JP2018065112A - Method and apparatus for treating amine-containing wastewater - Google Patents

Method and apparatus for treating amine-containing wastewater Download PDF

Info

Publication number
JP2018065112A
JP2018065112A JP2016206783A JP2016206783A JP2018065112A JP 2018065112 A JP2018065112 A JP 2018065112A JP 2016206783 A JP2016206783 A JP 2016206783A JP 2016206783 A JP2016206783 A JP 2016206783A JP 2018065112 A JP2018065112 A JP 2018065112A
Authority
JP
Japan
Prior art keywords
amine
condensed water
containing wastewater
water
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016206783A
Other languages
Japanese (ja)
Other versions
JP6832124B2 (en
Inventor
鳥羽 裕一郎
Yuichiro Toba
裕一郎 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2016206783A priority Critical patent/JP6832124B2/en
Publication of JP2018065112A publication Critical patent/JP2018065112A/en
Application granted granted Critical
Publication of JP6832124B2 publication Critical patent/JP6832124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating amine-containing wastewater, which produces treated water containing less amount of residue amine, requiring no heat source to heat condensed water that is produced during a treatment process of amine-containing wastewater by an evaporative concentration method.SOLUTION: There is provided a method of treating amine-containing wastewater, the method comprising: an evaporation concentration step of evaporating and concentrating amine-containing wastewater by an evaporation concentrator 12; a condensation step by a condenser 16 of condensing the steam generated during the evaporation concentration step; and an amine decomposition step of adding an oxidizing agent to the condensed water which is obtained during the condensation step and of decomposing amines contained in the condensed water by irradiating the condensed water with ultraviolet rays by an amine decomposition apparatus 18.SELECTED DRAWING: Figure 1

Description

本発明は、アミン含有排水を蒸発濃縮してアミンを処理するアミン含有排水の処理方法及び処理装置の技術に関する。   The present invention relates to an amine-containing wastewater treatment method and a processing apparatus technology for treating amine by evaporating and concentrating amine-containing wastewater.

有機窒素化合物であるアミンは、塩基または配位子として工業的に広く利用されている。アミンには様々な物質があり、例えば、エタノールアミン類等の脂肪族アミンやピペラジン類等の複素環式アミン等が挙げられる。エタノールアミン類やピペラジン類等は、その高い沸点と高い塩基性を有することから、酸性ガスの洗浄液などに用いられたり、あるいは塩基または配位子となる性質から金属キレート剤や金属配管等の防食剤などとして用いられたりしている。   Amines that are organic nitrogen compounds are widely used industrially as bases or ligands. There are various types of amines, and examples thereof include aliphatic amines such as ethanolamines and heterocyclic amines such as piperazines. Since ethanolamines and piperazines have high boiling points and high basicity, they are used in acid gas cleaning solutions, or because of their properties of bases or ligands, such as metal chelating agents and metal pipes. It is used as an agent.

エタノールアミン類は、例えば、モノエタノールアミン(2−アミノエタノール)、ジエタノールアミン(2,2−イミノジエタノール)、トリエタノールアミン、2,2−メチルイミノジエタノールなどがある。例えば、エタノールアミンは防食剤として、発電所の蒸気生成配管に添加される場合がある。また、近年では、化石燃料燃焼時に発生する二酸化炭素の排出を抑制する観点から、エタノールアミン類を各種配合した二酸化炭素吸収剤(例えば、特許文献1参照)に排ガスを接触させ排ガス中の二酸化炭素を吸収させることも行われている。   Examples of ethanolamines include monoethanolamine (2-aminoethanol), diethanolamine (2,2-iminodiethanol), triethanolamine, and 2,2-methyliminodiethanol. For example, ethanolamine may be added as an anticorrosive agent to the steam generation piping of a power plant. Further, in recent years, from the viewpoint of suppressing the emission of carbon dioxide generated during fossil fuel combustion, the carbon dioxide in the exhaust gas is brought into contact with a carbon dioxide absorbent containing various ethanolamines (for example, see Patent Document 1). Is also absorbed.

ピペラジン類は、例えば、ピペラジン、1−メチルピペラジン、2−メチルピペラジンなどがあり、酸性ガスの洗浄に使われたり(例えば、特許文献2)、エポキシ樹脂の硬化剤、キレート剤等に使われたりしている。   Piperazines include, for example, piperazine, 1-methylpiperazine, 2-methylpiperazine, etc., and are used for cleaning acidic gas (for example, Patent Document 2), used as an epoxy resin curing agent, chelating agent, etc. doing.

上記アミンは、例えば、使用時または使用後に水に混入し、アミン含有排水として排出される。排水中のアミンは、炭素、窒素、酸素、水素原子で構成され、炭素及び窒素はCOD源や富栄養化源となって河川や湖沼を汚染する。   The amine is, for example, mixed in water at the time of use or after use and discharged as amine-containing waste water. The amine in the wastewater is composed of carbon, nitrogen, oxygen and hydrogen atoms, and carbon and nitrogen become COD sources and eutrophication sources and pollute rivers and lakes.

アミンの用途によっては、排水中のアミン濃度が非常に高くなることもあり、高い場合には、有機物濃度として0.1w/v%以上となる場合がある。また、高濃度のアミン含有排水は、中和のための酸(塩酸、硫酸など)が多量に注入されない限り、概ねpH9以上のアルカリ性を示す。   Depending on the use of the amine, the amine concentration in the waste water may be very high. If it is high, the organic matter concentration may be 0.1 w / v% or more. High-concentration amine-containing wastewater generally exhibits an alkalinity of pH 9 or higher unless a large amount of neutralizing acid (hydrochloric acid, sulfuric acid, etc.) is injected.

そして、高濃度アミン含有排水は、高いCODや全窒素(T−N)を示すため、これらを低減する処理を行った上で、環境中に放流される。環境中に放流する場合、日本においては排水基準でCODMn120mg/L以下(日間平均)、全窒素60mg/L以下(日間平均)に低減する必要がある。   And since high concentration amine containing waste water shows high COD and total nitrogen (TN), after performing the process which reduces these, it is discharged | emitted in the environment. When discharged into the environment, in Japan, it is necessary to reduce CODMn to 120 mg / L or less (daily average) and total nitrogen to 60 mg / L or less (daily average) based on wastewater standards.

アミン含有排水の処理方法としては、蒸発濃縮法を用いる方法がある。例えば、特許文献3には、エタノールアミン含有排水を、pH8以下に調整して蒸発濃縮し、発生した蒸気を凝縮して生成した凝縮水に酸化剤を添加し、触媒の存在下、110℃以下で凝縮水中のエタノールアミンを酸化分解する方法が提案されている。この方法では、エタノールアミンの酸化分解温度が110℃以下であると規定されているものの、実際には、凝縮水を60℃以上に加熱しないとアミンの分解効率が上がらないため、残留アミンの少ない処理水を得るには、凝縮水を一定温度以上の高温に加熱するための熱源が必要になる。   As a method for treating amine-containing wastewater, there is a method using an evaporation concentration method. For example, Patent Document 3 discloses that ethanolamine-containing wastewater is adjusted to pH 8 or lower, evaporated and concentrated, and an oxidizing agent is added to condensed water generated by condensing the generated steam, and 110 ° C. or lower in the presence of a catalyst. Has proposed a method for oxidizing and decomposing ethanolamine in condensed water. Although this method stipulates that the oxidative decomposition temperature of ethanolamine is 110 ° C. or lower, in practice, if the condensed water is not heated to 60 ° C. or higher, the amine decomposition efficiency does not increase, so there is little residual amine. In order to obtain treated water, a heat source for heating the condensed water to a high temperature above a certain temperature is required.

特開2015−24374号公報JP 2015-24374 A 特許5679995号公報Japanese Patent No. 5679995 特開平10−272478号公報Japanese Patent Laid-Open No. 10-272478

そこで、本発明は、蒸発濃縮法によるアミン含有排水の処理において得られる凝縮水を高温に加熱するための熱源を必要とせずとも、残留アミンの少ない処理水を得ることができるアミン含有排水の処理方法及び処理装置を提供することを目的としてなされたものである。   Therefore, the present invention is a treatment of amine-containing wastewater that can obtain treated water with little residual amine without requiring a heat source for heating condensed water obtained in the treatment of amine-containing wastewater by the evaporative concentration method. It was made for the purpose of providing a method and a processing apparatus.

本発明のアミン含有排水の処理方法は、アミン含有排水を蒸発濃縮する蒸発濃縮工程と、前記蒸発濃縮工程で発生した蒸気を凝縮する凝縮工程と、前記凝縮工程で得られた凝縮水に酸化剤を添加すると共に、紫外線を照射して、前記凝縮水中のアミンを分解するアミン分解工程と、を有することを特徴とする。   The method for treating amine-containing wastewater according to the present invention includes an evaporation and concentration step for evaporating and condensing amine-containing wastewater, a condensation step for condensing steam generated in the evaporation and concentration step, and an oxidant in the condensed water obtained in the condensation step. And an amine decomposition step of decomposing amine in the condensed water by irradiating with ultraviolet rays.

また、上記アミン含有排水の処理方法において、前記アミン分解工程は、前記凝縮水のpHを6.5〜7.5に調整するpH調整工程と、pH調整後の凝縮水の導電率を測定する導電率測定工程とを有し、測定した導電率の値に応じて、前記酸化剤の添加量を調整することが好ましい。   In the method for treating amine-containing wastewater, in the amine decomposition step, the pH adjustment step for adjusting the pH of the condensed water to 6.5 to 7.5, and the conductivity of the condensed water after pH adjustment are measured. It is preferable to adjust the addition amount of the oxidizing agent according to the measured conductivity value.

また、本発明のアミン含有排水の処理装置は、アミン含有排水を蒸発濃縮する蒸発濃縮手段と、前記蒸発濃縮手段で発生した蒸気を凝縮する凝縮手段と、前記凝縮手段で得られた凝縮水に酸化剤を添加すると共に、紫外線を照射して、前記凝縮水中のアミンを分解するアミン分解手段と、を有することを特徴とする。   The amine-containing wastewater treatment apparatus of the present invention includes an evaporative concentration means for evaporating and condensing the amine-containing wastewater, a condensing means for condensing vapor generated by the evaporative concentration means, and condensed water obtained by the condensing means. And an amine decomposing means for decomposing amines in the condensed water by irradiating with ultraviolet rays while adding an oxidizing agent.

また、前記アミン含有排水の処理装置において、前記アミン分解手段は、前記凝縮水のpHを6.5〜7.5に調整するpH調整手段と、pH調整後の凝縮水の導電率を測定する導電率測定手段とを有し、測定した導電率の値に応じて、前記酸化剤の添加量を調整することが好ましい。   In the amine-containing wastewater treatment apparatus, the amine decomposing means measures the pH adjusting means for adjusting the pH of the condensed water to 6.5 to 7.5, and the conductivity of the condensed water after the pH adjustment. It is preferable to have an electrical conductivity measuring means and adjust the addition amount of the oxidizing agent according to the measured electrical conductivity value.

本発明によれば、蒸発濃縮法によるアミン含有排水の処理において得られる凝縮水を高温に加熱するための熱源を必要とせずとも、残留アミンの少ない処理水を得ることができるアミン含有排水の処理方法及び処理装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the treatment of the amine containing waste_water | drain which can obtain the treated water with few residual amines, without requiring the heat source for heating the condensed water obtained in the treatment of the amine containing waste_water | drain by the evaporative concentration method to high temperature A method and a processing apparatus can be provided.

本発明の実施形態に係るアミン含有排水の処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the processing apparatus of the amine containing waste water which concerns on embodiment of this invention. pH7における凝縮水中のアミン濃度と導電率との関係を示す図である。It is a figure which shows the relationship between the amine density | concentration in condensed water in pH7, and electrical conductivity.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本発明の実施形態に係るアミン含有排水の処理装置の構成の一例を示す模式図である。図1に示す排水処理装置1は、原水槽10、蒸発濃縮機12(蒸発濃縮手段)、濃縮水槽14、凝縮器16(凝縮手段)、アミン分解装置18(アミン分解手段)を備えている。蒸発濃縮機12は、蒸発缶22、熱媒体供給配管24を備えている。アミン分解装置18は、pH調整手段としてのpH調整装置(pH調整槽26、pHセンサ28及び酸剤添加配管30)、導電率測定手段としての導電率センサ31、酸化剤添加配管33、ラインミキサー35、紫外線ランプ37が設置された反応槽39、を備えている。   Drawing 1 is a mimetic diagram showing an example of the composition of the processing device of the amine content drainage concerning the embodiment of the present invention. The wastewater treatment apparatus 1 shown in FIG. 1 includes a raw water tank 10, an evaporative concentrator 12 (evaporating and concentrating means), a concentrated water tank 14, a condenser 16 (condensing means), and an amine decomposing apparatus 18 (amine decomposing means). The evaporative concentrator 12 includes an evaporator 22 and a heat medium supply pipe 24. The amine decomposing apparatus 18 includes a pH adjusting device (pH adjusting tank 26, pH sensor 28 and acid agent adding pipe 30) as pH adjusting means, a conductivity sensor 31 as an electric conductivity measuring means, an oxidizing agent adding pipe 33, a line mixer. 35 and a reaction tank 39 in which an ultraviolet lamp 37 is installed.

以下に、図1に示す排水処理装置1の配管構成について説明する。図1に示す配管構成は一例であって、これに制限されるものではない。   Below, the piping structure of the waste water treatment apparatus 1 shown in FIG. 1 is demonstrated. The piping configuration shown in FIG. 1 is an example, and the present invention is not limited to this.

pH調整剤添加配管29が原水槽10に接続されている。排水流入配管32の一端は原水槽10の排水出口に接続され、他端は蒸発缶22側面の排水入口に接続されている。熱媒体供給配管24は、蒸発缶22内部に設けられた伝熱管34に接続されている。伝熱管34の一端は、前述したように熱媒体供給配管24に接続され、他端は蒸発缶22の外部に設けられたドレン部36に接続されている。ドレン配管38の一端は、ドレン部36に接続され、他端はポンプ40aを介して例えば系外に設けられた水槽に接続されている。循環配管42の一端は蒸発缶22の下部出口に接続され、他端はポンプ40bを介して蒸発缶22の上部入口に接続されている。濃縮水配管44の一端は循環配管42に接続され、他端は濃縮水槽14に接続されている。蒸気回収配管46の一端は蒸発缶22の側面上部口に接続され、他端は凝縮器16の蒸気入口に接続されている。凝縮器16内には、冷却水配管48が設置されている。凝縮水配管50aの一端は凝縮器16の凝縮水出口に接続され、他端はpH調整槽26の入口に接続されている。凝縮水配管50bの一端はpH調整槽26の出口に接続され、他端はラインミキサー35を介して反応槽39の入口に接続されている。反応槽39の出口には処理水配管52が接続されている。酸剤添加配管30はpH調整槽26に接続され、酸化剤添加配管33は凝縮水配管50bに接続されている。   A pH adjuster addition pipe 29 is connected to the raw water tank 10. One end of the drainage inflow pipe 32 is connected to the drainage outlet of the raw water tank 10, and the other end is connected to the drainage inlet on the side surface of the evaporator 22. The heat medium supply pipe 24 is connected to a heat transfer pipe 34 provided inside the evaporator 22. As described above, one end of the heat transfer tube 34 is connected to the heat medium supply pipe 24, and the other end is connected to a drain portion 36 provided outside the evaporator 22. One end of the drain pipe 38 is connected to the drain part 36, and the other end is connected to, for example, a water tank provided outside the system via a pump 40a. One end of the circulation pipe 42 is connected to the lower outlet of the evaporator 22, and the other end is connected to the upper inlet of the evaporator 22 via the pump 40 b. One end of the concentrated water pipe 44 is connected to the circulation pipe 42, and the other end is connected to the concentrated water tank 14. One end of the steam recovery pipe 46 is connected to the upper side port of the evaporator 22, and the other end is connected to the steam inlet of the condenser 16. A cooling water pipe 48 is installed in the condenser 16. One end of the condensed water pipe 50 a is connected to the condensed water outlet of the condenser 16, and the other end is connected to the inlet of the pH adjusting tank 26. One end of the condensed water pipe 50 b is connected to the outlet of the pH adjusting tank 26, and the other end is connected to the inlet of the reaction tank 39 via the line mixer 35. A treated water pipe 52 is connected to the outlet of the reaction tank 39. The acid agent addition pipe 30 is connected to the pH adjustment tank 26, and the oxidant addition pipe 33 is connected to the condensed water pipe 50b.

次に、本実施形態に係る排水処理装置1の動作について説明する。   Next, the operation of the waste water treatment apparatus 1 according to this embodiment will be described.

処理対象であるアミン含有排水が原水槽10に貯留される。必要に応じてpH調整剤添加配管29からpH調整剤が供給され、アミン含有排水のpHが8以下に調整される。原水槽10内のアミン含有排水は、排水流入配管32を通り、蒸発濃縮機12の蒸発缶22に供給される。また、蒸気等の熱媒体が、熱媒体供給配管24から伝熱管34に供給され、伝熱管34が加熱される。そして、ポンプ40bが稼働され、蒸発缶22の底部に貯留したアミン含有排水が循環配管42を通り、蒸発缶22の上部から、蒸気等の加熱媒体により加熱された伝熱管34に向けて噴射される。噴射されたアミン含有排水は、伝熱管34からの熱により加熱され、加熱された排水の一部は蒸発し、残部はアミン濃縮水として蒸発缶22の底部に貯留される(蒸発濃縮工程)。蒸発濃縮工程で所定の濃縮倍率に濃縮されたアミン濃縮水は、蒸発缶22から排出され、循環配管42、濃縮水配管44を通り濃縮水槽14に貯留される。アミン濃縮水は、その全量を濃縮水槽14に供給してもよいし、一部を濃縮水槽14に供給し、残部を蒸発缶22による蒸発濃縮に分配してもよい。なお、伝熱管34を通過した蒸気等の熱媒体は、ドレン部36に貯留され、必要に応じてポンプ40aを稼働させ、ドレン配管38から系外へ排出される。   The amine-containing wastewater to be treated is stored in the raw water tank 10. A pH adjuster is supplied from the pH adjuster addition pipe 29 as necessary, and the pH of the amine-containing wastewater is adjusted to 8 or less. The amine-containing wastewater in the raw water tank 10 passes through the wastewater inflow pipe 32 and is supplied to the evaporator 22 of the evaporation concentrator 12. Further, a heat medium such as steam is supplied from the heat medium supply pipe 24 to the heat transfer pipe 34, and the heat transfer pipe 34 is heated. Then, the pump 40b is operated, and the amine-containing wastewater stored at the bottom of the evaporator 22 passes through the circulation pipe 42 and is sprayed from the upper part of the evaporator 22 toward the heat transfer tube 34 heated by a heating medium such as steam. The The injected amine-containing waste water is heated by heat from the heat transfer pipe 34, a part of the heated waste water evaporates, and the remainder is stored as amine concentrated water at the bottom of the evaporator 22 (evaporation concentration step). The amine concentrated water concentrated at a predetermined concentration rate in the evaporation concentration step is discharged from the evaporator 22 and stored in the concentrated water tank 14 through the circulation pipe 42 and the concentrated water pipe 44. The total amount of the amine concentrated water may be supplied to the concentrated water tank 14, or a part of the amine concentrated water may be supplied to the concentrated water tank 14 and the remaining part may be distributed to the evaporation concentration by the evaporator 22. Note that the heat medium such as steam that has passed through the heat transfer pipe 34 is stored in the drain portion 36, and the pump 40 a is operated as necessary, and is discharged out of the system from the drain pipe 38.

また、蒸発缶22で蒸発したアミン含有排水の蒸気は、蒸気回収配管46を通り凝縮器16に供給される。凝縮器16に供給された蒸気は、凝縮器16内の冷却水配管48を流れる冷却液と熱交換されて凝縮し、凝縮水として凝縮水配管50aから排出される(凝縮工程)。   The amine-containing waste water vapor evaporated by the evaporator 22 is supplied to the condenser 16 through the steam recovery pipe 46. The steam supplied to the condenser 16 is condensed by exchanging heat with the coolant flowing through the cooling water pipe 48 in the condenser 16 and discharged as condensed water from the condensed water pipe 50a (condensing step).

凝縮水は、凝縮水配管50aからpH調整槽26に供給され、例えばpH6.5〜7.5の範囲に調整される(pH調整工程)。具体的には、pH調整槽26内の凝縮水のpHがpHセンサ28により計測され、その計測値に応じて、酸剤添加配管30から供給する酸剤の量が調整され、凝縮水のpHが調整される。また、pH調整後の凝縮水の導電率が導電率センサ31により計測され(導電率測定工程)、その計測値に応じて、酸化剤添加配管33から供給する酸化剤の添加量が調整される。酸剤としては、例えば、硫酸、塩酸等が用いられる。   Condensed water is supplied from the condensed water piping 50a to the pH adjusting tank 26, and is adjusted to a range of, for example, pH 6.5 to 7.5 (pH adjusting step). Specifically, the pH of the condensed water in the pH adjustment tank 26 is measured by the pH sensor 28, and the amount of the acid agent supplied from the acid agent addition pipe 30 is adjusted according to the measured value, and the pH of the condensed water is adjusted. Is adjusted. Further, the conductivity of the condensed water after pH adjustment is measured by the conductivity sensor 31 (conductivity measurement step), and the addition amount of the oxidizing agent supplied from the oxidizing agent addition pipe 33 is adjusted according to the measured value. . As the acid agent, for example, sulfuric acid, hydrochloric acid or the like is used.

凝縮水及び酸化剤は、凝縮水配管50bに設置されたラインミキサー35により混合された後、反応槽39に導入される。この際、紫外線ランプ37により紫外線が照射される。反応槽39内では、紫外線照射下で、酸化剤由来のラジカルが発生し、当該ラジカルにより凝縮水中のアミンが分解される(アミン分解工程)。アミンが分解された凝縮水は処理水として処理水配管52から排出される。なお、使用する酸化剤によっては処理水中にアンモニウムイオンが残留する場合があるため、例えば、反応槽39又は処理水配管52に次亜塩素酸ナトリウム等のアンモニウムイオン分解剤を添加して窒素へと分解することが望ましい。   The condensed water and the oxidizing agent are mixed by the line mixer 35 installed in the condensed water pipe 50 b and then introduced into the reaction tank 39. At this time, ultraviolet rays are irradiated by the ultraviolet lamp 37. In the reaction tank 39, radicals derived from the oxidizing agent are generated under ultraviolet irradiation, and the amine in the condensed water is decomposed by the radicals (amine decomposition step). The condensed water in which the amine has been decomposed is discharged from the treated water pipe 52 as treated water. Depending on the oxidizing agent used, ammonium ions may remain in the treated water. For example, an ammonium ion decomposing agent such as sodium hypochlorite is added to the reaction tank 39 or the treated water pipe 52 to convert it to nitrogen. It is desirable to decompose.

このように、本実施形態では、紫外線照射により、酸化剤由来のラジカルを発生させて、アミンを効率的に分解しているため、凝縮水を高温(例えば、60℃以上)に加熱しなくてもよい。したがって、本実施形態によれば、凝縮水を一定温度以上の高温に加熱するための熱源を必要とせずとも、残留アミンの少ない処理水を得ることができる。   As described above, in this embodiment, radicals derived from an oxidant are generated by ultraviolet irradiation to efficiently decompose the amine, so that the condensed water does not have to be heated to a high temperature (for example, 60 ° C. or higher). Also good. Therefore, according to this embodiment, treated water with little residual amine can be obtained without requiring a heat source for heating the condensed water to a high temperature of a certain temperature or higher.

以下に、アミン含有排水の処理条件について説明する。   Below, the process conditions of an amine containing waste_water | drain are demonstrated.

本実施形態の処理対象であるアミンは、特に制限されるものではないが、大気圧下での沸点が130℃以上であり、25℃水溶液での酸解離定数pKaが8.5以上である物質等が挙げられ、例えば、モノエタノールアミン(例えば、2−アミノエタノール[HOCHCHNH])、ジエタノールアミン(例えば、2,2−イミノジエタノール[(HOCHCH)NH])、トリエタノールアミン(例えば、[(HOCHCH)N])、2,2−メチルイミノジエタノール、ピペラジン、1-メチルピペラジン、2−メチルピペラジン等が挙げられる。 The amine to be treated in this embodiment is not particularly limited, but is a substance having a boiling point of 130 ° C. or higher under atmospheric pressure and an acid dissociation constant pKa of 8.5 or higher in a 25 ° C. aqueous solution. For example, monoethanolamine (for example, 2-aminoethanol [HOCH 2 CH 2 NH 2 ]), diethanolamine (for example, 2,2-iminodiethanol [(HOCH 2 CH 2 ) 2 NH]), tri Examples include ethanolamine (for example, [(HOCH 2 CH 2 ) 3 N]), 2,2-methyliminodiethanol, piperazine, 1-methylpiperazine, 2-methylpiperazine and the like.

アミン含有排水中のアミン濃度は、例えば、CODMn濃度換算で数千〜15000mg/Lであることが好ましく、5000〜15000mg/Lであることがより好ましい。アミン濃度が、15000mg/L以下の場合、蒸発濃縮工程で排水を十分な倍率で濃縮しつつ、高い回収率で凝縮水を得ることが可能である。さらに、凝縮水に移行するアミンも比較的少なく、アミン分解工程において、少ない酸化剤添加量でアミンの分解を行うことが可能である。一方、アミン濃度が15000mg/Lを超えると、良好な処理水質を得るのに、多量の酸化剤が必要となり、また、アミンの分解時間も長くなる場合がある。   The amine concentration in the amine-containing wastewater is, for example, preferably several thousand to 15000 mg / L, more preferably 5000 to 15000 mg / L in terms of CODMn concentration. When the amine concentration is 15000 mg / L or less, it is possible to obtain condensed water with a high recovery rate while concentrating the waste water at a sufficient magnification in the evaporation concentration step. Furthermore, the amount of amine transferred to the condensed water is relatively small, and the amine can be decomposed with a small amount of oxidizing agent in the amine decomposition step. On the other hand, if the amine concentration exceeds 15000 mg / L, a large amount of oxidizing agent is required to obtain good treated water quality, and the decomposition time of the amine may be prolonged.

本実施形態の処理方法において、蒸発工程前のアミン含有排水に対してpH調整を行う場合には、pHを8以下に調整することが好ましく、7.5以下に調整することがより好ましい。これにより、凝縮水に含まれるアミン量を低減することができるため、アミンを分解するための酸化剤の使用量を削減することが可能となる。通常、アミン含有排水は、pH9以上のアルカリ性を呈しているため、アミン含有排水に酸剤を添加してpH8以下に調整するが、例えば、アミン含有排水にあらかじめ酸等が多量に混入し、装置材質に腐食等の影響を与える恐れのある低いpH(例えばpH5以下)になっている場合は、その影響が少ないとされるpH(例えばpH5超)になるまでアルカリ剤を加えても良い。また、本実施形態の処理方法においては、pH9以上のアルカリ性を示すアミン含有排水に対して、pH調整を行わずに蒸発濃縮工程を行ってもよい。これにより、酸剤やアルカリ剤の使用量を削減することが可能となる。   In the treatment method of the present embodiment, when pH adjustment is performed on the amine-containing wastewater before the evaporation step, the pH is preferably adjusted to 8 or less, and more preferably adjusted to 7.5 or less. Thereby, since the amount of amine contained in condensed water can be reduced, it becomes possible to reduce the usage-amount of the oxidizing agent for decomposing | disassembling an amine. Usually, amine-containing wastewater exhibits an alkalinity of pH 9 or higher, so an acid agent is added to amine-containing wastewater and adjusted to pH 8 or lower. For example, a large amount of acid or the like is mixed in the amine-containing wastewater in advance. When the pH is low (for example, pH 5 or less) that may affect the material such as corrosion, an alkaline agent may be added until the pH (for example, exceeding pH 5) is considered to be less affected. Moreover, in the processing method of this embodiment, you may perform an evaporation concentration process, without performing pH adjustment with respect to the amine containing waste water which shows alkalinity more than pH9. Thereby, it becomes possible to reduce the usage-amount of an acid agent and an alkali agent.

本実施形態で用いた蒸発缶22は、アミン含有排水を加熱して蒸発させると共に、アミン含有排水を濃縮することができる構造を有していれば特に制限されるものではなく、例えば、自然循環式蒸発缶、強制循環式蒸発缶、液膜式蒸発缶、真空蒸発缶等の従来公知の蒸発缶を使用することができる。これらの中では、蒸発濃縮に掛かるエネルギーコストの点で、真空蒸発缶が好ましい。真空蒸発缶は、蒸発缶内を減圧する真空ポンプを備えており、例えば、真空ポンプで蒸発缶内を−0.05〜−0.02MPa(ゲージ圧)に減圧させる。これにより、高い沸点を有するアミン含有排水に対して、低い加熱温度(例えば、60〜90℃)で蒸発させることが可能となるため、エネルギーコストを抑えることが可能となる。   The evaporator 22 used in the present embodiment is not particularly limited as long as it has a structure capable of heating and evaporating the amine-containing wastewater and concentrating the amine-containing wastewater. For example, natural circulation Conventionally known evaporators such as a type evaporator, a forced circulation evaporator, a liquid film evaporator, and a vacuum evaporator can be used. Among these, vacuum evaporators are preferable from the viewpoint of energy cost for evaporation and concentration. The vacuum evaporator is equipped with a vacuum pump that depressurizes the inside of the evaporator. For example, the inside of the evaporator is reduced to -0.05 to -0.02 MPa (gauge pressure) with the vacuum pump. Thereby, it becomes possible to evaporate the amine-containing wastewater having a high boiling point at a low heating temperature (for example, 60 to 90 ° C.), so that the energy cost can be suppressed.

蒸発濃縮工程におけるアミン濃縮液の濃縮倍率は、廃棄処分を考慮すれば、アミン濃縮液の水量が少なくなるように高めに設定することが望ましいが、その一方で、濃縮倍率が上がると、凝縮水に含まれるアミンが増加し、酸化剤の使用量が増加する場合がある。したがって、廃棄処分費や酸化剤の使用量を抑える点で、蒸発濃縮工程におけるアミン濃縮液の濃縮倍率は、25倍以下であることが好ましく、15倍〜25倍の範囲であることがより好ましい。また、アミン含有排水中に溶存シリカが含まれる場合、濃縮が進むと、蒸発缶22内にシリカが析出し、アミン含有排水の加熱効率が低下する場合があるため、シリカが析出しない範囲で濃縮倍率を設定することが望ましい。   In consideration of disposal, it is desirable to set the concentration rate of the amine concentrate in the evaporation concentration process higher so that the amount of water in the amine concentrate is reduced. May increase the amount of amine contained in the oxidizer and increase the amount of oxidizing agent used. Therefore, the concentration ratio of the amine concentrate in the evaporative concentration step is preferably 25 times or less, more preferably in the range of 15 times to 25 times, in order to suppress disposal costs and the amount of oxidant used. . Moreover, when dissolved silica is contained in the amine-containing wastewater, if the concentration proceeds, silica may precipitate in the evaporator 22 and the heating efficiency of the amine-containing wastewater may be reduced. It is desirable to set the magnification.

蒸発濃縮工程により得られるアミン濃縮水は、例えば、廃棄物として処分しても良いし、あるいは燃焼装置において酸素を吹込みながら、高温でアミンを燃焼させ、二酸化炭素と窒素に分解しても良い。   The amine concentrated water obtained by the evaporative concentration step may be disposed of as waste, for example, or may be decomposed into carbon dioxide and nitrogen by burning the amine at a high temperature while blowing oxygen in the combustion apparatus. .

凝縮器16により得られた凝縮水に添加する酸化剤は、紫外線照射下で、凝縮水中のアミンを分解することができる物質であれば特に制限されるものではないが、例えば、過酸化水素、オゾン、次亜塩素酸ナトリウム、過マンガン酸カリウム、二酸化塩素、過マンガン酸カリウム、過硫酸ナトリウム等が挙げられる。これらの中では、アミンの分解効率の点で、過酸化水素、オゾン、次亜塩素酸ナトリウムが好ましいが、オゾンはオンサイトでの発生設備が必要となるため、過酸化水素、次亜塩素酸ナトリウムがより好ましい。なお、過酸化水素やオゾンを使用する場合には、紫外線照射下で、酸化力の強いヒドロキシラジカルが発生し、当該ヒドロキシラジカルがアミンを無機炭素(重炭酸イオン等)とアンモニウムイオンに分解すると考えられる。次亜塩素酸を使用する場合には、紫外線照射下で、塩素酸ラジカル等が生成し、当該塩素酸ラジカルがアミンを無機炭素(重炭酸イオン等)と窒素に分解すると考えられる。   The oxidizing agent added to the condensed water obtained by the condenser 16 is not particularly limited as long as it is a substance capable of decomposing amines in the condensed water under ultraviolet irradiation. Examples include ozone, sodium hypochlorite, potassium permanganate, chlorine dioxide, potassium permanganate, and sodium persulfate. Among these, hydrogen peroxide, ozone, and sodium hypochlorite are preferred from the viewpoint of amine decomposition efficiency, but ozone requires an on-site generation facility, so hydrogen peroxide, hypochlorous acid. Sodium is more preferred. When hydrogen peroxide or ozone is used, hydroxyl radicals with strong oxidizing power are generated under ultraviolet irradiation, and the hydroxyl radicals are considered to decompose amines into inorganic carbon (such as bicarbonate ions) and ammonium ions. It is done. When hypochlorous acid is used, it is considered that chloric acid radicals and the like are generated under ultraviolet irradiation, and the chloric acid radicals decompose amines into inorganic carbon (such as bicarbonate ions) and nitrogen.

次亜塩素酸ナトリウムの場合、過酸化水素やオゾンを使用する場合と比べて添加量が多くなるが、既述したように、アミンの分解と共にアンモニウムイオンも分解することが可能となる。過酸化水素やオゾンの場合、既述したように、アミンの分解生成物としてアンモニウムイオンが生成するため、処理水を放流する場合には、規制対象となるアンモニウムイオンを分解するために、次亜塩素酸ナトリウムとの併用が望ましい。   In the case of sodium hypochlorite, the amount added is larger than when hydrogen peroxide or ozone is used, but as described above, ammonium ions can be decomposed together with the decomposition of the amine. In the case of hydrogen peroxide and ozone, as described above, ammonium ions are generated as the decomposition products of amines. Therefore, when treating water is discharged, hypochlorite ions are decomposed in order to decompose the regulated ammonium ions. Use in combination with sodium chlorate is desirable.

本実施形態で用いられる紫外線ランプ37は、特に制限されるものではないが、例えば、低圧紫外線ランプ、中圧紫外線ランプ、アマルガムランプ、エキシマランプ、キセノンランプ、無電極ランプ、紫外線LED等が挙げられる。紫外線ランプ37から照射される紫外線の波長には、酸化剤の併用による有機物の分解に適した254nmの波長が含まれる。紫外線照射時間は、凝縮水中のアミン濃度にもよるが、例えば、数十分〜5時間の範囲とすることが好ましく、2時間〜4時間の範囲とすることがより好ましい。   The ultraviolet lamp 37 used in the present embodiment is not particularly limited, and examples thereof include a low-pressure ultraviolet lamp, a medium-pressure ultraviolet lamp, an amalgam lamp, an excimer lamp, a xenon lamp, an electrodeless lamp, and an ultraviolet LED. . The wavelength of ultraviolet rays emitted from the ultraviolet lamp 37 includes a wavelength of 254 nm suitable for the decomposition of organic substances by the combined use of an oxidizing agent. Although the ultraviolet irradiation time depends on the amine concentration in the condensed water, for example, it is preferably in the range of several tens of minutes to 5 hours, and more preferably in the range of 2 hours to 4 hours.

凝縮器16により得られた凝縮水のpHは概ね9.0〜11付近を示すが、凝縮水のアミンを分解する際には、凝縮水に酸剤等を添加して、pHを6.5〜7.5の範囲に調整し、酸化剤添加及び紫外線照射によるアミン分解を行う方が、pH9以上の凝縮水のままアミン分解を行うより、アミンの分解速度を上げることができる点で好ましい。   The pH of the condensed water obtained by the condenser 16 is about 9.0 to about 11. However, when decomposing the amine of the condensed water, an acid agent or the like is added to the condensed water to adjust the pH to 6.5. It is preferable to adjust to a range of ˜7.5, and to perform amine decomposition by adding an oxidant and irradiating with ultraviolet rays in that the amine decomposition rate can be increased rather than amine decomposition with condensed water having a pH of 9 or higher.

酸化剤の添加量は、凝縮水中のアミン濃度に応じて適宜設定されるが、凝縮水中のアミン濃度は、排水中のアミン濃度や蒸発濃縮工程での濃縮倍率によって変動するため、酸化剤の添加量を調整するには、凝縮水中のアミン濃度を測定する必要がある。ここで、水中のアミン濃度は、一般的に、COD計やTN計で測定することが可能であるが、これらはリアルタイムで測定することができないため、凝縮水中のアミン濃度の変動に応じて酸化剤の添加量を調整することは困難である。しかし、以下に説明するように、水中の導電率とアミン濃度はほぼ比例関係にあるため、凝縮水中の導電率を測定し、測定した導電率に応じて酸化剤の添加量を調整することで、凝縮水中のアミン濃度の変動に対応することができる。   The amount of oxidant added is appropriately set according to the amine concentration in the condensed water, but the amine concentration in the condensed water varies depending on the amine concentration in the waste water and the concentration ratio in the evaporation concentration process. To adjust the amount, it is necessary to measure the amine concentration in the condensed water. Here, the amine concentration in water can be generally measured with a COD meter or a TN meter, but since these cannot be measured in real time, oxidation is performed according to changes in the amine concentration in condensed water. It is difficult to adjust the addition amount of the agent. However, as explained below, since the electrical conductivity in water and the amine concentration are in a proportional relationship, the electrical conductivity in the condensed water is measured, and the addition amount of the oxidizing agent is adjusted according to the measured electrical conductivity. It is possible to cope with fluctuations in the amine concentration in the condensed water.

図2は、pH7における凝縮水中のアミン濃度と導電率との関係を示す図である。凝縮水中には、排水から凝縮水側に移行したアミン及びその解離イオンが含まれている。特にpKa8.5以上のアミンは、pH7.5以下で、全アミン分子の少なくとも90%がイオン状態である。そのため、酸剤でpH6.5〜7.5に調整した凝縮水には、アミンのイオン(主に陽イオン)とその濃度に対応した酸剤由来の陰イオン(例えば、塩化物イオン、硫酸イオン)が主に存在することになるので、凝縮水中の導電率は、例えば、図2に示すように、アミン濃度にほぼ比例する。したがって、例えば、凝縮水の導電率に対して必要な酸化剤の添加量を予め設定しておくことで、凝縮水の導電率の測定値から、供給する酸化剤の添加量を決定することができる。酸化剤の添加量は、アミンの種類や要求処理水質にもよるが、例えば、モル比で凝縮水のCODMnの2〜5倍程度となるように設定されることが好ましく、2〜3倍程度となるように設定されることがより好ましい。   FIG. 2 is a graph showing the relationship between the amine concentration in the condensed water at pH 7 and the electrical conductivity. The condensed water contains an amine that has moved from the waste water to the condensed water side and its dissociated ions. In particular, amines with a pKa of 8.5 or higher have a pH of 7.5 or lower and at least 90% of all amine molecules are in an ionic state. Therefore, the condensed water adjusted to pH 6.5 to 7.5 with an acid agent contains amine ions (mainly cations) and anions derived from acid agents corresponding to the concentration (for example, chloride ions, sulfate ions). ) Mainly exists, the conductivity in the condensed water is substantially proportional to the amine concentration, as shown in FIG. 2, for example. Therefore, for example, by setting in advance the amount of oxidant necessary for the conductivity of the condensed water, the amount of oxidant to be supplied can be determined from the measured value of the conductivity of the condensed water. it can. The addition amount of the oxidizing agent depends on the type of amine and the required treatment water quality, but is preferably set to be about 2 to 5 times that of condensed water CODMn in terms of a molar ratio, for example, about 2 to 3 times. It is more preferable to set so that.

アミン分解装置18は、酸化剤の添加量を制御する制御部を備えていてもよい。例えば、凝縮水の導電率に対して必要な酸化剤の添加量を設定したグラフや表等のデータを制御部に予め記憶させる。そして、制御部は、導電率センサ31により測定された値を、予め記憶させたデータに当てはめて、必要な酸化剤の添加量を決定する。そして、制御部は、決定した酸化剤の添加量となるように、酸化剤添加配管33に設置されたバルブ(不図示)やポンプ(不図示)等を制御する。また、アミン分解装置18は、酸剤の添加量を制御する制御部を備えていてもよい。例えば、pHセンサ28により測定された値がpH6.5〜7.5に達した段階で、酸剤の供給が停止されるように、酸剤添加配管30に設置されたバルブ(不図示)やポンプ(不図示)等を制御する。   The amine decomposing apparatus 18 may include a control unit that controls the addition amount of the oxidizing agent. For example, data such as a graph or a table in which the amount of oxidant added necessary for the conductivity of the condensed water is set is stored in the control unit in advance. And a control part applies the value measured by the conductivity sensor 31 to the data memorize | stored previously, and determines the addition amount of a required oxidizing agent. And a control part controls the valve | bulb (not shown), the pump (not shown), etc. which were installed in the oxidant addition piping 33 so that it may become the determined addition amount of oxidant. In addition, the amine decomposing apparatus 18 may include a control unit that controls the amount of acid agent added. For example, when a value measured by the pH sensor 28 reaches pH 6.5 to 7.5, a valve (not shown) installed in the acid agent addition pipe 30 so that the supply of the acid agent is stopped. Controls a pump (not shown) and the like.

以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

<実施例1>
アミン含有排水として、上記例示したアミン類のうち広範に使用される2-アミノエタノール6g/L、2,2-イミノジエタノール6g/L、ピペラジン6g/L、及び2−メチルピペラジン6g/Lを水道水に溶解した合成排水を調製した(有機物濃度24g/L)。この合成排水のpHは11.3であった。
<Example 1>
As amine-containing wastewater, 2-aminoethanol 6 g / L, 2,2-iminodiethanol 6 g / L, piperazine 6 g / L, and 2-methylpiperazine 6 g / L, which are widely used among the above-exemplified amines, are used as tap water. Synthetic waste water dissolved in water was prepared (organic matter concentration 24 g / L). The pH of this synthetic waste water was 11.3.

表1に、合成排水中の各アミンの沸点(760mmHg)とpKa(25℃)を示す。   Table 1 shows the boiling point (760 mmHg) and pKa (25 ° C.) of each amine in the synthetic waste water.

この合成排水のpHを塩酸(35%)で7.1に調整した。pH調整した排水のCODMnは13,000mg/L、全窒素濃度(T−N)は5,700mg/L、塩化物イオン濃度は8,900mg/Lであった。なお、合成排水におけるCODMn、T−N、及び塩化物イオン濃度は、JIS K0102に基づく方法で測定した。   The pH of this synthetic waste water was adjusted to 7.1 with hydrochloric acid (35%). The pH-adjusted wastewater had a CODMn of 13,000 mg / L, a total nitrogen concentration (TN) of 5,700 mg / L, and a chloride ion concentration of 8,900 mg / L. The CODMn, TN, and chloride ion concentrations in the synthetic wastewater were measured by a method based on JIS K0102.

pH7.1の合成排水500mLを、ロータリーエバポレータの濃縮部フラスコに導入し、この濃縮部フラスコが80℃の湯浴に底部から半分程度まで浸漬した状態で濃縮部フラスコを回転させた。凝縮部に22℃の冷却水を通水しながら、真空ポンプを稼働し、濃縮部フラスコを含むエバポレータ内部の圧力が−0.07MPaとなるように調整した。凝縮部で冷却された凝縮水を底部の凝縮水フラスコで集水し、凝縮水が475mLとなるまで濃縮した(凝縮水回収率95%)。この凝縮水の水質(pH、CODMn、T−N、Cl濃度)を測定した。その結果を表2に示す。 500 mL of synthetic waste water having pH of 7.1 was introduced into a concentration evaporator flask of a rotary evaporator, and the concentration flask was rotated in a state in which the concentration flask was immersed in an 80 ° C. hot water bath from the bottom to about half. While passing cooling water of 22 ° C. through the condensing part, the vacuum pump was operated, and the pressure inside the evaporator including the concentrating part flask was adjusted to −0.07 MPa. The condensed water cooled in the condensing part was collected in the bottom condensate flask and concentrated until the condensed water reached 475 mL (condensed water recovery rate 95%). The water quality (pH, CODMn, TN, Cl concentration) of this condensed water was measured. The results are shown in Table 2.

次に、凝縮水のpHを塩酸で7.3に調整し、導電率を測定した。その結果を表2に示す。   Next, the pH of the condensed water was adjusted to 7.3 with hydrochloric acid, and the conductivity was measured. The results are shown in Table 2.

pH調整後の凝縮水100mLに過酸化水素水(有効濃度30%)を80mgH/Lの濃度となるように添加した。なお、過酸化水素添加量は、凝縮水のCODMnの2.5倍(モル比)であった。 Hydrogen peroxide water (effective concentration 30%) was added to 100 mL of condensed water after pH adjustment so as to have a concentration of 80 mgH 2 O 2 / L. In addition, the hydrogen peroxide addition amount was 2.5 times (molar ratio) of CODMn of condensed water.

過酸化水素を添加した凝縮水を石英ビーカーに投入し、凝縮水を撹拌しながら、紫外線を240分間照射した。紫外線照射は、石英ビーカー(中心)から72mm離れた位置に設置した低圧紫外線ランプにより行った。照射強度は2mW/cmであった。   The condensed water to which hydrogen peroxide was added was put into a quartz beaker and irradiated with ultraviolet rays for 240 minutes while stirring the condensed water. Ultraviolet irradiation was performed by a low-pressure ultraviolet lamp installed at a position 72 mm away from the quartz beaker (center). The irradiation intensity was 2 mW / cm.

その後、次亜塩素酸ナトリウム溶液(有効濃度4%)を塩素が0.3〜0.5mg/L残留するように添加した。これを処理水として、CODMn、T−Nを測定した。その結果を表2に示す。   Thereafter, a sodium hypochlorite solution (effective concentration 4%) was added so that chlorine remained at 0.3 to 0.5 mg / L. Using this as treated water, CODMn and TN were measured. The results are shown in Table 2.

<実施例2>
合成排水のpHを塩酸(35%)で8.0に調整した。pH調整後の合成排水中の塩化物イオン濃度は、8,000mg/Lであった(なお、CODMnは13,000mg/L、全窒素濃度(T−N)は5,700mg/L)。
<Example 2>
The pH of the synthetic waste water was adjusted to 8.0 with hydrochloric acid (35%). The chloride ion concentration in the synthetic waste water after pH adjustment was 8,000 mg / L (note that CODMn was 13,000 mg / L and total nitrogen concentration (TN) was 5,700 mg / L).

pH8.0の合成排水500mLを、実施例1と同様に蒸発濃縮して、凝縮水を得た。この凝縮水の水質(pH、CODMn、T−N、Cl濃度)を測定した。その結果を表2に示す。 500 mL of synthetic wastewater with a pH of 8.0 was evaporated and concentrated in the same manner as in Example 1 to obtain condensed water. The water quality (pH, CODMn, TN, Cl concentration) of this condensed water was measured. The results are shown in Table 2.

次に、凝縮水のpHを塩酸で7.5に調整し、導電率を測定した。その結果を表2に示す。   Next, the pH of the condensed water was adjusted to 7.5 with hydrochloric acid, and the conductivity was measured. The results are shown in Table 2.

pH調整後の凝縮水100mLに過酸化水素水(有効濃度30%)を325mgH/Lの濃度となるように添加した。なお、過酸化水素添加量は、凝縮水のCODMnの2.8倍(モル比)であった。 Hydrogen peroxide water (effective concentration 30%) was added to 100 mL of condensed water after pH adjustment so as to have a concentration of 325 mgH 2 O 2 / L. The amount of hydrogen peroxide added was 2.8 times (molar ratio) of CODMn of condensed water.

過酸化水素を添加した凝縮水に対して、実施例1と同様に紫外線照射を行った後、次亜塩素酸ナトリウムを添加した。これを処理水として、CODMn、T−Nを測定した。その結果を表2に示す。   The condensed water to which hydrogen peroxide was added was irradiated with ultraviolet rays in the same manner as in Example 1, and then sodium hypochlorite was added. Using this as treated water, CODMn and TN were measured. The results are shown in Table 2.

<実施例3>
pH11.3の合成排水(塩化物イオン濃度は150mg/L、CODMnは13,000mg/L、全窒素濃度(T−N)は5,700mg/L)に対して蒸発濃縮工程を行った。蒸発濃縮工程は、凝縮水が333mLとなるまで濃縮した(凝縮水回収率67%)こと以外は、実施例1と同様とし、得られた凝縮水の水質(pH、CODMn、T−N、Cl濃度)を測定した。その結果を表2に示す。
<Example 3>
The evaporative concentration step was carried out on synthetic wastewater of pH 11.3 (chloride ion concentration 150 mg / L, CODMn 13,000 mg / L, total nitrogen concentration (TN) 5,700 mg / L). The evaporative concentration step was the same as in Example 1 except that the condensed water was concentrated to 333 mL (condensed water recovery rate 67%), and the quality of the obtained condensed water (pH, CODMn, TN, Cl - concentration) was measured. The results are shown in Table 2.

次に、凝縮水のpHを塩酸で7.5に調整し、導電率を測定した。その結果を表2に示す。   Next, the pH of the condensed water was adjusted to 7.5 with hydrochloric acid, and the conductivity was measured. The results are shown in Table 2.

pH調整後の凝縮水100mLに過酸化水素水(有効濃度30%)を2110mgH/Lの濃度となるように添加した。なお、過酸化水素添加量は、凝縮水のCODMnの2.5倍(モル比)であった。 Hydrogen peroxide water (effective concentration 30%) was added to 100 mL of condensed water after pH adjustment so as to have a concentration of 2110 mgH 2 O 2 / L. In addition, the hydrogen peroxide addition amount was 2.5 times (molar ratio) of CODMn of condensed water.

過酸化水素を添加した凝縮水に対して、実施例1と同様に紫外線照射を行った後、次亜塩素酸ナトリウムを添加した。これを処理水として、CODMn、T−Nを測定した。その結果を表2に示す。   The condensed water to which hydrogen peroxide was added was irradiated with ultraviolet rays in the same manner as in Example 1, and then sodium hypochlorite was added. Using this as treated water, CODMn and TN were measured. The results are shown in Table 2.

アミン含有排水を蒸発濃縮して得られた凝縮水を加熱することなく、酸化剤添加及び紫外線照射を行った実施例1〜3いずれも、処理水中のCODMnは100mg/L未満であり、排水基準(日間平均120mg/L)を満たす値であった。酸化剤添加及び紫外線照射の際の凝縮水の温度は、室温付近(約25℃)であった。したがって、凝縮水中のアミンを分解する際に、凝縮水を加熱するための熱源を必要とせずとも、残留アミンの少ない処理水を得ることができたと言える。また、実施例1〜3の中では、蒸発濃縮する際のアミン含有排水のpHを8以下に調整した実施例1〜2の方が、pH調整していない実施例3と比較して、残留アミンの少ない処理水を得ることができた。   In Examples 1 to 3 in which the oxidant was added and ultraviolet irradiation was performed without heating the condensed water obtained by evaporating and condensing the amine-containing wastewater, the CODMn in the treated water was less than 100 mg / L, and the wastewater standard It was a value satisfying (daily average 120 mg / L). The temperature of the condensed water during the addition of the oxidizing agent and the ultraviolet irradiation was around room temperature (about 25 ° C.). Therefore, when decomposing the amine in the condensed water, it can be said that treated water with little residual amine could be obtained without requiring a heat source for heating the condensed water. Moreover, in Examples 1-3, the direction of Examples 1-2 which adjusted pH of the amine containing waste_water | drain at the time of evaporative concentration to 8 or less compared with Example 3 which is not pH-adjusted. Treated water with less amine could be obtained.

1 排水処理装置、10 原水槽、12 蒸発濃縮機、14 濃縮水槽、16 凝縮器、18 アミン分解装置、22 蒸発缶、24 熱媒体供給配管、26 pH調整槽、28 pHセンサ、29 pH調整剤添加配管、30 酸剤添加配管、31 導電率センサ、32 排水流入配管、33 酸化剤添加配管、34 伝熱管、35 ラインミキサー、36 ドレン部、37 紫外線ランプ、38 ドレン配管、39 反応槽、40a,40b ポンプ、42 循環配管、44 濃縮水配管、46 蒸気回収配管、48 冷却水配管、50a,50b 凝縮水配管、52 処理水配管。   DESCRIPTION OF SYMBOLS 1 Waste water treatment apparatus, 10 Raw water tank, 12 Evaporation concentrator, 14 Concentrated water tank, 16 Condenser, 18 Amine decomposition apparatus, 22 Evaporator, 24 Heat medium supply piping, 26 pH adjustment tank, 28 pH sensor, 29 pH adjuster Addition piping, 30 Acid agent addition piping, 31 Conductivity sensor, 32 Drainage inflow piping, 33 Oxidant addition piping, 34 Heat transfer tube, 35 Line mixer, 36 Drain section, 37 UV lamp, 38 Drain piping, 39 Reaction tank, 40a , 40b Pump, 42 Circulation piping, 44 Concentrated water piping, 46 Steam recovery piping, 48 Cooling water piping, 50a, 50b Condensed water piping, 52 Treated water piping.

Claims (4)

アミン含有排水を蒸発濃縮する蒸発濃縮工程と、
前記蒸発濃縮工程で発生した蒸気を凝縮する凝縮工程と、
前記凝縮工程で得られた凝縮水に酸化剤を添加すると共に、紫外線を照射して、前記凝縮水中のアミンを分解するアミン分解工程と、を有することを特徴とするアミン含有排水の処理方法。
An evaporation concentration process for evaporating and condensing amine-containing wastewater;
A condensation step of condensing the vapor generated in the evaporation concentration step;
A method for treating amine-containing wastewater, comprising adding an oxidant to the condensed water obtained in the condensation step and irradiating ultraviolet rays to decompose the amine in the condensed water.
前記アミン分解工程は、前記凝縮水のpHを6.5〜7.5に調整するpH調整工程と、pH調整後の凝縮水の導電率を測定する導電率測定工程とを有し、測定した導電率の値に応じて、前記酸化剤の添加量を調整することを特徴とする請求項1に記載のアミン含有排水の処理方法。   The amine decomposition step has a pH adjustment step for adjusting the pH of the condensed water to 6.5 to 7.5, and a conductivity measurement step for measuring the conductivity of the condensed water after pH adjustment. The method for treating amine-containing wastewater according to claim 1, wherein the amount of the oxidizing agent added is adjusted in accordance with a conductivity value. アミン含有排水を蒸発濃縮する蒸発濃縮手段と、
前記蒸発濃縮手段で発生した蒸気を凝縮する凝縮手段と、
前記凝縮手段で得られた凝縮水に酸化剤を添加すると共に、紫外線を照射して、前記凝縮水中のアミンを分解するアミン分解手段と、を有することを特徴とするアミン含有排水の処理装置。
Evaporative concentration means for evaporating and condensing amine-containing wastewater;
Condensing means for condensing the vapor generated by the evaporative concentration means;
An amine-containing wastewater treatment apparatus, comprising: an amine decomposition means for decomposing an amine in the condensed water by adding an oxidizing agent to the condensed water obtained by the condensing means and irradiating ultraviolet rays.
前記アミン分解手段は、前記凝縮水のpHを6.5〜7.5に調整するpH調整手段と、pH調整後の凝縮水の導電率を測定する導電率測定手段とを有し、測定した導電率の値に応じて、前記酸化剤の添加量を調整することを特徴とする請求項3に記載のアミン含有排水の処理装置。   The amine decomposing means has a pH adjusting means for adjusting the pH of the condensed water to 6.5 to 7.5, and a conductivity measuring means for measuring the conductivity of the condensed water after pH adjustment. 4. The amine-containing wastewater treatment apparatus according to claim 3, wherein the amount of the oxidizing agent added is adjusted according to a conductivity value.
JP2016206783A 2016-10-21 2016-10-21 Amine-containing wastewater treatment method and treatment equipment Active JP6832124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016206783A JP6832124B2 (en) 2016-10-21 2016-10-21 Amine-containing wastewater treatment method and treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016206783A JP6832124B2 (en) 2016-10-21 2016-10-21 Amine-containing wastewater treatment method and treatment equipment

Publications (2)

Publication Number Publication Date
JP2018065112A true JP2018065112A (en) 2018-04-26
JP6832124B2 JP6832124B2 (en) 2021-02-24

Family

ID=62086602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016206783A Active JP6832124B2 (en) 2016-10-21 2016-10-21 Amine-containing wastewater treatment method and treatment equipment

Country Status (1)

Country Link
JP (1) JP6832124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102083441B1 (en) * 2019-09-05 2020-05-29 동양엔텍(주) Waste water treatment method containing organic solvent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176595A (en) * 1986-01-28 1987-08-03 Ebara Infilco Co Ltd Method for removing organic substance in waste water
JPS63175689A (en) * 1987-01-12 1988-07-20 Nippon Denki Kankyo Eng Kk Treatment method for drain containing amine compound
JPS6411694A (en) * 1987-07-06 1989-01-17 Konishiroku Photo Ind Vaporizing and concentrating method and device for waste liquid of photographic treatment
JPH0975993A (en) * 1995-09-19 1997-03-25 Taiyo Kagaku Kogyo Kk Treatment of organic matter-containing waste water and device therefor
JP2002079276A (en) * 2000-09-11 2002-03-19 Nec Corp Wastewater treatment method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176595A (en) * 1986-01-28 1987-08-03 Ebara Infilco Co Ltd Method for removing organic substance in waste water
JPS63175689A (en) * 1987-01-12 1988-07-20 Nippon Denki Kankyo Eng Kk Treatment method for drain containing amine compound
JPS6411694A (en) * 1987-07-06 1989-01-17 Konishiroku Photo Ind Vaporizing and concentrating method and device for waste liquid of photographic treatment
JPH0975993A (en) * 1995-09-19 1997-03-25 Taiyo Kagaku Kogyo Kk Treatment of organic matter-containing waste water and device therefor
JP2002079276A (en) * 2000-09-11 2002-03-19 Nec Corp Wastewater treatment method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102083441B1 (en) * 2019-09-05 2020-05-29 동양엔텍(주) Waste water treatment method containing organic solvent

Also Published As

Publication number Publication date
JP6832124B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6420729B2 (en) Thermal power generation facility for recovering moisture from exhaust gas and method for treating recovered water of the thermal power generation facility
JP4651642B2 (en) Wastewater recycling method
US9352993B2 (en) Method of operating steam boiler
WO2016063578A1 (en) Ammonia-containing wastewater treatment apparatus and treatment method
US20120178175A1 (en) CWB conductivity monitor
CN105712549A (en) Method for inhibiting forming of bromo nitrogenous disinfection byproducts in water
JP6832124B2 (en) Amine-containing wastewater treatment method and treatment equipment
US5190627A (en) Process for removing dissolved oxygen from water and system therefor
TWI405724B (en) Method and system for wastewater treatment
JP6853648B2 (en) Amine-containing wastewater treatment method and treatment equipment
JP6853661B2 (en) Amine-containing wastewater treatment method and treatment equipment
JP2005066544A (en) Method for recovering monoethanolamine
KR100919771B1 (en) Treatment Process and Equipment of Steam Generator Chemical Cleaning Wastewater Contained Chelate Chemicals and radioactive materials
JP4571086B2 (en) Water purification equipment and treatment method
TW201615557A (en) Processing method and processing device for ammonia-containing drainage water
TWI448435B (en) Drainage treatment method
JP3313549B2 (en) Decomposition and removal method of organic matter in chloride ion-containing wastewater
CN104261612A (en) Novel treatment device for high-salt-content degradation-resistant organic wastewater
JP2008012497A (en) Water treatment apparatus and water treatment method
JPH08224572A (en) Ultra pure water production and wastewater treatment in closed system
JP4282962B2 (en) Wastewater neutralization method
JP4239006B2 (en) Nitric acid waste liquid treatment method
JP6856419B2 (en) Condensed water treatment system
WO2018074039A1 (en) Method and apparatus for treating amine-containing waste water
JP2006247580A (en) Recycling method of adsorbent and purification apparatus for photodegradable chloro substance-containing fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R150 Certificate of patent or registration of utility model

Ref document number: 6832124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250