JPS62176595A - Method for removing organic substance in waste water - Google Patents

Method for removing organic substance in waste water

Info

Publication number
JPS62176595A
JPS62176595A JP1463486A JP1463486A JPS62176595A JP S62176595 A JPS62176595 A JP S62176595A JP 1463486 A JP1463486 A JP 1463486A JP 1463486 A JP1463486 A JP 1463486A JP S62176595 A JPS62176595 A JP S62176595A
Authority
JP
Japan
Prior art keywords
ozone
water
hydrogen peroxide
substance
organic matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1463486A
Other languages
Japanese (ja)
Inventor
Takayuki Saito
孝行 斉藤
Akira Fukunaga
明 福永
Hidenobu Arimitsu
有満 秀信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP1463486A priority Critical patent/JPS62176595A/en
Publication of JPS62176595A publication Critical patent/JPS62176595A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently decompose an org. substance, by adding hydrogen peroxide, ozone gas and ozonated water to waste water containing the low molecular org. substance while said waste water is irradiated with ultraviolet rays. CONSTITUTION:Waste waater containing an org. substance is guided to a reaction tank 3 from a raw water introducing pipe 1 and hydrogen peroxide water is injected in said waste water on the way of the introducing pipe 1 through a hydrogen peroxide injection pipe 2. An ozone introducing pipe 6 having an air diffusion pipe 5 connected to the leading end thereof is arranged in the vicinity of the bottom part of the reaction tank 3 and ozone gas is introduced into the ozone introducing pipe 6 to diffuse ozone to the reaction tank 3. Further, the waste water is irradiated with ultraviolet rays from an ultraviolet lamp 4 to decompose the org. substance in raw water and treated water is discharged out of the system from a discharge pipe 7. By this method, the org. substance can be oxidized and decomposed within a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、比較的低分子の有機物を含む用廃水を処理す
るに当り、紫外線湿式酸化により前記有機物を分解除去
する方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in a method for decomposing and removing organic substances by ultraviolet wet oxidation when treating industrial wastewater containing relatively low-molecular organic substances. be.

〔従来技術〕[Prior art]

近年、用水の利用が多様化しており、水質的には比較的
低濃度の有機物が問題となる場合が多くなってきている
0例えば、純水を製造する場合では、用水中の有機物で
イオン交換樹脂が汚染されたり、またイオン交換樹脂自
体から有機性成分が溶出し、純水の純度を低下させる原
因となることもある。更には、燃料電池からのブローダ
ウン水には、燃料ガスから持ち込まれたアルコールを主
成分とする種々の有機物が含まれ、このブローダウン水
を燃料電池セルの冷却水として循環利用する場合に問題
となる。また、超純水においては、言うまでもな(数μ
g / eの濃度の有機物さえ問題である。
In recent years, the use of water has diversified, and relatively low concentrations of organic matter have become a problem in terms of water quality.For example, when producing pure water, ion exchange with organic matter in water The resin may be contaminated or organic components may be eluted from the ion exchange resin itself, causing a decrease in the purity of the pure water. Furthermore, blowdown water from fuel cells contains various organic substances, mainly alcohol, brought in from the fuel gas, which poses a problem when this blowdown water is recycled as cooling water for fuel cells. becomes. In addition, it goes without saying that ultrapure water (several μ
Even concentrations of organic matter of g/e are problematic.

これらの有機物の成分は、比較的低分子のものが多く、
例えばメタノール、低級脂肪酸、低級アルデヒドあるい
は低級アミン等が挙げられる。
Many of the components of these organic substances are relatively low molecular,
Examples include methanol, lower fatty acids, lower aldehydes, and lower amines.

従来、用廃水中の有機物を分解する方法としては種々検
討されており、例えば以下のように大別することができ
る。
Conventionally, various methods for decomposing organic matter in industrial wastewater have been studied, and can be broadly classified, for example, as follows.

+11  酸化剤添加法 塩素系酸化剤、過酸化水素、オゾン等を添加する。+11 Oxidizing agent addition method Add chlorine oxidizer, hydrogen peroxide, ozone, etc.

(2)  湿式酸化法 酸化雰囲気下で高温、高圧状態において熱分解する。(2) Wet oxidation method It decomposes thermally at high temperature and pressure in an oxidizing atmosphere.

(3)電解酸化法 電極反応による酸化分解(酸化剤を併用する場合もある
)。
(3) Electrolytic oxidation method Oxidative decomposition by electrode reaction (an oxidizing agent may be used in combination).

(4)触媒酸化法 触媒として金属塩ないし金属を用い酸化剤で分解する。(4) Catalytic oxidation method Decomposes with an oxidizing agent using a metal salt or metal as a catalyst.

(5)光触媒酸化法 紫外線(以下rUVJと称する)等の照射下で金属塩な
いし光半導体触媒を用いて酸化分解する。
(5) Photocatalytic oxidation method Oxidative decomposition is carried out using a metal salt or a photosemiconductor catalyst under irradiation with ultraviolet rays (hereinafter referred to as rUVJ) or the like.

(610V湿式酸化法 塩素系酸化剤+UV 過酸化水素+UV オゾン+UV 塩素系酸化剤+過酸化水素+UV 塩素系酸化剤+オゾン+UV オゾン+超音波+UV これらの方法のうち、酸化剤を単に添加する酸化剤添加
法は、種々の分野で広く用いられ、非常に容易に行える
技術であり、有機物によっては効果的な場合があるが、
−a的に反応速度が遅く酸化剤の添加量も比較的多くな
り、経済性に欠ける面がある。
(610V wet oxidation method Chlorine oxidizer + UV Hydrogen peroxide + UV Ozone + UV Chlorine oxidizer + Hydrogen peroxide + UV Chlorine oxidizer + Ozone + UV Ozone + Ultrasound + UV Among these methods, oxidation by simply adding an oxidant The agent addition method is a technique that is widely used in various fields and is very easy to perform, and may be effective depending on the organic substance.
-a, the reaction rate is slow and the amount of oxidizing agent added is relatively large, which makes it uneconomical.

また、湿式酸化法は、反応の完全な進行を期待できるが
耐圧容器が必要であり、腐食の問題も避けられないとこ
ろから、運転管理が難しくあまり実用化されていない、
その点、電解酸化法は電流電圧により反応の進行度を任
意に制御でき、原理的には運転管理が容易であると思わ
れるが、実際には電極の腐食あるいは消耗等の問題があ
り、安定して反応を制御することはなかなか容易でない
点と、反応が電極表面に限られてしまうため多数の電解
槽が必要となり、処理装置が大型化する点が障害となる
In addition, although the wet oxidation method can be expected to allow the reaction to proceed completely, it requires a pressure-resistant container and the problem of corrosion cannot be avoided, making operation management difficult and not being put into practical use very often.
On this point, in the electrolytic oxidation method, the progress of the reaction can be arbitrarily controlled by the current and voltage, and although in principle it seems easy to manage the operation, in reality there are problems such as corrosion or wear of the electrodes, resulting in unstable Problems include the fact that it is not easy to control the reaction, and because the reaction is limited to the electrode surface, a large number of electrolytic cells are required, which increases the size of the processing equipment.

次に、例えばフェントン処理法に代表される触媒酸化法
は、古くから実用化され、比較的運転管理が容易である
という利点はあるが、触媒である金属塩や金属が多量に
必要となり、あまり経済的であるとは言えない。また、
光触媒酸化法は金属塩や光半導体等の触媒を用い−るた
め、反応速度も大きく通常酸化剤の添加を必要としない
ことからら経済的には有利であるが、触媒の腐食等によ
る劣化が起こりやすく未だ実用化できる技術にまで達し
ていない。
Next, for example, catalytic oxidation methods, such as the Fenton treatment method, have been in practical use for a long time and have the advantage of being relatively easy to manage, but they require large amounts of metal salts and metals as catalysts, making them less effective. It cannot be said that it is economical. Also,
Since the photocatalytic oxidation method uses a catalyst such as a metal salt or a photosemiconductor, it has a high reaction rate and usually does not require the addition of an oxidizing agent, so it is economically advantageous, but it is susceptible to deterioration due to corrosion of the catalyst. This is likely to occur and the technology has not yet been developed for practical use.

このように、前記従来技術には一長一短があるところか
ら、UV湿式酸化法が最も実用的であるとされている。
As described above, since the above-mentioned conventional techniques have advantages and disadvantages, the UV wet oxidation method is said to be the most practical.

すなわち、各種酸化剤を併用するUV湿式酸化法は、前
記の酸化剤添加法よりも有効な手段であり、添加する酸
化剤の量も少なくて済むという利点がある。
That is, the UV wet oxidation method that uses various oxidizing agents in combination is a more effective means than the above-mentioned oxidizing agent addition method, and has the advantage that it requires less amount of oxidizing agent to be added.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、最も実用的と思われるUV湿式酸化法におい
ても以下のような問題点がある。
However, even the UV wet oxidation method, which is considered to be the most practical method, has the following problems.

(1)M他剤添加法より反応速度は大きいが、一般的に
反応時間は60分以上必要な場合が多い。
(1) Although the reaction rate is higher than the M other agent addition method, the reaction time is generally required to be 60 minutes or more in many cases.

(2)併用する酸化剤として塩素系酸化剤を使うと、有
害な有機塩素化合物が生成し、処理水中に残留するおそ
れがあり、また、塩素イオンが過剰(約1000■/1
以上)に含まれるとラジカル反応が阻害され、有機物の
分解が困難となる。
(2) If a chlorine-based oxidizing agent is used as an oxidizing agent, harmful organic chlorine compounds may be generated and may remain in the treated water.
(above), radical reactions are inhibited and decomposition of organic substances becomes difficult.

(3)有機物の種類により分解反応の選択性が太き(、
最適反応条件が異なる。
(3) The selectivity of the decomposition reaction varies depending on the type of organic matter (,
Optimal reaction conditions are different.

更に、用廃水中の有機物が微量成分を含めて多種類とな
ってきている現状にありでは、従来のUV湿式酸化法で
は充分満足できる処理を行うことはますます困難となっ
てきている。
Furthermore, in the current situation where the organic matter in industrial wastewater is becoming more and more diverse, including trace components, it is becoming more and more difficult to carry out a fully satisfactory treatment using the conventional UV wet oxidation method.

前記問題点が生じる原因の一つは、有機物を分解するた
めの酸化力が不充分であるためで、充分な酸化を短時間
で行うことができるならば、反応が副生成物の段階で停
止したり、有機物の種類による選択性の問題も生じるこ
となく、有機物をCO,ガスまで分解することが可能と
なる。
One of the causes of the above problem is that the oxidizing power to decompose organic substances is insufficient.If sufficient oxidation could be carried out in a short time, the reaction would stop at the by-product stage. It becomes possible to decompose organic matter into CO and gas without causing problems with selectivity due to the type of organic matter.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の問題点を解決すべく、運転管理が容
易で経済性が高く、有機物の分解効率がよい用廃水中の
有機物の除去方法の検討を行い従来試みられていなかっ
た過酸化水素とオゾンの共存下でUV照射するUV湿式
酸化法が最も実用的であることを知見するに至った。
In order to solve the above problems, the present inventors investigated a method for removing organic matter from industrial wastewater that is easy to operate, highly economical, and has high efficiency in decomposing organic matter. It has been found that a UV wet oxidation method in which UV irradiation is performed in the coexistence of hydrogen and ozone is the most practical.

本発明は、有機物、とりわけ比較的細分子の有機物を効
率よく容易に分解できる用廃水中の有機物の除去方法を
提供することを目的とするものである。
An object of the present invention is to provide a method for removing organic matter from wastewater that can efficiently and easily decompose organic matter, particularly organic matter with relatively fine molecules.

本発明の特徴は、比較的低分子の有機物を含む用廃水に
、過酸化水素とオゾンガス若しくはオゾン化水を添加す
ると共にUVを照射することにある。ここで、前記を搬
物は比較的低分子量の揮発性物質がほとんどであり、更
に詳しく言えば低級脂肪酸、低級アルデヒド、低級アミ
ン、低級アルコール等である。また、処理時のpHは、
好ましくは8以下とすることによって有機物の分解効率
を更に高めることができる。
A feature of the present invention is that hydrogen peroxide and ozone gas or ozonized water are added to wastewater containing relatively low-molecular organic substances, and UV irradiation is applied. Here, most of the above-mentioned substances are volatile substances of relatively low molecular weight, and more specifically, lower fatty acids, lower aldehydes, lower amines, lower alcohols, etc. In addition, the pH during treatment is
By setting it preferably to 8 or less, the decomposition efficiency of organic matter can be further improved.

〔作用〕[Effect]

本発明を、その−実施B様を示す第1図に基いて説明す
れば、有機物を含む用廃水(以下「原水」と称す)を原
水導入管1から反応槽3内に導くが、その途中で過酸化
水素水を過酸化水素注入管2を介して注入する。反応槽
3の底部付近には、先端に散気管5を接続したオゾン導
入管6を配設し、オゾンガスをオゾン導入管6に導入す
ることにより、反応槽3にオゾンを散気し、また紫外線
ランプ4でUVを照射することによって原水中の有機物
を分解し、処理水を排出管7から系外に排出するもので
ある。
The present invention will be explained based on FIG. 1 showing embodiment B. Waste water containing organic matter (hereinafter referred to as "raw water") is introduced into the reaction tank 3 from the raw water introduction pipe 1, A hydrogen peroxide solution is injected through the hydrogen peroxide injection pipe 2. Near the bottom of the reaction tank 3, an ozone introduction pipe 6 with an aeration pipe 5 connected to the tip is arranged, and by introducing ozone gas into the ozone introduction pipe 6, ozone is diffused into the reaction tank 3, and ultraviolet rays are also emitted. The organic matter in the raw water is decomposed by UV irradiation with the lamp 4, and the treated water is discharged from the system through the discharge pipe 7.

この本発明における作用を、更に以下に詳述する。The operation of the present invention will be further explained in detail below.

過酸化水素を添加しない従来のオゾン+UV処理に関し
てはかなり検討されており、例えば反応条件の一つであ
るpHにしても、フェノールの分解ではアルカリ側が良
く、ポリエチレングリコールの分解では中性が効果的で
ある。また、酢酸ナトリウムはpHが8以下であり、メ
タノールの分解ではアルカリ側が好ましい。このように
、反応条件が有機物の種類によって異なるため、従来の
オゾン+UV処理では、通常、多種類の有機物を含む用
廃水処理の最適反応条件を決めることはなかなか困難で
あり、処理効果も不安定であった一0更に、有機物は一
次的には炭酸ガスにまで分解されず、中間生成物を生じ
ることは周知の事である。従って、中間生成物がかなり
安定に存在する物質であるならば、処理水の有機物濃度
の減少はあまり期待できず、全有機炭素(TOC)ある
いは化学的酸素要求量(CO[l ”)の低減に効果が
ない場合もあり、従来のオゾン+UV処理に限らず、従
来のUV湿式酸化法の問題点でもあった。
Conventional ozone + UV treatment without the addition of hydrogen peroxide has been extensively studied; for example, regarding pH, which is one of the reaction conditions, alkaline pH is better for decomposing phenol, and neutral pH is more effective for polyethylene glycol decomposition. It is. In addition, sodium acetate has a pH of 8 or less, and the alkaline side is preferable for methanol decomposition. As described above, since the reaction conditions differ depending on the type of organic matter, with conventional ozone + UV treatment, it is usually difficult to determine the optimal reaction conditions for treating wastewater containing many types of organic matter, and the treatment effect is unstable. Furthermore, it is well known that organic substances are not primarily decomposed to carbon dioxide gas, but produce intermediate products. Therefore, if the intermediate product is a substance that exists fairly stably, it is not expected that the concentration of organic matter in the treated water will decrease much, and the total organic carbon (TOC) or chemical oxygen demand (CO [l '') will decrease. This is a problem not only with conventional ozone + UV treatment but also with conventional UV wet oxidation methods.

本発明は、この反応を充分検討した結果成されたもので
ある。すなわち、水中の有Ia物の分解は、UV照射と
酸化剤を併用した場合、ラジカル反応により進行し、特
にHO・ラジカルが大きく寄与する。例えば、オゾンを
用いた時では、 UV o、l −→ Oz”0・ 0 ・+ Hg0−2IO・ また、過酸化水素を用いた時では、 UV H2O2−→ 2IO・ の反応でHO・ラジカルが生成する。もちろん、IO・
ラジカル以外にも種々のラジカルが生成されるが一般的
に前記酸化剤を用いた場合では■0・ラジカルが一次的
に生成される。
The present invention was achieved as a result of thorough study of this reaction. That is, when UV irradiation and an oxidizing agent are used together, the decomposition of Ia compounds in water proceeds by a radical reaction, and in particular, HO and radicals make a large contribution. For example, when ozone is used, UV o,l −→ Oz”0・0・+Hg0−2IO・ When hydrogen peroxide is used, HO・radical is Generate.Of course, IO・
Various other radicals are generated in addition to radicals, but in general, when the above-mentioned oxidizing agent is used, the 0.radical is primarily generated.

HO・ラジカルの生成にはオゾンが水に溶解することが
必要である。水に溶解されなかったオゾンは、自己分解
して生成した。2を含めて廃ガスとなって大気中に放散
するため不経済である。すなわち、HO・ラジカルの生
成量を増大させるためには、水溶性物質からHO・ラジ
カルを直接生成させる方が有利であることは明白である
。しかし、例えば水溶性物質である過酸化水素にUVを
照射しただけでは、オゾンに比べて過酸化水素の自己分
解速度が遅いため、有機物の分解速度も遅く短時間で有
機物を炭酸ガスまで分解することはできない。特に、過
酸化水素の自己分解速度が遅いのは、通常市販されてい
る過酸化水素には種々の安定化剤が含まれていることも
一因しているからである。
Generation of HO radicals requires that ozone be dissolved in water. Ozone that was not dissolved in water was produced by self-decomposition. It is uneconomical because it becomes waste gas including 2 and dissipates into the atmosphere. That is, in order to increase the amount of HO radicals produced, it is clear that it is more advantageous to directly generate HO radicals from a water-soluble substance. However, for example, if only hydrogen peroxide, which is a water-soluble substance, is irradiated with UV light, the self-decomposition rate of hydrogen peroxide is slower than that of ozone, so the rate of decomposition of organic matter is also slow and the organic matter is decomposed into carbon dioxide in a short time. It is not possible. Particularly, the self-decomposition rate of hydrogen peroxide is slow, partly because commercially available hydrogen peroxide usually contains various stabilizers.

そこで本発明者らは、オゾンと過酸化水素を併用するこ
とによってHO・ラジカルの生成量を激増させ、短時間
で有機物が分解されることを知見し、本発明に至ったも
のである。すなわち、UV照射によってオゾンから生成
される0・ラジカルあるいは発生期の酸素(0)で過酸
化水素の自己分解を促進し、HO・ラジカルを従来法と
は比較にならない程大量に生成することに特徴があり、
例えば以下の反応が連鎖的に起こると考えられる。
Therefore, the present inventors discovered that by using ozone and hydrogen peroxide in combination, the amount of HO radicals produced can be dramatically increased, and organic substances can be decomposed in a short time, leading to the present invention. In other words, the self-decomposition of hydrogen peroxide is promoted by the 0-radicals generated from ozone by UV irradiation or the nascent oxygen (0), and HO-radicals are generated in large quantities compared to conventional methods. It has characteristics,
For example, the following reactions are thought to occur in a chain sequence.

UV Ol−一〇?+0・ o −+H,O→2HO− 0・+HzO1=HO−Hot V Hバh −→2HO・ 従って、オゾンは有機物の分解に寄与するよりも、過酸
化水素の自己分解の促進に使われるため、オゾンは一種
のラジカル生成の開始剤であると言える。
UV Ol-10? +0・o −+H,O→2HO− 0・+HzO1=HO−Hot V H bah −→2HO・ Therefore, ozone is used to promote the self-decomposition of hydrogen peroxide rather than contributing to the decomposition of organic matter. , ozone can be said to be a kind of radical generation initiator.

このように、本発明は従来法よりも有機物の分解速度は
はるかに大きいが、有機物を短時間で炭酸ガスまで分解
するには有機物の分子量ももちろん影響してくる。すな
わち、有機物が高分子量の場合は種々の中間生成物が生
じ、最終的に炭酸ガスが生成するまでの反応時間は長く
なる傾向にあるからである。しかし、通常はUV湿式酸
化処理を行う前に凝集沈殿及び砂ろ過等の前処理を行う
ため、対象となる有機物はこれらの前処理で除去できな
かった比較的低分子量の有機物であることから、本発明
の効果を充分発揮させることができる。
As described above, the rate of decomposition of organic matter in the present invention is much higher than that of the conventional method, but of course the molecular weight of the organic matter also influences the decomposition of organic matter into carbon dioxide in a short time. That is, when the organic substance has a high molecular weight, various intermediate products are produced, and the reaction time until carbon dioxide gas is finally produced tends to be long. However, since pretreatments such as coagulation and sedimentation and sand filtration are usually performed before UV wet oxidation treatment, the target organic substances are relatively low molecular weight organic substances that could not be removed by these pretreatments. The effects of the present invention can be fully exhibited.

以上のごとく、本発明は過酸化水素とオゾンを併用しU
V照射を行うことにより、有機物を短時間で酸化分解す
るために必要なHO・ラジカルを生成する作用があり、
この作用は従来法のUV湿式酸化法よりはるかに大きい
ものである。
As described above, the present invention uses hydrogen peroxide and ozone in combination to
V irradiation has the effect of generating HO radicals, which are necessary to oxidize and decompose organic substances in a short time.
This effect is much greater than the conventional UV wet oxidation method.

〔実施例〕〔Example〕

次に、本発明方法と従来法の実施例を示す。 Next, examples of the method of the present invention and the conventional method will be shown.

実施例−1 500mAの水道水にメチルアルコールを約80■/I
l添加したものを原水とし、表1に示す条件でメチルア
ルコールの分解を行った。なお、UV光源には低圧水銀
ランプ(消費電力32W)を用いた。
Example-1 Approximately 80μ/I of methyl alcohol in tap water of 500mA
1 was added as raw water, and methyl alcohol was decomposed under the conditions shown in Table 1. Note that a low-pressure mercury lamp (power consumption: 32 W) was used as the UV light source.

また、poの調整には水酸化ナトリウム溶液あるいは硫
酸を適当量添加して目的のpHに調整した。
In addition, to adjust the po level, an appropriate amount of sodium hydroxide solution or sulfuric acid was added to adjust the pH to the desired level.

以下余白 この例は、従来法であるオゾン+Uv照射の例であり、
その結果を第2図に示す。第2図から分るように、原水
のpHによりメチルアルコールの分解は影響され、pt
+がアルカリ側ではほとんど反応していない。また、1
1000ppのオゾンを用いても、Bの例でも反応時間
60分で50%程度のTOC除去率であった。
Margin below This example is an example of the conventional method of ozone + UV irradiation.
The results are shown in FIG. As can be seen from Figure 2, the decomposition of methyl alcohol is affected by the pH of the raw water, and pt
There is almost no reaction when + is on the alkali side. Also, 1
Even when 1000 pp of ozone was used, the TOC removal rate in Example B was about 50% in a reaction time of 60 minutes.

これに対し、過酸化水素とオゾンを併用しUV照射した
本発明の例について、分解条件を表2に、その結果を第
2図に示す。
On the other hand, for an example of the present invention in which hydrogen peroxide and ozone were used in combination and UV irradiation was performed, the decomposition conditions are shown in Table 2, and the results are shown in FIG.

以下余白 第2図から分るように、本発明のCは従来法よりもはる
かに反応が早< TOC除去率も高くなるが、本発明の
Dのようなpi(条件下では反応時間7.5分でTOC
除去率90%以上であり、短時間でメチルアルコールは
炭酸ガスまで分解された。
As can be seen from Figure 2 in the margin below, C of the present invention reacts much faster than the conventional method and has a higher TOC removal rate; TOC in 5 minutes
The removal rate was 90% or more, and methyl alcohol was decomposed to carbon dioxide gas in a short time.

実施例−2 強塩基性アニオン交換樹脂をコンデショニングした後再
生し、そのまま純水に約72時間浸漬し、その上澄液を
表3に示す条件でTOCの分解を行い、その結果を第3
図に示す。
Example 2 After conditioning a strongly basic anion exchange resin, it was regenerated and immersed in pure water for about 72 hours, and the supernatant liquid was subjected to TOC decomposition under the conditions shown in Table 3.
As shown in the figure.

なお、pHの調整は実施例1の場合と同様に水酸化ナト
リウムあるいは硫酸を適時添加して行った。
Note that the pH was adjusted as in Example 1 by adding sodium hydroxide or sulfuric acid at appropriate times.

以下余白 この場合のEは従来法であり、過酸化水素を併用した本
発明のGでは従来法よりもはるかにTOC除去率が高く
、本発明のFのようなpH条件では反応時間15分でT
OC除去率が90%以上となった。
Margins below In this case, E is the conventional method, and G of the present invention, which uses hydrogen peroxide in combination, has a much higher TOC removal rate than the conventional method, and under pH conditions like F of the present invention, the reaction time is 15 minutes. T
The OC removal rate was over 90%.

実施例−3 実施例−2に示した原水を用い、表3のF及びGと同様
の反応条件であるが、pHのみ種々の条件に調整して行
った。反応時間15分における処理水のTOC除去率と
反応開始前の原水pHの関係を第4図に示す。
Example 3 Using the raw water shown in Example 2, the reaction conditions were the same as those in F and G in Table 3, but only the pH was adjusted to various conditions. FIG. 4 shows the relationship between the TOC removal rate of the treated water at a reaction time of 15 minutes and the pH of the raw water before the start of the reaction.

第4図からpHが8以下ではTOC除去率は90%以上
とほぼ一定であるが、pHが8以上で明らかにTOC除
去率は低下している。但し反応時間が60分以上であれ
ばpHの影響はあまり見られなくなる。
As shown in FIG. 4, when the pH is 8 or less, the TOC removal rate is almost constant at 90% or more, but when the pH is 8 or more, the TOC removal rate clearly decreases. However, if the reaction time is 60 minutes or more, the influence of pH will not be seen much.

しかし反応を短時間に行うためにはpi条件は重要な因
子となり、puは8以下が好ましいと言える。
However, in order to carry out the reaction in a short time, pi conditions are an important factor, and it can be said that pu is preferably 8 or less.

〔発明の効果〕〔Effect of the invention〕

以上述べたところからも明らかなように、本発明は過酸
化水素とオゾンの共存下でtJV照射することにより、
従来法とは比較にならない程短時間で極めて効率よく有
機物を分解することができる。
As is clear from the above description, the present invention achieves the following by performing tJV irradiation in the coexistence of hydrogen peroxide and ozone.
Organic matter can be decomposed extremely efficiently and in a much shorter time than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様を示す説明図で、第2図及
び第3図はそれぞれ各実施例における反応時間と処理水
Toeの関係を示す線図、第4図は本発明の原水pnと
TOC除去率の関係を示す線図である。 l・・・原水導入管、2・・・過酸化水素注入管、3・
・・反応槽、4・・・紫外線ランプ、5・・・散気管、
6・・・オゾン導入管、7・・・排水管。 特許出願人  荏原インフィルコ株式会社同     
 株式会社 荏原総合研究所代理人弁理士   高  
木  正  行間           薬   師 
     捻回    依1)孝次部 第2図 反応時間(min) 第4図
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, FIGS. 2 and 3 are diagrams showing the relationship between reaction time and treated water Toe in each example, and FIG. 4 is a diagram showing the raw water of the present invention. FIG. 3 is a diagram showing the relationship between pn and TOC removal rate. l...Raw water introduction pipe, 2...Hydrogen peroxide injection pipe, 3.
...Reaction tank, 4...Ultraviolet lamp, 5...Diffuser pipe,
6...Ozone introduction pipe, 7...Drainage pipe. Patent applicant: Ebara Infilco Corporation
Takashi, Patent Attorney, Ebara Research Institute, Inc.
Ki Tadashi Apothecary between the lines
Twisting 1) Takashibe Figure 2 Reaction time (min) Figure 4

Claims (1)

【特許請求の範囲】 1、比較的低分子の有機物を含む用廃水に、過酸化水素
とオゾンを添加すると共に紫外線を照射せしめて処理す
ることにより前記有機物を分解除去することを特徴とす
る用廃水中の有機物の除去方法。 2、前記用廃水のpHを8以下として処理するものであ
る特許請求の範囲第1項記載の用廃水中の有機物の除去
方法。
[Scope of Claims] 1. A waste water containing relatively low-molecular-weight organic matter is treated by adding hydrogen peroxide and ozone and irradiating it with ultraviolet rays to decompose and remove the organic matter. Method for removing organic matter from wastewater. 2. The method for removing organic matter from commercial wastewater according to claim 1, wherein the pH of the commercial wastewater is adjusted to 8 or less.
JP1463486A 1986-01-28 1986-01-28 Method for removing organic substance in waste water Pending JPS62176595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1463486A JPS62176595A (en) 1986-01-28 1986-01-28 Method for removing organic substance in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1463486A JPS62176595A (en) 1986-01-28 1986-01-28 Method for removing organic substance in waste water

Publications (1)

Publication Number Publication Date
JPS62176595A true JPS62176595A (en) 1987-08-03

Family

ID=11866627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1463486A Pending JPS62176595A (en) 1986-01-28 1986-01-28 Method for removing organic substance in waste water

Country Status (1)

Country Link
JP (1) JPS62176595A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341069A2 (en) * 1988-05-05 1989-11-08 Elopak Systems Ag Sterilization
JPH02184393A (en) * 1988-12-19 1990-07-18 Ultrox Internatl Oxidation of organic compound in water
JPH0722753B2 (en) * 1989-06-19 1995-03-15 ヴェデコ・ウンヴェルトテクノロジー・ヴァッサー―ボーデン―ルフト・ゲーエムベーハー Method and device for treating liquid contaminated with harmful substances
US5470480A (en) * 1994-05-09 1995-11-28 Eka Nobel, Inc. Process for treating waste water effluent
US6503471B1 (en) * 1995-08-29 2003-01-07 Korea Institute Of Science & Technology Process for malodorous gas treatment
WO2012142974A1 (en) * 2011-04-22 2012-10-26 福建新大陆科技集团有限公司 Dissolved ozone floatation advanced oxidation fluid treatment system
CN104071939A (en) * 2014-07-16 2014-10-01 长春黄金研究院 Treatment method for non-ferrous metal mine wastewater
JP2018065112A (en) * 2016-10-21 2018-04-26 オルガノ株式会社 Method and apparatus for treating amine-containing wastewater
CN111606469A (en) * 2020-05-11 2020-09-01 上海市政工程设计研究总院(集团)有限公司 Discharge port disinfection method combining multi-element oxidant and ultraviolet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028883A (en) * 1983-07-25 1985-02-14 Agency Of Ind Science & Technol Process and apparatus for treating waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028883A (en) * 1983-07-25 1985-02-14 Agency Of Ind Science & Technol Process and apparatus for treating waste water

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1080734A3 (en) * 1988-05-05 2001-04-11 Elopak Systems Ag Sterilization
EP0341069A2 (en) * 1988-05-05 1989-11-08 Elopak Systems Ag Sterilization
EP0722741A2 (en) * 1988-05-05 1996-07-24 Elopak Systems Ag Sterilization
EP0722741A3 (en) * 1988-05-05 1996-11-13 Elopak Systems Sterilization
EP1080734A2 (en) * 1988-05-05 2001-03-07 Elopak Systems Ag Sterilization
JPH02184393A (en) * 1988-12-19 1990-07-18 Ultrox Internatl Oxidation of organic compound in water
JPH0722753B2 (en) * 1989-06-19 1995-03-15 ヴェデコ・ウンヴェルトテクノロジー・ヴァッサー―ボーデン―ルフト・ゲーエムベーハー Method and device for treating liquid contaminated with harmful substances
US5470480A (en) * 1994-05-09 1995-11-28 Eka Nobel, Inc. Process for treating waste water effluent
US6503471B1 (en) * 1995-08-29 2003-01-07 Korea Institute Of Science & Technology Process for malodorous gas treatment
WO2012142974A1 (en) * 2011-04-22 2012-10-26 福建新大陆科技集团有限公司 Dissolved ozone floatation advanced oxidation fluid treatment system
CN104071939A (en) * 2014-07-16 2014-10-01 长春黄金研究院 Treatment method for non-ferrous metal mine wastewater
JP2018065112A (en) * 2016-10-21 2018-04-26 オルガノ株式会社 Method and apparatus for treating amine-containing wastewater
CN111606469A (en) * 2020-05-11 2020-09-01 上海市政工程设计研究总院(集团)有限公司 Discharge port disinfection method combining multi-element oxidant and ultraviolet

Similar Documents

Publication Publication Date Title
US4012321A (en) Oxidation of refractory organics in aqueous waste streams by hydrogen peroxide and ultraviolet light
US8562828B2 (en) Wastewater treatment apparatus
Monteagudo et al. Ultrasound-assisted homogeneous photocatalytic degradation of Reactive Blue 4 in aqueous solution
JP3491666B2 (en) Method and apparatus for controlling TOC component removal
Nakayama et al. Improved ozonation in aqueous systems
JPH1199395A (en) Treatment of organic matter containing water
JPS62176595A (en) Method for removing organic substance in waste water
JP4684064B2 (en) Accelerated oxidized water treatment method and apparatus
JP3506171B2 (en) Method and apparatus for removing TOC component
JPS61101292A (en) Apparatus for making pure water
JPH1199394A (en) Method for removing organic matter in water
EP0242941B1 (en) Process and apparatus for the deodorization of air
US11814304B2 (en) Ultraviolet treatment method and system
JP2541800B2 (en) Method for treating water containing organic matter
JPH0671594B2 (en) Method and apparatus for removing dissolved oxygen in water
JPH11347591A (en) Treatment of sewage containing biologically hardly decomposable organic matter
JPH07241598A (en) Water treatment apparatus
JP3573322B2 (en) Method and apparatus for treating dioxin-containing wastewater
JPH0889976A (en) Method for removing organic matter in water
Ratanatamskul et al. Application of fenton processes for degradation of aniline
JPH11347576A (en) Method and apparatus for treating water
JP2500968B2 (en) Pure water production equipment
JP2005161138A (en) Water treatment method and water treatment apparatus
JP3000996B2 (en) Treatment method for wastewater containing sulfoxides
JP2537586B2 (en) Advanced treatment method of organic matter and its equipment