JPH0938671A - Water treatment and water treating device - Google Patents

Water treatment and water treating device

Info

Publication number
JPH0938671A
JPH0938671A JP21521795A JP21521795A JPH0938671A JP H0938671 A JPH0938671 A JP H0938671A JP 21521795 A JP21521795 A JP 21521795A JP 21521795 A JP21521795 A JP 21521795A JP H0938671 A JPH0938671 A JP H0938671A
Authority
JP
Japan
Prior art keywords
water
treated
ozone
main
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21521795A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kawada
和彦 川田
Jun Tanaka
順 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP21521795A priority Critical patent/JPH0938671A/en
Publication of JPH0938671A publication Critical patent/JPH0938671A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method capable of greatly enhancing the efficiency of use of ozone gas and also surely and inexpensively dissolving a desired concentration of ozone with a smaller capacity of centrifugal pump or smaller numbers of centrifugal pumps than heretofore, and attaining space saving. SOLUTION: In this water treatment method, a part of water to be treated is taken out from a main piping 19 in which the water to be treated flows, and is branched to a bypass piping 21, and ozone is dissolved into the water to be treated flowing in this bypass piping 21 by using the centrifugal pump 23, and then, the ozone water is joined with a main stream of the water to be treated flowing from the bypass piping 2 in the main piping 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被処理水中に存在
する不純物を処理するために、被処理水中にオゾンを効
率良く溶解させる水処理方法及び水処理装置に関する。
TECHNICAL FIELD The present invention relates to a water treatment method and a water treatment apparatus for efficiently dissolving ozone in water to be treated in order to treat impurities existing in the water to be treated.

【0002】[0002]

【従来の技術】オゾンは酸化能及び殺菌能に優れている
ため、例えば上水道の殺菌や廃水処理等の水処理時に使
用され、更に電子工業分野では超純水製造時の水処理時
に使用されている。前者の場合には微生物の殺菌処理用
として、あるいは有機物の酸化、分解処理用としてオゾ
ンが用いられている。また、後者の場合にも前者の場合
と同様の目的でオゾンが用いられている。オゾンは一般
にオゾン発生器によって作ったオゾンガスを被処理水中
に溶解させて被処理水中の不純物と反応させるのが一般
的である。オゾンを被処理水中に溶解させる従来の方法
としては、オゾン発生器において発生したオゾンガスを
被処理水を収容した反応塔内の散気管から被処理水中へ
バブリングさせ、オゾンを被処理水中へ溶解させる曝気
槽方式や、エゼクタを用いて被処理水のジェット水流を
作り、このジェット水流によりオゾンガスを吸引し、ジ
ェット水流へオゾンガスを溶解させるエゼクタ方式など
が検討されている。
2. Description of the Related Art Ozone is used for water treatment such as sterilization of waterworks and wastewater treatment because it is excellent in oxidizing ability and sterilizing ability, and is also used for water treatment during ultrapure water production in the electronics industry. There is. In the former case, ozone is used for sterilizing treatment of microorganisms or for oxidizing and decomposing organic substances. Also, in the latter case, ozone is used for the same purpose as in the former case. As for ozone, it is general that ozone gas produced by an ozone generator is dissolved in water to be treated and reacted with impurities in the water to be treated. As a conventional method of dissolving ozone in the water to be treated, bubbling ozone gas generated in the ozone generator into the water to be treated from the diffuser pipe in the reaction tower containing the water to be treated to dissolve the ozone in the water to be treated. An aeration tank system and an ejector system in which a jet water flow of water to be treated is created by using an ejector, ozone gas is sucked by the jet water flow, and ozone gas is dissolved in the jet water flow are being studied.

【0003】一方、例えば特開平3−146123号公
報(特公平4−74049号公報)においてオゾンを水
中に効率良く溶解させるオゾン水製造装置が提案されて
いる。この装置は、水の流通途中に渦流ポンプを設け、
この渦流ポンプの吸込側にオゾンを導入し、渦流ポンプ
内で羽根車によりオゾンガスが混入した水を加圧、攪拌
することにより、高濃度のオゾン水を製造するようにし
たものである。
On the other hand, for example, Japanese Patent Application Laid-Open No. 3-146123 (Japanese Patent Publication No. 4-74049) proposes an ozone water producing apparatus for efficiently dissolving ozone in water. This device is equipped with a vortex pump in the middle of water circulation,
High concentration ozone water is produced by introducing ozone into the suction side of the vortex pump and pressurizing and stirring the water mixed with the ozone gas by the impeller in the vortex pump.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
水処理方法及び水処理装置における前者のオゾン溶解方
式の場合には、バブリングやエゼクタによるオゾンの溶
解効率が悪く、逸散するオゾンガスが多いため、オゾン
の使用効率が悪くコスト高になり、しかも逸散したオゾ
ンガスを分解処理して無害化する装置を別途設けなくて
はならないという課題があった。また、後者の渦流ポン
プを用いた溶解方式の場合には、前者の課題を解決でき
てオゾンガスの使用効率が高まり、高濃度のオゾン水を
得ることができる反面、単位時間当たりに処理すべき被
処理水の量が大容量化するとこれに伴ってその容量を確
保するために渦流ポンプを大型化したり、複数台の渦流
ポンプを使用しなくてはならないため、かえって渦流ポ
ンプのコストが格段に高くなり、しかも渦流ポンプ専用
のスペースを広く確保しなくてはならず、省スペース化
傾向に逆行するという課題があった。
However, in the case of the former ozone dissolution method in the conventional water treatment method and water treatment apparatus, the ozone dissolution efficiency due to bubbling and the ejector is poor, and a large amount of ozone gas is scattered. There is a problem that the use efficiency of ozone is poor and the cost becomes high, and that a separate device for decomposing and processing the scattered ozone gas to render it harmless is required. Further, in the case of the latter dissolution method using a vortex pump, the former problem can be solved and the use efficiency of ozone gas can be increased, and a high concentration of ozone water can be obtained. When the volume of treated water increases, the size of the eddy current pump must be increased in order to secure that capacity, and multiple eddy current pumps must be used, which makes the cost of the eddy current pump much higher. In addition, there is a problem that the space dedicated to the vortex pump needs to be secured widely, which is against the trend of space saving.

【0005】本発明は、上記課題を解決するためになさ
れたもので、オゾンガスの使用効率を格段に高めること
ができると共に、大流量の被処理水に対して所望濃度の
オゾンを確実に且つ低コストで溶解させることができ、
しかも、省スペース化を達成することができる水処理方
法及び水処理装置を提供することを目的としている。
The present invention has been made in order to solve the above problems, and it is possible to remarkably improve the use efficiency of ozone gas, and to reliably and reduce ozone of a desired concentration to a large flow rate of water to be treated. Can be dissolved at cost,
Moreover, it is an object of the present invention to provide a water treatment method and a water treatment apparatus that can achieve space saving.

【0006】[0006]

【課題を解決するための手段】本発明者らは、水処理工
程において被処理水中にオゾンを効率良く溶解させる方
法について種々検討した結果、単位時間当たりの被処理
水量が大容量になっても、渦流ポンプを特定の条件下で
使用することによりオゾンを所望濃度に溶解させること
ができる水処理方法及び水処理装置が得られることを知
見した。
As a result of various studies on the method of efficiently dissolving ozone in the water to be treated in the water treatment step, the present inventors have found that even if the amount of treated water per unit time becomes large. , It was found that a water treatment method and a water treatment apparatus capable of dissolving ozone to a desired concentration can be obtained by using a vortex pump under specific conditions.

【0007】即ち、本発明の請求項1に記載の水処理方
法は、被処理水が流れる主流路からその一部を抜き出し
て分岐流路へ分流させ、この分岐流路を流れる被処理水
中に渦流ポンプを用いてオゾンを溶解させた後、このオ
ゾン溶解被処理水を上記分岐流路から上記主流路を流れ
る被処理水の本流と合流させることを特徴とするもので
ある。
That is, in the water treatment method according to the first aspect of the present invention, a part of the main flow path through which the water to be treated flows is withdrawn and split into a branch flow channel, and the water to be treated flowing through the branch flow channel is treated. After the ozone is dissolved by using the vortex pump, the ozone-dissolved water to be treated is merged with the main stream of the water to be treated flowing from the branch channel to the main channel.

【0008】また、本発明の請求項2に記載の水処理装
置は、被処理水が流れる主流路と、この主流路を流れる
被処理水の一部を分流させた後上記被処理水の本流と合
流させる分岐流路と、この分岐流路に配設され且つオゾ
ンをこの分岐流路を流れる被処理水中に溶解させる渦流
ポンプとを備えたことを特徴とするものである。
Further, in the water treatment apparatus according to the second aspect of the present invention, the main flow path through which the water to be treated flows and a part of the water to be treated flowing through the main flow channel are diverted and then the main stream of the water to be treated is main stream. And a vortex pump which is disposed in the branch channel and dissolves ozone into the water to be treated flowing in the branch channel.

【0009】また、本発明の請求項3に記載の水処理方
法は、イオン交換及び/または膜処理により製造された
純水が被処理水として流れる主流路からその一部を抜き
出して分岐流路へ分流させ、この分岐流路を流れる被処
理水中に渦流ポンプを用いてオゾンを溶解させた後、こ
のオゾン溶解被処理水を上記分岐流路から上記主流路を
流れる被処理水の本流と合流させることを特徴とするも
のである。
Further, in the water treatment method according to the third aspect of the present invention, a part of the main flow path in which pure water produced by ion exchange and / or membrane treatment flows as the water to be treated is withdrawn to form a branch flow path. The ozone is dissolved in the water to be treated flowing through the branch channel by using a vortex pump, and then the ozone-dissolved water is joined with the main stream of the water to be treated flowing through the main channel from the branch channel. It is characterized by that.

【0010】また、本発明の請求項4に記載の水処理装
置は、イオン交換及び/または膜処理により製造された
純水が被処理水として流れる主流路と、この主流路を流
れる被処理水の一部を分流させた後上記被処理水の本流
と合流させる分岐流路と、この分岐流路に配設され且つ
オゾンをこの分岐流路を流れる被処理水中に溶解させる
渦流ポンプとを備えたことを特徴とするものである。
The water treatment apparatus according to a fourth aspect of the present invention is a water treatment apparatus in which pure water produced by ion exchange and / or membrane treatment flows as water to be treated, and water to be treated flowing in the main passage. And a vortex pump which is disposed in the branch flow channel and dissolves ozone in the water to be treated flowing in the branch flow channel. It is characterized by that.

【0011】また、本発明の請求項5に記載の水処理方
法は、半導体ウエハ、半導体デバイス、その他の電子部
品等の被洗浄物を洗浄した後の排水が被処理水として流
れる主流路からその一部を抜き出して分岐流路へ分流さ
せ、この分岐流路を流れる被処理水中に渦流ポンプを用
いてオゾンを溶解させた後、このオゾン溶解被処理水を
上記分岐流路から上記主流路を流れる被処理水の本流と
合流させることを特徴とするものである。
The water treatment method according to a fifth aspect of the present invention is a method for treating water from a main flow path in which waste water after washing objects to be washed such as semiconductor wafers, semiconductor devices, and other electronic parts flows as the water to be treated. After extracting a part of the water and branching it to the branch flow path, ozone is dissolved in the water to be processed flowing through the branch flow path by using a vortex pump, and then the ozone-dissolved water is discharged from the branch flow path to the main flow path. It is characterized in that it merges with the main stream of the water to be treated.

【0012】また、本発明の請求項6に記載の水処理装
置は、半導体ウエハ、半導体デバイス、その他の電子部
品等の被洗浄物を洗浄した後の排水が被処理水として流
れる主流路と、この主流路を流れる被処理水の一部を分
流させた後上記被処理水の本流と合流させる分岐流路
と、この分岐流路に配設され且つオゾンをこの分岐流路
を流れる被処理水中に溶解させる渦流ポンプとを備えた
ことを特徴とするものである。
A water treatment apparatus according to a sixth aspect of the present invention is a main flow path, in which wastewater after washing objects to be washed such as semiconductor wafers, semiconductor devices, and other electronic parts flows as treated water. A branch flow path that divides a part of the water to be processed flowing through the main flow path and then joins with the main stream of the water to be processed, and the water to be processed that is disposed in the branch flow path and flows ozone through the branch flow path. And a vortex pump that dissolves in the water.

【0013】[0013]

【発明の実施の形態】本発明の請求項1及び請求項2に
記載の発明によれば、渦流ポンプの送水能力に見合った
被処理水をその主流路から一部抜き出して分岐流路へ分
流させた後、この渦流ポンプを用いて分岐流路を流れる
被処理水中にオゾンを溶解させて高濃度のオゾン溶解被
処理水(オゾン水)を作り、このオゾン水を分岐流路か
ら主流路を流れる被処理水の本流と合流させることで所
望濃度のオゾンを被処理水中へ溶解させることができ
る。
According to the first and second aspects of the present invention, a portion of the water to be treated, which is commensurate with the water supply capacity of the vortex pump, is withdrawn from the main channel and is branched into the branch channel. After that, this swirl pump is used to dissolve ozone in the water to be treated that flows through the branch flow path to create high-concentration ozone-dissolved water (ozone water). By joining the main stream of the water to be treated, ozone having a desired concentration can be dissolved in the water to be treated.

【0014】また、本発明の請求項3及び請求項4に記
載の発明によれば、例えば超純水を製造する場合におい
て、イオン交換及び/または膜処理により製造された純
水が被処理水として流れる主流路からその一部を渦流ポ
ンプの送水能力に見合った流量として抜き出して分岐流
路へ分流させた後、この渦流ポンプを用いて分岐流路を
流れる被処理水中にオゾンを溶解させて高濃度のオゾン
溶解被処理水(オゾン水)を作り、このオゾン水を分岐
流路から主流路を流れる被処理水の本流と合流させるこ
とで所望濃度のオゾンを被処理水中へ溶解させることが
できる。
According to the third and fourth aspects of the present invention, for example, in the case of producing ultrapure water, pure water produced by ion exchange and / or membrane treatment is treated water. After extracting a part of it from the main flow path that flows as a flow rate suitable for the water supply capacity of the vortex flow pump and dividing it into a branch flow path, ozone is dissolved in the water to be treated flowing through the branch flow path using this vortex flow pump. It is possible to dissolve ozone of a desired concentration into the water to be treated by making high-concentration ozone-dissolved water to be treated (ozone water) and joining this ozone water with the main stream of the water to be treated flowing from the branch channel to the main channel. it can.

【0015】また、本発明の請求項5及び請求項6に記
載の発明によれば、半導体ウエハ、半導体デバイス等の
被洗浄物を洗浄した後の排水が被処理水として流れる主
流路からその一部を渦流ポンプの送水能力に見合った流
量として抜き出して分岐流路へ分流させた後、この分岐
流路を流れる被処理水中に渦流ポンプを用いてオゾンを
溶解させて高濃度のオゾン溶解被処理水(オゾン水)を
作り、このオゾン水を分岐流路から主流路を流れる被処
理水の本流と合流させることで所望濃度のオゾンを被処
理水中へ溶解させることができる。
According to the fifth and sixth aspects of the present invention, the drainage after cleaning the object to be cleaned such as the semiconductor wafer and the semiconductor device flows from the main flow path as the water to be treated. Part of the water is extracted at a flow rate that matches the water supply capacity of the vortex pump, and is branched into the branch flow path, and then ozone is dissolved in the water to be processed flowing through this branch flow path using a vortex flow pump to dissolve ozone at a high concentration. By making water (ozone water) and merging this ozone water with the main stream of the water to be treated which flows through the main channel from the branch channel, ozone of a desired concentration can be dissolved in the water to be treated.

【0016】[0016]

【実施例】以下、図1〜図3に示す実施例に基づいて本
発明を説明する。尚、各図中、図1は本発明の水処理装
置の一実施例を適用した超純水製造装置の一例を示すフ
ロー図、図2は図1に示す超純水製造装置の一次純水系
の要部を取り出して示すフロー図、図3は図1に示す超
純水製造装置の排水回収システムのフロー図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments shown in FIGS. In each figure, FIG. 1 is a flow chart showing an example of an ultrapure water production system to which an embodiment of the water treatment apparatus of the present invention is applied, and FIG. 2 is a primary pure water system of the ultrapure water production system shown in FIG. FIG. 3 is a flow chart showing the main part of FIG. 3 and FIG. 3 is a flow chart of the waste water recovery system of the ultrapure water production system shown in FIG.

【0017】本実施例の水処理装置を適用した超純水製
造装置は、図1に示すように、工業用水、河川水あるい
は地下水等の原水を被処理水として前処理する前処理系
1と、この前処理系1において処理された処理水を貯留
するタンク2と、このタンク2内の水を処理して純水を
製造する、一点鎖線で囲んだ一次純水系3と、この一次
純水系3からの純水を更に精製して超純水を製造する二
次純水系(サブシステム)4とを備えて構成されてい
る。この超純水製造装置によって製造された超純水は、
半導体製造工程における半導体ウエハあるいは半導体デ
バイス等の洗浄を行うユースポイントUへ供給され、そ
れぞれの洗浄水として用いられると共にユースポイント
Uへ供給された超純水の一部が循環配管50によって常
にタンク12に循環するようにしてある。また、近年、
工業用水の使用制限や河川水、地下水の汲み上げ制限な
どからユースポイントUからの排水は極力再使用するよ
うにしているため、本実施例の超純水製造装置にはユー
スポイントUからの排水を回収する排水回収システム5
が付帯している。この排水回収システム5では6〜7割
の排水を超純水の原水として回収し使用するようにして
ある。
As shown in FIG. 1, an ultrapure water production system to which the water treatment system of the present embodiment is applied includes a pretreatment system 1 for pretreating raw water such as industrial water, river water or groundwater as treated water. , A tank 2 for storing the treated water treated in the pretreatment system 1, a primary pure water system 3 for treating the water in the tank 2 to produce pure water, and a primary pure water system 3 surrounded by a dashed line And a secondary pure water system (subsystem) 4 for further purifying the pure water from 3 to produce ultrapure water. The ultrapure water produced by this ultrapure water production system is
A part of the ultrapure water supplied to the use points U for cleaning semiconductor wafers or semiconductor devices in the semiconductor manufacturing process and used as respective cleaning water and supplied to the use points U is constantly supplied to the tank 12 by the circulation pipe 50. It circulates. In recent years,
Since the drainage from the use point U is reused as much as possible due to the limitation of use of industrial water, the limitation of pumping of river water, and the ground water, the drainage from the use point U is used in the ultrapure water production system of this embodiment. Wastewater collection system 5 to collect
Is attached. In this waste water recovery system 5, 60 to 70% of waste water is recovered and used as raw water of ultrapure water.

【0018】次に、上記各システムについて更に詳述す
る。前処理系1は、通常、凝集沈澱装置及び濾過器等を
備え、これらの構成機器を用いて原水中に含まれている
濁質成分や有機コロイド物質を除去し、後段の一次純水
系3での汚染物質による負荷を軽減するようにしてあ
る。そして、この前処理系1による処理水は一旦タンク
2内に貯留するようにしてある。また、一次純水系3は
後述の構成を有し、イオン、微粒子、微生物、有機物及
び溶存ガスを除去するようにしてある。この後段のサブ
システム4は、一次純水系3の処理水中の微量のイオン
を更に除去してポリッシングすると共に微粒子、有機物
等を除去するために、紫外線酸化装置、非再生式カート
リッジポリッシャー、限外濾過器等(いずれも図示せ
ず)を備えている。
Next, each of the above systems will be described in more detail. The pretreatment system 1 is usually equipped with a coagulation-sedimentation device, a filter, and the like, and these constituent devices are used to remove turbid components and organic colloid substances contained in the raw water. It is designed to reduce the load caused by pollutants in. The water treated by the pretreatment system 1 is temporarily stored in the tank 2. Further, the primary pure water system 3 has a configuration described later and is designed to remove ions, fine particles, microorganisms, organic substances and dissolved gas. Subsequent subsystem 4 further removes a small amount of ions in the treated water of primary pure water system 3 for polishing and also removes fine particles, organic matter, etc., in order to remove fine particles, organic substances, etc., by an ultraviolet oxidation device, a non-regenerative cartridge polisher, and an ultrafiltration. And the like (none of which are shown).

【0019】ところで、上記一次純水系3は、タンク2
から供給される被処理水中の有機物や残留塩素の除去を
行うカーボンフィルター(CF)6と、カーボンフィル
ター6を流出した処理水からナトリウムイオン、カルシ
ウムイオン、マグネシウムイオン等のカチオン類を除去
するカチオン交換塔(CER)7と、カチオン交換塔7
を流出した処理水の溶存炭酸ガスを脱気する脱炭酸塔
(D)8と、脱炭酸塔8を流出した処理水から硫酸イオ
ン、塩素イオン等のアニオン類を除去するアニオン交換
塔(AER)9と、これらの処理後の水を貯留するタン
ク14とを備えている。
By the way, the primary pure water system 3 is used in the tank 2
A carbon filter (CF) 6 that removes organic substances and residual chlorine in the water to be treated supplied from the water, and cation exchange that removes cations such as sodium ions, calcium ions, and magnesium ions from the treated water flowing out of the carbon filter 6. Tower (CER) 7 and cation exchange tower 7
Decarbonation tower (D) 8 for degassing the dissolved carbon dioxide gas of the treated water flowing out of the water, and an anion exchange tower (AER) for removing anions such as sulfate ions and chlorine ions from the treated water flowing out of the decarbonation tower 8 9 and a tank 14 that stores water after these treatments.

【0020】更に、一次純水系3は、オゾン及び紫外線
を用いて被処理水中に残留する微量のシリカ成分のイオ
ン化あるいは有機成分等の酸化を行う酸化装置(O3-U
V)15と、酸化装置15を流出した処理水中の溶存酸
素などの溶存ガスを真空脱気する真空脱気塔(VD)1
6と、真空脱気塔16を流出した処理水からカチオン類
及びアニオン類を更に除去する混床式イオン交換塔(M
BP)17と、逆浸透装置(RO)18と、これらの処
理後の一次純水を貯留するタンク12とを備えている。
尚、超純水製造装置を構成する各機器はいずれも主配管
19によって連結され、配管の要所には送水ポンプが配
設されている。
Further, the primary pure water system 3 is an oxidizer (O 3 -U) for ionizing a small amount of silica component remaining in the water to be treated or oxidizing an organic component by using ozone and ultraviolet rays.
V) 15 and a vacuum degassing tower (VD) 1 for degassing dissolved gas such as dissolved oxygen in the treated water flowing out of the oxidizer 15 in a vacuum.
6 and a mixed bed type ion exchange column (M) for further removing cations and anions from the treated water flowing out of the vacuum degassing column 16.
A BP) 17, a reverse osmosis device (RO) 18, and a tank 12 for storing the primary pure water after these treatments.
Each device constituting the ultrapure water production system is connected by a main pipe 19, and a water supply pump is arranged at a main part of the pipe.

【0021】ここで、本実施例の要部を構成する酸化装
置15について詳述する。この酸化装置15は、図2に
示すように、タンク14から供給される被処理水中に残
留するシリカ、有機物等を溶解オゾンと紫外線照射によ
りイオン化若しくは酸化、分解する装置で、被処理水の
主流路としての主配管19と、主配管19内で被処理水
を流す送水ポンプ20と、送水ポンプ20の下流側のA
点で分岐し、主配管19を流れる被処理水の一部が分
流、迂回し、その後被処理水の本流とA点より下流側の
B点の主配管19において合流する分岐流路としての迂
回配管21と、迂回配管21に配設され且つオゾン発生
器22において作ったオゾンガスを迂回配管21を流れ
る被処理水中に溶解させると共にオゾンを溶解させた被
処理水を主配管19のB点まで移送する渦流ポンプ23
とを備えている。本実施例では、図2で示す主配管19
内では被処理水の本流が流れ、迂回配管21内では本流
の一部例えば1/10の被処理水が分流し、渦流ポンプ
23によってオゾンガスを被処理水中へ溶解させて高濃
度(例えば10ppm程度)のオゾン水を製造すると共
に製造されたオゾン水を迂回配管21の下流側へ流すよ
うにしてある。更に、このオゾン水が渦流ポンプ23の
下流側のB点で本流と合流し、合流点以降では元の流量
に戻ると共にオゾン水は1/10の濃度、つまり本流の
被処理水により1ppmの濃度に希釈されて、換言すれ
ば被処理水中に1ppmのオゾンが添加されて次工程へ
流れるようにしてある。
Here, the oxidizer 15 which constitutes the main part of this embodiment will be described in detail. As shown in FIG. 2, the oxidizing device 15 is a device for ionizing, oxidizing, or decomposing silica, organic matter, and the like remaining in the water to be treated supplied from the tank 14 by dissolving ozone and irradiation of ultraviolet rays. A main pipe 19 as a passage, a water supply pump 20 for flowing water to be treated in the main pipe 19, and A on the downstream side of the water supply pump 20.
Detour as a branch flow path that branches at a point, part of the water to be treated flowing through the main pipe 19 is branched and diverted, and then merges with the main stream of the water to be treated in the main pipe 19 at the point B on the downstream side of the point A. The pipe 21 and the ozone gas generated in the ozone generator 22 which is disposed in the bypass pipe 21 are dissolved in the water to be treated flowing in the bypass pipe 21 and the water to be treated in which ozone is dissolved is transferred to point B of the main pipe 19. Swirl pump 23
And In this embodiment, the main pipe 19 shown in FIG.
The main stream of the water to be treated flows inside, and a part of the main stream, for example, 1/10 of the water to be treated is diverted in the bypass pipe 21, and the ozone gas is dissolved in the water to be treated by the vortex pump 23 to obtain a high concentration (for example, about 10 ppm). The ozone water of (1) is produced and the produced ozone water is caused to flow to the downstream side of the bypass pipe 21. Further, this ozone water merges with the main stream at point B on the downstream side of the vortex pump 23, and after the merge point, returns to the original flow rate and the ozone water has a concentration of 1/10, that is, a concentration of 1 ppm due to the treated water in the main stream. It is diluted so that, in other words, 1 ppm of ozone is added to the water to be treated and the ozone is allowed to flow to the next step.

【0022】尚、渦流ポンプ23は、ケーシングと、こ
のケーシング内に回転可能に軸支された羽根車とを有
し、ケーシングの内周面と羽根車の外周間に昇圧通路が
形成されている。そして、渦流ポンプの吸入口(図2に
おいて主配管19のA点と接続されている側)から被処
理水と共にオゾンガスが吸入されると、これら両者が昇
圧通路を通過する間に羽根車の攪拌作用と昇圧通路の昇
圧作用とが相俟って被処理水中にオゾンガスが溶解して
高濃度(例えば10ppm程度)のオゾン水を作り、吐
出口(図2において主配管19のB点と接続されている
側)からオゾン水を吐出するようにしてある。
The vortex pump 23 has a casing and an impeller rotatably supported in the casing, and a pressurizing passage is formed between the inner peripheral surface of the casing and the outer periphery of the impeller. . Then, when the ozone gas is sucked together with the water to be treated from the suction port (the side connected to the point A of the main pipe 19 in FIG. 2) of the swirl pump, the impeller is agitated while these both pass through the pressurizing passage. The action and the action of the pressurizing passage combine to form ozone water having a high concentration (for example, about 10 ppm) by dissolving ozone gas in the water to be treated and connecting the discharge port (point B of the main pipe 19 in FIG. 2). The ozone water is discharged from the side where

【0023】更に、この酸化装置15は、オゾン添加後
の被処理水中の残留ガスを除去する気液分離装置24
と、気液分離装置24を流出するオゾン含有の被処理水
に紫外線を照射する流通型の紫外線照射装置25とを備
え、後工程の混床式イオン交換塔17においてポリッシ
ングできる状態、即ち、紫外線とオゾンの作用で被処理
水中に残留するシリカをイオン化すると共に、有機物等
を酸化、分解するようにしてある。尚、オゾンガスの溶
解及び紫外線照射により被処理水中では過酸化水素が生
成しており、これが後工程のイオン交換樹脂等を劣化さ
せる虞があるため、この酸化装置15にはカーボンフィ
ルター(CF)26が設けられており、このカーボンフ
ィルター26により過酸化水素を分解除去するようにし
てある。
Further, the oxidizing device 15 is a gas-liquid separating device 24 for removing the residual gas in the water to be treated after the addition of ozone.
And a circulation type ultraviolet irradiation device 25 for irradiating the treated water containing ozone flowing out of the gas-liquid separation device 24 with ultraviolet rays, so that the mixed bed type ion exchange tower 17 in the subsequent step can be polished, that is, ultraviolet rays. By the action of ozone, the silica remaining in the water to be treated is ionized, and organic substances and the like are oxidized and decomposed. It should be noted that hydrogen peroxide is generated in the water to be treated due to the dissolution of ozone gas and the irradiation of ultraviolet rays, which may deteriorate the ion exchange resin and the like in the subsequent process. Therefore, the oxidation device 15 includes a carbon filter (CF) 26. Is provided, and hydrogen peroxide is decomposed and removed by the carbon filter 26.

【0024】また、ユースポイントUに接続された排水
回収システム5は、主としてユースポイントUから排出
される洗浄排水中に含まれているフッ酸や硫酸等の酸を
イオン交換により除去すると共にシリカ、有機物等を溶
解オゾンと紫外線照射によりイオン化若しくは酸化、分
解し、除去するシステムで、ここで浄化された処理水を
超純水の原水として図1に示すように一次純水系3中の
適所、例えばタンク14に配管51を介して戻すように
してある。この排水回収システム5は、図3に示すよう
に、排水が被処理水として流れる主流路としての主配管
19と、この主配管19の被処理水を送る送水ポンプ2
7と、この送水ポンプ27の下流側のC点で分岐し、主
配管19を流れる被処理水の一部が分流し、その後被処
理水の本流と、上記C点より上流側であって上記送水ポ
ンプ27の下流側の主配管19において合流する分岐流
路としての戻し配管28と、この戻し配管28に配設さ
れ且つオゾン発生器22において作ったオゾンガスを戻
し配管28を流れる被処理水中に溶解させてオゾン水を
作ると共に製造したオゾン水を戻し配管28を介してC
点より上流側のD点まで移送する渦流ポンプ29とを備
えている。従って、図3における渦流ポンプ29は、吸
入口及び吐出口の向きが図2の場合とは逆になってい
る。
The waste water recovery system 5 connected to the point of use U removes acids such as hydrofluoric acid and sulfuric acid contained in the cleaning waste water mainly discharged from the point of use U by ion exchange and silica, A system that ionizes or oxidizes and decomposes organic matter and the like by irradiating dissolved ozone and ultraviolet rays, and removes the treated water purified here as raw water of ultrapure water, as shown in FIG. It is adapted to be returned to the tank 14 via a pipe 51. As shown in FIG. 3, the wastewater recovery system 5 includes a main pipe 19 as a main flow path through which wastewater flows as treated water, and a water feed pump 2 for sending the treated water in the main pipe 19.
7 and a point C on the downstream side of the water supply pump 27, a part of the water to be treated flowing through the main pipe 19 is branched off, and then the main stream of the water to be treated and the upstream side from the point C and above A return pipe 28 serving as a branch flow passage that joins in the main pipe 19 on the downstream side of the water supply pump 27, and ozone gas generated in the ozone generator 22 which is arranged in the return pipe 28 is introduced into the water to be treated flowing in the return pipe 28. The ozone water produced is dissolved and the produced ozone water is returned through the return pipe 28 to C
And a vortex pump 29 that moves the point up to the point D. Therefore, in the vortex pump 29 in FIG. 3, the directions of the suction port and the discharge port are opposite to those in the case of FIG.

【0025】更に、この排水回収システム5は、上記オ
ゾン添加位置(D点)より上流側に配設され且つ排水中
に含まれているフッ素イオン等のアニオンを除去する弱
塩基性アニオン交換塔(WAER)30を備え、また、
D点より下流側に配設された、弱塩基性アニオン交換塔
30では除去できない有機物をオゾンと協働して酸化、
分解する紫外線照射装置31と、紫外線照射装置31に
おいて生成した微量の過酸化水素を除去するカーボンフ
ィルター(CF)32及び残留する不純物イオンを除去
する混床式イオン交換塔(MBP)33とを備えてい
る。弱塩基性アニオン交換塔30は紫外線照射装置31
内の紫外線照射灯35の石英ガラス管を腐食するフッ酸
を除去することを主目的に設置されている。尚、図3に
示した紫外線照射装置31は、密閉式の反応槽36内の
被処理水中に紫外線照射灯35を浸漬してなる浸漬型の
ものであり、反応槽36の頂部にはガス抜き管37が付
設されている。
Further, this waste water recovery system 5 is disposed upstream of the ozone addition position (point D) and is a weakly basic anion exchange tower (for removing anions such as fluorine ions contained in the waste water ( WAER) 30 and also
Oxidizing organic matter, which is disposed downstream of point D and cannot be removed by the weakly basic anion exchange column 30, in cooperation with ozone,
An ultraviolet irradiation device 31 for decomposing, a carbon filter (CF) 32 for removing a minute amount of hydrogen peroxide generated in the ultraviolet irradiation device 31, and a mixed bed type ion exchange tower (MBP) 33 for removing residual impurity ions are provided. ing. The weakly basic anion exchange tower 30 is an ultraviolet irradiation device 31.
It is installed mainly for removing the hydrofluoric acid that corrodes the quartz glass tube of the ultraviolet irradiation lamp 35 inside. The ultraviolet irradiation device 31 shown in FIG. 3 is an immersion type in which the ultraviolet irradiation lamp 35 is immersed in the water to be treated in the closed reaction tank 36, and the top of the reaction tank 36 is degassed. A pipe 37 is attached.

【0026】次に動作について説明する。超純水を製造
するために工業用水等の原水を取水して前処理系1へ送
水すると、前処理系1では原水中に含まれている濁質成
分や有機コロイド物質等を除去し、その処理水をタンク
2で次工程での被処理水として一時的に貯留する。タン
ク2内の被処理水を一次純水系3へ送水すると、一次純
水系3では2床3塔型のイオン交換装置(図1の符号7
〜9)、真空脱気塔16、混床式イオン交換塔17、逆
浸透装置18等により被処理水からイオン、微粒子、微
生物、有機物、溶存酸素等を除去して純水を作り、この
純水をタンク12内に一時的に貯留する。次いで、サブ
システム4では一次純水系3からの純水を被処理水とし
て最終的にポリッシングし、純水中に含まれている微量
のイオン、微粒子、生菌等を除去して超純水としてユー
スポイントUへ供給し、この超純水を半導体ウエハや半
導体デバイス等の洗浄水として使用する。
Next, the operation will be described. When raw water such as industrial water is taken to produce ultrapure water and sent to the pretreatment system 1, the pretreatment system 1 removes turbid components and organic colloid substances contained in the raw water. The treated water is temporarily stored in the tank 2 as treated water in the next step. When the water to be treated in the tank 2 is sent to the primary pure water system 3, the primary pure water system 3 uses a two-bed, three-column type ion exchange device (reference numeral 7 in FIG. 1).
~ 9), vacuum degassing tower 16, mixed bed type ion exchange tower 17, reverse osmosis device 18, etc. are used to remove ions, fine particles, microorganisms, organic substances, dissolved oxygen, etc. from the water to be treated to make pure water. Water is temporarily stored in the tank 12. Next, in the subsystem 4, the pure water from the primary pure water system 3 is finally polished as the water to be treated to remove a minute amount of ions, fine particles, viable bacteria and the like contained in the pure water to obtain ultrapure water. The ultrapure water is supplied to the use point U and used as cleaning water for semiconductor wafers, semiconductor devices and the like.

【0027】ところで、一次純水系3の酸化装置15で
は以下のような水処理が行われる。即ち、タンク14内
の被処理水を送水ポンプ20により主配管19を介して
下流側へ例えば10m3/hの流量で送水すると共に、
主配管19のA点から渦流ポンプ23により被処理水の
一部を抜き出して迂回配管21へ1m3/hの流量で分
流、分岐させる。渦流ポンプ23では抜き出した被処理
水とオゾン発生器22から供給されるオゾンガスとを加
圧、攪拌して高濃度(例えば10ppm程度)のオゾン
水を作り、このオゾン水を迂回配管21から主配管19
内の被処理水の本流とB点で合流させてオゾン水を1p
pmに希釈した後、送水ポンプ20の作用と相俟って合
流点から主配管19を経由して気液分離装置24へ流入
させる。
By the way, in the oxidizing device 15 of the primary pure water system 3, the following water treatment is performed. That is, while the water to be treated in the tank 14 is sent to the downstream side by the water pump 20 through the main pipe 19 at a flow rate of, for example, 10 m 3 / h,
A part of the water to be treated is extracted from the point A of the main pipe 19 by the vortex pump 23, and is branched into the bypass pipe 21 at a flow rate of 1 m 3 / h and branched. The swirl pump 23 pressurizes and agitates the extracted water to be treated and the ozone gas supplied from the ozone generator 22 to produce high-concentration (for example, about 10 ppm) ozone water, and the ozone water is supplied from the bypass pipe 21 to the main pipe. 19
1p of ozone water by merging with the main stream of the water to be treated inside at point B
After being diluted to pm, it is allowed to flow into the gas-liquid separation device 24 from the confluence point through the main pipe 19 together with the action of the water pump 20.

【0028】気液分離装置24ではオゾン水中の残留ガ
スを除去する。気液分離後のオゾン水を紫外線照射装置
25へ流入させると、ここでオゾンと紫外線の作用によ
りオゾン水中に残留するシリカがイオン化されたり、有
機物が酸化、分解され、その後カーボンフィルター26
へ流入する。カーボンフィルター26では処理後の水中
に残留する過酸化水素を分解除去し、後工程にある混床
式イオン交換塔内に充填されているイオン交換樹脂等の
損傷を防止する。
The gas-liquid separator 24 removes the residual gas in the ozone water. When the ozone water after gas-liquid separation is made to flow into the ultraviolet irradiation device 25, the silica remaining in the ozone water is ionized or the organic matter is oxidized and decomposed by the action of ozone and ultraviolet rays, and then the carbon filter 26 is used.
Flow into. The carbon filter 26 decomposes and removes hydrogen peroxide remaining in the treated water, and prevents damage to the ion exchange resin and the like filled in the mixed bed type ion exchange tower in the subsequent step.

【0029】また、ユースポイントUからの排水中には
半導体ウエハや半導体デバイスの洗浄により生成した金
属イオンや洗浄に使用されたフッ酸や硫酸等の酸、ある
いは低分子アルコール等の有機物等が混入している。そ
こで、排水回収システム5を使って排水を浄化する。こ
の排水回収システム5では、排水を送水ポンプ27によ
りまず、弱塩基性アニオン交換塔30に通水して排水中
のフッ酸、硫酸等の酸を除去する。次いで、その処理水
を主配管19を介して更に下流側の紫外線照射装置31
に送水するが、その途中のD点において戻し配管28A
から後述のようにして製造した高濃度(例えば10pp
m程度)のオゾン水を注入し、主配管19内において例
えば1ppm程度に希釈する(但し、戻し配管28Aか
ら注入される高濃度オゾン水の流量が主配管19内を流
れる被処理水の流量の1/10の場合)。
In addition, metal ions generated by cleaning semiconductor wafers and semiconductor devices, acids such as hydrofluoric acid and sulfuric acid used for cleaning, or organic substances such as low molecular weight alcohol are mixed in the wastewater from the use point U. are doing. Therefore, the wastewater recovery system 5 is used to purify the wastewater. In this waste water recovery system 5, the waste water is first passed through the weakly basic anion exchange column 30 by the water pump 27 to remove hydrofluoric acid, sulfuric acid and other acids in the waste water. Then, the treated water is passed through the main pipe 19 and the ultraviolet irradiation device 31 on the further downstream side.
To the return pipe 28A at the point D on the way.
High concentration (eg 10pp
(about m) of ozone water is injected and diluted in the main pipe 19 to, for example, about 1 ppm (however, the flow rate of the high-concentration ozone water injected from the return pipe 28A is equal to that of the water to be treated flowing through the main pipe 19). 1/10).

【0030】D点においてオゾンを添加した被処理水を
更に下流に送水するが、その途中のC点においてこの被
処理水の一部を渦流ポンプ29の作用によって抜き出し
て戻し配管28Aへ分流させる。渦流ポンプ29では上
述したようにオゾン発生器22からのオゾンガスを排水
中へ溶解させてオゾン水を作り、このオゾン水を上述の
ように戻し配管28Aから主配管19内の排水の本流と
D点において合流させてオゾン水を1/10程度の濃度
に希釈する。
At the point D, the water to be treated added with ozone is sent further downstream, but at a point C on the way, a part of this water to be treated is extracted by the action of the vortex pump 29 and branched to the return pipe 28A. In the vortex pump 29, as described above, ozone gas from the ozone generator 22 is dissolved in the waste water to produce ozone water, and this ozone water is supplied from the return pipe 28A to the main flow of the waste water in the main pipe 19 and the point D as described above. At the same time, they are combined to dilute ozone water to a concentration of about 1/10.

【0031】その後、オゾン水を1ppm程度溶解させ
た被処理水を紫外線照射装置31へ送水し、紫外線照射
装置31により反応槽36内にて紫外線を被処理水へ照
射して被処理水中に混入した有機物や細菌等をオゾンと
紫外線の作用によって酸化、分解あるいは殺菌した後、
カーボンフィルター32へ流入する。尚、反応槽36で
は被処理水中の残留ガスはガス抜き管37から排出さ
れ、これにより図2に示したような気液分離装置は不要
である。カーボンフィルター32において酸化、分解処
理後の排水中に残留する過酸化水素を分解、除去した
後、その処理水を混床式イオン交換塔33に通水して酸
化分解処理時に生成したイオンやもともと含まれていた
金属イオン等の不純物イオンを除去して純水を得、得ら
れた純水を一次処理系のタンク14へ戻す。尚、図3に
示した酸化装置においては、浸漬型の紫外線照射装置3
1の代わりに図2に示したものと同様の流通型の紫外線
照射装置を用いることもでき、その場合には気液分離装
置を図3におけるD点とC点との間に配置する構成にし
ても良い。
After that, the water to be treated in which ozone water is dissolved by about 1 ppm is sent to the ultraviolet irradiation device 31, and the ultraviolet irradiation device 31 irradiates the water to be treated with ultraviolet rays in the reaction tank 36 to mix it into the water to be treated. After oxidizing, decomposing or sterilizing the organic substances and bacteria etc. that have been made by the action of ozone and ultraviolet rays,
It flows into the carbon filter 32. In the reaction tank 36, the residual gas in the water to be treated is discharged from the gas vent pipe 37, so that the gas-liquid separation device shown in FIG. 2 is unnecessary. After decomposing and removing the hydrogen peroxide remaining in the wastewater after the oxidation and decomposition treatment in the carbon filter 32, the treated water is passed through the mixed bed type ion exchange tower 33 and the ions generated during the oxidative decomposition treatment and originally Impurity ions such as metal ions contained therein are removed to obtain pure water, and the pure water thus obtained is returned to the tank 14 of the primary treatment system. In the oxidation device shown in FIG. 3, the immersion type ultraviolet irradiation device 3 is used.
It is also possible to use a circulation type ultraviolet irradiation device similar to that shown in FIG. 2 in place of 1. In that case, the gas-liquid separation device is arranged between points D and C in FIG. May be.

【0032】以上説明したように本実施例によれば、例
えば超純水の一次純水を作る過程でオゾンガスを被処理
水に溶解させる方法として、イオン等を除去した後の被
処理水が流れる主配管19からその1/10を抜き出し
て迂回配管21へ分流させ、この迂回配管21を流れる
被処理水中に渦流ポンプ23を用いてオゾンガスを溶解
させて高濃度(10ppm)のオゾン水を作った後、こ
のオゾン水を迂回配管21から主配管19を流れる被処
理水の本流と合流させて高濃度のオゾン水を希釈して所
望のオゾン濃度(1ppm)を得るようにしたため、オ
ゾンガスの使用効率を高め、大流量の被処理水であって
も小容量の、あるいは少ない台数の渦流ポンプ23によ
って所望濃度のオゾンを確実に且つ低コストで溶解させ
ることができる。
As described above, according to the present embodiment, for example, as a method of dissolving ozone gas in water to be treated in the process of producing primary pure water of ultrapure water, the water to be treated after ions are removed flows. One-tenth of the main pipe 19 was extracted and branched to the bypass pipe 21, and ozone gas was dissolved in the water to be treated flowing through the bypass pipe 21 by using the vortex pump 23 to produce high-concentration (10 ppm) ozone water. After that, this ozone water is combined with the main stream of the water to be treated flowing from the bypass pipe 21 through the main pipe 19 to dilute the high-concentration ozone water to obtain a desired ozone concentration (1 ppm). Therefore, even if the water to be treated has a large flow rate, it is possible to surely dissolve the ozone of a desired concentration at a low cost by using a small number or a small number of swirl pumps 23.

【0033】尚、上記実施例では超純水を製造する場合
の水処理方法及び装置について説明したが、本発明の水
処理方法及び装置は、上記実施例に何等制限されるもの
ではなく、オゾンガスを利用した水処理(例えば、上水
道の脱臭や殺菌処理、下水処理のCOD除去処理等)の
全てについて本発明を適用することができる。
Although the water treatment method and apparatus for producing ultrapure water have been described in the above embodiments, the water treatment method and apparatus of the present invention are not limited to the above embodiments, and ozone gas is not limited thereto. The present invention can be applied to all of the water treatments (for example, deodorization and sterilization of water supply, COD removal treatment of sewage, etc.).

【0034】[0034]

【発明の効果】本発明の請求項1〜6項に記載の発明に
よれば、オゾンガスの使用効率を格段に高めることがで
きると共に、大流量の被処理水を処理する場合であって
も従来より小容量の、あるいは少ない台数の渦流ポンプ
によって所望濃度のオゾンを確実に且つ低コストで溶解
させることができ、しかも、省スペース化を達成するこ
とができる水処理方法及び水処理装置を提供することが
できる。
According to the invention described in claims 1 to 6 of the present invention, the use efficiency of ozone gas can be remarkably increased, and the conventional method can be used even when a large amount of water to be treated is treated. (EN) Provided are a water treatment method and a water treatment apparatus which can surely dissolve ozone of a desired concentration at a low cost with a smaller capacity or a smaller number of swirl pumps and can achieve space saving. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水処理装置の一実施例を適用した超純
水製造装置の一例を示すフロー図である。
FIG. 1 is a flow chart showing an example of an ultrapure water production system to which an embodiment of the water treatment system of the present invention is applied.

【図2】図1に示す超純水製造装置の一次純水系の要部
を取り出して示すフロー図である。
FIG. 2 is a flow chart showing an essential part of a primary pure water system of the ultrapure water production system shown in FIG.

【図3】図1に示す超純水製造装置の排水回収システム
のフロー図である。
FIG. 3 is a flow chart of a wastewater recovery system of the ultrapure water production system shown in FIG.

【符号の説明】[Explanation of symbols]

7 カチオン交換塔 8 脱炭酸塔 9 アニオン交換塔 18 逆浸透装置(膜処理) 19 主配管(主流路) 21 迂回配管(分岐流路) 23 渦流ポンプ 7 Cation Exchange Tower 8 Decarbonation Tower 9 Anion Exchange Tower 18 Reverse Osmosis Device (Membrane Treatment) 19 Main Pipe (Main Flow Path) 21 Detour Pipe (Branch Flow Path) 23 Vortex Pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/304 341 H01L 21/304 341L ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location H01L 21/304 341 H01L 21/304 341L

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被処理水が流れる主流路からその一部を
抜き出して分岐流路へ分流させ、この分岐流路を流れる
被処理水中に渦流ポンプを用いてオゾンを溶解させた
後、このオゾン溶解被処理水を上記分岐流路から上記主
流路を流れる被処理水の本流と合流させることを特徴と
する水処理方法。
1. A part of the main flow path through which the water to be treated flows is extracted and split into a branch flow channel, and ozone is dissolved in the water to be treated flowing through the branch flow channel by using a vortex pump, and then this ozone is discharged. A water treatment method, characterized in that the dissolved water to be treated is merged with the main stream of the water to be treated flowing from the branch channel to the main channel.
【請求項2】 被処理水が流れる主流路と、この主流路
を流れる被処理水の一部を分流させた後上記被処理水の
本流と合流させる分岐流路と、この分岐流路に配設され
且つオゾンをこの分岐流路を流れる被処理水中に溶解さ
せる渦流ポンプとを備えたことを特徴とする水処理装
置。
2. A main flow passage through which the water to be treated flows, a branch flow passage for dividing a part of the water to be treated flowing through the main flow passage and then joining the main flow of the water to be treated, and a branch flow passage arranged in the branch flow passage. And a swirl pump that dissolves ozone in the water to be treated flowing through the branch flow path.
【請求項3】 イオン交換及び/または膜処理により製
造された純水が被処理水として流れる主流路からその一
部を抜き出して分岐流路へ分流させ、この分岐流路を流
れる被処理水中に渦流ポンプを用いてオゾンを溶解させ
た後、このオゾン溶解被処理水を上記分岐流路から上記
主流路を流れる被処理水の本流と合流させることを特徴
とする水処理方法。
3. Pure water produced by ion exchange and / or membrane treatment is withdrawn from a main flow path that flows as water to be treated, and a part of the water is branched off into a branch flow path. A method for treating water, characterized in that ozone is dissolved by using a vortex pump, and then this ozone-dissolved water to be treated is merged with the main stream of the water to be treated flowing from the branch channel to the main channel.
【請求項4】 イオン交換及び/または膜処理により製
造された純水が被処理水として流れる主流路と、この主
流路を流れる被処理水の一部を分流させた後上記被処理
水の本流と合流させる分岐流路と、この分岐流路に配設
され且つオゾンをこの分岐流路を流れる被処理水中に溶
解させる渦流ポンプとを備えたことを特徴とする水処理
装置。
4. A main flow path in which pure water produced by ion exchange and / or membrane treatment flows as water to be treated, and a part of the water to be treated flowing in the main flow channel is diverted, and then the main stream of the water to be treated is divided. And a vortex pump disposed in the branch channel and dissolving ozone in the water to be treated flowing in the branch channel.
【請求項5】 半導体ウエハ、半導体デバイス、その他
の電子部品等の被洗浄物を洗浄した後の排水が被処理水
として流れる主流路からその一部を抜き出して分岐流路
へ分流させ、この分岐流路を流れる被処理水中に渦流ポ
ンプを用いてオゾンを溶解させた後、このオゾン溶解被
処理水を上記分岐流路から上記主流路を流れる被処理水
の本流と合流させることを特徴とする水処理方法。
5. A part of a main flow path, from which waste water after cleaning an object to be cleaned such as a semiconductor wafer, a semiconductor device, and other electronic parts flows as water to be treated, is branched off into a branch flow path, and this branch is performed. The method is characterized in that after ozone is dissolved in the water to be treated flowing through the flow path using a vortex pump, the ozone-dissolved water to be treated is merged with the main stream of the water to be treated flowing through the main channel from the branch channel. Water treatment method.
【請求項6】 半導体ウエハ、半導体デバイス、その他
の電子部品等の被洗浄物を洗浄した後の排水が被処理水
として流れる主流路と、この主流路を流れる被処理水の
一部を分流させた後上記被処理水の本流と合流させる分
岐流路と、この分岐流路に配設され且つオゾンをこの分
岐流路を流れる被処理水中に溶解させる渦流ポンプとを
備えたことを特徴とする水処理装置。
6. A main flow path through which wastewater after cleaning an object to be cleaned such as a semiconductor wafer, a semiconductor device, and other electronic components flows as water to be treated, and a part of the water to be treated flowing through this main channel is divided. And a vortex pump disposed in the branch flow path and dissolving ozone in the water to be processed flowing in the branch flow path. Water treatment equipment.
JP21521795A 1995-07-31 1995-07-31 Water treatment and water treating device Pending JPH0938671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21521795A JPH0938671A (en) 1995-07-31 1995-07-31 Water treatment and water treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21521795A JPH0938671A (en) 1995-07-31 1995-07-31 Water treatment and water treating device

Publications (1)

Publication Number Publication Date
JPH0938671A true JPH0938671A (en) 1997-02-10

Family

ID=16668645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21521795A Pending JPH0938671A (en) 1995-07-31 1995-07-31 Water treatment and water treating device

Country Status (1)

Country Link
JP (1) JPH0938671A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205323A (en) * 2004-01-22 2005-08-04 Fuji Xerox Co Ltd Waste water treating method
WO2010004819A1 (en) * 2008-07-09 2010-01-14 東レ株式会社 Salt water desalination equipment using reverse osmosis membrane, and method for producing desalinated water using salt water desalination equipment
WO2015037256A1 (en) * 2013-09-11 2015-03-19 株式会社東芝 Uv-irradiation apparatus
JP2015157284A (en) * 2009-10-05 2015-09-03 株式会社キッツ Water treatment device for sterilization purification
JP2018089587A (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Apparatus for producing ultrapure water and method for operating the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205323A (en) * 2004-01-22 2005-08-04 Fuji Xerox Co Ltd Waste water treating method
JP4525083B2 (en) * 2004-01-22 2010-08-18 富士ゼロックス株式会社 Wastewater treatment method
WO2010004819A1 (en) * 2008-07-09 2010-01-14 東レ株式会社 Salt water desalination equipment using reverse osmosis membrane, and method for producing desalinated water using salt water desalination equipment
JP2015157284A (en) * 2009-10-05 2015-09-03 株式会社キッツ Water treatment device for sterilization purification
WO2015037256A1 (en) * 2013-09-11 2015-03-19 株式会社東芝 Uv-irradiation apparatus
JP2015054280A (en) * 2013-09-11 2015-03-23 株式会社東芝 Ultraviolet irradiation device
CN105473511A (en) * 2013-09-11 2016-04-06 株式会社东芝 UV-irradiation apparatus
AU2014319793B2 (en) * 2013-09-11 2017-02-23 Kabushiki Kaisha Toshiba UV-irradiation apparatus
US9676637B2 (en) 2013-09-11 2017-06-13 Kabushiki Kaisha Toshiba Ultraviolet irradiation apparatus
JP2018089587A (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Apparatus for producing ultrapure water and method for operating the same
WO2018105188A1 (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Ultrapure water production apparatus and operation method for ultrapure water production apparatus

Similar Documents

Publication Publication Date Title
JP3426072B2 (en) Ultrapure water production equipment
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
KR0156743B1 (en) Process and system for purifying pure water of ultra-pure water
US20050121398A1 (en) System and method for removing organic compounds from waste water by oxidation
US6991733B2 (en) Process for removing organics from ultrapure water
US7279093B2 (en) Module for removing organic compounds from foaming wastewater by oxidation
JP3491328B2 (en) Ultrapure water production equipment
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JPH05220480A (en) Pure water manufacturing apparatus
JP3789619B2 (en) Ultrapure water production equipment
JPH0938671A (en) Water treatment and water treating device
JPH09253638A (en) Ultrapure water making apparatus
JPH10216749A (en) Ultrapure water making apparatus
JPH10309588A (en) Water treatment, water treating device and pure water producing device
JPH10244280A (en) Removal device for organic substance in water
JPH03278882A (en) Method and apparatus for removing dissolved oxygen in water
JP3928484B2 (en) Functional water recovery method
JPH1128482A (en) Production of pure water
JP3452471B2 (en) Pure water supply system, cleaning device and gas dissolving device
JPH0889976A (en) Method for removing organic matter in water
JP2021530349A (en) Wastewater reuse method and equipment using reverse osmosis
JP2002307080A (en) Apparatus for producing ultrapure water
JPH0839058A (en) Treatment of semiconductor washing waste water
JP4700859B2 (en) HAZARDOUS SUBSTANCE TREATMENT METHOD, ITS DEVICE, AND WASTEWATER TREATMENT SYSTEM
JPH0938669A (en) Manufacture of ultrapure water and device therefor