JP2007319816A - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP2007319816A
JP2007319816A JP2006154686A JP2006154686A JP2007319816A JP 2007319816 A JP2007319816 A JP 2007319816A JP 2006154686 A JP2006154686 A JP 2006154686A JP 2006154686 A JP2006154686 A JP 2006154686A JP 2007319816 A JP2007319816 A JP 2007319816A
Authority
JP
Japan
Prior art keywords
water
treatment
raw water
amount
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006154686A
Other languages
Japanese (ja)
Inventor
Tomoaki Miyanoshita
友明 宮ノ下
Daisaku Yano
大作 矢野
Toshiaki Kunito
俊朗 國東
Yoshitsugu Fujisawa
美世 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2006154686A priority Critical patent/JP2007319816A/en
Publication of JP2007319816A publication Critical patent/JP2007319816A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment apparatus and a water treatment method which can reduce the amount of chlorine used in treatment of ammonia contained in raw water. <P>SOLUTION: In the water treatment apparatus and the water treatment method, a part of the raw water is separated to biologically oxidize ammonia in the raw water in the treatment of ammonia contained in the raw water, chlorine oxidation treatment and ultraviolet irradiation treatment are carried out after adding the biologically treated water to the residual raw water, and the usage of chlorine can be reduced by controlling a ratio of the amount of the separated water according to the concentration of ammonia nitrogen in the raw water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、浄水処理、環境浄化、工業用水処理、下水処理、排水処理等において、原水に含まれるアンモニアの処理を行う水処理装置及び水処理方法に関する。   The present invention relates to a water treatment apparatus and a water treatment method for treating ammonia contained in raw water in water purification, environmental purification, industrial water treatment, sewage treatment, wastewater treatment, and the like.

飲料用原水や排水中にアンモニアが存在する場合、その処理方法として、塩素剤による酸化処理(塩素酸化処理)、生物酸化処理、ストリッピング処理等がある。また、過酸化水素等の酸化剤を排水に添加し、紫外線を照射してアンモニアを硝酸へ酸化する方法も知られている(例えば、特許文献1参照)。   When ammonia is present in drinking raw water or waste water, the treatment method includes oxidation treatment with a chlorinating agent (chlorine oxidation treatment), biological oxidation treatment, stripping treatment, and the like. Also known is a method in which an oxidizing agent such as hydrogen peroxide is added to waste water and irradiated with ultraviolet rays to oxidize ammonia to nitric acid (see, for example, Patent Document 1).

それらの中でも、次亜塩素酸ナトリウム等を用いた下記式で表される塩素酸化処理が多く用いられているが、アンモニアを完全に塩素酸化処理して分解し窒素にするためには、アンモニアと塩素との濃度比が1:10程度となるような塩素が必要である。
2NH + 3NaOCl → N + 3HCl + 3NaOH
Among them, chlorination treatment represented by the following formula using sodium hypochlorite or the like is often used, but in order to completely decompose and decompose ammonia into nitrogen, ammonia and Chlorine having a concentration ratio with chlorine of about 1:10 is necessary.
2NH 3 + 3NaOCl → N 2 + 3HCl + 3NaOH

また、アンモニアと塩素を濃度比1:5程度で反応させると、クロラミン(モノクロラミン:NHCl及びジクロラミン:NHCl)が生成することが知られている。
NH + NaOCl → NHCl + NaOH
NH + 2NaOCl → NHCl + 2NaOH
Further, it is known that when ammonia and chlorine are reacted at a concentration ratio of about 1: 5, chloramine (monochloramine: NH 2 Cl and dichloramine: NHCl 2 ) is generated.
NH 3 + NaOCl → NH 2 Cl + NaOH
NH 3 + 2NaOCl → NHCl 2 + 2NaOH

これに対して、生物酸化処理では、原水中のアンモニアは生物によって硝酸ないし亜硝酸に酸化される。例えば非特許文献1には、地下水(深井戸)を原水とする飲料水の製造において、生物酸化処理後に除鉄除マンガンろ過(塩素+凝集剤)を行うことが記載されている。   In contrast, in biological oxidation treatment, ammonia in raw water is oxidized to nitric acid or nitrous acid by living organisms. For example, Non-Patent Document 1 describes that, in the production of drinking water using groundwater (deep well) as raw water, iron removal and manganese removal filtration (chlorine + flocculant) is performed after biological oxidation treatment.

特開平7−155773号公報JP-A-7-155773 水道施設設計指針2000Waterworks design guideline 2000

上記の通り、アンモニアを完全に塩素酸化処理するためには、濃度比でアンモニアの10倍程度と大量の塩素が必要であり、処理水中の残留塩素量が増加するという問題があった。一方、塩素酸化処理に使用する塩素の添加量を低減すると、クロラミンが生成し、アンモニアを完全に分解することができなかった。   As described above, in order to completely oxidize ammonia with chlorine, a large amount of chlorine, which is about 10 times that of ammonia in concentration ratio, is required, and the amount of residual chlorine in the treated water increases. On the other hand, when the amount of chlorine used for the chlorination treatment was reduced, chloramine was produced, and ammonia could not be completely decomposed.

また、アンモニアを含む原水を生物酸化処理する場合、原水中のアンモニアが高濃度(例えば、10mg/L以上)であると、生物処理水中に含まれる硝酸及び亜硝酸の量が増え、水質基準値を超える可能性が高い。   In addition, when biological oxidation treatment is performed on raw water containing ammonia, the amount of nitric acid and nitrous acid contained in the biological treatment water increases when the concentration of ammonia in the raw water is high (for example, 10 mg / L or more), and the water quality standard value Is likely to exceed.

本発明は、原水に含まれるアンモニアの処理において、使用する塩素量を低減することができる水処理装置及び水処理方法である。   The present invention is a water treatment apparatus and a water treatment method capable of reducing the amount of chlorine used in the treatment of ammonia contained in raw water.

本発明は、原水に含まれるアンモニアの処理を行う水処理装置であって、原水のアンモニア態窒素濃度を測定するアンモニア濃度測定手段と、原水を分岐し、前記原水中のアンモニア態窒素濃度に応じて前記分岐する水量比を調整する水量調整手段と、前記分岐された一方の原水を生物酸化処理する生物酸化処理手段と、前記生物酸化処理された生物処理水と、前記原水の残りとを混合する混合槽と、前記混合された混合水に塩素剤を添加する塩素剤添加手段と、前記塩素剤を添加した塩素処理水に紫外線を照射する紫外線照射手段と、を有する。   The present invention is a water treatment apparatus for treating ammonia contained in raw water, the ammonia concentration measuring means for measuring the ammonia nitrogen concentration of the raw water, branching the raw water, and depending on the ammonia nitrogen concentration in the raw water Water amount adjusting means for adjusting the branching water amount ratio, biological oxidation treatment means for biological oxidation treatment of the branched raw water, biological oxidation treated biological treatment water, and the remaining raw water A chlorinating agent adding means for adding a chlorinating agent to the mixed water, and an ultraviolet irradiation means for irradiating the chlorinated water with the chlorinating agent added thereto.

また、前記水処理装置において、前記水量調整手段により、前記原水中のアンモニア態窒素濃度が5.0mg/L以上10mg/L未満の場合は、前記生物酸化処理を行う水量が全処理水の50〜80容量%に、前記原水中のアンモニア態窒素濃度が10mg/L以上15mg/L以下の場合は、前記生物酸化処理を行う水量が全処理水の30〜50容量%に調整されることが好ましい。   In the water treatment apparatus, when the ammonia nitrogen concentration in the raw water is 5.0 mg / L or more and less than 10 mg / L by the water amount adjusting means, the amount of water for performing the biological oxidation treatment is 50 When the concentration of ammonia nitrogen in the raw water is 10 mg / L or more and 15 mg / L or less, the amount of water for performing the biological oxidation treatment may be adjusted to 30 to 50% by volume of the total treated water. preferable.

また、前記水処理装置において、前記紫外線を照射した紫外線処理水をろ過するろ過手段と、前記ろ過手段の上流側の処理水に凝集剤を添加する凝集剤添加手段と、をさらに有することが好ましい。   Further, the water treatment apparatus preferably further includes a filtering means for filtering the ultraviolet treated water irradiated with the ultraviolet light, and a flocculant adding means for adding a flocculant to the treated water upstream of the filtering means. .

また、本発明は、原水に含まれるアンモニアの処理を行う水処理方法であって、原水を分岐し、前記原水中のアンモニア態窒素濃度に応じて前記分岐する水量比を調整する水量調整工程と、前記分岐された一方の原水を生物酸化処理する生物酸化処理工程と、前記生物酸化処理された生物処理水と、前記原水の残りとを混合する混合工程と、前記混合された混合水に塩素剤を添加する塩素剤添加工程と、前記塩素剤を添加した塩素処理水に紫外線を照射する紫外線照射工程と、を含む。   Further, the present invention is a water treatment method for treating ammonia contained in raw water, wherein the raw water is branched, and a water amount adjusting step of adjusting the branching water amount ratio according to the ammonia nitrogen concentration in the raw water; A biological oxidation treatment step of subjecting one of the branched raw water to a biological oxidation treatment, a mixing step of mixing the biologically treated water subjected to the biological oxidation treatment, and the rest of the raw water, and chlorine in the mixed mixed water A chlorinating agent adding step of adding an agent, and an ultraviolet irradiation step of irradiating the chlorinated water to which the chlorinating agent is added with ultraviolet rays.

また、前記水処理方法において、前記水量調整工程において、前記原水中のアンモニア態窒素濃度が5.0mg/L以上10mg/L未満の場合は、前記生物酸化処理を行う水量を全処理水の50〜80容量%に、前記原水中のアンモニア態窒素濃度が10mg/L以上15mg/L以下の場合は、前記生物酸化処理を行う水量を全処理水の30〜50容量%に調整することが好ましい。   In the water treatment method, when the concentration of ammonia nitrogen in the raw water is 5.0 mg / L or more and less than 10 mg / L in the water amount adjusting step, the amount of water for performing the biological oxidation treatment is 50 When the concentration of ammonia nitrogen in the raw water is 10 mg / L or more and 15 mg / L or less, it is preferable to adjust the amount of water for performing the biological oxidation treatment to 30 to 50% by volume of the total treated water. .

また、前記水処理方法において、前記紫外線を照射した紫外線処理水をろ過するろ過工程と、前記ろ過工程の上流側の処理水に凝集剤を添加する凝集剤添加工程と、をさらに含むことが好ましい。   The water treatment method preferably further includes a filtration step of filtering the ultraviolet treated water irradiated with the ultraviolet rays, and a flocculant addition step of adding a flocculant to the treated water upstream of the filtration step. .

本発明では、原水に含まれるアンモニアの処理において、原水の一部を分岐して原水中のアンモニアを生物酸化処理し、その生物処理水と残りの原水とを合わせた後に塩素酸化処理及び紫外線照射処理を行い、原水中のアンモニア態窒素濃度に応じて上記分岐する水量比を調整することによって、使用する塩素量を低減することができる水処理装置及び水処理方法を提供することができる。   In the present invention, in the treatment of ammonia contained in the raw water, a part of the raw water is branched to biologically oxidize the ammonia in the raw water, and after the biologically treated water and the remaining raw water are combined, chlorination treatment and ultraviolet irradiation It is possible to provide a water treatment apparatus and a water treatment method capable of reducing the amount of chlorine to be used by performing the treatment and adjusting the ratio of the branched water amount according to the ammonia nitrogen concentration in the raw water.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明者らは、アンモニアを含む原水を生物酸化処理する場合、原水中のアンモニアが高濃度(例えば、10mg/L以上)であると、生物処理水中に含まれる硝酸及び亜硝酸の量が増え、全量を生物処理することができないことから、原水の一部をバイパスして生物処理を行い、その生物処理水と残りの原水とを混合した後に塩素酸化処理する方法(ブレンド処理)を検討した。しかし、このようなブレンド処理を行っても、原水中のアンモニア濃度によっては、塩素酸化処理する水量比が多くなり、多量の塩素の添加により、塩化物イオン(Cl)や蒸発残留物が増加して水道水質基準値を超える場合がある。 When the present inventors biologically treat raw water containing ammonia, the amount of nitric acid and nitrous acid contained in the biologically treated water increases if the ammonia in the raw water has a high concentration (for example, 10 mg / L or more). Since the whole amount cannot be biologically treated, we conducted a biological treatment by bypassing a part of the raw water, and examined the method of chlorination after mixing the biologically treated water and the remaining raw water (blend treatment) . However, even with such a blending process, depending on the ammonia concentration in the raw water, the ratio of the amount of water to be chlorinated increases, and the addition of a large amount of chlorine increases chloride ions (Cl ) and evaporation residues. In some cases, the water quality standards may be exceeded.

また、塩素酸化により原水中のアンモニアの処理を行う場合、使用する塩素の添加量を低減すると、クロラミン(モノクロラミン:NHCl及びジクロラミン:NHCl)が生成する。そこで、そのクロラミンを何らかの方法で分解すれば、使用する塩素の添加量を低減した上で、アンモニアを完全に分解することができる。 When ammonia in raw water is treated by chlorine oxidation, chloramines (monochloramine: NH 2 Cl and dichloramine: NHCl 2 ) are generated when the amount of chlorine used is reduced. Therefore, if the chloramine is decomposed by any method, ammonia can be completely decomposed while reducing the amount of chlorine to be used.

そこで、本発明者らはさらに検討したところ、原水の一部を分岐(バイパス)する際に、原水中のアンモニア態窒素濃度に応じて分岐する水量比を調整した上で、原水の一部について生物処理を行い、その生物処理水と残りの原水とを混合した後に塩素の添加量を低減して塩素酸化処理し、さらに紫外線照射処理を行うことで、使用する塩素の添加量を低減した上で、アンモニアをほぼ完全に分解することができることがわかった。   Therefore, the present inventors further studied, and when branching (bypassing) part of the raw water, after adjusting the ratio of the amount of water branched according to the ammonia nitrogen concentration in the raw water, After biological treatment, the biological treated water and the remaining raw water are mixed, and then the amount of chlorine added is reduced by reducing the amount of chlorine added and chlorinated. It was found that ammonia can be almost completely decomposed.

本発明の実施形態に係る水処理装置の一例を図1に示し、その構成について説明する。本実施形態に係る水処理装置1は、生物酸化処理手段である生物ろ過装置10と、アンモニア濃度測定手段であるアンモニア濃度測定器11と、生物ろ過洗浄水槽12と、混合槽14と、塩素剤添加手段である塩素剤添加装置16と、凝集剤添加手段である凝集剤添加装置18と、紫外線照射手段である紫外線照射装置20と、ろ過手段である凝集ろ過装置22と、凝集ろ過洗浄水槽24と、を備える。   An example of the water treatment apparatus according to the embodiment of the present invention is shown in FIG. A water treatment apparatus 1 according to this embodiment includes a biological filtration apparatus 10 that is a biological oxidation treatment means, an ammonia concentration measuring instrument 11 that is an ammonia concentration measurement means, a biological filtration washing water tank 12, a mixing tank 14, and a chlorine agent. A chlorinating agent adding device 16 as an adding unit, a coagulant adding device 18 as a coagulant adding unit, an ultraviolet irradiation device 20 as an ultraviolet irradiating unit, a coagulating filtration device 22 as a filtering unit, and a coagulation filtration washing water tank 24. And comprising.

水処理装置1において、生物ろ過装置10の上部には、原水流入管26の一端が接続され、他端はバルブ76、揚水ポンプ28を介して、深井戸等の原水源30等に接続されている。また、原水流入管26は分岐して、バルブ74を介して混合槽14の上部に接続されている。この原水流入管26及びバルブ74が水量調整手段として機能する。原水流入管26には、アンモニア濃度測定器11が接続されている。生物ろ過装置10の下部には、生物処理水流出管32の一端がバルブ66を介して接続され、他端は生物ろ過洗浄水槽12の上部に接続されている。生物ろ過洗浄水槽12の上部には、生物処理水流出管34の一端が接続され、他端は混合槽14の上部に接続されている。混合槽14の上部には、塩素剤注入ポンプ36を介して塩素剤貯槽38が、凝集剤注入ポンプ40を介して凝集剤貯槽42がそれぞれ接続されている。また、混合槽14には撹拌手段である撹拌機44が設置されている。混合槽14の下部は塩素処理水流出管46によりポンプ48を介して紫外線照射装置20の入口と接続され、紫外線照射装置20の出口は紫外線処理水流出管50により凝集ろ過装置22の上部に接続されている。凝集ろ過装置22の下部は、凝集ろ過水流出管52によりバルブ78を介して凝集ろ過洗浄水槽24の上部に接続され、凝集ろ過洗浄水槽24の上部は処理水槽(図示せず)等と接続されている。また、生物ろ過装置10の下部には、曝気空気管54の一端が接続され、他端はバルブ56を介してブロワ58と接続されている。生物ろ過洗浄水槽12の下部には、逆洗配管60の一端が逆洗ポンプ62、バルブ64を介して接続され、他端は生物ろ過装置10の下部に接続されている。凝集ろ過洗浄水槽24の下部には、逆洗配管68の一端が逆洗ポンプ70、バルブ72を介して接続され、他端は凝集ろ過装置22の下部に接続されている。紫外線処理水流出管50の途中には第2塩素剤貯槽80が第2塩素剤注入ポンプ82を介して接続されている。   In the water treatment apparatus 1, one end of the raw water inflow pipe 26 is connected to the upper part of the biological filtration apparatus 10, and the other end is connected to a raw water source 30 such as a deep well through a valve 76 and a pumping pump 28. Yes. Further, the raw water inflow pipe 26 is branched and connected to the upper part of the mixing tank 14 through a valve 74. The raw water inflow pipe 26 and the valve 74 function as water amount adjusting means. An ammonia concentration measuring device 11 is connected to the raw water inflow pipe 26. One end of the biologically treated water outflow pipe 32 is connected to the lower part of the biological filtration apparatus 10 via a valve 66, and the other end is connected to the upper part of the biological filtration washing water tank 12. One end of a biologically treated water outflow pipe 34 is connected to the upper part of the biological filtration washing water tank 12, and the other end is connected to the upper part of the mixing tank 14. A chlorine agent storage tank 38 is connected to the upper part of the mixing tank 14 via a chlorine agent injection pump 36, and a flocculant storage tank 42 is connected via a flocculant injection pump 40. The mixing tank 14 is provided with a stirrer 44 as a stirring means. The lower part of the mixing tank 14 is connected to the inlet of the ultraviolet irradiation device 20 through a pump 48 by a chlorinated water outflow pipe 46, and the outlet of the ultraviolet irradiation device 20 is connected to the upper part of the coagulation filtration device 22 through an ultraviolet treated water outflow pipe 50. Has been. The lower part of the coagulation filtration apparatus 22 is connected to the upper part of the coagulation filtration washing water tank 24 via the valve 78 by the coagulation filtration water outflow pipe 52, and the upper part of the coagulation filtration washing water tank 24 is connected to a treated water tank (not shown) or the like. ing. One end of the aeration air pipe 54 is connected to the lower part of the biological filtration device 10, and the other end is connected to the blower 58 via a valve 56. One end of a backwash pipe 60 is connected to the lower part of the biological filtration washing water tank 12 via a backwash pump 62 and a valve 64, and the other end is connected to the lower part of the biological filtration apparatus 10. One end of a backwash pipe 68 is connected to the lower part of the coagulation filtration washing water tank 24 via a backwash pump 70 and a valve 72, and the other end is connected to the lower part of the coagulation filtration device 22. A second chlorine agent storage tank 80 is connected to the ultraviolet treated water outflow pipe 50 via a second chlorine agent injection pump 82.

次に、本実施形態に係る水処理装置1の動作及び水処理方法について説明する。深井戸水等の原水(被処理水)は深井戸等の原水源30から揚水ポンプ28により汲み上げられる。原水のアンモニア態窒素濃度は、原水流入管26においてアンモニア濃度測定器11により測定される。原水は、原水流入管26において一部が分岐され、その分岐量が原水のアンモニア態窒素濃度に応じてバルブ74により調整された上で、所定量の分岐された一方の原水が生物ろ過装置10に送られ、残りの原水が混合槽14に送られる(水量調整工程)。ここで図示しない制御部(制御手段)によってバルブ74を操作して分岐する水量比を制御してもよい。そして、生物ろ過装置10に送液された原水は曝気されながら下向流で生物酸化処理され、原水中のアンモニアが亜硝酸ないし硝酸に酸化される(生物酸化処理工程)。そして、その生物処理水は、生物ろ過洗浄水槽12を経由して混合槽14に送液され、残りの原水と混合される(混合工程)。生物処理水は一部逆洗水として生物ろ過装置10の逆洗に使用されてもよい。   Next, the operation of the water treatment apparatus 1 and the water treatment method according to this embodiment will be described. Raw water (treated water) such as deep well water is pumped by a pumping pump 28 from a raw water source 30 such as a deep well. The ammonia nitrogen concentration of the raw water is measured by the ammonia concentration measuring device 11 in the raw water inflow pipe 26. The raw water is partially branched at the raw water inflow pipe 26, and the amount of branching is adjusted by the valve 74 in accordance with the ammonia nitrogen concentration of the raw water, and then a predetermined amount of the branched raw water is supplied to the biological filtration device 10. The remaining raw water is sent to the mixing tank 14 (water amount adjusting step). Here, the branching water amount ratio may be controlled by operating the valve 74 by a control unit (control means) (not shown). Then, the raw water sent to the biological filtration device 10 is subjected to biological oxidation treatment in a downward flow while being aerated, and ammonia in the raw water is oxidized to nitrous acid or nitric acid (biological oxidation treatment step). And the biologically treated water is sent to the mixing tank 14 via the biological filtration washing water tank 12 and mixed with the remaining raw water (mixing step). The biologically treated water may be used for backwashing the biological filtration device 10 as partly backwashed water.

本実施形態では、原水中のアンモニア態窒素濃度に応じて上記分岐する水量比を制御する。生物酸化処理によってアンモニアが亜硝酸ないし硝酸に酸化されるが、健康影響等の観点から飲料水として利用する場合、これらの物質は窒素濃度として水道水質基準値である10mg/L以下とすることが望まれる。当然ながら、窒素濃度が低ければ低いほど健康へのリスクを低減することができるが、経済性との兼ね合いから、例えば、水道水質基準値の80%未満、好ましくは50%未満を目標として浄水処理が実施される。本実施形態においては、原水中のアンモニア態窒素濃度に応じて、全処理水量に対する生物処理量の割合を最終的な処理水中の亜硝酸ないし硝酸態窒素濃度が8.0mg/L未満、好ましくは5.0mg/L未満となるように変化させることが望ましい。原水中のアンモニア態窒素濃度の変動により生物処理の処理水量が変化するが、アンモニア態窒素濃度が増加したときには生物処理の水量を減らし、アンモニア態窒素濃度が減少したときに水量を増加させるため単位容積単位時間当たりのアンモニア態窒素濃度は大きく変化することはない。従って、生物処理水の水質は比較的安定したものとなる。   In the present embodiment, the branching water amount ratio is controlled according to the ammonia nitrogen concentration in the raw water. Ammonia is oxidized to nitrous acid or nitric acid by biological oxidation treatment, but when used as drinking water from the viewpoint of health effects etc., these substances may have a nitrogen concentration of 10 mg / L or less, which is a tap water quality standard value. desired. Naturally, the lower the nitrogen concentration, the lower the risk to health. However, from the balance with economic efficiency, for example, water purification treatment with a target of less than 80%, preferably less than 50% of tap water quality standards. Is implemented. In this embodiment, depending on the ammonia nitrogen concentration in the raw water, the ratio of the biological treatment amount to the total treated water amount is such that the concentration of nitrous acid or nitrate nitrogen in the final treated water is less than 8.0 mg / L, preferably It is desirable to change it to be less than 5.0 mg / L. The amount of treated water for biological treatment changes due to fluctuations in the concentration of ammonia nitrogen in the raw water, but the unit for reducing the amount of biological treatment water when the ammonia nitrogen concentration increases and the amount of water increasing when the ammonia nitrogen concentration decreases. The ammonia nitrogen concentration per unit volume time does not change greatly. Therefore, the quality of the biologically treated water is relatively stable.

具体的には、原水中のアンモニア態窒素濃度が10mg/L未満、好ましくは5.0mg/L以上10mg/L未満の場合は、生物処理を行う水量を全処理水の50〜80容量%の範囲、好ましくは50〜60容量%の範囲とし、原水中のアンモニア態窒素濃度が10mg/L以上、好ましくは10mg/L以上15mg/L以下の場合は、生物処理を行う水量を全処理水の30〜50容量%の範囲、好ましくは30〜40容量%の範囲とすることが望ましい。原水中のアンモニア態窒素濃度が10mg/L以上のときに、上記範囲以外で処理を行うと、生物処理水中に含まれる硝酸及び亜硝酸の量が増え、水質基準値を超える可能性が高い。   Specifically, when the ammonia nitrogen concentration in the raw water is less than 10 mg / L, preferably 5.0 mg / L or more and less than 10 mg / L, the amount of water for biological treatment is 50 to 80% by volume of the total treated water. When the ammonia nitrogen concentration in the raw water is 10 mg / L or more, preferably 10 mg / L or more and 15 mg / L or less, the amount of water to be biologically treated is the total treated water. It is desirable that the range be 30 to 50% by volume, preferably 30 to 40% by volume. If the treatment is performed outside the above range when the ammonia nitrogen concentration in the raw water is 10 mg / L or more, the amount of nitric acid and nitrous acid contained in the biologically treated water increases, and the possibility of exceeding the water quality standard value is high.

アンモニア濃度測定器11としては、原水中のアンモニア態窒素濃度を測定することができるものであればよく特に制限はないが、例えば、導電率計、イオン電極、ガス吸収吸光光度計等が挙げられる。   The ammonia concentration measuring device 11 is not particularly limited as long as it can measure the ammonia nitrogen concentration in the raw water, and examples thereof include a conductivity meter, an ion electrode, and a gas absorption absorption photometer. .

生物ろ過装置10での生物酸化処理において、亜硝酸菌により溶存酸素を利用してアンモニアが亜硝酸に酸化され、さらに亜硝酸の一部あるいは全部が硝酸菌によって硝酸に酸化される。なお、アンモニアを亜硝酸に酸化する菌としては、ニトロソモナス(Nitorosomonas sp.)、ニトロソコッカス(Nitrosococus sp.)等の亜硝酸菌が挙げられる。また、亜硝酸を硝酸に酸化する菌としては、ニトロバクター(Nitrobacter sp.)等の硝化菌が挙げられる。   In the biological oxidation treatment in the biological filtration apparatus 10, ammonia is oxidized to nitrous acid using dissolved oxygen by the nitrite bacteria, and a part or all of the nitrous acid is oxidized to nitric acid by the nitrite bacteria. Examples of bacteria that oxidize ammonia to nitrous acid include nitrite bacteria such as Nitrosoconas sp. And Nitrosococus sp. Examples of bacteria that oxidize nitrous acid to nitric acid include nitrifying bacteria such as Nitrobacter sp.

次に、塩素剤貯槽38から塩素剤注入ポンプ36により塩素剤が混合槽14内で混合された混合水に注入され、撹拌機44により撹拌されながら、原水の塩素酸化処理が行われる(塩素剤添加工程)。塩素酸化処理の反応時間としては3分〜10分程度とすればよい。また、混合槽14では、塩素剤添加とともに、凝集剤貯槽42から凝集剤注入ポンプ40により凝集剤が添加される(凝集剤添加工程)。塩素剤の塩素の働きにより、アンモニアの分解の他に滅菌と金属の酸化がなされ、凝集剤の働きにより不溶化した金属や粘土成分、生物の残骸を含む有機物が凝集される。なお、目的とする処理水の水質によっては(例えば、飲料水用途以外の場合)凝集剤添加工程及び後述する凝集ろ過工程を省略してもよい。また、凝集剤の添加は紫外線照射工程の後でもよい。   Next, the chlorine agent is injected from the chlorine agent storage tank 38 into the mixed water mixed in the mixing tank 14 by the chlorine agent injection pump 36, and the raw water is subjected to chlorine oxidation treatment while being stirred by the stirrer 44 (chlorine agent). Addition step). The reaction time for the chlorine oxidation treatment may be about 3 to 10 minutes. In addition, in the mixing tank 14, the flocculant is added from the flocculant storage tank 42 by the flocculant injection pump 40 together with the addition of the chlorine agent (flocculating agent addition step). In addition to the decomposition of ammonia, the chlorine of the chlorinating agent sterilizes and oxidizes the metal, and the agglomerating agent agglomerates the insoluble metal, clay components, and organic matter including biological debris. In addition, depending on the quality of the target treated water (for example, other than for drinking water use), the flocculant addition step and the aggregation filtration step described later may be omitted. The flocculant may be added after the ultraviolet irradiation step.

塩素剤としては、塩素ガス、次亜塩素酸ナトリウム、液化塩素、クロラミン、二酸化塩素等を用いることができるが、次亜塩素酸ナトリウム、液化塩素を用いることが好ましく、次亜塩素酸ナトリウムを用いることがより好ましい。次亜塩素酸ナトリウム等を使用した塩素剤添加工程における塩素注入率は、紫外線照射装置20の出口において残留塩素濃度が0.1mg/L〜1.0mg/Lとなるように調整を行うことが好ましい。   As the chlorinating agent, chlorine gas, sodium hypochlorite, liquefied chlorine, chloramine, chlorine dioxide and the like can be used, but sodium hypochlorite and liquefied chlorine are preferably used, and sodium hypochlorite is used. It is more preferable. The chlorine injection rate in the chlorine agent addition process using sodium hypochlorite or the like may be adjusted so that the residual chlorine concentration is 0.1 mg / L to 1.0 mg / L at the exit of the ultraviolet irradiation device 20. preferable.

凝集剤としては、アルミニウム塩、鉄塩等の無機系凝集剤等を使用することができる。具体的には、ポリ塩化アルミニウム凝集剤(PAC)、鉄と無機アニオンポリマである重合ケイ酸(シリカ)とを組み合わせた鉄−シリカ無機高分子凝集剤(PSI)等が挙げられる。凝集剤の添加量は、例えばPACの場合、5mg/L〜30mg/Lの範囲である。   As the flocculant, inorganic flocculants such as aluminum salts and iron salts can be used. Specific examples include a polyaluminum chloride flocculant (PAC) and an iron-silica inorganic polymer flocculant (PSI) in which iron and polymerized silicic acid (silica) which is an inorganic anionic polymer are combined. The amount of the flocculant added is, for example, in the range of 5 mg / L to 30 mg / L in the case of PAC.

さらに、凝集剤を添加する際、撹拌機44により急速に混合水と凝集剤とを混合することにより、より確実な凝集がなされる。急速撹拌速度とは例えば100〜500(1/sec)の範囲である。   Further, when the flocculant is added, the mixed water and the flocculant are rapidly mixed by the stirrer 44, whereby more reliable aggregation is achieved. The rapid stirring speed is, for example, in the range of 100 to 500 (1 / sec).

次に、混合槽14において塩素酸化処理された塩素処理水は、ポンプ48により紫外線照射装置20へと送液され、紫外線照射処理が行われる(紫外線照射工程)。紫外線照射工程では、塩素処理水に紫外線が照射され、塩素酸化処理により生成したクロラミン(モノクロラミン:NHCl及びジクロラミン:NHCl)が分解される。 Next, the chlorinated water subjected to the chlorination treatment in the mixing tank 14 is sent to the ultraviolet irradiation device 20 by the pump 48, and an ultraviolet irradiation process is performed (ultraviolet irradiation process). In the ultraviolet irradiation step, the chlorinated water is irradiated with ultraviolet rays, and chloramines (monochloramine: NH 2 Cl and dichloramine: NHCl 2 ) generated by the chlorination treatment are decomposed.

照射する紫外線の波長としては、クロラミンが分解し易い波長を含むものであれば特に制限はない。モノクロラミンは主に250nm付近の紫外線、ジクロラミンは220nmもしくは290nm付近の紫外線を照射することにより分解されることが知られている(例えば、大瀧ら、「土木学会第45回年次学術講演会要旨集」、平成2年9月、p.900−901参照)。そこで、モノクロラミンとジクロラミンの生成割合に応じて、250nm付近の紫外線、及び220nmもしくは290nm付近の紫外線のうち1つあるいは両方を照射すればよい。   The wavelength of the ultraviolet rays to be irradiated is not particularly limited as long as it includes a wavelength at which chloramine is easily decomposed. It is known that monochloramine is decomposed mainly by irradiating ultraviolet rays around 250 nm and dichloramine is irradiated by ultraviolet rays around 220 nm or 290 nm (for example, Otsuki et al. Collection ", September 1990, p.900-901). Therefore, one or both of ultraviolet light near 250 nm and ultraviolet light near 220 nm or 290 nm may be irradiated depending on the production ratio of monochloramine and dichloramine.

紫外線ランプとしては、例えば、水銀ランプ、アマルガムランプ、キセノンランプ等を使用することができる。水銀ランプは、ランプ内への水銀蒸気の封入圧により、低圧、中圧、高圧に分類され、それぞれ紫外線の波長分布が異なるため、目的の波長に応じて選択すればよい。   As the ultraviolet lamp, for example, a mercury lamp, an amalgam lamp, a xenon lamp or the like can be used. Mercury lamps are classified into low pressure, medium pressure, and high pressure depending on the mercury vapor sealing pressure in the lamp, and the wavelength distribution of ultraviolet rays is different, and therefore the mercury lamp may be selected according to the target wavelength.

紫外線照射装置20により照射される紫外線の照射量は、クロラミンを分解することができればよく、特に制限はないが、10mJ/cm〜200mJ/cmの範囲であることが好ましく、50mJ/cm〜100mJ/cmの範囲であることがより好ましい。 Dose of ultraviolet rays irradiated by the ultraviolet irradiation device 20, as long as it can decompose chloramine is not particularly limited, is preferably in the range of 10mJ / cm 2 ~200mJ / cm 2 , 50mJ / cm 2 More preferably, it is in the range of ˜100 mJ / cm 2 .

紫外線照射処理が行われた紫外線処理水は、紫外線処理水流出管50を通って、凝集ろ過装置22に送液される。上記の通り凝集剤の働きにより不溶化した金属や粘土成分、生物の残骸を含む有機物が凝集されるが、その凝集物が凝集ろ過装置22においてマンガン砂等によって固液分離されることにより清澄な処理水(凝集ろ過水)となる(ろ過工程)。処理水は凝集ろ過洗浄水槽24を経由して処理水槽等に放出される。処理水は、飲料水に使用される場合などは、この後に粒状活性炭ろ過処理等が行われるのが一般的である。また、処理水は一部逆洗水として凝集ろ過装置22の逆洗に使用されてもよい。   The ultraviolet-treated water that has been subjected to the ultraviolet irradiation treatment passes through the ultraviolet-treated water outflow pipe 50 and is sent to the aggregation filtration device 22. As described above, the insoluble metal, clay component, and organic matter including biological debris are agglomerated by the action of the aggregating agent. It becomes water (aggregated filtered water) (filtration step). The treated water is discharged to the treated water tank or the like via the aggregation filtration washing water tank 24. When the treated water is used for drinking water, a granular activated carbon filtration treatment or the like is generally performed thereafter. Further, the treated water may be used for backwashing the coagulation filtration device 22 as partly backwash water.

なお、紫外線照射装置20から凝集ろ過装置22への送液前に、紫外線処理水流出管50に接続された第2塩素剤注入ポンプ82により第2塩素剤貯槽80から塩素剤が添加されてもよい。これにより、処理水に未分解のアンモニアが残留している場合に、確実にアンモニアを分解することができる。なお、第2塩素剤注入ポンプ82及び第2塩素剤貯槽80は、塩素剤注入ポンプ36及び塩素剤貯38と兼用しても良い。また、第2塩素剤注入ポンプ82による塩素剤の注入は、紫外線処理水流出管50の位置に限らず、凝集ろ過水流出管52の位置で行われてもよい。   In addition, even if a chlorine agent is added from the second chlorine agent storage tank 80 by the second chlorine agent injection pump 82 connected to the ultraviolet treated water outflow pipe 50 before feeding from the ultraviolet irradiation device 20 to the aggregation filtration device 22. Good. Thereby, when undecomposed ammonia remains in treated water, ammonia can be decomposed reliably. The second chlorine agent injection pump 82 and the second chlorine agent storage tank 80 may also be used as the chlorine agent injection pump 36 and the chlorine agent storage 38. Further, the injection of the chlorine agent by the second chlorine agent injection pump 82 is not limited to the position of the ultraviolet treated water outflow pipe 50 but may be performed at the position of the coagulated filtrate water outflow pipe 52.

以上のように、本実施形態に係る水処理装置及び水処理方法により、使用する塩素の添加量を低減した上で、アンモニアをほぼ完全に分解(処理水中のアンモニア態窒素濃度として、例えば0.05mg/L以下)することができる。   As described above, with the water treatment apparatus and the water treatment method according to the present embodiment, the amount of chlorine to be used is reduced and ammonia is almost completely decomposed (the concentration of ammonia nitrogen in the treated water is, for example, 0. 05 mg / L or less).

本発明の他の実施形態に係る水処理装置の一例を図2に示し、その構成について説明する。本実施形態に係る水処理装置3は、上記水処理装置1の構成に加えて、原水のpHを調整するpH調整手段であるpH調整装置84(pH調整剤注入ポンプ88、pH調整剤貯槽90)及びpH測定装置86とを備える。   An example of the water treatment apparatus according to another embodiment of the present invention is shown in FIG. In addition to the configuration of the water treatment device 1, the water treatment device 3 according to this embodiment is a pH adjustment device 84 (pH adjustment agent injection pump 88, pH adjustment agent storage tank 90) that is a pH adjustment means for adjusting the pH of raw water. ) And a pH measuring device 86.

水処理装置3において、混合槽14の上部には、pH添加装置84として、pH調整剤注入ポンプ88を介してpH調整剤貯槽90がそれぞれ接続されている。また、混合槽14にはpH測定装置86が設置されている。すなわち、混合槽14は、原水のpHを7.5〜8.6の範囲に調整するpH調整手段を備えている。   In the water treatment apparatus 3, a pH adjusting agent storage tank 90 is connected to the upper part of the mixing tank 14 as a pH adding apparatus 84 via a pH adjusting agent injection pump 88. The mixing tank 14 is provided with a pH measuring device 86. That is, the mixing tank 14 includes pH adjusting means for adjusting the pH of the raw water to a range of 7.5 to 8.6.

水処理装置3において、塩素剤添加工程の前に、pH調整剤貯槽90からpH調整剤注入ポンプ88によりpH調整剤が混合槽14内の混合水に注入され、撹拌機44により撹拌されながら、原水のpHが7.5〜8.6の範囲に調整される(pH調整工程)。このとき、pH測定装置86により混合水のpHが測定され、その測定値に基づいて制御部(図示せず)等によりpH調整剤注入ポンプ88による注入量が制御されることが好ましい。本実施形態では、pH調整工程の後、上記のように塩素剤添加工程と、必要に応じて凝集剤添加工程と、紫外線照射工程と、必要に応じて凝集ろ過工程とが行われる。   In the water treatment device 3, before the chlorinating agent adding step, the pH adjusting agent is injected from the pH adjusting agent storage tank 90 into the mixed water in the mixing tank 14 by the pH adjusting agent injection pump 88 and stirred by the stirrer 44. The pH of the raw water is adjusted to a range of 7.5 to 8.6 (pH adjusting step). At this time, the pH of the mixed water is preferably measured by the pH measuring device 86, and the injection amount by the pH adjusting agent injection pump 88 is preferably controlled by a control unit (not shown) or the like based on the measured value. In the present embodiment, after the pH adjustment step, as described above, the chlorine agent addition step, the flocculant addition step as necessary, the ultraviolet irradiation step, and the aggregation filtration step as necessary are performed.

アンモニアに塩素を反応させてクロラミンが生成する場合、反応時のpHにより、モノクロラミンとジクロラミンの生成割合が異なり、pH7.0前後では多少ジクロラミンが生成され、pH7.5前後ではわずかにジクロラミンが生成され、pH8.0以上ではほとんど全てモノクロラミンが生成される。そこで、アンモニアを含む混合水のpHを7.5〜8.6の範囲に調整することにより、塩素の添加量を低減して塩素酸化反応を行い、生成したモノクロラミンをモノクロラミンが分解し易い波長の紫外線で分解することにより、使用する塩素の添加量をさらに低減した上で、アンモニアをほぼ完全に分解することができる。   When chloramine is produced by reacting chlorine with ammonia, the production ratio of monochloramine and dichloramine varies depending on the pH at the time of reaction. Dichloramine is slightly produced at around pH 7.0, and slightly dichloramine is produced at around pH 7.5. At pH 8.0 or higher, almost all monochloramine is produced. Therefore, by adjusting the pH of the mixed water containing ammonia in the range of 7.5 to 8.6, the amount of added chlorine is reduced to perform the chlorine oxidation reaction, and the monochloramine that is easily decomposed is easily decomposed. By decomposing with ultraviolet rays having a wavelength, ammonia can be almost completely decomposed while further reducing the amount of chlorine used.

本実施形態に係る方法では、混合水のpHを7.5〜8.6の範囲に調整し、混合水のアンモニア態窒素濃度に応じて所定量の塩素剤を添加することにより、混合水中のアンモニウムイオンを塩素によりモノクロラミンとする。pHが8.0未満であると、ジクロラミンがわずかに生成してしまう。また、pHが8.6を超えると飲料水としての水質基準値を超えてしまうという問題がある。そこで、上記pHは8.0〜8.5の範囲が好ましい。   In the method according to this embodiment, the pH of the mixed water is adjusted to a range of 7.5 to 8.6, and a predetermined amount of chlorinating agent is added according to the ammonia nitrogen concentration of the mixed water. The ammonium ion is converted to monochloramine by chlorine. If the pH is less than 8.0, dichloramine is slightly produced. Moreover, when pH exceeds 8.6, there exists a problem that it will exceed the water quality reference value as drinking water. Therefore, the pH is preferably in the range of 8.0 to 8.5.

pH調整剤としては、混合水が酸性の場合は、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム、水酸化カルシウム等の公知のアルカリが挙げられるが、水酸化ナトリウムが好ましい。また、アルカリは速やかに均一化させるために水溶液の状態で添加することが好ましい。また混合水がアルカリ性の場合は、硫酸、塩酸、りん酸等の公知の酸が挙げられるが、硫酸が好ましい。また、急激な中和反応を避けるため、アルカリあるいは酸は5%〜30%、好ましくは10%〜20%の水溶液として添加することが好ましい。混合水のpHが7.5〜8.6の範囲である場合には、ここではpH調整剤を添加しなくてもよい。原水が深井戸水の場合、pHは通常6.5〜7.0程度であるので、pH調整剤として水酸化ナトリウム水溶液等のアルカリ水溶液が用いられる。   Examples of the pH adjuster include known alkalis such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, potassium carbonate, and calcium hydroxide when the mixed water is acidic, but sodium hydroxide is preferable. . The alkali is preferably added in the form of an aqueous solution in order to make it uniform quickly. When the mixed water is alkaline, known acids such as sulfuric acid, hydrochloric acid, phosphoric acid and the like can be mentioned, but sulfuric acid is preferred. Moreover, in order to avoid a rapid neutralization reaction, it is preferable to add an alkali or an acid as an aqueous solution of 5% to 30%, preferably 10% to 20%. In the case where the pH of the mixed water is in the range of 7.5 to 8.6, it is not necessary to add a pH adjuster here. When the raw water is deep well water, the pH is usually about 6.5 to 7.0, and an alkaline aqueous solution such as an aqueous sodium hydroxide solution is used as a pH adjuster.

また、塩素剤添加工程においても、pH測定装置86により塩素処理水のpHが測定され、その測定値に基づいて必要に応じて制御部等によりpH調整剤注入ポンプ88によるpH調整剤の注入が行われ、混合水のpHが7.5〜8.6の範囲、好ましくは8.0〜8.5の範囲になるように調整されてもよい。   Also in the chlorinating agent addition step, the pH of the chlorinated water is measured by the pH measuring device 86, and the pH adjusting agent is injected by the pH adjusting agent injection pump 88 by the control unit or the like as necessary based on the measured value. The pH of the mixed water may be adjusted to be in the range of 7.5 to 8.6, preferably in the range of 8.0 to 8.5.

紫外線照射工程において照射する紫外線の波長としては、モノクロラミンが分解し易い250nm付近の波長を含むものが好ましい。このときの紫外線ランプとしては、250nm付近が主たる発光波長である低圧水銀ランプが好ましい。低圧水銀ランプは、ランプの消費電力が少なく、ランプの寿命が長いなどの特徴を有する。   As the wavelength of the ultraviolet rays irradiated in the ultraviolet irradiation step, those having a wavelength around 250 nm at which monochloramine is easily decomposed are preferable. As the ultraviolet lamp at this time, a low-pressure mercury lamp whose main emission wavelength is around 250 nm is preferable. The low-pressure mercury lamp has features such as low lamp power consumption and long lamp life.

以上のように、本実施形態に係る水処理装置及び水処理方法により、使用する塩素の添加量をさらに低減した上で、アンモニアをほぼ完全に分解することができる。   As described above, with the water treatment apparatus and the water treatment method according to the present embodiment, ammonia can be decomposed almost completely while further reducing the amount of chlorine to be used.

本実施形態に係る水処理装置及び水処理方法は、上水処理施設、下水処理施設、産業排水処理施設、産業用水処理施設等の各種処理工程において、上工水道水、下水、下水2次処理水、河川水、湖沼水、凝集沈殿上澄み水、各種工程中間水、各種回収水、各種廃水等の処理に使用することができる。   The water treatment apparatus and the water treatment method according to the present embodiment are used for water treatment facilities, sewage treatment facilities, industrial wastewater treatment facilities, industrial water treatment facilities, etc. It can be used for the treatment of water, river water, lake water, coagulation sediment supernatant water, various process intermediate water, various recovered water, various waste water, and the like.

以下、実施例及び比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

<実施例1>
深井戸を原水とする用水処理施設にて、図1に示すパイロットプラントによる通水実験を行った。本実施例における運転条件を表1に示す。また、本実施例の処理フローにおける各工程での処理水質を表2に示す。全処理水量に占める生物処理水の比率は、50容量%とした。実施例1における塩素添加量は、混合槽14では結合塩素であるモノクロラミン濃度で4.0mg/Lとなるように25mg/Lとし、凝集ろ過装置22の前では凝集ろ過水中の遊離塩素濃度0.6mg/Lとなるように3.0mg/Lとし、合わせて28mg/Lとした。なお、アンモニア態窒素濃度はHAイオン電極50250(HACH社製)を用いて、残留塩素濃度及び塩化物イオン濃度はポーラログラフ法により無試薬式遊離塩素計CLF−111(東亜ディーケーケー社製)を用いて、蒸発残留物は蒸発乾燥法にてそれぞれ測定した。
<Example 1>
A water flow experiment using a pilot plant shown in FIG. 1 was conducted at a water treatment facility using a deep well as raw water. The operating conditions in this example are shown in Table 1. In addition, Table 2 shows the quality of treated water at each step in the treatment flow of this example. The ratio of biological treated water to the total treated water amount was 50% by volume. The amount of chlorine added in Example 1 is 25 mg / L so that the monochloramine concentration, which is bound chlorine, is 4.0 mg / L in the mixing tank 14, and the free chlorine concentration in the aggregated filtered water is 0 in front of the aggregation filtration device 22. It was set to 3.0 mg / L so as to be 6 mg / L, and combined to 28 mg / L. The ammonia nitrogen concentration was measured using a HA ion electrode 50250 (manufactured by HACH), and the residual chlorine concentration and chloride ion concentration were measured using a polarographic method using a reagentless free chlorine meter CLF-111 (manufactured by Toa DKK Corporation). The evaporation residue was measured by the evaporation drying method.

<実施例2>
深井戸を原水とする用水処理施設にて、図2に示すパイロットプラントによる通水実験を行った。20%水酸化ナトリウム水溶液を添加することにより生物処理水と原水とを混合した混合水のpHを8.0±0.1に調整した以外は、運転条件は実施例1と同じとした(表1)。本実施例の処理フローにおける各工程での処理水質を表3に示す。実施例2における塩素添加量は、混合槽14では結合塩素であるモノクロラミン濃度で4.0mg/Lとなるように22mg/Lとし、凝集ろ過装置22の前では凝集ろ過水中の遊離塩素濃度0.6mg/Lとなるように2.0mg/Lとした。混合水のpHを8.0に調整することにより、塩素添加量を合わせて24mg/Lとすることができた。
<Example 2>
A water flow experiment using a pilot plant shown in FIG. 2 was conducted at a water treatment facility using deep wells as raw water. The operating conditions were the same as in Example 1 except that the pH of the mixed water obtained by mixing the biologically treated water and raw water was adjusted to 8.0 ± 0.1 by adding a 20% aqueous sodium hydroxide solution (Table 1). 1). Table 3 shows the quality of treated water in each step in the treatment flow of this example. The amount of chlorine added in Example 2 is 22 mg / L so that the monochloramine concentration, which is bound chlorine, is 4.0 mg / L in the mixing tank 14, and the free chlorine concentration in the coagulated filtration water is 0 before the coagulation filtration device 22. 2.0 mg / L so as to be 6 mg / L. By adjusting the pH of the mixed water to 8.0, the total amount of chlorine added could be 24 mg / L.

<比較例1>
深井戸を原水とする用水処理施設にて、図3に示す従来のパイロットプラントによる通水実験を行った。図3に示す従来の装置では、原水は、原水源30から揚水ポンプ28により汲み上げられ、塩素剤及び凝集剤がライン添加された後、ラインミキサ92を介して凝集ろ過装置22に送液されて凝集物がマンガン砂によって固液分離されることにより凝集ろ過水となる。凝集ろ過水は凝集ろ過洗浄水槽24を経由して処理水槽等に放出される。また、処理水は一部逆洗水として凝集ろ過装置22の逆洗に使用される。本比較例における運転条件を表1に示す。また、本比較例の処理フローにおける各工程での処理水質を表4に示す。比較例1における塩素添加量は、凝集ろ過水中の遊離塩素濃度が0.6mg/Lとなるように87mg/Lとした。
<Comparative Example 1>
A water flow experiment using a conventional pilot plant shown in FIG. 3 was conducted at a water treatment facility using deep wells as raw water. In the conventional apparatus shown in FIG. 3, raw water is pumped up from a raw water source 30 by a pumping pump 28, and after a chlorine agent and a flocculant are added to the line, the raw water is sent to a coagulation filtration device 22 through a line mixer 92. Aggregate is separated into solid and liquid by manganese sand and becomes aggregated filtrate. The agglomerated filtered water is discharged to the treated water tank or the like via the agglomerated filtration washing water tank 24. The treated water is partially used as backwash water for backwashing the coagulation filtration device 22. The operating conditions in this comparative example are shown in Table 1. In addition, Table 4 shows the quality of treated water in each step in the treatment flow of this comparative example. The amount of chlorine added in Comparative Example 1 was 87 mg / L so that the free chlorine concentration in the coagulated filtrate was 0.6 mg / L.

<比較例2>
塩素添加量を80mg/Lとした以外は比較例1と同様にして処理を行った。比較例2の処理フローにおける各工程での処理水質を表5に示す。
<Comparative example 2>
The treatment was performed in the same manner as in Comparative Example 1 except that the amount of chlorine added was 80 mg / L. Table 5 shows the quality of treated water in each step in the treatment flow of Comparative Example 2.

実施例1,2及び比較例1,2では、凝集ろ過までしか処理を行っていないが、飲料水に使用する場合などは、この後に粒状活性炭ろ過処理等を行うのが一般的である。その場合、水道水質基準値の適用を受けるため、例えば蒸発残留物は500mg/L以下とする必要がある。つまり、比較例1,2のような従来の処理フローでは、飲料水利用が困難であるが、実施例1,2の方法では飲料水利用が可能であることが分かる。なお、表2〜表5において、原水よりも凝集ろ過水の蒸発残留物濃度が増加しているのは、アンモニアや鉄、マンガン等の酸化のために添加した次亜塩素酸ナトリウムに由来するものである。   In Examples 1 and 2 and Comparative Examples 1 and 2, the treatment is performed only up to the coagulation filtration. However, when used for drinking water, etc., it is common to perform a granular activated carbon filtration treatment or the like thereafter. In that case, in order to receive application of a tap water quality standard value, for example, an evaporation residue needs to be 500 mg / L or less. In other words, it is difficult to use drinking water in the conventional processing flows as in Comparative Examples 1 and 2, but it is understood that drinking water can be used in the methods of Examples 1 and 2. In Tables 2 to 5, the concentration of the evaporation residue of the coagulated filtered water is higher than that of the raw water because it is derived from sodium hypochlorite added for the oxidation of ammonia, iron, manganese, etc. It is.

また、実施例1,2及び比較例1,2において、凝集ろ過装置の直径つまりろ過速度が異なるのは、実施例1,2の方法では生物ろ過により、鉄やマンガンの一部が除去され、凝集ろ過装置への懸濁物質の負荷が軽減されるため、より高いろ過速度でも安定運転が可能となるからである。ところで、実施例1,2において処理水の硝酸・亜硝酸態窒素濃度は、生物ろ過装置におけるアンモニアの硝化率が100%であったことから、処理水量比50%を掛けて、9.0mg/L×0.5=4.5mg/Lであった。これは、水道水質基準値10mg/Lの50%未満であり、良好な水質とみなすことができる。   Further, in Examples 1 and 2 and Comparative Examples 1 and 2, the diameter of the coagulation filtration device, that is, the filtration rate is different. In the methods of Examples 1 and 2, part of iron and manganese is removed by biological filtration, This is because the load of suspended substances on the coagulation filtration device is reduced, so that stable operation is possible even at a higher filtration rate. By the way, the nitric acid / nitrite nitrogen concentration of treated water in Examples 1 and 2 was 9.0 mg / kg multiplied by 50% of the treated water volume ratio because the ammonia nitrification rate in the biological filtration apparatus was 100%. L × 0.5 = 4.5 mg / L. This is less than 50% of the tap water quality standard value of 10 mg / L, and can be regarded as good water quality.

<実施例3>
深井戸を原水とする飲料水施設にて、図1に示すパイロットプラントによる通水実験を行った。この井水中のアンモニア態窒素濃度は8.4〜12.6mg/L、時間最大変化量1.2mg/Lと比較的水質の変動が大きいものであった。凝集ろ過水中の亜硝酸態窒素濃度ないし硝酸態窒素濃度が5.0mg/L未満となるように、全処理水量に占める生物処理水の比率を59容量%〜39容量%と変化させたところ、生物処理における硝化率(アンモニアが亜硝酸または硝酸へ変化する割合)は常にほぼ100%であった。すなわち、原水中のアンモニア態窒素濃度が8.4mg/Lの時は生物処理水量比を59容量%とし、最終的な凝集ろ過水中の亜硝酸ないし硝酸態窒素濃度は8.4mg/L×59%=4.96mg/Lとなり、原水中のアンモニア態窒素濃度が12.6mg/Lの時は生物処理水量比を39容量%とし、最終的な凝集ろ過水中の亜硝酸ないし硝酸態窒素濃度は12.6mg/L×39%=4.91mg/Lとなった。これは、水道水質基準値である10mg/Lの50%未満であり、良好な水質と見なすことができる。実施例3における塩素添加量は、原水中のアンモニア態窒素濃度が8.4mg/Lの時は混合槽14では結合塩素であるモノクロラミン濃度で4.0mg/Lとなるように17mg/Lとし、凝集ろ過装置22の前では凝集ろ過水中の遊離塩素濃度0.6mg/Lとなるように2.0mg/Lとし、合わせて19mg/Lとした。原水中のアンモニア態窒素濃度が12.6mg/Lの時は混合槽14では結合塩素であるモノクロラミン濃度で4.0mg/Lとなるように82mg/Lとし、凝集ろ過装置22の前では凝集ろ過水中の遊離塩素濃度0.6mg/Lとなるように3.0mg/Lとし、合わせて85mg/Lとした。塩素添加量は合計104mg/Lであった。なお、混合水のpHは、原水中のアンモニア態窒素濃度が8.4mg/Lの時は7.8、原水中のアンモニア態窒素濃度が12.6mg/Lの時は7.2であった。
<Example 3>
In a drinking water facility using deep wells as raw water, a water flow experiment was conducted using the pilot plant shown in FIG. The concentration of ammonia nitrogen in the well water was 8.4 to 12.6 mg / L, and the maximum change in time was 1.2 mg / L. When the ratio of the biologically treated water in the total treated water amount was changed from 59% to 39% by volume so that the nitrite nitrogen concentration or nitrate nitrogen concentration in the coagulated filtrate was less than 5.0 mg / L, The nitrification rate in biological treatment (the rate at which ammonia changed to nitrous acid or nitric acid) was always almost 100%. That is, when the ammonia nitrogen concentration in the raw water is 8.4 mg / L, the biological treatment water amount ratio is 59% by volume, and the nitrous acid or nitrate nitrogen concentration in the final coagulated filtrate is 8.4 mg / L × 59. % = 4.96 mg / L, and when the concentration of ammonia nitrogen in the raw water is 12.6 mg / L, the biological treatment water volume ratio is 39% by volume, and the concentration of nitrous acid or nitrate nitrogen in the final coagulation filtered water is 12.6 mg / L × 39% = 4.91 mg / L. This is less than 50% of the standard value of tap water quality of 10 mg / L, and can be regarded as good water quality. The amount of chlorine added in Example 3 was 17 mg / L so that when the concentration of ammonia nitrogen in the raw water was 8.4 mg / L, the concentration of monochloramine that is bound chlorine in the mixing tank 14 was 4.0 mg / L. In front of the flocculation filtration device 22, the free chlorine concentration in the flocculation filtration water was set to 2.0 mg / L so that the total concentration was 19 mg / L. When the concentration of ammonia nitrogen in the raw water is 12.6 mg / L, the mixing tank 14 is set to 82 mg / L so that the concentration of monochloramine, which is bound chlorine, is 4.0 mg / L. It was set to 3.0 mg / L so that the free chlorine concentration in filtered water was 0.6 mg / L, and the total was 85 mg / L. The total amount of chlorine added was 104 mg / L. The pH of the mixed water was 7.8 when the ammonia nitrogen concentration in the raw water was 8.4 mg / L, and 7.2 when the ammonia nitrogen concentration in the raw water was 12.6 mg / L. .

<比較例3>
生物処理水量比を39容量%の一定とし、原水中のアンモニア態窒素濃度に応じて生物処理水量を調整しなかった以外は、実施例3と同様にして処理を行った。原水中のアンモニア態窒素濃度が8.4mg/Lの時は、最終的な凝集ろ過水中の亜硝酸ないし硝酸態窒素濃度は8.4mg/L×39%=3.28mg/Lとなり、原水中のアンモニア態窒素濃度が12.6mg/Lの時は、最終的な凝集ろ過水中の亜硝酸ないし硝酸態窒素濃度は12.6mg/L×39%=4.91mg/Lとなった。しかし、比較例3における塩素添加量は、原水中のアンモニア態窒素濃度が8.4mg/Lの時は混合槽14では27mg/Lとし、凝集ろ過装置22の前では2.0mg/Lとしたため、合わせて29mg/Lとなった。原水中のアンモニア態窒素濃度が12.6mg/Lの時は混合槽14では82mg/Lとし、凝集ろ過装置22の前では3.0mg/Lとしたため、合わせて85mg/Lとなった。塩素添加量は合計114mg/Lであり、実施例3に比べて増加した。なお、混合水のpHは、原水中のアンモニア態窒素濃度が8.4mg/Lの時は7.9、原水中のアンモニア態窒素濃度が12.6mg/Lの時は7.2であった。
<Comparative Example 3>
The treatment was performed in the same manner as in Example 3 except that the biological treatment water amount ratio was fixed at 39% by volume and the biological treatment water amount was not adjusted according to the ammonia nitrogen concentration in the raw water. When the concentration of ammonia nitrogen in the raw water is 8.4 mg / L, the concentration of nitrous acid or nitrate nitrogen in the final coagulated filtered water is 8.4 mg / L × 39% = 3.28 mg / L. When the ammonia nitrogen concentration was 12.6 mg / L, the concentration of nitrous acid or nitrate nitrogen in the final aggregated filtered water was 12.6 mg / L × 39% = 4.91 mg / L. However, the chlorine addition amount in Comparative Example 3 was 27 mg / L in the mixing tank 14 when the ammonia nitrogen concentration in the raw water was 8.4 mg / L, and 2.0 mg / L in front of the coagulation filtration device 22. The total amount was 29 mg / L. When the concentration of ammonia nitrogen in the raw water was 12.6 mg / L, it was 82 mg / L in the mixing tank 14 and 3.0 mg / L in front of the coagulation filtration device 22, so that the total was 85 mg / L. The total amount of chlorine added was 114 mg / L, which was increased compared to Example 3. The pH of the mixed water was 7.9 when the ammonia nitrogen concentration in the raw water was 8.4 mg / L, and 7.2 when the ammonia nitrogen concentration in the raw water was 12.6 mg / L. .

<比較例4>
生物処理水量比を59容量%の一定とし、原水中のアンモニア態窒素濃度に応じて生物処理水量を調整しなかった以外は、実施例3と同様にして処理を行った。原水中のアンモニア態窒素濃度が8.4mg/Lの時は、最終的な凝集ろ過水中の亜硝酸ないし硝酸態窒素濃度は8.4mg/L×59%=4.96mg/Lとなり、原水中のアンモニア態窒素濃度が12.6mg/Lの時は、最終的な凝集ろ過水中の亜硝酸ないし硝酸態窒素濃度は12.6mg/L×59%=7.43mg/Lとなった。これは、水道水質基準値である10mg/Lの50%を上回るものであった。また、比較例4における塩素添加量は、原水中のアンモニア態窒素濃度が8.4mg/Lの時は混合槽14では17mg/Lとし、凝集ろ過装置22の前では2.0mg/Lとしたため、合わせて19mg/Lとなった。原水中のアンモニア態窒素濃度が12.6mg/Lの時は混合槽14では55mg/Lとし、凝集ろ過装置22の前では2.0mg/Lとしたため、合わせて57mg/Lとなった。塩素添加量は合計76mg/Lであった。なお、混合水のpHは、原水中のアンモニア態窒素濃度が8.4mg/Lの時は7.8、原水中のアンモニア態窒素濃度が12.6mg/Lの時は7.0であった。
<Comparative example 4>
The treatment was performed in the same manner as in Example 3 except that the biological treatment water amount ratio was fixed at 59% by volume and the biological treatment water amount was not adjusted according to the ammonia nitrogen concentration in the raw water. When the concentration of ammonia nitrogen in the raw water is 8.4 mg / L, the concentration of nitrous acid or nitrate nitrogen in the final coagulated filtered water is 8.4 mg / L × 59% = 4.96 mg / L. When the concentration of ammonia nitrogen was 12.6 mg / L, the concentration of nitrous acid or nitrate nitrogen in the final aggregated filtered water was 12.6 mg / L × 59% = 7.43 mg / L. This exceeded 50% of the tap water quality standard value of 10 mg / L. In addition, the amount of chlorine added in Comparative Example 4 was 17 mg / L in the mixing tank 14 when the ammonia nitrogen concentration in the raw water was 8.4 mg / L, and 2.0 mg / L in front of the coagulation filtration device 22. The total amount was 19 mg / L. When the concentration of ammonia nitrogen in the raw water was 12.6 mg / L, it was 55 mg / L in the mixing tank 14 and 2.0 mg / L in front of the coagulation filtration device 22, so that the total was 57 mg / L. The total amount of chlorine added was 76 mg / L. The pH of the mixed water was 7.8 when the ammonia nitrogen concentration in the raw water was 8.4 mg / L, and 7.0 when the ammonia nitrogen concentration in the raw water was 12.6 mg / L. .

Figure 2007319816
Figure 2007319816

Figure 2007319816
Figure 2007319816

Figure 2007319816
Figure 2007319816

Figure 2007319816
Figure 2007319816

Figure 2007319816
Figure 2007319816

このように、実施例1〜3のようにアンモニアを塩素酸化処理する場合、塩素添加量を大幅(1/3〜1/2)に低減することができた。また、塩素使用量を低減できることから、飲料水用途の場合、Cl濃度(基準値200mg/L未満)、蒸発残留物(基準値500mg/L未満)等の水質項目の改善を図ることができた。 Thus, when ammonia was chlorinated as in Examples 1 to 3, the amount of chlorine added could be significantly reduced (1/3 to 1/2). In addition, since the amount of chlorine used can be reduced, in the case of drinking water use, it is possible to improve water quality items such as Cl concentration (reference value less than 200 mg / L) and evaporation residue (reference value less than 500 mg / L). It was.

本発明の実施形態に係る水処理装置の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例の概略構成を示す図である。It is a figure which shows schematic structure of the other example of the water treatment apparatus which concerns on embodiment of this invention. 従来の水処理装置の概略構成を示す図である。It is a figure which shows schematic structure of the conventional water treatment apparatus.

符号の説明Explanation of symbols

1,3 水処理装置、10 生物ろ過装置、11 アンモニア濃度測定器、12 生物ろ過洗浄水槽、14 混合槽、16 塩素剤添加装置、18 凝集剤添加装置、20 紫外線照射装置、22 凝集ろ過装置、24 凝集ろ過洗浄水槽、26 原水流入管、28 揚水ポンプ、30 原水源、32 生物処理水流出管、34 生物処理水流出管、36 塩素剤注入ポンプ、38 塩素剤貯槽、40 凝集剤注入ポンプ、42 凝集剤貯槽、44 撹拌機、46 塩素処理水流出管、48 ポンプ、50 紫外線処理水流出管、52 凝集ろ過水流出管、54 曝気空気管、56,64,66,72,74,76,78 バルブ、58 ブロワ、60,68 逆洗配管、62,70 逆洗ポンプ、80 第2塩素剤貯槽、82 第2塩素剤注入ポンプ、84 pH調整装置、86 pH測定装置、88 pH調整剤注入ポンプ、90 pH調整剤貯槽、92 ラインミキサ。
1,3 Water treatment device, 10 Biological filtration device, 11 Ammonia concentration measuring device, 12 Biological filtration washing water tank, 14 Mixing tank, 16 Chlorine agent addition device, 18 Coagulant addition device, 20 Ultraviolet irradiation device, 22 Coagulation filtration device, 24 Coagulation filtration washing water tank, 26 Raw water inflow pipe, 28 Pumping pump, 30 Raw water source, 32 Biologically treated water outflow pipe, 34 Biologically treated water outflow pipe, 36 Chlorine injection pump, 38 Chlorine storage tank, 40 Coagulant injection pump, 42 flocculant storage tank, 44 stirrer, 46 chlorinated water outflow pipe, 48 pump, 50 UV treated water outflow pipe, 52 coagulated filtered water outflow pipe, 54 aeration air pipe, 56, 64, 66, 72, 74, 76, 78 Valve, 58 Blower, 60, 68 Backwash piping, 62, 70 Backwash pump, 80 Second chlorine agent storage tank, 82 Second chlorine agent injection pump, 84 pH adjuster, 86 pH measurement Device, 88 pH adjusting agent injection pump, 90 pH adjusting agent storage tank, 92 line mixer.

Claims (6)

原水に含まれるアンモニアの処理を行う水処理装置であって、
原水のアンモニア態窒素濃度を測定するアンモニア濃度測定手段と、
原水を分岐し、前記原水中のアンモニア態窒素濃度に応じて前記分岐する水量比を調整する水量調整手段と、
前記分岐された一方の原水を生物酸化処理する生物酸化処理手段と、
前記生物酸化処理された生物処理水と、前記原水の残りとを混合する混合槽と、
前記混合された混合水に塩素剤を添加する塩素剤添加手段と、
前記塩素剤を添加した塩素処理水に紫外線を照射する紫外線照射手段と、
を有することを特徴とする水処理装置。
A water treatment apparatus for treating ammonia contained in raw water,
Ammonia concentration measuring means for measuring ammonia nitrogen concentration of raw water;
A water amount adjusting means for branching the raw water and adjusting the ratio of the branched water amount according to the ammonia nitrogen concentration in the raw water;
Biological oxidation treatment means for biological oxidation treatment of the branched raw water,
A mixing vessel for mixing the biologically oxidized biologically treated water and the remaining raw water;
A chlorinating agent adding means for adding a chlorinating agent to the mixed mixed water;
Ultraviolet irradiation means for irradiating ultraviolet rays to chlorinated water to which the chlorinating agent is added;
A water treatment apparatus comprising:
請求項1に記載の水処理装置であって、
前記水量調整手段により、前記原水中のアンモニア態窒素濃度が5.0mg/L以上10mg/L未満の場合は、前記生物酸化処理を行う水量が全処理水の50〜80容量%に、前記原水中のアンモニア態窒素濃度が10mg/L以上15mg/L以下の場合は、前記生物酸化処理を行う水量が全処理水の30〜50容量%に調整されることを特徴とする水処理装置。
The water treatment device according to claim 1,
When the concentration of ammonia nitrogen in the raw water is 5.0 mg / L or more and less than 10 mg / L by the water amount adjusting means, the amount of water for performing the biological oxidation treatment is 50 to 80% by volume of the total treated water. When the ammonia nitrogen concentration in the water is 10 mg / L or more and 15 mg / L or less, the amount of water for performing the biological oxidation treatment is adjusted to 30 to 50% by volume of the total treated water.
請求項1または2に記載の水処理装置であって、
前記紫外線を照射した紫外線処理水をろ過するろ過手段と、
前記ろ過手段の上流側の処理水に凝集剤を添加する凝集剤添加手段と、
をさらに有することを特徴とする水処理装置。
The water treatment device according to claim 1 or 2,
Filtration means for filtering the ultraviolet-treated water irradiated with the ultraviolet rays;
A flocculant addition means for adding a flocculant to the treated water upstream of the filtration means;
The water treatment apparatus further comprising:
原水に含まれるアンモニアの処理を行う水処理方法であって、
原水を分岐し、前記原水中のアンモニア態窒素濃度に応じて前記分岐する水量比を調整する水量調整工程と、
前記分岐された一方の原水を生物酸化処理する生物酸化処理工程と、
前記生物酸化処理された生物処理水と、前記原水の残りとを混合する混合工程と、
前記混合された混合水に塩素剤を添加する塩素剤添加工程と、
前記塩素剤を添加した塩素処理水に紫外線を照射する紫外線照射工程と、
を含むことを特徴とする水処理方法。
A water treatment method for treating ammonia contained in raw water,
Branching the raw water, adjusting the water amount ratio to branch according to the ammonia nitrogen concentration in the raw water,
A biological oxidation treatment step of subjecting the branched raw water to a biological oxidation treatment;
A mixing step of mixing the biologically oxidized biologically treated water and the remaining raw water;
A chlorinating agent adding step of adding a chlorinating agent to the mixed mixed water;
An ultraviolet irradiation step of irradiating the chlorinated water to which the chlorinating agent is added with ultraviolet rays;
A water treatment method comprising:
請求項4に記載の水処理方法であって、
前記水量調整工程において、前記原水中のアンモニア態窒素濃度が5.0mg/L以上10mg/L未満の場合は、前記生物酸化処理を行う水量を全処理水の50〜80容量%に、前記原水中のアンモニア態窒素濃度が10mg/L以上15mg/L以下の場合は、前記生物酸化処理を行う水量を全処理水の30〜50容量%に調整することを特徴とする水処理方法。
The water treatment method according to claim 4,
In the water amount adjusting step, when the ammonia nitrogen concentration in the raw water is 5.0 mg / L or more and less than 10 mg / L, the amount of water for performing the biological oxidation treatment is 50 to 80% by volume of the total treated water. When the ammonia nitrogen concentration in the water is 10 mg / L or more and 15 mg / L or less, the amount of water for performing the biological oxidation treatment is adjusted to 30 to 50% by volume of the total treated water.
請求項4または5に記載の水処理装置であって、
前記紫外線を照射した紫外線処理水をろ過するろ過工程と、
前記ろ過工程の上流側の処理水に凝集剤を添加する凝集剤添加工程と、
をさらに含むことを特徴とする水処理装置。
The water treatment device according to claim 4 or 5,
A filtration step of filtering the ultraviolet-treated water irradiated with the ultraviolet rays;
A flocculant addition step of adding a flocculant to the treated water upstream of the filtration step;
The water treatment apparatus characterized by further including.
JP2006154686A 2006-06-02 2006-06-02 Water treatment apparatus and water treatment method Pending JP2007319816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006154686A JP2007319816A (en) 2006-06-02 2006-06-02 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154686A JP2007319816A (en) 2006-06-02 2006-06-02 Water treatment apparatus and water treatment method

Publications (1)

Publication Number Publication Date
JP2007319816A true JP2007319816A (en) 2007-12-13

Family

ID=38853047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154686A Pending JP2007319816A (en) 2006-06-02 2006-06-02 Water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP2007319816A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082599A (en) * 2008-10-02 2010-04-15 Japan Organo Co Ltd Water treatment apparatus and water treatment method
JP2013220395A (en) * 2012-04-17 2013-10-28 Tsukishima Kikai Co Ltd Method for treating purified water
JP2014061477A (en) * 2012-09-21 2014-04-10 Japan Organo Co Ltd Treatment method of formaldehyde containing drainage water and treatment apparatus of formaldehyde containing drainage water
CN104860458A (en) * 2015-06-02 2015-08-26 哈尔滨工业大学 Method for removing ammonia and nitrogen in drinking water by adopting chlorination/ultraviolet coupling
JP2019093371A (en) * 2017-11-28 2019-06-20 アクアス株式会社 Method and apparatus for treating ammoniac nitrogen in water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082599A (en) * 2008-10-02 2010-04-15 Japan Organo Co Ltd Water treatment apparatus and water treatment method
JP2013220395A (en) * 2012-04-17 2013-10-28 Tsukishima Kikai Co Ltd Method for treating purified water
JP2014061477A (en) * 2012-09-21 2014-04-10 Japan Organo Co Ltd Treatment method of formaldehyde containing drainage water and treatment apparatus of formaldehyde containing drainage water
CN104860458A (en) * 2015-06-02 2015-08-26 哈尔滨工业大学 Method for removing ammonia and nitrogen in drinking water by adopting chlorination/ultraviolet coupling
JP2019093371A (en) * 2017-11-28 2019-06-20 アクアス株式会社 Method and apparatus for treating ammoniac nitrogen in water

Similar Documents

Publication Publication Date Title
CA2439927C (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
JP5637713B2 (en) Wastewater treatment method and treatment apparatus
Monteagudo et al. Advanced oxidation processes for destruction of cyanide from thermoelectric power station waste waters
Wang et al. Effects of advanced oxidation pretreatment on residual aluminum control in high humic acid water purification
CN104176884B (en) A kind of cyanide wastewater integrated conduct method
CN104193058B (en) A kind of gold mine cyanide wastewater comprehensive processing method
JP2007319816A (en) Water treatment apparatus and water treatment method
JP2000237772A (en) Advanced treatment of water
JP4334404B2 (en) Water treatment method and water treatment system
JP4660211B2 (en) Water treatment control system and water treatment control method
JP2018083172A (en) Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation equipment with the same
JP6239442B2 (en) Organic wastewater treatment method and treatment apparatus
JPH0631298A (en) Sophisticated treatment method for waste chemical plating liquid
JP2008012497A (en) Water treatment apparatus and water treatment method
JP2002059194A (en) Treatment method of raw water
JP3642516B2 (en) Method and apparatus for removing COD components in water
JP6703881B2 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
CN104086053A (en) Treatment method of low-concentration cyanide-containing wastewater in gold mine
KR100297928B1 (en) Method of nitrogen removal in wastewater with photocatalytic technology
KR101544604B1 (en) SYSTEM FOR RECYClYING DISCHARGE WATER OF SEWAGE TREATMENT PLANT
JP2022054063A (en) Manganese and iron-containing water treatment method and device
JP6749463B2 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
JP2003062583A (en) Treating method for sewage containing decomposition resistant organic material and bromine, and equipment therefor
JP7351362B2 (en) Water treatment equipment and water treatment method
JP7297512B2 (en) Wastewater treatment method and wastewater treatment system