JP2008012497A - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP2008012497A
JP2008012497A JP2006189165A JP2006189165A JP2008012497A JP 2008012497 A JP2008012497 A JP 2008012497A JP 2006189165 A JP2006189165 A JP 2006189165A JP 2006189165 A JP2006189165 A JP 2006189165A JP 2008012497 A JP2008012497 A JP 2008012497A
Authority
JP
Japan
Prior art keywords
water
chlorine
water treatment
raw water
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006189165A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Fujisawa
美世 藤澤
Tomoaki Miyanoshita
友明 宮ノ下
Daisaku Yano
大作 矢野
Toshiaki Kunito
俊朗 國東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2006189165A priority Critical patent/JP2008012497A/en
Publication of JP2008012497A publication Critical patent/JP2008012497A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment apparatus and a water treatment method capable of reducing an amount of chlorine used, in a chlorine oxidation treatment of ammonia contained in raw water. <P>SOLUTION: The water treatment apparatus and water treatment method can reduce an amount of chlorine used, by controlling pH of the raw water within a given range, converting ammonia in the raw water to monochloramine by adding a chlorine agent, then decomposing monochloramine by irradiating the chlorine-treated water with ultraviolet ray, in a chlorine oxidation treatment of ammonia contained in raw water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、浄水処理、環境浄化、工業用水処理、下水処理、排水処理等において、原水に含まれるアンモニアの処理を行う水処理装置及び水処理方法に関する。   The present invention relates to a water treatment apparatus and a water treatment method for treating ammonia contained in raw water in water purification, environmental purification, industrial water treatment, sewage treatment, wastewater treatment, and the like.

飲料用原水や排水中にアンモニアが存在する場合、その処理方法として、塩素剤による酸化処理(塩素酸化処理)、生物酸化処理、ストリッピング処理等がある。また、過酸化水素等の酸化剤を排水に添加し、紫外線を照射してアンモニアを硝酸へ酸化する方法が知られている(例えば、特許文献1参照)。   When ammonia is present in drinking raw water or waste water, the treatment method includes oxidation treatment with a chlorinating agent (chlorine oxidation treatment), biological oxidation treatment, stripping treatment, and the like. In addition, a method is known in which an oxidizing agent such as hydrogen peroxide is added to waste water and irradiated with ultraviolet rays to oxidize ammonia to nitric acid (see, for example, Patent Document 1).

それらの中でも、次亜塩素酸ナトリウム等を用いた下記式で表される塩素酸化処理が多く用いられているが、アンモニアを完全に塩素酸化処理して分解し窒素にするためには、アンモニアと塩素との濃度比が1:10程度となるような塩素が必要である。
2NH + 3NaOCl → N + 3HCl + 3NaOH
Among them, chlorination treatment represented by the following formula using sodium hypochlorite or the like is often used, but in order to completely decompose and decompose ammonia into nitrogen, ammonia and Chlorine having a concentration ratio with chlorine of about 1:10 is necessary.
2NH 3 + 3NaOCl → N 2 + 3HCl + 3NaOH

また、アンモニアと塩素を濃度比1:5程度で反応させると、クロラミン(モノクロラミン:NHCl及びジクロラミン:NHCl)が生成することが知られている。
NH + NaOCl → NHCl + NaOH
NH + 2NaOCl → NHCl + 2NaOH
Further, it is known that when ammonia and chlorine are reacted at a concentration ratio of about 1: 5, chloramine (monochloramine: NH 2 Cl and dichloramine: NHCl 2 ) is generated.
NH 3 + NaOCl → NH 2 Cl + NaOH
NH 3 + 2NaOCl → NHCl 2 + 2NaOH

特開平7−155773号公報JP-A-7-155773

上記の通り、アンモニアを完全に塩素酸化処理するためには、濃度比でアンモニアの10倍程度と大量の塩素が必要であり、処理水中の塩化物イオン濃度が増加するという問題があった。一方、塩素酸化処理に使用する塩素の添加量を低減すると、クロラミンが生成し、アンモニアを完全に分解することができなかった。   As described above, in order to completely oxidize ammonia with chlorine, a large amount of chlorine, which is about 10 times the ammonia concentration, is required, and there is a problem that the chloride ion concentration in the treated water increases. On the other hand, when the amount of chlorine used for the chlorination treatment was reduced, chloramine was produced, and ammonia could not be completely decomposed.

本発明は、原水に含まれるアンモニアの塩素酸化処理において、使用する塩素量を低減することができる水処理装置及び水処理方法である。   The present invention is a water treatment apparatus and a water treatment method capable of reducing the amount of chlorine used in the chlorination treatment of ammonia contained in raw water.

本発明は、原水に含まれるアンモニアの処理を行う水処理装置であって、原水のpHを7.5〜8.6の範囲に調整するpH調整手段を備えた反応槽と、前記範囲にpH調整されたpH調整原水に塩素剤を添加する塩素剤添加手段と、前記塩素剤を添加した塩素処理水に紫外線を照射する紫外線照射手段と、を有する。   The present invention is a water treatment apparatus for treating ammonia contained in raw water, comprising a reaction tank equipped with pH adjusting means for adjusting the pH of the raw water to a range of 7.5 to 8.6, and a pH within the above range. A chlorine agent adding means for adding a chlorine agent to the adjusted pH-adjusted raw water; and an ultraviolet irradiation means for irradiating the chlorinated water to which the chlorine agent is added with ultraviolet rays.

また、前記水処理装置において、前記紫外線を照射した紫外線処理水の一部を前記反応槽へ返送する返送手段をさらに有することが好ましい。   Moreover, it is preferable that the water treatment apparatus further includes a return means for returning a part of the ultraviolet treated water irradiated with the ultraviolet rays to the reaction tank.

また、本発明は、原水に含まれるアンモニアの処理を行う水処理方法であって、原水のpHを7.5〜8.6の範囲に調整するpH調整工程と、前記範囲にpH調整されたpH調整原水に塩素剤を添加する塩素剤添加工程と、前記塩素剤を添加した塩素処理水に紫外線を照射する紫外線照射工程と、を含む。   The present invention is also a water treatment method for treating ammonia contained in raw water, wherein the pH of the raw water is adjusted to a range of 7.5 to 8.6, and the pH is adjusted to the above range. a chlorine agent addition step of adding a chlorine agent to the pH-adjusted raw water, and an ultraviolet irradiation step of irradiating the chlorinated water to which the chlorine agent is added with ultraviolet rays.

また、前記水処理方法において、前記紫外線を照射した紫外線処理水の一部を前記塩素剤添加工程へ返送する返送工程をさらに含むことが好ましい。   The water treatment method preferably further includes a returning step of returning a part of the ultraviolet-treated water irradiated with the ultraviolet rays to the chlorinating agent adding step.

本発明では、原水に含まれるアンモニアの塩素酸化処理において、原水のpHを所定の範囲に調整し、塩素剤を添加して原水中のアンモニアをモノクロラミンとした後、その塩素処理水に紫外線を照射してモノクロラミンを分解することによって、使用する塩素量を低減することができる水処理装置及び水処理方法を提供することができる。   In the present invention, in the chlorination treatment of ammonia contained in the raw water, the pH of the raw water is adjusted to a predetermined range, and after adding a chlorinating agent to make the ammonia in the raw water monochloramine, ultraviolet rays are applied to the chlorinated water. By irradiating and decomposing monochloramine, it is possible to provide a water treatment device and a water treatment method capable of reducing the amount of chlorine used.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

塩素酸化により原水中のアンモニアの処理を行う場合、使用する塩素の添加量を低減すると、クロラミン(モノクロラミン:NHCl及びジクロラミン:NHCl)が生成する。そこで、そのクロラミンを何らかの方法で分解すれば、使用する塩素の添加量を低減した上で、アンモニアを完全に分解することができる。クロラミンは紫外線により分解されることが知られており、本発明者らは、塩素酸化処理後の紫外線によるクロラミンの分解を検討したが、塩素酸化反応時のpH、あるいは紫外線の波長、照射効率等によって、クロラミンが残留することがわかった。 When ammonia in raw water is treated by chlorine oxidation, chloramines (monochloramine: NH 2 Cl and dichloramine: NHCl 2 ) are produced when the amount of chlorine used is reduced. Therefore, if the chloramine is decomposed by any method, ammonia can be completely decomposed while reducing the amount of chlorine to be used. It is known that chloramine is decomposed by ultraviolet rays, and the present inventors examined the decomposition of chloramine by ultraviolet rays after chlorination treatment, but the pH during the chlorination reaction, the wavelength of ultraviolet rays, the irradiation efficiency, etc. It was found that chloramine remained.

そこでさらに検討したところ、アンモニアに塩素を反応させてクロラミンが生成する場合、反応時のpHにより、モノクロラミンとジクロラミンの生成割合が異なり、pH7.0前後では若干ジクロラミンが生成されるのに対し、pH7.5〜8.6の範囲ではほとんど全てモノクロラミンが生成されることがわかった。また、モノクロラミンは主に250nm付近の紫外線、ジクロラミンは220nmもしくは290nm付近の紫外線を照射することにより分解されることが知られている(例えば、大瀧ら、「土木学会第45回年次学術講演会要旨集」、平成2年9月、p.900−901参照)。そこで、アンモニアを含む原水のpHを7.5〜8.6の範囲に調整し、塩素の添加量を低減して塩素酸化反応を行い、生成したモノクロラミンをモノクロラミンが分解し易い波長の紫外線で分解することにより、使用する塩素の添加量を低減した上で、アンモニアをほぼ完全に分解することができることがわかった。   Therefore, further examination revealed that when chloramine is produced by reacting chlorine with ammonia, the production ratio of monochloramine and dichloramine differs depending on the pH at the time of reaction, whereas dichloramine is produced slightly at around pH 7.0, It was found that almost all monochloramine was produced in the pH range of 7.5 to 8.6. In addition, it is known that monochloramine is decomposed mainly by irradiating with ultraviolet rays around 250 nm, and dichloramine is irradiated with ultraviolet rays around 220 nm or 290 nm (for example, Otsuki et al. "Summary", September 1990, p.900-901). Therefore, the pH of the raw water containing ammonia is adjusted to the range of 7.5 to 8.6, the amount of added chlorine is reduced and the chlorine oxidation reaction is performed, and the generated monochloramine has a wavelength at which monochloramine is easily decomposed. It was found that ammonia can be almost completely decomposed by reducing the amount of chlorine used by decomposing with.

本発明の実施形態に係る水処理装置の一例を図1に示し、その構成について説明する。本実施形態に係る水処理装置1は、原水槽10と、反応槽12と、pH調整手段であるpH調整装置14(pH調整剤注入ポンプ38、pH調整剤貯槽40)及びpH測定装置16と、塩素剤添加手段である塩素剤添加装置18(塩素剤注入ポンプ34、塩素剤貯槽36)と、紫外線照射手段である紫外線照射装置20と、pH制御手段である制御部22とを備える。   An example of the water treatment apparatus according to the embodiment of the present invention is shown in FIG. The water treatment apparatus 1 according to the present embodiment includes a raw water tank 10, a reaction tank 12, a pH adjusting apparatus 14 (pH adjusting agent injection pump 38, pH adjusting agent storage tank 40) and a pH measuring apparatus 16 that are pH adjusting means. A chlorine agent addition device 18 (chlorine agent injection pump 34, chlorine agent storage tank 36) as a chlorine agent addition unit, an ultraviolet irradiation device 20 as an ultraviolet irradiation unit, and a control unit 22 as a pH control unit.

水処理装置1において、原水槽10の上部には、配管24の一端が接続され、他端は揚水ポンプ26を介して、深井戸等の原水源28等に接続されている。また、原水槽10の下部には、原水流入管30の一端が原水ポンプ32を介して接続され、他端は反応槽12の下部に接続されている。反応槽12の上部には、塩素剤注入ポンプ34を介して塩素剤貯槽36が、pH調整剤注入ポンプ38を介してpH調整剤貯槽40がそれぞれ接続されている。また、反応槽12には撹拌機42及びpH測定装置16が設置されている。反応槽12の下部は塩素処理水流出管44により紫外線照射装置20の入口と接続され、紫外線照射装置20の出口は処理水流出管46により処理水槽(図示せず)等と接続されている。また、処理水流出管46の途中には塩素剤注入ポンプ34を介して塩素剤貯槽36が接続されている。制御部22は、pH測定装置16及びpH調整剤注入ポンプ38にそれぞれ接続されている。   In the water treatment apparatus 1, one end of a pipe 24 is connected to the upper part of the raw water tank 10, and the other end is connected to a raw water source 28 such as a deep well through a pumping pump 26. One end of the raw water inflow pipe 30 is connected to the lower part of the raw water tank 10 via a raw water pump 32, and the other end is connected to the lower part of the reaction tank 12. A chlorine agent storage tank 36 is connected to the upper part of the reaction tank 12 via a chlorine agent injection pump 34, and a pH adjustment agent storage tank 40 is connected via a pH adjustment agent injection pump 38. The reaction vessel 12 is provided with a stirrer 42 and a pH measuring device 16. The lower part of the reaction tank 12 is connected to the inlet of the ultraviolet irradiation apparatus 20 by a chlorinated water outflow pipe 44, and the outlet of the ultraviolet irradiation apparatus 20 is connected to a processing water tank (not shown) by a treated water outflow pipe 46. A chlorine agent storage tank 36 is connected to the treated water outflow pipe 46 via a chlorine agent injection pump 34. The controller 22 is connected to the pH measuring device 16 and the pH adjusting agent injection pump 38, respectively.

次に、本実施形態に係る水処理装置1の動作及び水処理方法について説明する。深井戸水等の原水(被処理水)は原水源28から揚水ポンプ26により汲み上げられ、原水槽10に送液される。さらに、原水は、原水槽10から原水ポンプ32により反応槽12へと送液される。   Next, the operation of the water treatment apparatus 1 and the water treatment method according to this embodiment will be described. Raw water (treated water) such as deep well water is pumped from a raw water source 28 by a pumping pump 26 and sent to the raw water tank 10. Further, the raw water is sent from the raw water tank 10 to the reaction tank 12 by the raw water pump 32.

次に、pH調整剤貯槽40からpH調整剤注入ポンプ38によりpH調整剤が反応槽12内の原水に注入され、撹拌機42により撹拌されながら、原水のpHが7.5〜8.6の範囲に調整される(pH調整工程)。このとき、pH測定装置16により原水のpHが測定され、その測定値に基づいて制御部22によりpH調整剤注入ポンプ38による注入量が制御される。なお、ここでは反応槽12中の原水にpH調整剤が添加されているが、原水流入管30等へのライン注入としても良い。   Next, the pH adjusting agent is injected from the pH adjusting agent storage tank 40 into the raw water in the reaction tank 12 by the pH adjusting agent injection pump 38 and is stirred by the stirrer 42, while the pH of the raw water is 7.5 to 8.6. The range is adjusted (pH adjustment step). At this time, the pH of the raw water is measured by the pH measuring device 16, and the injection amount by the pH adjusting agent injection pump 38 is controlled by the control unit 22 based on the measured value. Here, the pH adjusting agent is added to the raw water in the reaction tank 12, but it may be injected into the raw water inflow pipe 30 or the like.

本実施形態に係る方法では、原水のpHを7.5〜8.6の範囲に調整し、原水のアンモニア態窒素濃度に応じて所定量の塩素剤を添加することにより、原水中のアンモニアを塩素によりモノクロラミンとする。pHが7.5未満であると、ジクロラミンの生成割合が増えてしまう。また、pHが8.6を超えると処理水のpHを中性付近とするために後段で再度pH調整工程が必要となる。また、モノクロラミンの生成割合が高くなるため、上記pHは7.5〜8.5の範囲が好ましく、8.0〜8.5の範囲がより好ましい。   In the method according to the present embodiment, the pH of the raw water is adjusted to a range of 7.5 to 8.6, and a predetermined amount of chlorinating agent is added according to the ammonia nitrogen concentration of the raw water, whereby the ammonia in the raw water is reduced. Monochloramine with chlorine. If the pH is less than 7.5, the production rate of dichloramine increases. Further, if the pH exceeds 8.6, the pH adjustment step is required again later in order to make the pH of the treated water near neutral. Moreover, since the production | generation ratio of a monochloramine becomes high, the said pH has the preferable range of 7.5-8.5, and the range which is 8.0-8.5 is more preferable.

pH調整剤としては、原水が酸性の場合は、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム、水酸化カルシウム等の公知のアルカリが挙げられるが、水酸化ナトリウムが好ましい。また、アルカリは速やかに均一化させるために水溶液の状態で添加することが好ましい。また原水がアルカリ性の場合は、硫酸、塩酸、りん酸等の公知の酸が挙げられるが、硫酸が好ましい。また、急激な中和反応を避けるため、アルカリあるいは酸は5%〜30%、好ましくは10%〜20%の水溶液として添加することが好ましい。原水のpHが7.5〜8.6の範囲である場合には、ここではpH調整剤を添加しなくてもよい。原水が深井戸水の場合、pHは通常6.5〜7.0程度であるので、pH調整剤として水酸化ナトリウム水溶液等のアルカリ水溶液が用いられる。   Examples of the pH adjuster include known alkalis such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, potassium carbonate, and calcium hydroxide when the raw water is acidic, but sodium hydroxide is preferable. The alkali is preferably added in the form of an aqueous solution in order to make it uniform quickly. Moreover, when raw | natural water is alkaline, well-known acids, such as a sulfuric acid, hydrochloric acid, phosphoric acid, are mentioned, A sulfuric acid is preferable. Moreover, in order to avoid a rapid neutralization reaction, it is preferable to add an alkali or an acid as an aqueous solution of 5% to 30%, preferably 10% to 20%. When the pH of the raw water is in the range of 7.5 to 8.6, it is not necessary to add a pH adjuster here. When the raw water is deep well water, the pH is usually about 6.5 to 7.0, and therefore an alkaline aqueous solution such as an aqueous sodium hydroxide solution is used as a pH adjuster.

原水のpH調整後、塩素剤貯槽36から塩素剤注入ポンプ34により塩素剤が反応槽12内のpH調整されたpH調整原水に注入され、撹拌機42により撹拌されながら、原水の塩素酸化処理が行われる(塩素剤添加工程)。塩素酸化処理の反応時間としては5分〜60分程度、好ましくは15分〜20分程度とすればよい。   After the pH adjustment of the raw water, the chlorine agent is injected from the chlorine agent storage tank 36 into the pH-adjusted raw water adjusted in the reaction tank 12 by the chlorine agent injection pump 34 and stirred by the stirrer 42 while the raw water is subjected to chlorination treatment. Performed (chlorine agent addition step). The reaction time for the chlorination treatment may be about 5 to 60 minutes, preferably about 15 to 20 minutes.

塩素剤としては、塩素ガス、次亜塩素酸ナトリウム、液化塩素、クロラミン、二酸化塩素等を用いることができるが、次亜塩素酸ナトリウム、液化塩素を用いることが好ましく、次亜塩素酸ナトリウムを用いることがより好ましい。次亜塩素酸ナトリウム等を使用した塩素剤添加工程における塩素注入率は、紫外線照射装置20の出口において残留塩素濃度が0.1mg/L〜1.0mg/Lとなるように調整を行うことが好ましい。   As the chlorinating agent, chlorine gas, sodium hypochlorite, liquefied chlorine, chloramine, chlorine dioxide and the like can be used, but sodium hypochlorite and liquefied chlorine are preferably used, and sodium hypochlorite is used. It is more preferable. The chlorine injection rate in the chlorine agent addition process using sodium hypochlorite or the like may be adjusted so that the residual chlorine concentration is 0.1 mg / L to 1.0 mg / L at the exit of the ultraviolet irradiation device 20. preferable.

また、塩素剤添加工程においても、pH測定装置16により塩素処理水のpHが測定され、その測定値に基づいて必要に応じて制御部22によりpH調整剤注入ポンプ38によるpH調整剤の注入が行われ、原水のpHが7.5〜8.6の範囲、好ましくは7.5〜8.5の範囲になるように調整されてもよい。   Also in the chlorinating agent addition step, the pH of the chlorinated water is measured by the pH measuring device 16, and the pH adjusting agent injection pump 38 injects the pH adjusting agent by the control unit 22 as necessary based on the measured value. The raw water may be adjusted to have a pH of 7.5 to 8.6, preferably 7.5 to 8.5.

次に、塩素酸化処理された塩素処理水は、紫外線照射装置20へと送液され、紫外線照射処理が行われる(紫外線照射工程)。紫外線照射工程では、塩素処理水に紫外線が照射され、塩素酸化処理により生成したクロラミン等が分解される。   Next, the chlorinated water subjected to the chlorination treatment is sent to the ultraviolet irradiation device 20, and an ultraviolet irradiation treatment is performed (ultraviolet irradiation process). In the ultraviolet irradiation step, the chlorinated water is irradiated with ultraviolet rays, and chloramine and the like generated by the chlorination treatment are decomposed.

照射する紫外線の波長としては、クロラミン、特にモノクロラミンが分解し易い波長を含むものであれば特に制限はないが、上記の通り、モノクロラミンが分解し易い250nm付近の波長を含むものが好ましい。   The wavelength of the ultraviolet rays to be irradiated is not particularly limited as long as it includes a wavelength at which chloramine, particularly monochloramine is easily decomposed, but as described above, one having a wavelength around 250 nm at which monochloramine is easily decomposed is preferable.

紫外線ランプとしては、例えば、水銀ランプ、アマルガムランプ、キセノンランプ等を使用することができる。水銀ランプは、ランプ内への水銀蒸気の封入圧により、低圧、中圧、高圧に分類され、それぞれ紫外線の波長分布が異なる。本実施形態における紫外線照射に用いられる紫外線ランプとしては、250nm付近が主たる発光波長である低圧水銀ランプが好ましい。低圧水銀ランプは、ランプの消費電力が少なく、ランプの寿命が長いなどの特徴を有する。   As the ultraviolet lamp, for example, a mercury lamp, an amalgam lamp, a xenon lamp or the like can be used. Mercury lamps are classified into low pressure, medium pressure, and high pressure depending on the mercury vapor sealing pressure in the lamp, and the wavelength distribution of ultraviolet rays is different. As the ultraviolet lamp used for ultraviolet irradiation in the present embodiment, a low-pressure mercury lamp whose main emission wavelength is around 250 nm is preferable. The low-pressure mercury lamp has features such as low lamp power consumption and long lamp life.

紫外線照射装置20により照射される紫外線の照射量は、クロラミンを分解することができればよく、特に制限はないが、10mJ/cm〜200mJ/cmの範囲であることが好ましく、50mJ/cm〜100mJ/cmの範囲であることがより好ましい。 Dose of ultraviolet rays irradiated by the ultraviolet irradiation device 20, as long as it can decompose chloramine is not particularly limited, is preferably in the range of 10mJ / cm 2 ~200mJ / cm 2 , 50mJ / cm 2 More preferably, it is in the range of ˜100 mJ / cm 2 .

紫外線照射処理が行われた処理水(紫外線処理水)は、処理水流出管46を通って、処理水槽等に放出される。なお、処理水槽等への放出前に必要に応じて、処理水流出管46に接続された塩素剤注入ポンプ34により塩素剤貯槽36から塩素剤が添加されてもよい。これにより、処理水に未分解のアンモニアが残留している場合に、確実にアンモニアを分解することができる。   The treated water (ultraviolet treated water) that has been subjected to the ultraviolet irradiation treatment is discharged to the treated water tank or the like through the treated water outflow pipe 46. In addition, a chlorine agent may be added from the chlorine agent storage tank 36 by the chlorine agent injection pump 34 connected to the treated water outflow pipe 46 as needed before discharge to the treated water tank or the like. Thereby, when undecomposed ammonia remains in treated water, ammonia can be decomposed reliably.

以上のように、本実施形態に係る水処理装置及び水処理方法により、使用する塩素の添加量を低減した上で、アンモニアをほぼ完全に分解(処理水中のアンモニア態窒素濃度として、例えば0.05mg/L以下)することができる。   As described above, with the water treatment apparatus and the water treatment method according to the present embodiment, the amount of chlorine to be used is reduced and ammonia is almost completely decomposed (the concentration of ammonia nitrogen in the treated water is, for example, 0. 05 mg / L or less).

本発明の他の実施形態に係る水処理装置の一例を図2に示し、その構成について説明する。本実施形態に係る水処理装置3は、上記水処理装置1の構成に加えて、返送手段である返送用配管48及び返送用ポンプ50を備える。   An example of the water treatment apparatus according to another embodiment of the present invention is shown in FIG. The water treatment apparatus 3 according to the present embodiment includes a return pipe 48 and a return pump 50 that are return means in addition to the configuration of the water treatment apparatus 1.

水処理装置3において、処理水流出管46には返送用配管48の一端が接続され、その他端は返送用ポンプ50を介して反応層12の上部に接続されている。   In the water treatment device 3, one end of a return pipe 48 is connected to the treated water outflow pipe 46, and the other end is connected to the upper part of the reaction layer 12 via a return pump 50.

水処理装置3において、紫外線照射処理が行われた処理水の一部は返送用ポンプ50により返送用配管48を通って、反応槽12に返送される(返送工程)。返送量は処理水質に応じて決めればよい。これにより、処理水中に残留したアンモニアを確実にクロラミンとすることができ、さらに使用塩素量を低減することができる。また、処理水中に残留した未分解のクロラミンを再度紫外線処理することにより、クロラミンをより確実に分解することができる。   In the water treatment device 3, a part of the treated water subjected to the ultraviolet irradiation treatment is returned to the reaction tank 12 by the return pump 50 through the return pipe 48 (return process). The return amount may be determined according to the quality of the treated water. As a result, the ammonia remaining in the treated water can be reliably converted into chloramine, and the amount of chlorine used can be further reduced. Further, chloramine can be more reliably decomposed by subjecting undecomposed chloramine remaining in the treated water to ultraviolet treatment again.

本実施形態に係る水処理装置及び水処理方法は、上水処理施設、下水処理施設、産業排水処理施設、産業用水処理施設等の各種処理工程において、上工水道水、下水、下水2次処理水、河川水、湖沼水、凝集沈殿上澄み水、各種工程中間水、各種回収水、各種廃水等の処理に使用することができる。   The water treatment apparatus and the water treatment method according to the present embodiment are used for water treatment facilities, sewage treatment facilities, industrial wastewater treatment facilities, industrial water treatment facilities, etc. It can be used for the treatment of water, river water, lake water, coagulation sediment supernatant water, various process intermediate water, various recovered water, various waste water, and the like.

以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

<実施例1>
地下水中に含まれるアンモニアを、図2の装置を用いて処理水量1200m/dayにて分解処理した。アンモニア態窒素濃度8.0mg/L、pH=6.9、水温18.0℃の深井戸水を揚水ポンプ26を用いて、50m/hrにて原水槽10に送った。更に原水ポンプ32により、原水槽10から反応槽(有効容量15m)12へ送り、反応槽12内の液を撹拌機42で撹拌しながら、pH=8.0±0.2になるように、反応槽12に20%水酸化ナトリウム水溶液を投入した後、11%(Cl換算)次亜塩素酸ナトリウムを塩素濃度で40mg/L(アンモニア態窒素濃度に対して5倍量)となるように添加した。反応槽12における反応時間は15分とした。反応槽12から流出した塩素処理水に紫外線照射装置(低圧水銀ランプ12本、定格電力1.4kW)20にて紫外線(主波長250nm)を照射した。紫外線照射量は50mJ/cm、紫外線照射装置20における処理水量は60m/hrとし、このうち10m/hrは反応槽12へ返送するものとした。アンモニアを完全に酸化分解するためには、追加塩素が必要であり、処理水流出管46において11%次亜塩素酸ナトリウムをさらに5.0mg/L添加した。本実施例によりアンモニアを分解処理行うために必要な全塩素添加率は45mg/Lであった。処理水の水質は、アンモニア態窒素濃度<0.01mg/L、pH=8.2、残留塩素濃度は0.5mg/Lであった。表1に結果をまとめる。なお、測定方法は上水試験法(2001)に準じた。
<Example 1>
Ammonia contained in the groundwater was decomposed at an amount of treated water of 1200 m 3 / day using the apparatus shown in FIG. Deep well water having an ammonia nitrogen concentration of 8.0 mg / L, pH = 6.9, and water temperature of 18.0 ° C. was sent to the raw water tank 10 at 50 m 3 / hr using a pumping pump 26. Further, the raw water pump 32 is sent from the raw water tank 10 to the reaction tank (effective capacity 15 m 3 ) 12, and the liquid in the reaction tank 12 is stirred by the stirrer 42 so that pH = 8.0 ± 0.2. After adding 20% aqueous sodium hydroxide solution to the reaction tank 12, 11% (Cl 2 equivalent) sodium hypochlorite is adjusted to a chlorine concentration of 40 mg / L (5 times the ammonia nitrogen concentration). Added to. The reaction time in the reaction vessel 12 was 15 minutes. The chlorinated water flowing out from the reaction tank 12 was irradiated with ultraviolet rays (main wavelength: 250 nm) with an ultraviolet irradiation device (12 low-pressure mercury lamps, rated power of 1.4 kW) 20. The amount of ultraviolet irradiation was 50 mJ / cm 2 , the amount of treated water in the ultraviolet irradiation device 20 was 60 m 3 / hr, of which 10 m 3 / hr was returned to the reaction vessel 12. In order to completely oxidatively decompose ammonia, additional chlorine was required, and an additional 5.0 mg / L of 11% sodium hypochlorite was added to the treated water outflow pipe 46. According to this example, the total chlorine addition rate required for decomposing ammonia was 45 mg / L. The water quality of the treated water was ammonia nitrogen concentration <0.01 mg / L, pH = 8.2, and residual chlorine concentration was 0.5 mg / L. Table 1 summarizes the results. In addition, the measuring method followed the water supply test method (2001).

<比較例1>
従来の塩素酸化処理法(紫外線照射なし)によりアンモニアの処理を行った。実施例1と同じ原水を用い、11%次亜塩素酸ナトリウムを塩素濃度で85mg/L(アンモニア態窒素濃度に対して10.6倍量)となるように添加し、反応時間は30分で処理を行った。処理水の水質は、アンモニア態窒素濃度0.5mg/L、pH=7.5、残留塩素濃度は0.05mg/Lであった。表1に結果をまとめる。
<Comparative Example 1>
Ammonia was treated by the conventional chlorination treatment method (without ultraviolet irradiation). Using the same raw water as in Example 1, 11% sodium hypochlorite was added to a chlorine concentration of 85 mg / L (10.6 times the amount of ammonia nitrogen concentration), and the reaction time was 30 minutes. Processed. The water quality of the treated water was ammonia nitrogen concentration 0.5 mg / L, pH = 7.5, and residual chlorine concentration was 0.05 mg / L. Table 1 summarizes the results.

<比較例2>
また、比較例2として、実施例1の反応槽12において水酸化ナトリウム水溶液によるpH調整を行わずに、11%次亜塩素酸ナトリウムを塩素濃度で40mg/L(アンモニア態窒素濃度に対して5倍量)となるように添加し、反応時間15分で処理を行い、処理水に実施例1と同条件の紫外線照射を行った。アンモニアを完全に酸化分解するための追加塩素として、さらに24mg/Lの塩素が必要であり、アンモニアを分解処理するために必要な全塩素添加率は64mg/Lであった。処理水の水質は、アンモニア態窒素濃度<0.01mg/L、pH=7.4、残留塩素濃度は0.7mg/Lであった。表1に結果をまとめる。
<Comparative example 2>
Further, as Comparative Example 2, 11% sodium hypochlorite was added at a chlorine concentration of 40 mg / L (5% with respect to the ammonia nitrogen concentration) without adjusting pH with an aqueous sodium hydroxide solution in the reaction tank 12 of Example 1. The reaction water was treated for 15 minutes, and the treated water was irradiated with ultraviolet rays under the same conditions as in Example 1. As additional chlorine for complete oxidative decomposition of ammonia, an additional 24 mg / L of chlorine was required, and the total chlorine addition rate required for decomposing ammonia was 64 mg / L. The water quality of the treated water was ammonia nitrogen concentration <0.01 mg / L, pH = 7.4, and residual chlorine concentration was 0.7 mg / L. Table 1 summarizes the results.

Figure 2008012497
Figure 2008012497

実施例1の方法によりアンモニアを分解処理した場合、比較例1の従来の塩素酸化処理法と比較すると(45〔mg/L〕/85〔mg/L〕)×100=53%と、従来法の53%の塩素添加量にて処理が可能であった。また、塩素剤処理及び紫外線照射処理を用いた処理法の場合でも、比較例2のようにpH調整を行わずに次亜塩素酸ナトリウムとの反応を行った場合と比較すると、(45〔mg/L〕/64〔mg/L〕)×100=70%と、pH無調整時の70%の塩素添加量にて処理が可能であった。   When ammonia was decomposed by the method of Example 1, (45 [mg / L] / 85 [mg / L]) × 100 = 53% compared to the conventional chlorine oxidation method of Comparative Example 1, It was possible to treat with a chlorine addition amount of 53%. Further, even in the case of the treatment method using the chlorinating agent treatment and the ultraviolet irradiation treatment, compared with the case of performing the reaction with sodium hypochlorite without adjusting the pH as in Comparative Example 2, (45 mg / L] / 64 [mg / L]) × 100 = 70%, and treatment was possible with a chlorine addition amount of 70% when pH was not adjusted.

このように、実施例1のようにアンモニアを酸化処理する場合、塩素添加量を従来の塩素酸化処理法の1/2程度とすることが出来た。従来の方法に比べて塩素添加量を大幅に低減できることから、飲料水用途の場合、塩化物イオン濃度(基準値200mg/L以下)、蒸発残留物(基準値500mg/L以下)等の水質項目においても改善された。   Thus, when ammonia was oxidized as in Example 1, the amount of chlorine added could be reduced to about ½ of the conventional chlorine oxidation method. Since the amount of chlorine added can be greatly reduced compared to conventional methods, water quality items such as chloride ion concentration (reference value 200 mg / L or less), evaporation residue (reference value 500 mg / L or less), etc. for drinking water use. Also improved.

本発明の実施形態に係る水処理装置の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例の概略構成を示す図である。It is a figure which shows schematic structure of the other example of the water treatment apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1,3 水処理装置、10 原水槽、12 反応槽、14 pH調整装置、16 pH測定装置、18 塩素剤添加装置、20 紫外線照射装置、22 制御部、24 配管、26 揚水ポンプ、28 原水源、30 原水流入管、32 原水ポンプ、34 塩素剤注入ポンプ、36 塩素剤貯槽、38 pH調整剤注入ポンプ、40 pH調整剤貯槽、42 撹拌機、44 塩素処理水流出管、46 処理水流出管、48 返送用配管、50 返送用ポンプ。
1,3 Water treatment device, 10 Raw water tank, 12 Reaction tank, 14 pH adjustment device, 16 pH measurement device, 18 Chlorine agent addition device, 20 Ultraviolet irradiation device, 22 Control unit, 24 Piping, 26 Pumping pump, 28 Raw water source , 30 Raw water inflow pipe, 32 Raw water pump, 34 Chlorine agent injection pump, 36 Chlorine agent storage tank, 38 pH adjustment agent injection pump, 40 pH adjustment agent storage tank, 42 Stirrer, 44 Chlorine treatment water outflow pipe, 46 Treatment water outflow pipe 48 return pipes, 50 return pumps.

Claims (4)

原水に含まれるアンモニアの処理を行う水処理装置であって、
原水のpHを7.5〜8.6の範囲に調整するpH調整手段を備えた反応槽と、
前記範囲にpH調整されたpH調整原水に塩素剤を添加する塩素剤添加手段と、
前記塩素剤を添加した塩素処理水に紫外線を照射する紫外線照射手段と、
を有することを特徴とする水処理装置。
A water treatment apparatus for treating ammonia contained in raw water,
A reaction vessel equipped with pH adjusting means for adjusting the pH of the raw water to a range of 7.5 to 8.6;
A chlorinating agent adding means for adding a chlorinating agent to the pH-adjusted raw water whose pH has been adjusted to the above range;
Ultraviolet irradiation means for irradiating ultraviolet rays to chlorinated water to which the chlorinating agent is added;
A water treatment apparatus comprising:
請求項1に記載の水処理装置であって、
前記紫外線を照射した紫外線処理水の一部を前記反応槽へ返送する返送手段をさらに有することを特徴とする水処理装置。
The water treatment device according to claim 1,
The water treatment apparatus further comprising a returning means for returning a part of the ultraviolet treated water irradiated with the ultraviolet rays to the reaction tank.
原水に含まれるアンモニアの処理を行う水処理方法であって、
原水のpHを7.5〜8.6の範囲に調整するpH調整工程と、
前記範囲にpH調整されたpH調整原水に塩素剤を添加する塩素剤添加工程と、
前記塩素剤を添加した塩素処理水に紫外線を照射する紫外線照射工程と、
を含むことを特徴とする水処理方法。
A water treatment method for treating ammonia contained in raw water,
A pH adjustment step of adjusting the pH of the raw water to a range of 7.5 to 8.6,
A chlorinating agent adding step of adding a chlorinating agent to the pH-adjusted raw water adjusted to the above-mentioned range;
An ultraviolet irradiation step of irradiating the chlorinated water to which the chlorinating agent is added with ultraviolet rays;
A water treatment method comprising:
請求項3に記載の水処理方法であって、
前記紫外線を照射した紫外線処理水の一部を前記塩素剤添加工程へ返送する返送工程をさらに含むことを特徴とする水処理方法。
The water treatment method according to claim 3,
The water treatment method characterized by further including the return process which returns a part of ultraviolet-treated water irradiated with the said ultraviolet-ray to the said chlorine agent addition process.
JP2006189165A 2006-07-10 2006-07-10 Water treatment apparatus and water treatment method Pending JP2008012497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189165A JP2008012497A (en) 2006-07-10 2006-07-10 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189165A JP2008012497A (en) 2006-07-10 2006-07-10 Water treatment apparatus and water treatment method

Publications (1)

Publication Number Publication Date
JP2008012497A true JP2008012497A (en) 2008-01-24

Family

ID=39070058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189165A Pending JP2008012497A (en) 2006-07-10 2006-07-10 Water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP2008012497A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234240A (en) * 2009-03-31 2010-10-21 Miura Co Ltd Water treatment system
CN104860458A (en) * 2015-06-02 2015-08-26 哈尔滨工业大学 Method for removing ammonia and nitrogen in drinking water by adopting chlorination/ultraviolet coupling
JP2019093371A (en) * 2017-11-28 2019-06-20 アクアス株式会社 Method and apparatus for treating ammoniac nitrogen in water
CN112897635A (en) * 2021-01-27 2021-06-04 同济大学 Method for removing organic chloramine in drinking water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141295A (en) * 1990-10-01 1992-05-14 Fujitsu Ltd Waste water treatment method
JPH09271772A (en) * 1996-04-02 1997-10-21 Nippon Photo Sci:Kk Method of removing impurity from chlorine based disinfectant containing liquid by membrane device
JP2001170636A (en) * 1999-12-14 2001-06-26 Matsushita Electric Ind Co Ltd Water cleaning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141295A (en) * 1990-10-01 1992-05-14 Fujitsu Ltd Waste water treatment method
JPH09271772A (en) * 1996-04-02 1997-10-21 Nippon Photo Sci:Kk Method of removing impurity from chlorine based disinfectant containing liquid by membrane device
JP2001170636A (en) * 1999-12-14 2001-06-26 Matsushita Electric Ind Co Ltd Water cleaning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234240A (en) * 2009-03-31 2010-10-21 Miura Co Ltd Water treatment system
CN104860458A (en) * 2015-06-02 2015-08-26 哈尔滨工业大学 Method for removing ammonia and nitrogen in drinking water by adopting chlorination/ultraviolet coupling
JP2019093371A (en) * 2017-11-28 2019-06-20 アクアス株式会社 Method and apparatus for treating ammoniac nitrogen in water
CN112897635A (en) * 2021-01-27 2021-06-04 同济大学 Method for removing organic chloramine in drinking water

Similar Documents

Publication Publication Date Title
US8562828B2 (en) Wastewater treatment apparatus
TW200922884A (en) Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
JP2008012497A (en) Water treatment apparatus and water treatment method
Assadi et al. COMPARISON OF PHENOL PHOTODEGRADATION BY UV/H 2 O 2 AND PHOTO-FENTON PROCESSES.
US20210238071A1 (en) Process to treat waste brine
JP4978275B2 (en) Primary pure water production process water treatment method and apparatus
JP2007319816A (en) Water treatment apparatus and water treatment method
JP5678436B2 (en) Ultrapure water production method and apparatus
JPH1199394A (en) Method for removing organic matter in water
US11814304B2 (en) Ultraviolet treatment method and system
JP4277736B2 (en) Method for treating water containing organic arsenic compound
JP2008264668A (en) Method and apparatus for electrolytic treatment of wastewater
JP5913087B2 (en) Wastewater treatment system
JP2003200171A (en) Treatment method for organic waste liquid
JP2017074553A (en) Treatment method and treatment apparatus for ozone-containing waste water
JP2001029966A (en) Method and apparatus for treating organic wastewater containing endocrine disturbing substance or carcinogen
CN108658329A (en) A kind of compound reverse osmosis thick water treatment method based on ozone oxidation
JPH0952092A (en) Treatment of waste water
JP7351362B2 (en) Water treatment equipment and water treatment method
CN213294832U (en) Device for treating cyanide-containing wastewater by using chlorine dioxide
JP6749463B2 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
US20230365441A1 (en) System and method for performing electrochemically-cycled oxidation on landfill leachate
JP2008105012A (en) Treatment method and treatment apparatus of ammonia nitrogen-containing drainage
JP2005161138A (en) Water treatment method and water treatment apparatus
CN117700038A (en) Continuous flow reactor and water treatment process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

A977 Report on retrieval

Effective date: 20110124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110