に溶解する。ここ
で、被処理水中へのオゾン添加量は3〜40ppm、好
ましくは7〜30ppmに調整される。被処理水中で
は、反応管部66において速やかに有機物の酸化分解反
応が進行する。酸化分解反応の終了により得られた処理
水は、タンク46を経て前処理系22の処理水と一緒に
一次純水系24に供給される。In the organic matter oxidizing apparatus 44 of this embodiment, first, alkali is injected into the water to be treated flowing through the line 50 from the alkali injecting apparatus 52 so that the pH of the water to be treated is 9.7 or more, preferably 9.7 to 11 .0. Next, ozone is supplied to the water to be treated from the ozone supply device 54, the ozone and the water to be treated are stirred and mixed by the gas-liquid stirring and mixing device 62, and most of the ozone is dissolved in the water to be treated. Here, the amount of ozone added to the water to be treated is adjusted to 3 to 40 ppm, preferably 7 to 30 ppm. In the to-be-treated water, the oxidative decomposition reaction of the organic matter rapidly proceeds in the reaction tube section 66. The treated water obtained by the end of the oxidative decomposition reaction is supplied to the primary pure water system 24 via the tank 46 together with the treated water of the pretreatment system 22.
【0033】一次純水系24では、被処理水はまず活性
炭濾過装置28に通水され、ここで被処理水中の溶存オ
ゾンの分解が行われた後、有機物酸化装置44で二酸化
炭素までは分解されなかったイオン性物質(有機酸)が
2床3塔式純水製造装置30及び混床式純水製造装置3
2に用いられている陰イオン交換樹脂で除去される。次
に、真空脱気塔34で溶存酸素の除去及び微量の有機物
の除去が行われ、さらに逆浸透膜装置36で残存する不
純物の除去が行われる。なお、有機物酸化装置44の処
理水中にアセトンが残存し、これが純水製造装置30、
32を通過した場合でも、このアセトンは揮発性である
ので真空脱気塔34で除去することができる。In the primary pure water system 24, the water to be treated is first passed through an activated carbon filtration device 28, where dissolved ozone in the water to be treated is decomposed, and then decomposed to carbon dioxide by an organic oxidation device 44. Ion substance (organic acid) that did not exist is a two-bed three-column pure water production system 30 and a mixed-bed pure water production system 3
It is removed by the anion exchange resin used in Step 2. Next, removal of dissolved oxygen and removal of a small amount of organic substances are performed in the vacuum degassing tower 34, and further, remaining impurities are removed in the reverse osmosis membrane device 36. In addition, acetone remains in the treated water of the organic matter oxidizing apparatus 44, and this is the pure water producing apparatus 30,
Even when the acetone has passed through, the acetone is volatile and can be removed by the vacuum degassing tower 34.
【0034】図3〜図5は、それぞれ本発明に係る超純
水製造装置の一実施形態例を示すフロー図である。図3
〜図5の装置の超純水製造系は、活性炭濾過装置(C
F)、2床3塔式純水製造装置(2B3T)、混床式純
水製造装置(MBP)、真空脱気塔(VD)及び逆浸透
膜装置(RO)を備えた一次純水系と、タンク(T
K)、紫外線殺菌装置(UVst)、混床式カートリッジ
ポリッシャ(CP)及び限外濾過膜装置(UF)を備え
た二次純水系とから構成されている。FIGS. 3 to 5 are flow charts showing one embodiment of the ultrapure water production apparatus according to the present invention. FIG.
5 is an activated carbon filtration device (C
F) a primary pure water system equipped with a two-bed three-column pure water production system (2B3T), a mixed-bed pure water production system (MBP), a vacuum degassing tower (VD) and a reverse osmosis membrane device (RO); Tank (T
K), an ultraviolet sterilizer (UV st ), a mixed-bed type cartridge polisher (CP), and a secondary pure water system equipped with an ultrafiltration membrane device (UF).
【0035】また、図3〜図5の装置では、使用場所で
超純水を使用することにより生じた排水を処理する排水
回収系として、排水の清浄度に応じて、何ら処理を施す
ことなく直接一次純水系に戻す経路、適当な処理を施
してから一次純水系に戻す経路(純水用排水回収
系)、適当な処理を施してから雑用水としてユーティリ
ティ設備に供給する経路(雑用水用排水回収系)、及
び、適当な処理を施してから放流する経路(廃水処理
系)を備えている。なお、使用場所から排出された超純
水の排水を前記経路〜に分別する基準は例えば表1
の通りであり、その分別は分別機構(1)〜(3)によって行
われる。In the apparatus shown in FIGS. 3 to 5, as a wastewater recovery system for treating wastewater generated by using ultrapure water at the place of use, no treatment is performed according to the cleanliness of the wastewater. Route to return directly to primary pure water system, route to return to primary pure water system after applying appropriate treatment (pure water wastewater recovery system), route to apply appropriate treatment and then supply it as utility water to utility equipment (for utility water) (Wastewater recovery system) and a route (wastewater treatment system) for discharging after appropriate treatment. The criteria for separating the ultrapure water drained from the place of use into the above-mentioned routes are, for example, as shown in Table 1.
The classification is performed by the classification mechanisms (1) to (3).
【0036】[0036]
【表1】 [Table 1]
【0037】図3及び図4の装置では、純水用排水回収
系に、上流側から下流側にかけて活性炭濾過装置(C
F)、OH形の弱塩基性陰イオン交換樹脂を用いた陰イ
オン交換装置(WA)、逆浸透膜装置(RO)、有機物
酸化装置を順次設置してある。図3及び図4の装置の純
水用排水回収系における排水の処理は図1の装置と同様
であるため、説明を省略する。また、図3の装置では純
水用排水回収系の逆浸透膜装置の濃縮水を雑用水用排水
回収系に導入し、図4の装置では同濃縮水を廃水処理系
に導入するようにしてある。逆浸透膜装置の濃縮水の清
浄度が比較的高いときには該濃縮水を図3の装置のよう
に雑用水用排水回収系に導入して再利用し、逆浸透膜装
置の濃縮水の清浄度が比較的低いときには該濃縮水を図
4の装置のように廃水処理系で処理してから放流すれば
よい。図5の装置は、図3の装置において陰イオン交換
装置(WA)を省いたものである。In the apparatus shown in FIGS. 3 and 4, an activated carbon filter (C) is provided in the pure water wastewater recovery system from the upstream side to the downstream side.
F), an anion exchange device (WA) using a weakly basic anion exchange resin in the OH form, a reverse osmosis membrane device (RO), and an organic matter oxidation device are sequentially installed. The treatment of waste water in the pure water waste water recovery system of the apparatus of FIGS. 3 and 4 is the same as that of the apparatus of FIG. Further, in the apparatus of FIG. 3, the concentrated water of the reverse osmosis membrane device of the pure water waste water recovery system is introduced into the waste water waste water recovery system, and in the apparatus of FIG. 4, the concentrated water is introduced into the waste water treatment system. is there. When the cleanness of the concentrated water of the reverse osmosis membrane device is relatively high, the concentrated water is introduced into the wastewater drainage recovery system as shown in FIG. When the concentration is relatively low, the concentrated water may be treated and discharged in a wastewater treatment system as in the apparatus shown in FIG. The apparatus of FIG. 5 is obtained by omitting an anion exchange apparatus (WA) from the apparatus of FIG.
【0038】なお、本発明の他の実施形態としては、図
5の装置において逆浸透膜装置(RO)の代わりにOH
形の陰イオン交換樹脂を用いた陰イオン交換装置(W
A)を設け、洗浄排水をCF→WA→有機物酸化装置の
順に処理する構成とすることもできる。As another embodiment of the present invention, in the apparatus shown in FIG. 5, instead of a reverse osmosis membrane apparatus (RO), OH
Anion exchange device (W) using an anion exchange resin
A) may be provided, and the cleaning wastewater may be treated in the order of CF → WA → organic matter oxidation apparatus.
【0039】[0039]
【実施例】実施例1 活性炭濾過装置(CF)、陰イオン交換装置(WA)、
第1の逆浸透膜装置(RO)、有機物酸化装置、活性炭
濾過装置(CF)、2床3塔式純水製造装置(2B3
T)、混床式純水製造装置(MBP)、真空脱気塔(V
D)及び第2の逆浸透膜装置(RO)をこの順に接続し
てなる装置に超純水を使用することにより生じた排水を
流して該排水の処理を行った。前記排水としては表2に
示したTOC濃度のものを用いた。この場合、有機物酸
化装置44においては、アルカリ注入装置52から被処
理水に水酸化ナトリウムを添加して被処理水のpHを表
2に示した値に調整した後、気液撹拌混合装置62によ
って被処理水に対するオゾン添加量が表2に示した値と
なるように被処理水にオゾンを添加した。EXAMPLES Example 1 Activated carbon filtration device (CF), anion exchange device (WA),
First reverse osmosis membrane device (RO), organic matter oxidation device, activated carbon filtration device (CF), two-bed three-column pure water production device (2B3
T), mixed bed pure water production equipment (MBP), vacuum degassing tower (V
D) and a second reverse osmosis membrane device (RO) were connected in this order, and the wastewater generated by using ultrapure water was flown to treat the wastewater. The wastewater having a TOC concentration shown in Table 2 was used. In this case, in the organic matter oxidizing device 44, sodium hydroxide is added to the water to be treated from the alkali injection device 52 to adjust the pH of the water to be treated to the value shown in Table 2, and then the gas-liquid stirring and mixing device 62 Ozone was added to the water to be treated so that the amount of ozone added to the water to be treated became the value shown in Table 2.
【0040】なお、気液撹拌混合装置62としてはオゾ
ン溶解ポンプを用いた。また、陰イオン交換装置(W
A)の陰イオン交換樹脂としては弱塩基性陰イオン交換
樹脂であるアンバーライト(登録商標、以下同じ)IR
A−94SのOH形のものを用い、第1及び第2の逆浸
透膜装置(RO)の逆浸透膜としては日東電工社製ポリ
アミド系複合膜ES−10を用い、2床3塔式純水製造
装置(2B3T)の陽イオン交換樹脂としては強酸性陽
イオン交換樹脂であるアンバーライトIR−124のH
形、陰イオン交換樹脂としては強塩基性陰イオン交換樹
脂であるアンバーライトIRA−402BLのOH形を
用い、混床式純水製造装置(MBP)のイオン交換樹脂
としてはH形の強酸性陽イオン交換樹脂とOH形の強塩
基性陰イオン交換樹脂とを混合してなるアンバーライト
ESG4を用いた。真空脱気装置(VD)は真空度22
Torrで運転した。各装置出口水のTOC濃度の測定
結果を表2に示す。As the gas-liquid stirring and mixing device 62, an ozone dissolving pump was used. In addition, an anion exchange device (W
As the anion exchange resin of A), Amberlite (registered trademark, hereinafter the same) IR which is a weakly basic anion exchange resin
A-94S OH type is used, and a polyamide composite membrane ES-10 manufactured by Nitto Denko Corporation is used as a reverse osmosis membrane of the first and second reverse osmosis membrane devices (RO). As the cation exchange resin for the water producing apparatus (2B3T), Hmber of Amberlite IR-124, which is a strongly acidic cation exchange resin, is used.
As the form and anion exchange resin, OH form of Amberlite IRA-402BL which is a strongly basic anion exchange resin is used, and as the ion exchange resin of the mixed bed type pure water production apparatus (MBP), H form strong acid cation is used. Amberlite ESG4 obtained by mixing an ion exchange resin and a strong basic anion exchange resin in the OH form was used. Vacuum deaerator (VD) has a degree of vacuum of 22
Driving in Torr. Table 2 shows the measurement results of the TOC concentration of the outlet water of each device.
【0041】実施例2 実施例1で用いた装置の純水用排水回収系から第1の逆
浸透膜装置を除いた以外は実施例1で用いたのと同じ装
置を用いて、実施例1と同様にして超純水を使用するこ
とにより生じた排水の処理を行った。結果を表2に示
す。 Example 2 Example 1 was repeated using the same apparatus as used in Example 1 except that the first reverse osmosis membrane apparatus was omitted from the wastewater recovery system for pure water of the apparatus used in Example 1. Wastewater generated by using ultrapure water was treated in the same manner as described above. Table 2 shows the results.
【0042】比較例 実施例1で用いた装置の純水用排水回収系から陰イオン
交換装置及び第1の逆浸透膜装置を除いた以外は実施例
1で用いたのと同じ装置を用いて、実施例1と同様にし
て超純水を使用することにより生じた排水の処理を行っ
た。結果を表2に示す。[0042] Using the same equipment as non-excluding the reverse osmosis unit of the anion-exchange device and the first pure water waste water recovery system for the apparatus used in Comparative Example 1 was used in Example 1 The wastewater generated by using ultrapure water was treated in the same manner as in Example 1. Table 2 shows the results.
【0043】[0043]
【表2】 [Table 2]
【0044】表2より、有機物を含有する被処理水を逆
浸透膜装置あるいは陰イオン交換装置で処理した後、逆
浸透膜装置の透過水あるいは陰イオン交換装置の処理水
に有機物酸化装置においてアルカリ性条件下でオゾンを
添加した場合、有機物酸化装置及び後段のイオン交換装
置におけるTOC除去効率が向上することが確認され
た。ただし、有機物酸化装置での処理時に被処理水のオ
ゾン濃度やpHが低い場合(試験NO.5〜7)は、有
機物酸化装置及び後段のイオン交換装置におけるTOC
除去効率が低下していた。後段のイオン交換装置におけ
るTOC除去効率が低下したのは、有機物酸化装置での
有機物の酸化が十分でなく、イオン性物質になっていな
いためであると考えられる。As shown in Table 2, after the water to be treated containing an organic substance was treated with a reverse osmosis membrane apparatus or an anion exchange apparatus, the permeated water of the reverse osmosis membrane apparatus or the treated water of the anion exchange apparatus was treated with an alkaline substance in an organic substance oxidation apparatus. It was confirmed that when ozone was added under the conditions, the TOC removal efficiency in the organic matter oxidation device and the subsequent ion exchange device was improved. However, when the ozone concentration or the pH of the water to be treated is low during the treatment in the organic matter oxidizing apparatus (Test Nos. 5 to 7), the TOC in the organic matter oxidizing apparatus and the subsequent ion exchange apparatus is not sufficient.
The removal efficiency was reduced. It is considered that the reason why the TOC removal efficiency in the subsequent ion exchange device was reduced was that the organic matter was not sufficiently oxidized in the organic matter oxidizing device and did not become an ionic substance.
【0045】[0045]
【発明の効果】請求項1の発明によれば、逆浸透膜装置
において被処理水中から有機物酸化装置での有機物の酸
化分解反応を阻害する陰イオン性不純物が除去される
上、被処理水中の有機物がかなり除去されるため、有機
物酸化装置における有機物の除去効率が向上する。ま
た、逆浸透膜装置で被処理水中の有機物がかなり除去さ
れるため、有機物酸化装置でのオゾン使用量の低減、オ
ゾン発生装置の小型化を図ることができ、しかもそれほ
ど高pHでなくても有機物を酸化分解できるようになる
ので、被処理水に添加するアルカリ剤の消費量を減らす
ことができる。According to the first aspect of the present invention, in the reverse osmosis membrane device, anionic impurities that inhibit the oxidative decomposition reaction of organic matter in the organic matter oxidizing device are removed from the water to be treated, and the water in the water to be treated is removed. Since organic matter is considerably removed, the efficiency of removing organic matter in the organic matter oxidizing apparatus is improved. In addition, since the organic matter in the water to be treated is considerably removed by the reverse osmosis membrane device, the amount of ozone used in the organic matter oxidizing device can be reduced, and the size of the ozone generator can be reduced, and even if the pH is not so high. Since organic substances can be oxidatively decomposed, consumption of an alkali agent added to the water to be treated can be reduced.
【0046】請求項2の発明によれば、排水回収系の純
水用排水回収系において被処理水中から有機物を高度に
除去することができるため、その処理水を再利用するこ
とにより純度の高い超純水を得ることができるととも
に、逆浸透膜装置の濃縮水の有効利用あるいは適切な処
理を図ることができる。According to the second aspect of the present invention, since the organic matter can be highly removed from the water to be treated in the pure water wastewater recovery system of the wastewater recovery system, the purified water can be reused to achieve high purity. Ultrapure water can be obtained, and effective use of the concentrated water of the reverse osmosis membrane device or appropriate treatment can be achieved.
【0047】請求項3の発明によれば、有機物酸化装置
における有機物の酸化分解反応を阻害する陰イオン性不
純物をさらに高度に除去することができ、有機物酸化装
置における有機物の除去効率をさらに高めることができ
るとともに、陰イオン交換装置の出口水がアルカリ性と
なるので、被処理水をアルカリ性にするためのアルカリ
剤の添加を不要としたり、添加量を低減したりすること
が可能となる。According to the third aspect of the present invention, anionic impurities that inhibit the oxidative decomposition reaction of organic substances in the organic substance oxidizing apparatus can be removed to a higher degree, and the efficiency of removing organic substances in the organic substance oxidizing apparatus can be further enhanced. In addition, since the outlet water of the anion exchange device becomes alkaline, it is not necessary to add an alkaline agent for making the water to be treated alkaline, or it is possible to reduce the amount of the alkaline agent.
【0048】請求項4の発明によれば、被処理水中から
陰イオン性不純物を除去して有機物酸化装置における有
機物の除去効率を向上させることができ、しかも被処理
水をアルカリ性にするためのアルカリ剤の添加を不要と
したり、添加量を低減したりすることが可能となる。According to the fourth aspect of the present invention, it is possible to remove anionic impurities from the water to be treated, thereby improving the efficiency of removing organic substances in the organic substance oxidizing apparatus, and furthermore, to make the water to be treated alkaline. This makes it unnecessary to add an agent or reduces the amount of the agent added.
【0049】請求項5の発明によれば、有機物酸化装置
で有機物が二酸化炭素まで分解されなかったときでも、
有機物酸化装置で有機物が有機酸等のイオン性物質にま
で分解されていれば、後段のイオン交換装置で上記イオ
ン性物質が除去されるため、全体として有機物が効率的
に除去される。According to the fifth aspect of the present invention, even when the organic matter is not decomposed into carbon dioxide in the organic matter oxidizing apparatus,
If the organic substance is decomposed into an ionic substance such as an organic acid in the organic substance oxidizing apparatus, the ionic substance is removed in the subsequent ion exchange apparatus, so that the organic substance is efficiently removed as a whole.
【0050】請求項6の発明によれば、有機物酸化装置
の処理水中に残存する溶存オゾンが後段の装置、例えば
イオン交換装置のイオン交換樹脂等に悪影響を及ぼすこ
とを防止できる。According to the sixth aspect of the present invention, it is possible to prevent dissolved ozone remaining in the treated water of the organic matter oxidizing apparatus from adversely affecting a subsequent apparatus, for example, an ion exchange resin of an ion exchange apparatus.
【0051】請求項7の発明によれば、脱気装置で溶存
ガスが被処理水中から除去される際に被処理水中に存在
する揮発性の有機物も除去されるので、有機物濃度がさ
らに低減した処理水を得ることができる。According to the seventh aspect of the present invention, when the dissolved gas is removed from the water to be treated by the deaerator, volatile organic substances present in the water to be treated are also removed, so that the concentration of the organic substance is further reduced. Treated water can be obtained.
【0052】請求項8〜10の発明によれば、有機物酸
化装置における有機物の酸化分解を効率的に行うことが
できる。According to the invention of claims 8 to 10, the oxidative decomposition of organic substances in the organic substance oxidizing apparatus can be efficiently performed.
【図1】本発明に係る超純水製造装置の一実施形態例を
示す一部省略フロー図である。FIG. 1 is a partially omitted flowchart showing an embodiment of an ultrapure water production apparatus according to the present invention.
【図2】図1に示した超純水製造装置の有機物酸化装置
を示すフロー図である。FIG. 2 is a flowchart showing an organic oxidation apparatus of the ultrapure water production apparatus shown in FIG.
【図3】本発明に係る超純水製造装置の一実施形態例を
示すフロー図である。FIG. 3 is a flowchart showing an embodiment of the ultrapure water production apparatus according to the present invention.
【図4】本発明に係る超純水製造装置の一実施形態例を
示すフロー図である。FIG. 4 is a flowchart showing an embodiment of the ultrapure water production apparatus according to the present invention.
【図5】本発明に係る超純水製造装置の一実施形態例を
示すフロー図である。FIG. 5 is a flowchart showing an embodiment of the ultrapure water production apparatus according to the present invention.
【図6】被処理水のpHと有機物の酸化分解速度との関
係を示すグラフである。FIG. 6 is a graph showing the relationship between the pH of water to be treated and the rate of oxidative decomposition of organic substances.
【図7】従来の超純水製造装置の一例を示すフロー図で
ある。FIG. 7 is a flowchart showing an example of a conventional ultrapure water production apparatus.
22 前処理系 24 一次純水系 26 純水用排水回収系 28 活性炭濾過装置 30 2床3塔式純水製造装置 32 混床式純水製造装置 34 真空脱気塔 36 逆浸透膜装置 38 活性炭濾過装置 40 陰イオン交換装置 42 逆浸透膜装置 44 有機物酸化装置 22 Pretreatment system 24 Primary pure water system 26 Pure water wastewater recovery system 28 Activated carbon filtration device 30 Two-bed three-tower pure water production device 32 Mixed-bed pure water production device 34 Vacuum deaeration tower 36 Reverse osmosis membrane device 38 Activated carbon filtration Equipment 40 Anion exchange equipment 42 Reverse osmosis membrane equipment 44 Organic matter oxidation equipment
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/20 C02F 1/20 A 1/42 1/42 A 1/44 1/44 J 1/58 1/58 H 1/78 1/78 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/20 C02F 1/20 A 1/42 1/42 A 1/44 1/44 J 1/58 1/58 H 1 / 78 1/78
Claims (10)
浸透膜装置と、前記逆浸透膜装置の透過水にアルカリ性
条件下でオゾンを添加することにより該透過水中に含ま
れる有機物を酸化分解する有機物酸化装置とを具備する
ことを特徴とする超純水製造装置。1. A reverse osmosis membrane device for passing water to be treated containing an organic substance, and an organic substance contained in the permeated water is oxidized by adding ozone to the permeated water of the reverse osmosis membrane apparatus under alkaline conditions. An apparatus for producing ultrapure water, comprising: an apparatus for oxidizing organic matter that decomposes.
純水を製造する一次純水系と、一次純水を処理して超純
水を製造する二次純水系と、該二次純水系で製造した超
純水を使用場所で使用することによって発生した排水を
処理して一次純水系に返送する排水回収系とを備えてな
り、 逆浸透膜装置及び有機物酸化装置を前記排水回収系の純
水用排水回収系に設置し、逆浸透膜装置の透過水を有機
物酸化装置で処理して一次純水系に導入するとともに、
逆浸透膜装置の濃縮水を前記排水回収系の雑用水用排水
回収系又は廃水処理系に導入する請求項1に記載の超純
水製造装置。2. An ultrapure water production apparatus comprising: a primary pure water system for processing raw water to produce primary pure water; a secondary pure water system for treating primary pure water to produce ultrapure water; A wastewater recovery system that processes wastewater generated by using ultrapure water produced in a pure water system at the place of use and returns the wastewater to the primary pure water system, and comprises a reverse osmosis membrane device and an organic matter oxidation device. The system is installed in a pure water drainage recovery system, and the permeated water of the reverse osmosis membrane device is treated by an organic matter oxidizer and introduced into the primary pure water system.
The ultrapure water production apparatus according to claim 1, wherein the concentrated water of the reverse osmosis membrane device is introduced into a wastewater recovery system for wastewater or a wastewater treatment system of the wastewater recovery system.
と有機物酸化装置との間にOH形の陰イオン交換樹脂を
用いた陰イオン交換装置を設けた請求項1又は2に記載
の超純水製造装置。3. The anion exchange device according to claim 1, wherein an anion exchange device using an OH type anion exchange resin is provided upstream of the reverse osmosis membrane device or between the reverse osmosis membrane device and the organic matter oxidation device. Ultrapure water production equipment.
交換樹脂を用いた陰イオン交換装置を設け、有機物を含
有する被処理水を前記陰イオン交換装置で処理するとと
もに、該陰イオン交換装置の処理水中に含まれる有機物
を有機物酸化装置で酸化分解する請求項1に記載の超純
水製造装置。4. An anion exchange device using an OH type anion exchange resin in place of the reverse osmosis membrane device, wherein water to be treated containing an organic substance is treated with the anion exchange device, The ultrapure water production apparatus according to claim 1, wherein the organic matter contained in the treated water of the exchange unit is oxidatively decomposed by an organic matter oxidation unit.
イオン交換樹脂を用いたイオン交換装置を設けた請求項
1〜4のいずれか1項に記載の超純水製造装置。5. The ultrapure water production apparatus according to claim 1, wherein an ion exchange apparatus using at least an anion exchange resin is provided downstream of the organic matter oxidation apparatus.
オゾンを分解するオゾン分解手段を設けた請求項1〜5
のいずれか1項に記載の超純水製造装置。6. An ozone decomposing means for decomposing ozone in the water to be treated is provided downstream of the organic matter oxidizing apparatus.
The ultrapure water production apparatus according to any one of the above.
けた請求項1〜6のいずれか1項に記載の超純水製造装
置。7. The ultrapure water production apparatus according to claim 1, wherein a deaeration device is provided downstream of the organic matter oxidation device.
よって被処理水にオゾンを添加するものである請求項1
〜7のいずれか1項に記載の超純水製造装置。8. The apparatus for oxidizing organic matter, wherein ozone is added to the water to be treated by gas-liquid stirring and mixing means.
The ultrapure water production apparatus according to any one of claims 1 to 7.
9.7以上のアルカリ性条件下で被処理水にオゾンを添
加するものである請求項1〜8のいずれか1項に記載の
超純水製造装置。9. The organic matter oxidizer according to claim 1, wherein the ozone is added to the water to be treated under alkaline conditions in which the pH of the water to be treated is 9.7 or more. Pure water production equipment.
オゾン添加量が3〜40ppmとなるように被処理水に
オゾンを添加するものである請求項1〜9のいずれか1
項に記載の超純水製造装置。10. The organic matter oxidation apparatus according to claim 1, wherein the ozone is added to the water to be treated so that the amount of ozone added to the water to be treated is 3 to 40 ppm.
The ultrapure water production apparatus according to the paragraph.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31989897A JP3789619B2 (en) | 1996-11-21 | 1997-11-20 | Ultrapure water production equipment |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-310414 | 1996-11-21 | ||
JP31041496 | 1996-11-21 | ||
JP31989897A JP3789619B2 (en) | 1996-11-21 | 1997-11-20 | Ultrapure water production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10202296A true JPH10202296A (en) | 1998-08-04 |
JP3789619B2 JP3789619B2 (en) | 2006-06-28 |
Family
ID=26566307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31989897A Expired - Lifetime JP3789619B2 (en) | 1996-11-21 | 1997-11-20 | Ultrapure water production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3789619B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001205297A (en) * | 2000-01-21 | 2001-07-31 | Japan Organo Co Ltd | Apparatus for producing pure water |
JP2004057935A (en) * | 2002-07-29 | 2004-02-26 | Kurita Water Ind Ltd | Ultrapure-water making system |
JP2006239617A (en) * | 2005-03-04 | 2006-09-14 | Kurita Water Ind Ltd | Water treatment method and water treatment apparatus |
JP2007098240A (en) * | 2005-10-03 | 2007-04-19 | Kurita Water Ind Ltd | Nonionic surfactant-containing water treatment method and apparatus |
JP2011088070A (en) * | 2009-10-22 | 2011-05-06 | Kurita Water Ind Ltd | Ultrapure water production method and apparatus for ion exchange resin purifier |
JP2013535322A (en) * | 2010-07-26 | 2013-09-12 | ビーダブリューティー アクティエンゲゼルシャフト | Method and system for treating water |
JP2014042896A (en) * | 2012-08-28 | 2014-03-13 | Kurita Water Ind Ltd | Method and device for processing formaldehyde-containing waste water |
WO2020226094A1 (en) * | 2019-05-08 | 2020-11-12 | 株式会社キッツ | Washing water treatment device, disinfection and water treatment device, and washing water treatment method |
-
1997
- 1997-11-20 JP JP31989897A patent/JP3789619B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001205297A (en) * | 2000-01-21 | 2001-07-31 | Japan Organo Co Ltd | Apparatus for producing pure water |
JP2004057935A (en) * | 2002-07-29 | 2004-02-26 | Kurita Water Ind Ltd | Ultrapure-water making system |
JP2006239617A (en) * | 2005-03-04 | 2006-09-14 | Kurita Water Ind Ltd | Water treatment method and water treatment apparatus |
JP2007098240A (en) * | 2005-10-03 | 2007-04-19 | Kurita Water Ind Ltd | Nonionic surfactant-containing water treatment method and apparatus |
JP2011088070A (en) * | 2009-10-22 | 2011-05-06 | Kurita Water Ind Ltd | Ultrapure water production method and apparatus for ion exchange resin purifier |
JP2013535322A (en) * | 2010-07-26 | 2013-09-12 | ビーダブリューティー アクティエンゲゼルシャフト | Method and system for treating water |
JP2014042896A (en) * | 2012-08-28 | 2014-03-13 | Kurita Water Ind Ltd | Method and device for processing formaldehyde-containing waste water |
WO2020226094A1 (en) * | 2019-05-08 | 2020-11-12 | 株式会社キッツ | Washing water treatment device, disinfection and water treatment device, and washing water treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP3789619B2 (en) | 2006-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0433893B1 (en) | Process and system for purifying pure water or ultrapure water | |
KR100687361B1 (en) | Apparatus for producing water containing dissolved ozone | |
JP3426072B2 (en) | Ultrapure water production equipment | |
JPH1157752A (en) | Controlling method and device of toc component removal | |
KR101476864B1 (en) | Method and apparatus for removing organic matters | |
JP5441714B2 (en) | Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus | |
WO2021131360A1 (en) | Pure water production method, pure water production system, ultra-pure water production method, and ultra-pure water production system | |
JP3789619B2 (en) | Ultrapure water production equipment | |
JP2000015257A (en) | Apparatus and method for making high purity water | |
JP3506171B2 (en) | Method and apparatus for removing TOC component | |
JPH0829315B2 (en) | Demineralized water production equipment | |
JPH10244280A (en) | Removal device for organic substance in water | |
JPH10216749A (en) | Ultrapure water making apparatus | |
JPH09253638A (en) | Ultrapure water making apparatus | |
JPH10309588A (en) | Water treatment, water treating device and pure water producing device | |
JP3525024B2 (en) | Wastewater treatment equipment containing organic matter | |
JPH03278882A (en) | Method and apparatus for removing dissolved oxygen in water | |
JPH1128482A (en) | Production of pure water | |
JPH10277572A (en) | Removal of organic matter in water | |
JPH0938671A (en) | Water treatment and water treating device | |
JPH05305297A (en) | Apparatus for treating acid drainage containing organic material | |
JPH0889976A (en) | Method for removing organic matter in water | |
JP3543435B2 (en) | Ultrapure water production method | |
JP2002001069A (en) | Method for producing pure water | |
JPH11262783A (en) | Removal of organic matter in water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051202 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20051202 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20051202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060329 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120407 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140407 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |