WO2024014218A1 - Ultrapure water production apparatus and method for operating ultrapure water production apparatus - Google Patents

Ultrapure water production apparatus and method for operating ultrapure water production apparatus Download PDF

Info

Publication number
WO2024014218A1
WO2024014218A1 PCT/JP2023/021987 JP2023021987W WO2024014218A1 WO 2024014218 A1 WO2024014218 A1 WO 2024014218A1 JP 2023021987 W JP2023021987 W JP 2023021987W WO 2024014218 A1 WO2024014218 A1 WO 2024014218A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ultraviolet
toc
treated
ultraviolet oxidation
Prior art date
Application number
PCT/JP2023/021987
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 永田
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to JP2023536138A priority Critical patent/JP7513213B2/en
Publication of WO2024014218A1 publication Critical patent/WO2024014218A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention relates to an ultrapure water production device equipped with a primary water purification device and a secondary water purification device, and a method of operating this ultrapure water production device, and particularly to an ultrapure water production device equipped with an ultraviolet oxidation device and a platinum group metal catalyst resin in the secondary water purification device.
  • the present invention relates to an ultrapure water production apparatus having a column and a method of operating the ultrapure water production apparatus.
  • ultrapure water used in the electronics industry such as semiconductors is produced by ultrapure water production consisting of a pretreatment device, a primary water purification device, and a secondary deionization device (subsystem) that processes the primary water purification. It is manufactured by treating raw water with equipment.
  • an ultrapure water production device 1 is comprised of three stages of devices: a pretreatment device 2, a primary deionization device 3, and a secondary deionization device (subsystem) 4, as shown in FIG.
  • the pretreatment device 2 of such an ultrapure water production device 1 the raw water W is subjected to pretreatments such as filtration, coagulation sedimentation, and microfiltration membrane, and mainly removes suspended solids.
  • the primary water deionization device 3 includes a tank 11 for pre-treated water W0, a reverse osmosis membrane device 12, a plurality of ultraviolet lamps, and an ultraviolet (UV) oxidation device 13 (hereinafter referred to as “UV” for convenience of explanation) whose output can be controlled. 2), a regenerative ion exchange device (mixed bed type or 4 bed 5 column type, etc.) 14, and a membrane deaerator 15.
  • 16 is a preheater. be.
  • most of the electrolyte, particulates, viable bacteria, etc. in the pretreated water W0 are removed, and organic matter is decomposed.
  • the subsystem 4 includes a subtank 21 that stores the primary pure water W1 produced by the above-mentioned primary water purifier 3, a pump 22 that supplies the primary pure water W1 stored in the subtank 21, and a pump 22 that supplies the primary pure water W1 stored in the subtank 21.
  • An ultraviolet oxidation device 24 (hereinafter, for convenience of explanation, it may be referred to as the first ultraviolet oxidation device 24) whose output can be controlled by a plurality of ultraviolet lamps that process W1, a platinum group metal catalyst resin tower 25, and a membrane type It is composed of a deaerator 26, a reverse osmosis membrane device 27, a non-regenerative mixed bed ion exchange device 28, and an ultrafiltration (UF) membrane 29 as a membrane filtration device.
  • a trace amount of organic matter (TOC component) contained in the primary pure water W1 is oxidized and decomposed by ultraviolet rays in an ultraviolet oxidation device 24, and hydrogen peroxide generated by the irradiation with ultraviolet rays is transferred to a platinum group metal catalyst resin column. 25, and a subsequent membrane deaerator 26 removes dissolved gases such as DO (dissolved oxygen). Subsequently, residual carbonate ions, organic acids, anionic substances, as well as metal ions and cationic substances are removed by treatment with a reverse osmosis membrane device 27 and a non-regenerative mixed bed ion exchange device 28 .
  • TOC component organic matter contained in the primary pure water W1
  • DO dissolved oxygen
  • ultrapure water (secondary pure water) W2 is obtained by removing particulates with an ultrafiltration (UF) membrane 29, and this is supplied to the use point 5 from the feed pipe 30, and the unused ultrapure water is The water is returned to the sub tank 21 from the return pipe 31.
  • UF ultrafiltration
  • the oxidative decomposition mechanism of the TOC component in the ultraviolet oxidation device 24 is to oxidize and decompose water to generate OH radicals, and use these OH radicals to oxidize and decompose the TOC component.
  • the ultraviolet rays in this ultraviolet oxidation device 24 are irradiated in an excessive amount to sufficiently oxidize and decompose TOC in the water.
  • OH radicals generated by water decomposition become excessive, and the excess OH radicals combine to form hydrogen peroxide.
  • the generated hydrogen peroxide is decomposed by contacting with the platinum group metal catalyst resin tower 25 in the latter stage, but in order to operate the platinum group metal catalyst resin tower 25 stably over a long period of time, it is necessary to reduce the hydrogen peroxide load. It is desirable that it be as low as possible.
  • the subsystem 4 had a configuration as shown in FIG. 5. That is, in the subsystem 4, a TOC meter 51 for measuring the TOC concentration on the inlet side of the first ultraviolet oxidizer 24 is provided after the first ultraviolet oxidizer 24, and a TOC meter 51 that measures the TOC concentration on the inlet side of the first ultraviolet oxidizer 24, and a TOC meter 51 that measures the TOC concentration on the inlet side of the first ultraviolet oxidizer 24 and A hydrogen peroxide meter 52 that measures the hydrogen oxide concentration, a dissolved oxygen meter 53 that measures the dissolved oxygen (DO) concentration of the water treated by the membrane deaerator 26, and a non-regenerative mixed bed ion exchange device 28.
  • a TOC meter 54 is provided to measure the TOC concentration of the treated water.
  • the first ultraviolet oxidation device 24 is composed of a plurality of blocks, for example, two ultraviolet lamps per block, and about three blocks.
  • a TOC meter 51, a hydrogen peroxide meter 52, a dissolved oxygen meter 53, and a TOC meter 54 monitor the TOC concentration, hydrogen peroxide, and dissolved oxygen concentration, respectively. Then, according to the measurement result of the TOC concentration of the primary pure water W1 supplied to the first ultraviolet oxidizer 24 by the TOC meter 51, the number of lit ultraviolet lamps (the number of operating blocks) of the first ultraviolet oxidizer 24 is determined. By controlling the output through manual adjustment by a worker, excessive irradiation of ultraviolet rays in the first ultraviolet oxidizer 24 is suppressed as much as possible, and the amount of hydrogen peroxide produced is reduced.
  • the first ultraviolet oxidation device 24 is manually adjusted by turning on and off the number of lighting blocks of the ultraviolet lamp. It is not possible to quickly respond to changes in the quality of the primary pure water W1 supplied to the oxidizer 24. In addition, since control is performed by the number of lighting blocks of the ultraviolet lamp, delicate adjustment of the amount of ultraviolet irradiation is difficult. Therefore, there is a problem that excessive irradiation of ultraviolet rays may occur and generation of hydrogen peroxide cannot be sufficiently suppressed.
  • the present invention has been made in view of the above problems, and is capable of suppressing excessive irradiation of ultraviolet rays in an ultraviolet oxidation device in a subsystem and stably producing ultrapure water with a low TOC concentration.
  • the purpose of the present invention is to provide an ultrapure water production device that can produce ultrapure water and a method of operating the ultrapure water production device.
  • the present invention is, firstly, an ultrapure water production device comprising a primary water purification device and a secondary water purification device for further processing the primary pure water treated by the primary water purification device.
  • the secondary water deionization device includes a first ultraviolet oxidation device that irradiates the primary deionized water with ultraviolet rays to generate a first treated water, and a first ultraviolet oxidation device that processes the first treated water to generate a second treated water.
  • a platinum group metal catalytic resin device that generates
  • a first TOC meter that measures the TOC concentration of the primary pure water provided on the inlet side of the first ultraviolet oxidation device, and a measured value of the first TOC meter.
  • an ultrapure water production apparatus having a control means capable of controlling the output of the first ultraviolet oxidation apparatus based on (Invention 1).
  • the output of the first ultraviolet oxidation device can be controlled by the control means based on the measured value of the first TOC meter, and the output of the first ultraviolet oxidation device can be controlled. Adjustments can be made quickly and frequently, reducing excessive UV irradiation in the first UV oxidizer and suppressing the production of hydrogen peroxide, preventing an increase in dissolved oxygen and producing ultraviolet oxidizers with low TOC concentrations. Pure water can be stably produced.
  • the primary water purification device includes a second ultraviolet oxidation device and a third TOC meter that measures the TOC concentration of the water to be treated in the second ultraviolet oxidation device
  • the secondary water deionization device includes a membrane deaerator that processes the second treated water to generate deaerated water after the platinum group metal catalyst resin device, and a membrane deaerator that generates deaerated water by treating the second treated water, and a membrane deaerator that generates deaerated water after the platinum group metal catalyst resin device.
  • a dissolved oxygen meter provided, a non-regenerative mixed ion exchange device that processes this degassed water to produce third treated water, and a third non-regenerative mixed ion exchange device provided after the non-regenerative mixed ion exchange device.
  • a second TOC meter that measures the TOC concentration of the treated water, the control means being able to control the output of the second ultraviolet oxidation device based on the measured value of the third TOC meter, Furthermore, it is preferable that the output of the second ultraviolet oxidation device can be corrected based on the measured values of the dissolved oxygen meter and the second TOC meter (invention 2).
  • the output of the first ultraviolet oxidation device is adjusted by the control means based on the measured value of the first TOC meter, and the output of the first ultraviolet oxidation device is adjusted based on the measured value of the third TOC meter.
  • the output of the second UV oxidizer can be adjusted.
  • the output of the second ultraviolet oxidation device is corrected so that the TOC concentration of the primary pure water treated with the first ultraviolet oxidation device is optimized. Therefore, by minimizing the excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device, it is possible to suppress the generation of hydrogen peroxide and stably produce ultrapure water with a particularly low TOC concentration. can.
  • the present invention also provides an ultrapure water production device comprising a primary pure water device and a secondary pure water device for further processing the primary purified water treated by the primary pure water device, wherein the secondary pure water
  • the device includes a first ultraviolet oxidation device that irradiates the primary pure water with ultraviolet rays to generate a first treated water, and a platinum group metal that processes the first treated water to generate a second treated water.
  • a dissolved oxygen meter provided, a non-regenerative mixed ion exchange device that processes the degassed water to produce third treated water, and a third non-regenerative mixed ion exchange device provided after the non-regenerative mixed ion exchange device.
  • a second TOC meter for measuring the TOC concentration of the treated water; and a control means capable of controlling the output of the first ultraviolet oxidation device based on the measured value of the second TOC meter.
  • a pure water production device is provided (Invention 3).
  • the control means adjusts the output of the first ultraviolet oxidation device by feedback control based on the measured value of TOC of the third treated water, which is the final treated water.
  • the primary water deionization device includes a second ultraviolet oxidation device and a fourth TOC meter that measures the TOC concentration of the treated water of the second ultraviolet oxidation device
  • the The secondary water deionization device has a dissolved oxygen meter downstream of the membrane deaerator, and the control means controls the output of the second ultraviolet oxidation device based on the measured value of the fourth TOC meter. It is preferable that the output of the second ultraviolet oxidation device can be controlled based on the measured values of the dissolved oxygen meter and the second TOC meter (invention 4).
  • the control means can adjust the output of the second ultraviolet oxidation device by feedback control based on the measured value of the fourth TOC meter. Furthermore, based on the measured value of TOC of the dissolved oxygen meter and the third treated water, which is the final treated water, the TOC concentration of the primary pure water to be treated with the first ultraviolet oxidation device is optimized. Since the output of the second ultraviolet oxidation device can be corrected, by minimizing the excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device, the production of hydrogen peroxide can be suppressed, and ultrapure hydrogen peroxide with a particularly low TOC concentration can be produced. Water can be produced stably.
  • the first ultraviolet oxidation device and the second ultraviolet oxidation device are composed of a plurality of blocks of ultraviolet lamps, and the illuminance of each ultraviolet lamp is controllable.
  • the illuminance of each ultraviolet lamp is controllable.
  • invention 5 Preferable
  • the output of the ultraviolet oxidizer can be finely adjusted by controlling the number of blocks in which the ultraviolet oxidizer operates and the illumination intensity of the ultraviolet lamp using the control means.
  • the present invention provides ultrapure water that processes treated raw water with a primary water purifier to produce primary pure water, and further processes this primary pure water with a secondary water purifier to produce secondary pure water.
  • the production method includes a first ultraviolet oxidation step in which the primary pure water is irradiated with ultraviolet rays to produce a first treated water, and a second treatment in which hydrogen peroxide in the first treated water is decomposed.
  • the TOC concentration of the primary pure water before the ultraviolet oxidation step is measured, and the amount of ultraviolet rays irradiated to the primary pure water is controlled based on this TOC concentration.
  • the output of the ultraviolet oxidizer can be adjusted quickly and frequently, reducing excessive ultraviolet irradiation in the ultraviolet oxidizer and suppressing the production of hydrogen peroxide, thereby preventing an increase in dissolved oxygen and increasing TOC.
  • Ultrapure water with low concentration can be stably produced.
  • a second ultraviolet oxidation step in which the water to be treated is irradiated with ultraviolet rays and a TOC concentration of the water to be treated in this second ultraviolet oxidation step are measured.
  • a step of controlling the amount of ultraviolet irradiation in the second ultraviolet oxidation step, and in the secondary water purification device, after the platinum group metal catalyst resin treatment step, the dissolved gas in the second treated water is In producing the third treated water, a degassing step removes ionic impurities to produce deaerated water, and a deionization step removes ionic impurities from this deaerated water to produce the third treated water.
  • the amount of ultraviolet rays to be treated in the second ultraviolet oxidation device is controlled based on the TOC concentration of the water to be treated in the second ultraviolet oxidation step. . Furthermore, when generating the third treated water in the secondary water purification device, the dissolved oxygen concentration of the degassed water is measured, and the TOC concentration of the third treated water is measured, and this dissolved oxygen concentration and the third treated water are measured. By correcting the amount of ultraviolet irradiation in the second ultraviolet oxidation step so that the TOC concentration of the primary pure water treated in the first ultraviolet oxidation step is optimized based on the TOC concentration in the treated water. By minimizing excessive irradiation of ultraviolet rays in the ultraviolet oxidation device, generation of hydrogen peroxide can be suppressed, and ultrapure water with a low TOC concentration can be stably produced.
  • the present invention provides ultrapure water production in which the treated raw water is treated with a primary water purification device to produce primary pure water, and the primary pure water is further processed with a secondary water purification device to produce secondary pure water.
  • the method includes, in the secondary water purification device, a first ultraviolet oxidation step of irradiating the primary pure water with ultraviolet rays to produce a first treated water, and hydrogen peroxide in the first treated water.
  • a platinum group metal catalyst resin treatment step of decomposing to generate second treated water; and after the platinum group metal catalyst resin treatment step, removing gas dissolved in the second treated water to generate degassed water.
  • a method for operating an ultrapure water production apparatus comprising the step of controlling the output of the first ultraviolet oxidation apparatus based on the TOC concentration of the treated water (invention 8).
  • invention 8 by adjusting the output of ultraviolet rays in the first ultraviolet oxidation step by feedback control based on the measured value of TOC of the third treated water which is the final treated water, By reducing excessive irradiation with ultraviolet rays in the first ultraviolet oxidation step and suppressing the production of hydrogen peroxide, it is possible to prevent an increase in dissolved oxygen and stably produce ultrapure water with a low TOC concentration.
  • a second ultraviolet oxidation step of irradiating the treated object with ultraviolet rays and a TOC concentration of the treated water of this second ultraviolet oxidation step are measured; and a step of controlling the amount of ultraviolet irradiation in the second ultraviolet oxidation step, and in the secondary water purification device, the dissolved oxygen concentration of the degassed water is measured, and the TOC concentration of the third treated water is measured. It is preferable to measure the amount of ultraviolet rays in the second ultraviolet oxidation step based on the dissolved oxygen concentration and the TOC concentration of the third treated water (invention 9).
  • the output of ultraviolet light in the second ultraviolet oxidation step can be adjusted by feedback control based on the measured value of the fourth TOC meter by the control means. Furthermore, based on the dissolved oxygen concentration and the measured TOC value of the third treated water, which is the final treated water, the TOC concentration of the primary pure water to be treated in the first ultraviolet oxidation step is optimized. Since the output of the second ultraviolet oxidation step can be corrected, by minimizing the excessive irradiation of ultraviolet rays in the first ultraviolet oxidation step, the production of hydrogen peroxide can be suppressed, making it possible to suppress the production of hydrogen peroxide, especially for ultrapure products with low TOC concentrations. Water can be produced stably.
  • the first ultraviolet oxidation step and the second ultraviolet oxidation step are performed using an ultraviolet oxidation device, and the ultraviolet oxidation device is composed of a plurality of blocks of ultraviolet lamps.
  • the illumination intensity of each ultraviolet lamp is controllable, and that the amount of ultraviolet irradiation is controlled by the number of operating blocks of the ultraviolet lamp and the illuminance of each ultraviolet lamp (invention 10).
  • the output of the ultraviolet oxidizer can be finely adjusted by controlling the number of blocks in which the ultraviolet oxidizer operates and the illumination intensity of the ultraviolet lamp.
  • the ultrapure water production apparatus of the present invention includes a primary pure water apparatus and a secondary pure water apparatus that further processes the primary purified water treated by the primary pure water apparatus. It is equipped with an ultraviolet oxidation device of Since it adjusts the output of the device, it reduces excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device, suppresses the production of hydrogen peroxide, prevents an increase in dissolved oxygen, and produces ultrapure products with a low TOC concentration. Water can be produced stably.
  • 1 is a schematic diagram showing an ultrapure water production apparatus to which the present invention can be applied.
  • 1 is a schematic diagram showing a subsystem in an ultrapure water production apparatus according to a first embodiment of the present invention. It is a schematic diagram showing an ultrapure water production apparatus according to a second embodiment of the present invention. It is a schematic diagram showing an ultrapure water production apparatus according to a third embodiment of the present invention.
  • 1 is a schematic diagram showing a conventional subsystem in an ultrapure water production device.
  • the ultrapure water production apparatus of this embodiment has the same basic overall configuration as that shown in FIG. 1 described above, and is characterized by the subsystem 4.
  • the subsystem 4 includes a first TOC meter 41 that measures the TOC concentration on the inlet side of the first ultraviolet oxidizer 24, and treated water from the platinum group metal catalyst resin column 25, as shown in FIG.
  • a hydrogen peroxide meter 42 that measures the hydrogen peroxide concentration of the (second treated water), a dissolved oxygen meter 43 that measures the dissolved oxygen (DO) concentration of the treated water of the membrane deaerator 26, and a non-regenerated It has a second TOC meter 44 that measures the TOC concentration of the treated water (third treated water) of the mixed bed type ion exchange device 28.
  • the first TOC meter 41 can transmit measurement data to a control means 45 such as a personal computer, and the control means 45 can control the first ultraviolet oxidation device 24 based on this transmitted data. It becomes.
  • the first ultraviolet oxidation device 24 is composed of a plurality of blocks of ultraviolet lamps each including a plurality of ultraviolet lamps, and the control means 45 described above controls the number of blocks to be lit and also controls the ultraviolet rays of each block. It is preferable that the output of ultraviolet rays in the first ultraviolet oxidizer 24 can be controlled by adjusting the illuminance of the lamp.
  • the above-mentioned ultraviolet oxidation device 24 it is possible to use “JPW”, “JPH”, and “ZK-UV” manufactured by Nippon Photoscience Co., Ltd., which can adjust both the illuminance of the ultraviolet lamp and the number of lighting blocks. can.
  • each block consists of three blocks with two ultraviolet lamps, and the illuminance of the ultraviolet lamps can be adjusted in the range of 30 to 100% for each block. .
  • the number of lighting blocks is 1 to 3, so the amount of ultraviolet rays from the ultraviolet lamp can be adjusted in the range of 10 to 100% of the maximum output of ultraviolet rays.
  • This pretreated water W0 is supplied to the primary water purifier 3 and temporarily stored in the tank 11, and then sent by a pump (not shown) and preheated by a preheater 16 to reduce the viscosity of the pretreated water W0, which is then used to reduce the viscosity of the pretreated water W0, which is then used to reduce the viscosity of the pretreated water W0.
  • Supply to 12 By treating the water to be treated with this reverse osmosis membrane device 12 at a predetermined recovery rate, salts are removed, as well as ionic and colloidal TOC.
  • the second ultraviolet oxidation device 13 reduces the TOC component to a predetermined level (second ultraviolet oxidation step).
  • ionic components such as salts are removed by a regenerative ion exchange device 14. Then, in the membrane deaerator 15, inorganic carbon (IC) and dissolved oxygen are removed to produce primary pure water W1.
  • This primary pure water W1 is sent to the subsystem 4 via piping 17.
  • primary pure water W1 is pumped by a pump 22, and a first ultraviolet oxidation device 24 using a low-pressure ultraviolet oxidation device converts TOC into an organic acid and further with ultraviolet light of about 185 nm emitted from a low-pressure ultraviolet lamp. It is decomposed to CO2 level to produce the first treated water (first ultraviolet oxidation step).
  • hydrogen peroxide (H 2 O 2 ) is decomposed into water (H 2 O 2 ) and oxygen (O 2 ) in the platinum group metal catalyst resin tower 25 to generate second treated water (platinum group metal catalyst resin column 25).
  • metal catalyst resin treatment process ).
  • the oxygen generated here and dissolved carbon dioxide are removed by a membrane deaerator 26, and then trace amounts of remaining low molecular weight organic matter and ionic impurities are removed by a reverse osmosis membrane 27 and a non-regenerative mixed bed ion exchanger. It is removed in the device 28 to produce third treated water (deionization step). Then, in the ultrafiltration (UF) membrane 29, fine particles are removed, and ultrapure water W2 can be produced by removing fine particles flowing out from the non-regenerative mixed bed ion exchange device 28 and the like.
  • UF ultrafiltration
  • the TOC concentration of the primary pure water W1 flowing into the first ultraviolet oxidation device 24 is measured by the first TOC meter 41, and control is performed based on this measurement value.
  • the means 45 controls the output of the first ultraviolet oxidizer 24 so that the amount of ultraviolet rays is necessary for decomposing TOC.
  • the first ultraviolet oxidation device 24 is composed of a plurality of blocks of about three blocks with two ultraviolet lamps per block. Since the light can be adjusted within the range of ⁇ 100%, the amount of ultraviolet rays from the UV lamp is adjusted within the range of approximately 10 ⁇ 100% of the maximum output of the ultraviolet rays of the first ultraviolet oxidizer 24. be able to.
  • the output of ultraviolet rays can be quickly adjusted to an appropriate value, compared to the case where the treatment is performed only by turning on the number of ultraviolet lamps. Therefore, by reducing excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device 24 and suppressing the generation of hydrogen peroxide, an increase in dissolved oxygen is prevented and the ultrapure water W2 with a low TOC concentration is stabilized.
  • Adjustment of the ultraviolet output in the first ultraviolet oxidizer 24 is performed by determining the optimum amount of ultraviolet irradiation based on the correlation between the amount of primary pure water W1 processed in the subsystem 4 and the TOC concentration measured by the first TOC meter 41. Calculate in advance and perform the calculation based on this.
  • the dissolved oxygen concentration and TOC concentration of the ultrapure water W2 may be measured using the dissolved oxygen meter 43 and the second TOC meter 44, and it may be monitored whether the required water quality of the ultrapure water W2 is satisfied.
  • the basic overall configuration of the ultrapure water production apparatus of this embodiment is the same as that shown in FIG. 1 described above.
  • a third TOC meter 46 that measures the TOC concentration on the inlet side of the second ultraviolet oxidation device 13 of the primary water purification device 3 and the treated water of the regenerative ion exchange device 14 are used.
  • the third TOC meter 46 is capable of transmitting measurement data to the control means 45, and is connected to the dissolved oxygen meter 43 of the subsystem 4 and the fourth TOC meter 47. It has the same configuration as the first embodiment described above, except that the measurement data of the second TOC meter 44 can also be transmitted to the control means 45.
  • the control means 45 is capable of controlling the output of the second ultraviolet oxidizer 13 based on the measurement data of the third TOC meter 46, and also controls the dissolved oxygen meter 43 and the second TOC meter 44.
  • the output of the second ultraviolet oxidizer 13 can be corrected based on the measured data.
  • the second ultraviolet oxidation device 13 has the same configuration as the first ultraviolet oxidation device 24 described above, and is composed of a plurality of blocks of ultraviolet lamps each including a plurality of ultraviolet lamps. It is preferable that the output of ultraviolet rays can be controlled by controlling the number of lit blocks and adjusting the illuminance of each ultraviolet lamp. Specifically, in this embodiment, each block consists of three blocks with two ultraviolet lamps, and the illuminance of the ultraviolet lamps can be adjusted in the range of 30 to 100% for each block. . With this configuration, the number of lighting blocks is 1 to 3, so the amount of ultraviolet rays from the ultraviolet lamp can be adjusted within a range of about 10 to 100% of the maximum output of ultraviolet rays. .
  • the third TOC meter 46 measures the TOC concentration of the water to be treated flowing into the second ultraviolet oxidation device 13. Based on the measured value, the control means 45 controls the output of the second ultraviolet oxidizer 13 so that the amount of ultraviolet rays necessary for decomposing TOC is obtained ((1) in FIG. 3).
  • the second ultraviolet oxidation device 13 is composed of a plurality of blocks of about three blocks, with two ultraviolet lamps per block, and the illumination intensity of the ultraviolet lamp is adjusted to 30 Since the light can be adjusted within the range of ⁇ 100%, the amount of ultraviolet irradiation from the UV lamp is adjusted within the range of approximately 10 ⁇ 100% of the maximum output of the ultraviolet rays of the second ultraviolet oxidizer 13. be able to.
  • the TOC concentration of the primary pure water W1 flowing into the first ultraviolet oxidation device 24 is measured by the first TOC meter 41, and based on this measurement value, the control means 45 controls the decomposition of TOC.
  • the output of the first ultraviolet oxidizer 24 is controlled so that the required amount of ultraviolet rays is obtained ((2) in FIG. 3).
  • the first ultraviolet oxidation device 24 is composed of a plurality of blocks of about three blocks with two ultraviolet lamps per block. Since the light can be adjusted within the range of ⁇ 100%, the amount of ultraviolet rays from the UV lamp is adjusted within the range of approximately 10 ⁇ 100% of the maximum output of the ultraviolet rays of the first ultraviolet oxidizer 24. be able to.
  • the amount of TOC decomposed in the first ultraviolet oxidizer 24 of the subsystem 4 is small, so that the first ultraviolet rays as described above If only the output of the ultraviolet rays in the oxidizer 24 is controlled, the amount of ultraviolet rays irradiated to the TOC may be extremely excessive. In this case, the amount of hydrogen peroxide (H 2 O 2 ) generated in the first ultraviolet oxidation device 24 increases.
  • the dissolved oxygen concentration in the second treated water treated in the platinum group metal catalyst resin tower 25 increases and hydrogen peroxide (H 2 O 2 ) also breaks out, causing the dissolved oxygen in the treated water in the membrane deaerator 26 to increase.
  • the oxygen concentration will increase or the organic matter (TOC) in the third treated water will increase due to the ion exchange resin in the non-regenerative mixed bed ion exchange device 28. Therefore, in this embodiment, the dissolved oxygen concentration is measured by a dissolved oxygen meter 43 downstream of the membrane deaerator 26, and a second TOC meter 44 is measured downstream of the non-regenerative mixed bed ion exchange device 28.
  • the control means 45 determines that the TOC concentration of the primary pure water W1 is too low, The TOC concentration of the primary pure water W1, which is the water to be treated in the first ultraviolet oxidation device 24, is increased. Specifically, the control means 45 controls the second ultraviolet oxidizer 13 to reduce its ultraviolet output ((3) in FIG. 3). The degree of reduction in the output of ultraviolet rays is calculated using a pre-calculated formula based on the amount of primary pure water W1 processed in the subsystem 4 and the rising tendency of the dissolved oxygen meter 43 and the second TOC meter 44. Bye. This can improve the increase in dissolved oxygen concentration in the first treated water.
  • the TOC concentration of the primary pure water W1 which is the water to be treated by the first ultraviolet oxidation apparatus 24, is In addition to optimally controlling the output of ultraviolet rays in the first ultraviolet oxidizer 24, it also controls the second ultraviolet oxidizer 13 of the primary water purification device 3 so that the decomposition of TOC in the first ultraviolet oxidizer 24 is optimized. Therefore, by further reducing excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device 24 and suppressing the generation of hydrogen peroxide, an increase in dissolved oxygen is prevented and the ultrapure water W2 with a low TOC concentration is stabilized. It can be manufactured using
  • the basic overall configuration of the ultrapure water production apparatus of this embodiment is the same as that shown in FIG. 1 described above.
  • a third TOC meter 46 that measures the TOC concentration on the inlet side of the second ultraviolet oxidation device 13 of the primary water purification device 3 and the treated water of the regenerative ion exchange device 14 are used.
  • the fourth TOC meter 47 is capable of transmitting measurement data to the control means 45, and the control means 45 is configured to measure the TOC concentration of the fourth TOC meter 47.
  • the second ultraviolet oxidation device 13 can be controlled based on the data of 47.
  • the subsystem 4 also includes a first TOC meter 41 that measures the TOC concentration on the inlet side of the first ultraviolet oxidizer 24, and a filter for treating water (second treated water) in the platinum group metal catalyst resin column 25.
  • a hydrogen peroxide meter 42 that measures hydrogen oxide concentration
  • a dissolved oxygen meter 43 that measures dissolved oxygen (DO) concentration
  • treated water (third treated water) of non-regenerative mixed bed ion exchange device 28 It has a dissolved oxygen meter 43 that measures dissolved oxygen (DO) concentration and a second TOC meter 44 that measures TOC concentration.
  • the dissolved oxygen meter 43 and the second TOC meter 44 are capable of transmitting measurement data to the control means 45, and the control means 45 transmits the measurement data to the first TOC meter 44 based on the measurement data of the second TOC meter 44.
  • the ultraviolet output of the ultraviolet oxidizer 24 can be controlled, and the ultraviolet output of the second ultraviolet oxidizer 13 can be corrected based on the measurement data of the dissolved oxygen meter 43 and the second TOC meter 44. It has become.
  • the primary water purification apparatus 3 assumes in advance the TOC concentration of the treated water of the regenerative ion exchange apparatus 14 measured by the fourth TOC meter 47.
  • the amount of TOC decomposed by the second ultraviolet oxidation device 13 is determined based on the difference in the TOC concentration of the treated water from the regenerative ion exchange device 14, and feedback control is performed to determine whether the amount of TOC decomposed by the second ultraviolet oxidation device 13 is too much or not.
  • the output of the second ultraviolet oxidizer 13 is controlled so that the amount of UV oxidation is maintained ((1) in FIG. 4).
  • the second ultraviolet oxidation device 13 is composed of a plurality of blocks of about three blocks, with two ultraviolet lamps per block, and the illumination intensity of the ultraviolet lamp is adjusted to 30 Since the light can be adjusted within the range of ⁇ 100%, the amount of ultraviolet irradiation from the UV lamp is adjusted within the range of approximately 10 ⁇ 100% of the maximum output of the ultraviolet rays of the second ultraviolet oxidizer 13. be able to.
  • the measurement data of the second TOC meter 44 of the treated water (third treated water) of the non-regenerative mixed bed ion exchanger 28, which is the final water quality, and the data assumed in advance are used.
  • the output of the first ultraviolet oxidation device 24 is controlled by feedback control based on the difference in the TOC concentration of the treated water from the non-regenerative mixed bed ion exchange device 28 ((2) in FIG. 4).
  • the first ultraviolet oxidation device 24 is composed of a plurality of blocks of about three blocks with two ultraviolet lamps per block. Since the light can be adjusted within the range of ⁇ 100%, the amount of ultraviolet rays from the UV lamp is adjusted within the range of approximately 10 ⁇ 100% of the maximum output of the ultraviolet rays of the first ultraviolet oxidizer 24. be able to.
  • the primary water deionization device 3 when the TOC in the primary deionization water W1 becomes sufficiently low, less TOC is decomposed in the first ultraviolet oxidation device 24 of the subsystem 4. If only the output of the ultraviolet rays in the device 24 is controlled, the amount of ultraviolet rays irradiated to the TOC may be extremely excessive. In this case, the amount of hydrogen peroxide (H 2 O 2 ) generated in the first ultraviolet oxidation device 24 increases.
  • the dissolved oxygen concentration is measured by the dissolved oxygen meter 43 at the latter stage of the non-regenerative mixed bed type ion exchange device 28, and the TOC concentration is also measured by the second TOC meter 44, and either one of these is used. , or both show a tendency to increase, the TOC concentration of the primary pure water W1, which is the water to be treated in the first ultraviolet oxidation device 24, is increased ((3) in FIG.
  • control means 45 controls the second ultraviolet oxidizer 13 to reduce its ultraviolet output.
  • the degree of reduction in the ultraviolet output can be calculated using a pre-calculated formula based on the amount of primary pure water W1 processed in the subsystem 4 and the rising tendency of the dissolved oxygen meter 43 and the second TOC meter 44. good.
  • the treated water of the non-regenerative mixed bed ion exchange device 28 (third treated water).
  • the present invention can be applied as long as the subsystem 4 includes an ultraviolet oxidation device and a platinum group metal catalyst resin column. Therefore, it can be particularly suitably applied to ultrapure water production equipment that has an ultraviolet oxidation device in the primary water purification equipment, but there are no particular restrictions on other configurations, and reverse osmosis membrane equipment or electrodeionization equipment can be used. General-purpose devices such as devices may be appropriately arranged. Further, feedforward control as in the second embodiment and feedback control as in the third embodiment may be used together.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Water Treatments (AREA)

Abstract

A subsystem 4 of this ultrapure water production apparatus has: a first TOC meter 41 for measuring the TOC concentration on an inlet side of a first ultraviolet oxidation device 24; a hydrogen peroxide meter 42 for measuring the hydrogen peroxide concentration in water treated in a platinum group metal catalyst resin column 25; a dissolved oxygen (DO) meter 43 for measuring the dissolved oxygen concentration in water treated in a membrane-type deaeration device 26; and a second TOC meter 44 for measuring the TOC concentration in water treated in a non-regeneration type mixed bed ion exchange device 28. The first TOC meter 41 can send measurement data to a control means 45, and the control means 45 can control the first ultraviolet oxidation device 24 on the basis of the sent data. The first ultraviolet oxidation device 24 is composed of three blocks with two ultraviolet lamps per block, wherein the illumination level of the ultraviolet lamps can be adjusted within the range of 30%-100% for each block. Such an ultrapure water production apparatus can suppress excess ultraviolet irradiation in the ultraviolet oxidation device and can stably produce ultrapure water with a low TOC concentration.

Description

超純水製造装置及び超純水製造装置の運転方法Ultrapure water production equipment and operating method of ultrapure water production equipment
 本発明は一次純水装置と二次純水装置とを備えた超純水製造装置及びこの超純水製造装置の運転方法に関し、特に二次純水装置に紫外線酸化装置と白金族金属触媒樹脂塔とを有する超純水製造装置及びこの超純水製造装置の運転方法に関する。 The present invention relates to an ultrapure water production device equipped with a primary water purification device and a secondary water purification device, and a method of operating this ultrapure water production device, and particularly to an ultrapure water production device equipped with an ultraviolet oxidation device and a platinum group metal catalyst resin in the secondary water purification device. The present invention relates to an ultrapure water production apparatus having a column and a method of operating the ultrapure water production apparatus.
 従来、半導体等の電子産業分野で用いられている超純水は、前処理装置、一次純水装置及び一次純水を処理する二次純水装置(サブシステム)で構成される超純水製造装置で原水を処理することにより製造されている。 Conventionally, ultrapure water used in the electronics industry such as semiconductors is produced by ultrapure water production consisting of a pretreatment device, a primary water purification device, and a secondary deionization device (subsystem) that processes the primary water purification. It is manufactured by treating raw water with equipment.
 一般に超純水製造装置1は、図1に示すように前処理装置2、一次純水装置3、及び二次純水装置(サブシステム)4といった3段の装置で構成されている。このような超純水製造装置1の前処理装置2では、原水Wの濾過、凝集沈殿、精密濾過膜などによる前処理が施され、主に懸濁物質が除去される。 In general, an ultrapure water production device 1 is comprised of three stages of devices: a pretreatment device 2, a primary deionization device 3, and a secondary deionization device (subsystem) 4, as shown in FIG. In the pretreatment device 2 of such an ultrapure water production device 1, the raw water W is subjected to pretreatments such as filtration, coagulation sedimentation, and microfiltration membrane, and mainly removes suspended solids.
 一次純水装置3は、前処理水W0のタンク11と、逆浸透膜装置12と、複数本の紫外線ランプなどにより構成され出力制御可能な紫外線(UV)酸化装置13(以下、説明の便宜上第二の紫外線酸化装置13とする場合あり)と、再生型イオン交換装置(混床式又は4床5塔式など)14と、膜式脱気装置15とを有する、なお、16は予熱器である。ここで前処理水W0中の電解質、微粒子、生菌等の大半の除去を行うとともに有機物を分解する。 The primary water deionization device 3 includes a tank 11 for pre-treated water W0, a reverse osmosis membrane device 12, a plurality of ultraviolet lamps, and an ultraviolet (UV) oxidation device 13 (hereinafter referred to as “UV” for convenience of explanation) whose output can be controlled. 2), a regenerative ion exchange device (mixed bed type or 4 bed 5 column type, etc.) 14, and a membrane deaerator 15. Note that 16 is a preheater. be. Here, most of the electrolyte, particulates, viable bacteria, etc. in the pretreated water W0 are removed, and organic matter is decomposed.
 サブシステム4は、前述した一次純水装置3で製造された一次純水W1を貯留するサブタンク21と、このサブタンク21に貯留された一次純水W1を送給するポンプ22と、この一次純水W1を処理する複数本の紫外線ランプなどにより出力制御可能な紫外線酸化装置24(以下、説明の便宜上第一の紫外線酸化装置24とする場合あり)と、白金族金属触媒樹脂塔25と、膜式脱気装置26と、逆浸透膜装置27と、非再生型混床式イオン交換装置28と、膜濾過装置としての限外濾過(UF)膜29とで構成されている、なお、23は熱交換器である。このサブシステム4では、紫外線酸化装置24で一次純水W1中に含まれる微量の有機物(TOC成分)を紫外線により酸化分解し、この紫外線の照射により生じた過酸化水素を白金族金属触媒樹脂塔25で分解し、その後段の膜式脱気装置26で混入しているDO(溶存酸素)などの溶存ガスを除去する。続いて逆浸透膜装置27及び非再生型混床式イオン交換装置28で処理することで、残留した炭酸イオン、有機酸類、アニオン性物質、さらには金属イオンやカチオン性物質を除去する。そして、限外濾過(UF)膜29で微粒子を除去して超純水(二次純水)W2とし、これを送給管30からユースポイント5に供給して、未使用の超純水は返送管31からサブタンク21に還流する。 The subsystem 4 includes a subtank 21 that stores the primary pure water W1 produced by the above-mentioned primary water purifier 3, a pump 22 that supplies the primary pure water W1 stored in the subtank 21, and a pump 22 that supplies the primary pure water W1 stored in the subtank 21. An ultraviolet oxidation device 24 (hereinafter, for convenience of explanation, it may be referred to as the first ultraviolet oxidation device 24) whose output can be controlled by a plurality of ultraviolet lamps that process W1, a platinum group metal catalyst resin tower 25, and a membrane type It is composed of a deaerator 26, a reverse osmosis membrane device 27, a non-regenerative mixed bed ion exchange device 28, and an ultrafiltration (UF) membrane 29 as a membrane filtration device. It is an exchanger. In this subsystem 4, a trace amount of organic matter (TOC component) contained in the primary pure water W1 is oxidized and decomposed by ultraviolet rays in an ultraviolet oxidation device 24, and hydrogen peroxide generated by the irradiation with ultraviolet rays is transferred to a platinum group metal catalyst resin column. 25, and a subsequent membrane deaerator 26 removes dissolved gases such as DO (dissolved oxygen). Subsequently, residual carbonate ions, organic acids, anionic substances, as well as metal ions and cationic substances are removed by treatment with a reverse osmosis membrane device 27 and a non-regenerative mixed bed ion exchange device 28 . Then, ultrapure water (secondary pure water) W2 is obtained by removing particulates with an ultrafiltration (UF) membrane 29, and this is supplied to the use point 5 from the feed pipe 30, and the unused ultrapure water is The water is returned to the sub tank 21 from the return pipe 31.
 上述したような超純水製造装置1では、紫外線酸化装置24におけるTOC成分の酸化分解機構は、水を酸化分解してOHラジカルを生成させ、このOHラジカルによりTOC成分を酸化分解するものであり、通常、この紫外線酸化装置24における紫外線は、水中のTOCを十分に酸化分解できるような過剰量が照射される。このように紫外線酸化装置24の紫外線照射量が多いと、水の分解で生成したOHラジカルが過剰となるため、余剰のOHラジカルが会合することで過酸化水素となる。発生した過酸化水素は後段の白金族金属触媒樹脂塔25と接触することで分解されるが、白金族金属触媒樹脂塔25を長期的に安定して運転するためには、過酸化水素の負荷はできるだけ低いことが望ましい。 In the ultrapure water production apparatus 1 as described above, the oxidative decomposition mechanism of the TOC component in the ultraviolet oxidation device 24 is to oxidize and decompose water to generate OH radicals, and use these OH radicals to oxidize and decompose the TOC component. Usually, the ultraviolet rays in this ultraviolet oxidation device 24 are irradiated in an excessive amount to sufficiently oxidize and decompose TOC in the water. When the amount of ultraviolet irradiation from the ultraviolet oxidation device 24 is large as described above, OH radicals generated by water decomposition become excessive, and the excess OH radicals combine to form hydrogen peroxide. The generated hydrogen peroxide is decomposed by contacting with the platinum group metal catalyst resin tower 25 in the latter stage, but in order to operate the platinum group metal catalyst resin tower 25 stably over a long period of time, it is necessary to reduce the hydrogen peroxide load. It is desirable that it be as low as possible.
 そこで、従来は図5に示すような構成のサブシステム4としていた。すなわち、サブシステム4において、第一の紫外線酸化装置24の後段に第一の紫外線酸化装置24の入口側のTOC濃度を計測するTOC計51と、白金族金属触媒樹脂塔25の処理水の過酸化水素濃度を計測する過酸化水素計52と、膜式脱気装置26の処理水の溶存酸素酸素(DO)濃度を計測する溶存酸素計53と、非再生型混床式イオン交換装置28の処理水のTOC濃度を計測するTOC計54とを設ける。ここで、第一の紫外線酸化装置24は、複数本、例えば1ブロック当たり2本の紫外線ランプで、3ブロック程度の複数ブロックで構成されている。 Therefore, conventionally, the subsystem 4 had a configuration as shown in FIG. 5. That is, in the subsystem 4, a TOC meter 51 for measuring the TOC concentration on the inlet side of the first ultraviolet oxidizer 24 is provided after the first ultraviolet oxidizer 24, and a TOC meter 51 that measures the TOC concentration on the inlet side of the first ultraviolet oxidizer 24, and a TOC meter 51 that measures the TOC concentration on the inlet side of the first ultraviolet oxidizer 24 and A hydrogen peroxide meter 52 that measures the hydrogen oxide concentration, a dissolved oxygen meter 53 that measures the dissolved oxygen (DO) concentration of the water treated by the membrane deaerator 26, and a non-regenerative mixed bed ion exchange device 28. A TOC meter 54 is provided to measure the TOC concentration of the treated water. Here, the first ultraviolet oxidation device 24 is composed of a plurality of blocks, for example, two ultraviolet lamps per block, and about three blocks.
 このようなサブシステム4では、TOC計51、過酸化水素計52、溶存酸素計53及びTOC計54で、TOC濃度、過酸化水素及び溶存酸素濃度をそれぞれ監視する。そして、TOC計51による第一の紫外線酸化装置24に供給される一次純水W1のTOC濃度の計測結果に応じて、第一の紫外線酸化装置24の紫外線ランプの点灯本数(稼働ブロック数)を作業員が手動で調整するなどして、出力を制御することで第一の紫外線酸化装置24における紫外線の過剰照射をできるだけ抑制し、過酸化水素の生成量を削減している。 In such a subsystem 4, a TOC meter 51, a hydrogen peroxide meter 52, a dissolved oxygen meter 53, and a TOC meter 54 monitor the TOC concentration, hydrogen peroxide, and dissolved oxygen concentration, respectively. Then, according to the measurement result of the TOC concentration of the primary pure water W1 supplied to the first ultraviolet oxidizer 24 by the TOC meter 51, the number of lit ultraviolet lamps (the number of operating blocks) of the first ultraviolet oxidizer 24 is determined. By controlling the output through manual adjustment by a worker, excessive irradiation of ultraviolet rays in the first ultraviolet oxidizer 24 is suppressed as much as possible, and the amount of hydrogen peroxide produced is reduced.
 しかしながら、上述したようなサブシステム4を備える超純水製造装置1では、第一の紫外線酸化装置24を手動による紫外線ランプの点灯ブロック数のオン・オフで調整しているので、第一の紫外線酸化装置24に供給される一次純水W1の水質の変動に対して、迅速に対応することができない。また、紫外線ランプの点灯ブロック数で制御しているので、紫外線照射量の微妙な調整は困難である。このため、紫外線の過剰照射となる場合があり過酸化水素の発生を十分に抑制することができない、という問題点がある。 However, in the ultrapure water production apparatus 1 equipped with the subsystem 4 as described above, the first ultraviolet oxidation device 24 is manually adjusted by turning on and off the number of lighting blocks of the ultraviolet lamp. It is not possible to quickly respond to changes in the quality of the primary pure water W1 supplied to the oxidizer 24. In addition, since control is performed by the number of lighting blocks of the ultraviolet lamp, delicate adjustment of the amount of ultraviolet irradiation is difficult. Therefore, there is a problem that excessive irradiation of ultraviolet rays may occur and generation of hydrogen peroxide cannot be sufficiently suppressed.
 本発明は、上記課題に鑑みてなされたものであり、サブシステテムにおいて紫外線酸化装置での紫外線の過剰照射を抑制することができると共に、TOC濃度の低い超純水を安定して製造することができる超純水製造装置及び超純水製造装置の運転方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is capable of suppressing excessive irradiation of ultraviolet rays in an ultraviolet oxidation device in a subsystem and stably producing ultrapure water with a low TOC concentration. The purpose of the present invention is to provide an ultrapure water production device that can produce ultrapure water and a method of operating the ultrapure water production device.
 上記目的に鑑み、本発明は第一に、一次純水装置と、この一次純水装置で処理された一次純水をさらに処理する二次純水装置とからなる超純水製造装置であって、前記二次純水装置は、前記一次純水に紫外線を照射して第一の処理水を生成させる第一の紫外線酸化装置と、前記第一の処理水を処理して第二の処理水を生成させる白金族金属触媒樹脂装置と、前記第一の紫外線酸化装置の入口側に設けられた一次純水のTOC濃度を計測する第一のTOC計と、前記第一のTOC計の測定値に基づいて前記第一の紫外線酸化装置の出力を制御可能な制御手段とを有する超純水製造装置を提供する(発明1)。 In view of the above object, the present invention is, firstly, an ultrapure water production device comprising a primary water purification device and a secondary water purification device for further processing the primary pure water treated by the primary water purification device. , the secondary water deionization device includes a first ultraviolet oxidation device that irradiates the primary deionized water with ultraviolet rays to generate a first treated water, and a first ultraviolet oxidation device that processes the first treated water to generate a second treated water. a platinum group metal catalytic resin device that generates , a first TOC meter that measures the TOC concentration of the primary pure water provided on the inlet side of the first ultraviolet oxidation device, and a measured value of the first TOC meter. There is provided an ultrapure water production apparatus having a control means capable of controlling the output of the first ultraviolet oxidation apparatus based on (Invention 1).
 かかる発明(発明1)によれば、第一のTOC計の測定値に基づいて、制御手段により第一の紫外線酸化装置の出力を制御可能となっており、第一の紫外線酸化装置の出力の調整を迅速かつ頻繁に行うことができるので、第一の紫外線酸化装置における紫外線の過剰照射を少なくし、過酸化水素の生成を抑制することで溶存酸素の上昇を防止してTOC濃度の低い超純水を安定して製造することができる。 According to this invention (invention 1), the output of the first ultraviolet oxidation device can be controlled by the control means based on the measured value of the first TOC meter, and the output of the first ultraviolet oxidation device can be controlled. Adjustments can be made quickly and frequently, reducing excessive UV irradiation in the first UV oxidizer and suppressing the production of hydrogen peroxide, preventing an increase in dissolved oxygen and producing ultraviolet oxidizers with low TOC concentrations. Pure water can be stably produced.
 上記発明(発明1)においては、前記一次純水装置が、第二の紫外線酸化装置と、前記第二の紫外線酸化装置の被処理水のTOC濃度を計測する第三のTOC計とを備え、前記二次純水装置が、前記白金族金属触媒樹脂装置の後段に前記第二の処理水を処理して脱気水を生成する膜式脱気装置と、前記膜式脱気装置の後段に設けられた溶存酸素計と、この脱気水を処理して第三の処理水を生成する非再生式混合イオン交換装置と、前記非再生式混合イオン交換装置の後段に設けられた前記第三の処理水のTOC濃度を計測する第二のTOC計とを備え、前記制御手段は、前記第三のTOC計の測定値に基づいて前記第二の紫外線酸化装置の出力を制御可能であり、さらに前記溶存酸素計と第二のTOC計の測定値に基づいて、前記第二の紫外線酸化装置の出力を補正可能であることが好ましい(発明2)。 In the invention (invention 1), the primary water purification device includes a second ultraviolet oxidation device and a third TOC meter that measures the TOC concentration of the water to be treated in the second ultraviolet oxidation device, The secondary water deionization device includes a membrane deaerator that processes the second treated water to generate deaerated water after the platinum group metal catalyst resin device, and a membrane deaerator that generates deaerated water by treating the second treated water, and a membrane deaerator that generates deaerated water after the platinum group metal catalyst resin device. a dissolved oxygen meter provided, a non-regenerative mixed ion exchange device that processes this degassed water to produce third treated water, and a third non-regenerative mixed ion exchange device provided after the non-regenerative mixed ion exchange device. a second TOC meter that measures the TOC concentration of the treated water, the control means being able to control the output of the second ultraviolet oxidation device based on the measured value of the third TOC meter, Furthermore, it is preferable that the output of the second ultraviolet oxidation device can be corrected based on the measured values of the dissolved oxygen meter and the second TOC meter (invention 2).
 かかる発明(発明2)によれば、第一のTOC計の測定値に基づいて、制御手段により前記第一の紫外線酸化装置の出力を調整するとともに、第三のTOC計の測定値に基づいて第二の紫外線酸化装置の出力を調整することができる。さらに溶存酸素計と第二のTOC計の測定値に基づいて、第一の紫外線酸化装置で処理する一次純水のTOC濃度が最適化されるように、第二の紫外線酸化装置の出力を補正することができるので、第一の紫外線酸化装置における紫外線の過剰照射を最小限とすることで過酸化水素の生成を抑制して、特にTOC濃度の低い超純水を安定して製造することができる。 According to this invention (invention 2), the output of the first ultraviolet oxidation device is adjusted by the control means based on the measured value of the first TOC meter, and the output of the first ultraviolet oxidation device is adjusted based on the measured value of the third TOC meter. The output of the second UV oxidizer can be adjusted. Furthermore, based on the measured values of the dissolved oxygen meter and the second TOC meter, the output of the second ultraviolet oxidation device is corrected so that the TOC concentration of the primary pure water treated with the first ultraviolet oxidation device is optimized. Therefore, by minimizing the excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device, it is possible to suppress the generation of hydrogen peroxide and stably produce ultrapure water with a particularly low TOC concentration. can.
 また、本発明は、一次純水装置と、この一次純水装置で処理された一次純水をさらに処理する二次純水装置とからなる超純水製造装置であって、前記二次純水装置が、前記一次純水に紫外線を照射して第一の処理水を生成させる第一の紫外線酸化装置と、前記第一の処理水を処理して第二の処理水を生成させる白金族金属触媒樹脂装置と、前記白金族金属触媒樹脂装置の後段に設けられた前記第二の処理水を処理して脱気水を生成する膜式脱気装置と、前記膜式脱気装置の後段に設けられた溶存酸素計と、前記脱気水を処理して第三の処理水を生成する非再生式混合イオン交換装置と、前記非再生式混合イオン交換装置の後段に設けられた前記第三の処理水のTOC濃度を計測する第二のTOC計とを備え、前記第二のTOC計の測定値に基づいて、前記第一の紫外線酸化装置の出力を制御可能である制御手段を有する超純水製造装置を提供する(発明3)。 The present invention also provides an ultrapure water production device comprising a primary pure water device and a secondary pure water device for further processing the primary purified water treated by the primary pure water device, wherein the secondary pure water The device includes a first ultraviolet oxidation device that irradiates the primary pure water with ultraviolet rays to generate a first treated water, and a platinum group metal that processes the first treated water to generate a second treated water. a catalytic resin device, a membrane deaerator that processes the second treated water to generate deaerated water, which is provided downstream of the platinum group metal catalytic resin device, and a membrane deaerator that is provided downstream of the membrane deaerator. a dissolved oxygen meter provided, a non-regenerative mixed ion exchange device that processes the degassed water to produce third treated water, and a third non-regenerative mixed ion exchange device provided after the non-regenerative mixed ion exchange device. a second TOC meter for measuring the TOC concentration of the treated water; and a control means capable of controlling the output of the first ultraviolet oxidation device based on the measured value of the second TOC meter. A pure water production device is provided (Invention 3).
 かかる発明(発明3)によれば、制御手段により最終的な処理水である第三の処理水のTOCの測定値に基づいて、フィードバック制御により第一の紫外線酸化装置の出力を調整することにより、第一の紫外線酸化装置における紫外線の過剰照射を少なくし、過酸化水素の生成を抑制することで溶存酸素の上昇を防止してTOC濃度の低い超純水を安定して製造することができる。 According to this invention (invention 3), the control means adjusts the output of the first ultraviolet oxidation device by feedback control based on the measured value of TOC of the third treated water, which is the final treated water. By reducing excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device and suppressing the production of hydrogen peroxide, it is possible to prevent an increase in dissolved oxygen and stably produce ultrapure water with a low TOC concentration. .
 上記発明(発明3)においては、前記一次純水装置が、第二の紫外線酸化装置と、前記第二の紫外線酸化装置の処理水のTOC濃度を計測する第四のTOC計とを備え、前記二次純水装置が、前記膜式脱気装置の後段に溶存酸素計を有し、前記制御手段が、前記第四のTOC計の測定値に基づいて前記第二の紫外線酸化装置の出力を制御可能であるとともに、前記溶存酸素計と第二のTOC計の測定値に基づいて、前記第二の紫外線酸化装置の出力を補正可能であることが好ましい(発明4)。 In the above invention (invention 3), the primary water deionization device includes a second ultraviolet oxidation device and a fourth TOC meter that measures the TOC concentration of the treated water of the second ultraviolet oxidation device, and the The secondary water deionization device has a dissolved oxygen meter downstream of the membrane deaerator, and the control means controls the output of the second ultraviolet oxidation device based on the measured value of the fourth TOC meter. It is preferable that the output of the second ultraviolet oxidation device can be controlled based on the measured values of the dissolved oxygen meter and the second TOC meter (invention 4).
 かかる発明(発明4)によれば、制御手段により第四のTOC計の測定値に基づいて、フィードバック制御により第二の紫外線酸化装置の出力を調整することができる。さらに溶存酸素計と最終的な処理水である第三の処理水のTOCの測定値に基づいて、第一の紫外線酸化装置で処理する一次純水のTOC濃度が最適化されるように、第二の紫外線酸化装置の出力を補正することができるので、第一の紫外線酸化装置における紫外線の過剰照射を最小限とすることで過酸化水素の生成を抑制して、特にTOC濃度の低い超純水を安定して製造することができる。 According to this invention (invention 4), the control means can adjust the output of the second ultraviolet oxidation device by feedback control based on the measured value of the fourth TOC meter. Furthermore, based on the measured value of TOC of the dissolved oxygen meter and the third treated water, which is the final treated water, the TOC concentration of the primary pure water to be treated with the first ultraviolet oxidation device is optimized. Since the output of the second ultraviolet oxidation device can be corrected, by minimizing the excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device, the production of hydrogen peroxide can be suppressed, and ultrapure hydrogen peroxide with a particularly low TOC concentration can be produced. Water can be produced stably.
 上記発明(発明2又は4)においては、前記第一の紫外線酸化装置及び第二の紫外線酸化装置が紫外線ランプの複数のブロックから構成されるとともに、各紫外線ランプの照度が制御可能であることが好ましい(発明5)。 In the above invention (invention 2 or 4), the first ultraviolet oxidation device and the second ultraviolet oxidation device are composed of a plurality of blocks of ultraviolet lamps, and the illuminance of each ultraviolet lamp is controllable. Preferable (invention 5).
 上記発明(発明5)によれば、制御手段により、紫外線酸化装置の稼働するブロック数と紫外線ランプの照度を制御することにより、紫外線酸化装置の出力を細かく調整することができる。 According to the invention (invention 5), the output of the ultraviolet oxidizer can be finely adjusted by controlling the number of blocks in which the ultraviolet oxidizer operates and the illumination intensity of the ultraviolet lamp using the control means.
 本発明は第二に、処理原水を一次純水装置で処理して一次純水を製造し、この一次純水をさらに二次純水装置で処理して二次純水を製造する超純水製造方法であって、前記一次純水に紫外線を照射して第一の処理水を生成させる第一の紫外酸化工程と、この第一の処理水中の過酸化水素を分解して第二の処理水を生成する白金族金属触媒樹脂処理工程と、前記紫外酸化工程前の一次純水のTOC濃度を測定してこのTOC濃度に基づいて前記一次純水に照射する紫外線の照射量を制御する工程とを備えた、超純水製造装置の運転方法を提供する(発明6)。 Second, the present invention provides ultrapure water that processes treated raw water with a primary water purifier to produce primary pure water, and further processes this primary pure water with a secondary water purifier to produce secondary pure water. The production method includes a first ultraviolet oxidation step in which the primary pure water is irradiated with ultraviolet rays to produce a first treated water, and a second treatment in which hydrogen peroxide in the first treated water is decomposed. A platinum group metal catalyst resin treatment step for generating water; and a step of measuring the TOC concentration of the primary pure water before the ultraviolet oxidation step and controlling the amount of ultraviolet rays irradiated to the primary pure water based on this TOC concentration. (Invention 6).
 かかる発明(発明6)によれば、紫外酸化工程前の一次純水のTOC濃度を測定し、このTOC濃度に基づいて前記一次純水に照射する紫外線の照射量を制御することにより、第一の紫外線酸化装置の出力の調整を迅速かつ頻繁に行うことができるので、紫外線酸化装置における紫外線の過剰照射を少なくし、過酸化水素の生成を抑制することで溶存酸素の上昇を防止してTOC濃度の低い超純水を安定して製造することができる。 According to this invention (Invention 6), the TOC concentration of the primary pure water before the ultraviolet oxidation step is measured, and the amount of ultraviolet rays irradiated to the primary pure water is controlled based on this TOC concentration. The output of the ultraviolet oxidizer can be adjusted quickly and frequently, reducing excessive ultraviolet irradiation in the ultraviolet oxidizer and suppressing the production of hydrogen peroxide, thereby preventing an increase in dissolved oxygen and increasing TOC. Ultrapure water with low concentration can be stably produced.
 上記発明(発明6)においては、前記一次純水装置において、被処理水に紫外線を照射する第二の紫外酸化工程と、この第二の紫外酸化工程の被処理水のTOC濃度を測定して、前記第二の紫外酸化工程における紫外線の照射量を制御する工程とを有し、前記二次純水装置において、前記白金族金属触媒樹脂処理工程の後、前記第二の処理水中の溶存ガスを除去して脱気水を生成する脱ガス工程と、この脱気水からイオン性不純物を除去して第三の処理水を生成する脱イオン工程とにより、第三の処理水を生成させるに際し、前記脱気水の溶存酸素濃度を測定するとともに、第三の処理水のTOC濃度を測定し、前記溶存酸素濃度と第三の処理水の中のTOC濃度とに基づいて、前記第二の紫外酸化工程における紫外線の照射量を調整することが好ましい(発明7)。 In the above invention (invention 6), in the primary water purification device, a second ultraviolet oxidation step in which the water to be treated is irradiated with ultraviolet rays and a TOC concentration of the water to be treated in this second ultraviolet oxidation step are measured. , a step of controlling the amount of ultraviolet irradiation in the second ultraviolet oxidation step, and in the secondary water purification device, after the platinum group metal catalyst resin treatment step, the dissolved gas in the second treated water is In producing the third treated water, a degassing step removes ionic impurities to produce deaerated water, and a deionization step removes ionic impurities from this deaerated water to produce the third treated water. , while measuring the dissolved oxygen concentration of the deaerated water, the TOC concentration of the third treated water, and based on the dissolved oxygen concentration and the TOC concentration of the third treated water, the second It is preferable to adjust the amount of ultraviolet ray irradiation in the ultraviolet oxidation step (Invention 7).
 かかる発明(発明7)によれば、一次純水装置において、第二の紫外酸化工程の被処理水のTOC濃度に基づいて、この第二の紫外線酸化装置で処理する紫外線の照射量を制御する。さらに、二次純水装置において第三の処理水を生成させるに際し、脱気水の溶存酸素濃度を測定するとともに、第三の処理水のTOC濃度を測定し、この溶存酸素濃度と第三の処理水の中のTOC濃度とに基づいて、第一の紫外酸化工程で処理する一次純水のTOC濃度が最適化されるように第二の紫外酸化工程における紫外線の照射量を補正することにより、紫外線酸化装置における紫外線の過剰照射を最小限とすることで過酸化水素の生成を抑制して、TOC濃度の低い超純水を安定して製造することができる。 According to this invention (Invention 7), in the primary water purification device, the amount of ultraviolet rays to be treated in the second ultraviolet oxidation device is controlled based on the TOC concentration of the water to be treated in the second ultraviolet oxidation step. . Furthermore, when generating the third treated water in the secondary water purification device, the dissolved oxygen concentration of the degassed water is measured, and the TOC concentration of the third treated water is measured, and this dissolved oxygen concentration and the third treated water are measured. By correcting the amount of ultraviolet irradiation in the second ultraviolet oxidation step so that the TOC concentration of the primary pure water treated in the first ultraviolet oxidation step is optimized based on the TOC concentration in the treated water. By minimizing excessive irradiation of ultraviolet rays in the ultraviolet oxidation device, generation of hydrogen peroxide can be suppressed, and ultrapure water with a low TOC concentration can be stably produced.
 さらに、本発明は、処理原水を一次純水装置で処理して一次純水を製造し、この一次純水をさらに二次純水装置で処理して二次純水を製造する超純水製造方法であって、前記二次純水装置において、前記一次純水に紫外線を照射して第一の処理水を生成させる第一の紫外酸化工程と、この第一の処理水中の過酸化水素を分解して第二の処理水を生成する白金族金属触媒樹脂処理工程と、前記白金族金属触媒樹脂処理工程の後、前記第二の処理水中の溶存ガスを除去して脱気水を生成する脱ガス工程と、この脱気水からイオン性不純物を除去して第三の処理水を生成する脱イオン工程とを有し、前記第三の処理水のTOC濃度を測定する工程と、該第三の処理水のTOC濃度に基づいて前記第一の紫外線酸化装置の出力を制御する工程とを備えた、超純水製造装置の運転方法を提供する(発明8)。 Furthermore, the present invention provides ultrapure water production in which the treated raw water is treated with a primary water purification device to produce primary pure water, and the primary pure water is further processed with a secondary water purification device to produce secondary pure water. The method includes, in the secondary water purification device, a first ultraviolet oxidation step of irradiating the primary pure water with ultraviolet rays to produce a first treated water, and hydrogen peroxide in the first treated water. a platinum group metal catalyst resin treatment step of decomposing to generate second treated water; and after the platinum group metal catalyst resin treatment step, removing gas dissolved in the second treated water to generate degassed water. a degassing step and a deionization step of removing ionic impurities from the degassed water to produce third treated water, a step of measuring the TOC concentration of the third treated water, and a step of measuring the TOC concentration of the third treated water; There is provided a method for operating an ultrapure water production apparatus, comprising the step of controlling the output of the first ultraviolet oxidation apparatus based on the TOC concentration of the treated water (invention 8).
 かかる発明(発明8)によれば、最終的な処理水である第三の処理水のTOCの測定値に基づいて、フィードバック制御により第一の紫外酸化工程における紫外線の出力を調整することにより、第一の紫外酸化工程における紫外線の過剰照射を少なくし、過酸化水素の生成を抑制することで溶存酸素の上昇を防止してTOC濃度の低い超純水を安定して製造することができる。 According to this invention (Invention 8), by adjusting the output of ultraviolet rays in the first ultraviolet oxidation step by feedback control based on the measured value of TOC of the third treated water which is the final treated water, By reducing excessive irradiation with ultraviolet rays in the first ultraviolet oxidation step and suppressing the production of hydrogen peroxide, it is possible to prevent an increase in dissolved oxygen and stably produce ultrapure water with a low TOC concentration.
 上記発明(発明8)においては、前記一次純水装置において、被処理に紫外線を照射する第二の紫外酸化工程と、この第二の紫外酸化工程の処理水のTOC濃度を測定して、前記第二の紫外酸化工程における紫外線の照射量を制御する工程とを有し、前記二次純水装置において、前記脱気水の溶存酸素濃度を測定するとともに、前記第三の処理水のTOC濃度を測定し、前記溶存酸素濃度及び第三の処理水のTOC濃度に基づいて前記第二の紫外酸化工程における紫外線の照射量を調整することが好ましい(発明9)。 In the above invention (invention 8), in the primary water purification device, a second ultraviolet oxidation step of irradiating the treated object with ultraviolet rays and a TOC concentration of the treated water of this second ultraviolet oxidation step are measured; and a step of controlling the amount of ultraviolet irradiation in the second ultraviolet oxidation step, and in the secondary water purification device, the dissolved oxygen concentration of the degassed water is measured, and the TOC concentration of the third treated water is measured. It is preferable to measure the amount of ultraviolet rays in the second ultraviolet oxidation step based on the dissolved oxygen concentration and the TOC concentration of the third treated water (invention 9).
 かかる発明(発明9)によれば、制御手段により第四のTOC計の測定値に基づいて、フィードバック制御により第二の紫外酸化工程における紫外線の出力を調整することができる。さらに溶存酸素濃度と最終的な処理水である第三の処理水のTOCの測定値に基づいて、第一の紫外酸化工程で処理する一次純水のTOC濃度が最適化されるように、第二の紫外酸化工程の出力を補正することができるので、第一の紫外線酸化工程における紫外線の過剰照射を最小限とすることで過酸化水素の生成を抑制して、特にTOC濃度の低い超純水を安定して製造することができる。 According to this invention (invention 9), the output of ultraviolet light in the second ultraviolet oxidation step can be adjusted by feedback control based on the measured value of the fourth TOC meter by the control means. Furthermore, based on the dissolved oxygen concentration and the measured TOC value of the third treated water, which is the final treated water, the TOC concentration of the primary pure water to be treated in the first ultraviolet oxidation step is optimized. Since the output of the second ultraviolet oxidation step can be corrected, by minimizing the excessive irradiation of ultraviolet rays in the first ultraviolet oxidation step, the production of hydrogen peroxide can be suppressed, making it possible to suppress the production of hydrogen peroxide, especially for ultrapure products with low TOC concentrations. Water can be produced stably.
 上記発明(発明7又は9)においては、前記第一の紫外酸化工程及び第二の紫外酸化工程が、紫外線酸化装置によるものであり、前記紫外線酸化装置が紫外線ランプの複数のブロックから構成されるとともに、各紫外線ランプの照度が制御可能であり、紫外線の照射量の制御を紫外線ランプの稼働ブロック数と各紫外線ランプの照度とにより行うことが好ましい(発明10)。 In the above invention (invention 7 or 9), the first ultraviolet oxidation step and the second ultraviolet oxidation step are performed using an ultraviolet oxidation device, and the ultraviolet oxidation device is composed of a plurality of blocks of ultraviolet lamps. In addition, it is preferable that the illumination intensity of each ultraviolet lamp is controllable, and that the amount of ultraviolet irradiation is controlled by the number of operating blocks of the ultraviolet lamp and the illuminance of each ultraviolet lamp (invention 10).
 上記発明(発明10)によれば、紫外線酸化装置の稼働するブロック数と紫外線ランプの照度を制御することにより、紫外線酸化装置の出力を細かく調整することができる。 According to the invention (invention 10), the output of the ultraviolet oxidizer can be finely adjusted by controlling the number of blocks in which the ultraviolet oxidizer operates and the illumination intensity of the ultraviolet lamp.
 本発明の超純水製造装置は、一次純水装置と、この一次純水装置で処理された一次純水をさらに処理する二次純水装置とからなり、この二次純水装置が第一の紫外線酸化装置と、白金族金属触媒樹脂装置を備え、この第一の紫外線酸化装置で処理する一次純水のTOC濃度を測定してこの測定値に基づいて制御手段により、第一の紫外線酸化装置の出力を調整するものであるので、第一の紫外線酸化装置における紫外線の過剰照射を少なくし、過酸化水素の生成を抑制することで溶存酸素の上昇を防止してTOC濃度の低い超純水を安定して製造することができる。 The ultrapure water production apparatus of the present invention includes a primary pure water apparatus and a secondary pure water apparatus that further processes the primary purified water treated by the primary pure water apparatus. It is equipped with an ultraviolet oxidation device of Since it adjusts the output of the device, it reduces excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device, suppresses the production of hydrogen peroxide, prevents an increase in dissolved oxygen, and produces ultrapure products with a low TOC concentration. Water can be produced stably.
本発明を適用可能な超純水製造装置を示す概略図である。1 is a schematic diagram showing an ultrapure water production apparatus to which the present invention can be applied. 本発明の第一の実施形態による超純水製造装置におけるサブシステムを示す概略図である。1 is a schematic diagram showing a subsystem in an ultrapure water production apparatus according to a first embodiment of the present invention. 本発明の第二の実施形態による超純水製造装置を示す概略図である。It is a schematic diagram showing an ultrapure water production apparatus according to a second embodiment of the present invention. 本発明の第三の実施形態による超純水製造装置を示す概略図である。It is a schematic diagram showing an ultrapure water production apparatus according to a third embodiment of the present invention. 超純水製造装置における従来のサブシステムを示す概略図である。1 is a schematic diagram showing a conventional subsystem in an ultrapure water production device.
〔第一の実施形態〕
 以下、本発明の超純水製造装置の第一の実施形態について図1及び図2を参照して説明する。
[First embodiment]
Hereinafter, a first embodiment of the ultrapure water production apparatus of the present invention will be described with reference to FIGS. 1 and 2.
(超純水製造装置)
 本実施形態の超純水製造装置は、基本的な全体構成は、前述した図1に示したものと同じであり、サブシステム4に特徴を有する。
(Ultrapure water production equipment)
The ultrapure water production apparatus of this embodiment has the same basic overall configuration as that shown in FIG. 1 described above, and is characterized by the subsystem 4.
<サブシステム4>
 本実施形態において、サブシステム4は、図2に示すように第一の紫外線酸化装置24の入口側のTOC濃度を計測する第一のTOC計41と、白金族金属触媒樹脂塔25の処理水(第二の処理水)の過酸化水素濃度を計測する過酸化水素計42と、膜式脱気装置26の処理水の溶存酸素酸素(DO)濃度を計測する溶存酸素計43と、非再生型混床式イオン交換装置28の処理水(第三の処理水)のTOC濃度を計測する第二のTOC計44とを有する。そして、第一のTOC計41は、パーソナルコンピュータなどの制御手段45に測定データを送信可能となっているとともに、制御手段45はこの送信データに基づいて、第一の紫外線酸化装置24を制御可能となっている。
<Subsystem 4>
In this embodiment, the subsystem 4 includes a first TOC meter 41 that measures the TOC concentration on the inlet side of the first ultraviolet oxidizer 24, and treated water from the platinum group metal catalyst resin column 25, as shown in FIG. A hydrogen peroxide meter 42 that measures the hydrogen peroxide concentration of the (second treated water), a dissolved oxygen meter 43 that measures the dissolved oxygen (DO) concentration of the treated water of the membrane deaerator 26, and a non-regenerated It has a second TOC meter 44 that measures the TOC concentration of the treated water (third treated water) of the mixed bed type ion exchange device 28. The first TOC meter 41 can transmit measurement data to a control means 45 such as a personal computer, and the control means 45 can control the first ultraviolet oxidation device 24 based on this transmitted data. It becomes.
 ここで、第一の紫外線酸化装置24は、複数本の紫外線ランプからなる紫外線ランプの複数のブロックから構成されていて、前述した制御手段45は、点灯するブロック数を制御するとともに各ブロックの紫外線ランプの照度を調光することにより、第一の紫外線酸化装置24における紫外線の出力を制御可能となっていることが好ましい。上述したような紫外線酸化装置24としては、紫外線ランプの照度と点灯ブロック数の両方を調整可能なものとして、日本フォトサイエンス社製「JPW」、「JPH」、「ZK-UV」を用いることができる。また、紫外線ランプの照度調整機能のみを有するものとして、千代田工販社製「COX」、「WOX」、「NWOX」が挙げられるが、紫外線の照射量の調整レンジが広いことから、紫外線ランプの照度と点灯ブロック数の両方を調整可能なものが好ましく、特にTOC分解性能が高い点で日本フォトサイエンス社製「JPW」、「ZK-UV」が好ましい。具体的には、本実施形態では1ブロック当たり2本の紫外線ランプで、3ブロックで構成されていて、このブロックごとに紫外線ランプの照度を30~100%の範囲で調光可能なものとする。このような構成とすれば、点灯ブロック数は1~3ブロックであるので、紫外線の出力の最大値に対して、10~100%の範囲で紫外線ランプの紫外線照射量を調整することができる。 Here, the first ultraviolet oxidation device 24 is composed of a plurality of blocks of ultraviolet lamps each including a plurality of ultraviolet lamps, and the control means 45 described above controls the number of blocks to be lit and also controls the ultraviolet rays of each block. It is preferable that the output of ultraviolet rays in the first ultraviolet oxidizer 24 can be controlled by adjusting the illuminance of the lamp. As the above-mentioned ultraviolet oxidation device 24, it is possible to use “JPW”, “JPH”, and “ZK-UV” manufactured by Nippon Photoscience Co., Ltd., which can adjust both the illuminance of the ultraviolet lamp and the number of lighting blocks. can. In addition, "COX", "WOX", and "NWOX" manufactured by Chiyoda Kohan Co., Ltd. are examples of UV lamps that only have the function of adjusting the illumination intensity. It is preferable to use one that can adjust both the number of lighting blocks and the number of lit blocks, and in particular, “JPW” and “ZK-UV” manufactured by Nippon Photo Science Co., Ltd. are preferable because they have high TOC decomposition performance. Specifically, in this embodiment, each block consists of three blocks with two ultraviolet lamps, and the illuminance of the ultraviolet lamps can be adjusted in the range of 30 to 100% for each block. . With such a configuration, the number of lighting blocks is 1 to 3, so the amount of ultraviolet rays from the ultraviolet lamp can be adjusted in the range of 10 to 100% of the maximum output of ultraviolet rays.
(超純水製造装置の運転方法)
 上述したような超純水製造装置1の運転方法について、以下説明する。
 まず、原水Wを前処理装置2に供給すると、凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などにより、原水W中の懸濁物質やコロイド物質の除去を行い、処理原水としての前処理水W0を得る。この過程では高分子系有機物、疎水性有機物などもある程度除去される。
(How to operate ultrapure water production equipment)
A method of operating the ultrapure water production apparatus 1 as described above will be described below.
First, when the raw water W is supplied to the pretreatment device 2, suspended matter and colloidal substances in the raw water W are removed by coagulation, pressurized flotation (sedimentation), filtration (membrane filtration), etc., and the raw water is treated as raw water. Pretreated water W0 is obtained. In this process, polymeric organic substances, hydrophobic organic substances, etc. are also removed to some extent.
 この前処理水W0を一次純水装置3に供給して一旦タンク11に貯留した後、図示しないポンプにより送水し、予熱器16で予熱して前処理水W0の粘度を低下させ逆浸透膜装置12に供給する。この逆浸透膜装置12で所定の回収率で被処理水を処理することにより塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。次に第二の紫外線酸化装置13で、TOC成分を所定のレベルにまで低減する(第二の紫外線酸化工程)。続いて再生型イオン交換装置14で、塩類などのイオン性成分を除去する。そして、膜式脱気装置15では無機系炭素(IC)、溶存酸素の除去を行い、一次純水W1を製造する。 This pretreated water W0 is supplied to the primary water purifier 3 and temporarily stored in the tank 11, and then sent by a pump (not shown) and preheated by a preheater 16 to reduce the viscosity of the pretreated water W0, which is then used to reduce the viscosity of the pretreated water W0, which is then used to reduce the viscosity of the pretreated water W0. Supply to 12. By treating the water to be treated with this reverse osmosis membrane device 12 at a predetermined recovery rate, salts are removed, as well as ionic and colloidal TOC. Next, the second ultraviolet oxidation device 13 reduces the TOC component to a predetermined level (second ultraviolet oxidation step). Subsequently, ionic components such as salts are removed by a regenerative ion exchange device 14. Then, in the membrane deaerator 15, inorganic carbon (IC) and dissolved oxygen are removed to produce primary pure water W1.
 この一次純水W1は、配管17を介してサブシステム4へ送水される。サブシステム4では、一次純水W1をポンプ22で送液して、低圧紫外線酸化装置による第一の紫外線酸化装置24で、低圧紫外線ランプより出される約185nmの紫外線によりTOCを有機酸、さらにはCOレベルにまで分解して、第一の処理水を生成する(第一の紫外線酸化工程)。次に、白金族金属触媒樹脂塔25で過酸化水素(H)を水(H)と酸素(O)とに分解して第二の処理水を生成する(白金族金属触媒樹脂処理工程)。続いて、ここで発生した酸素や溶存する二酸化炭素を膜式脱気装置26で除去した後、微量に残存する低分子量有機物及びイオン性不純物を逆浸透膜27及び非再生型混床式イオン交換装置28で除去して第三の処理水を生成する(脱イオン工程)。そして、限外濾過(UF)膜29では、微粒子が除去され、非再生型混床式イオン交換装置28などから流出した微粒子を除去して超純水W2を製造することができる。 This primary pure water W1 is sent to the subsystem 4 via piping 17. In the subsystem 4, primary pure water W1 is pumped by a pump 22, and a first ultraviolet oxidation device 24 using a low-pressure ultraviolet oxidation device converts TOC into an organic acid and further with ultraviolet light of about 185 nm emitted from a low-pressure ultraviolet lamp. It is decomposed to CO2 level to produce the first treated water (first ultraviolet oxidation step). Next, hydrogen peroxide (H 2 O 2 ) is decomposed into water (H 2 O 2 ) and oxygen (O 2 ) in the platinum group metal catalyst resin tower 25 to generate second treated water (platinum group metal catalyst resin column 25). metal catalyst resin treatment process). Next, the oxygen generated here and dissolved carbon dioxide are removed by a membrane deaerator 26, and then trace amounts of remaining low molecular weight organic matter and ionic impurities are removed by a reverse osmosis membrane 27 and a non-regenerative mixed bed ion exchanger. It is removed in the device 28 to produce third treated water (deionization step). Then, in the ultrafiltration (UF) membrane 29, fine particles are removed, and ultrapure water W2 can be produced by removing fine particles flowing out from the non-regenerative mixed bed ion exchange device 28 and the like.
 上述したような超純水製造装置1の製造工程において、第一のTOC計41により第一の紫外線酸化装置24に流入する一次純水W1のTOC濃度を測定し、この測定値に基づいて制御手段45は、TOCの分解に必要な紫外線量となるように第一の紫外線酸化装置24の出力を制御する。このとき、本実施形態においては、第一の紫外線酸化装置24が、1ブロック当たり2本の紫外線ランプで、3ブロック程度の複数ブロックで構成されていて、このブロックごとに紫外線ランプの照度を30~100%の範囲で調光可能なものであるので、第一の紫外線酸化装置24の紫外線の出力の最大値に対して、約10~100%の範囲で紫外線ランプの紫外線照射量を調整することができる。これにより、第一の紫外線酸化装置24の被処理水である一次純水W1のTOC濃度に応じて、紫外線ランプの点灯本数のみで処理する場合に比べて、適切な紫外線の出力に迅速に調整することができるので、第一の紫外線酸化装置24における紫外線の過剰照射を少なくし、過酸化水素の生成を抑制することで溶存酸素の上昇を防止してTOC濃度の低い超純水W2を安定して製造することができる。この第一の紫外線酸化装置24における紫外線出力の調整は、サブシステム4における一次純水W1の処理量と、第一のTOC計41によるTOC濃度の測定値との相関による、最適な紫外線照射量をあらかじめ算出しておき、これに基づき行えばよい。 In the manufacturing process of the ultrapure water production device 1 as described above, the TOC concentration of the primary pure water W1 flowing into the first ultraviolet oxidation device 24 is measured by the first TOC meter 41, and control is performed based on this measurement value. The means 45 controls the output of the first ultraviolet oxidizer 24 so that the amount of ultraviolet rays is necessary for decomposing TOC. At this time, in this embodiment, the first ultraviolet oxidation device 24 is composed of a plurality of blocks of about three blocks with two ultraviolet lamps per block. Since the light can be adjusted within the range of ~100%, the amount of ultraviolet rays from the UV lamp is adjusted within the range of approximately 10~100% of the maximum output of the ultraviolet rays of the first ultraviolet oxidizer 24. be able to. As a result, according to the TOC concentration of the primary pure water W1, which is the water to be treated by the first ultraviolet oxidation device 24, the output of ultraviolet rays can be quickly adjusted to an appropriate value, compared to the case where the treatment is performed only by turning on the number of ultraviolet lamps. Therefore, by reducing excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device 24 and suppressing the generation of hydrogen peroxide, an increase in dissolved oxygen is prevented and the ultrapure water W2 with a low TOC concentration is stabilized. It can be manufactured by Adjustment of the ultraviolet output in the first ultraviolet oxidizer 24 is performed by determining the optimum amount of ultraviolet irradiation based on the correlation between the amount of primary pure water W1 processed in the subsystem 4 and the TOC concentration measured by the first TOC meter 41. Calculate in advance and perform the calculation based on this.
 また、溶存酸素計43と第二のTOC計44とにより、超純水W2の溶存酸素濃度及びTOC濃度を測定し、超純水W2の要求水質を満たすか否かを監視してもよい。 Furthermore, the dissolved oxygen concentration and TOC concentration of the ultrapure water W2 may be measured using the dissolved oxygen meter 43 and the second TOC meter 44, and it may be monitored whether the required water quality of the ultrapure water W2 is satisfied.
〔第二の実施形態〕
 次に、本発明の超純水製造装置の第二の実施形態について図1及び図3を参照して説明する。
[Second embodiment]
Next, a second embodiment of the ultrapure water production apparatus of the present invention will be described with reference to FIGS. 1 and 3.
(超純水製造装置)
 本実施形態の超純水製造装置は、基本的な全体構成は、前述した図1に示したものと同じである。
(Ultrapure water production equipment)
The basic overall configuration of the ultrapure water production apparatus of this embodiment is the same as that shown in FIG. 1 described above.
 図3に示すように本実施形態では、一次純水装置3の第二の紫外線酸化装置13の入口側のTOC濃度を計測する第三のTOC計46と、再生型イオン交換装置14の処理水のTOC濃度を計測する第四のTOC計47とを有し、第三のTOC計46は、制御手段45に測定データを送信可能となっているとともに、サブシステム4の溶存酸素計43と第二のTOC計44の測定データも制御手段45に送信可能となっている以外、前述した第一の実施形態と同じ構成を有する。そして、制御手段45は、この第三のTOC計46の測定データに基づいて、第二の紫外線酸化装置13の出力を制御可能となっているとともに、溶存酸素計43と第二のTOC計44の測定データに基づいて、第二の紫外線酸化装置13の出力を補正可能となっている。 As shown in FIG. 3, in this embodiment, a third TOC meter 46 that measures the TOC concentration on the inlet side of the second ultraviolet oxidation device 13 of the primary water purification device 3 and the treated water of the regenerative ion exchange device 14 are used. The third TOC meter 46 is capable of transmitting measurement data to the control means 45, and is connected to the dissolved oxygen meter 43 of the subsystem 4 and the fourth TOC meter 47. It has the same configuration as the first embodiment described above, except that the measurement data of the second TOC meter 44 can also be transmitted to the control means 45. The control means 45 is capable of controlling the output of the second ultraviolet oxidizer 13 based on the measurement data of the third TOC meter 46, and also controls the dissolved oxygen meter 43 and the second TOC meter 44. The output of the second ultraviolet oxidizer 13 can be corrected based on the measured data.
 なお、第二の紫外線酸化装置13は、前述した第一の紫外線酸化装置24と同じ構成であり、複数本の紫外線ランプからなる紫外線ランプの複数のブロックから構成されていて、制御手段45は、点灯するブロック数を制御するとともに各紫外線ランプの照度を調光することにより、紫外線の出力を制御可能となっていることが好ましい。具体的には、本実施形態では1ブロック当たり2本の紫外線ランプで、3ブロックで構成されていて、このブロックごとに紫外線ランプの照度を30~100%の範囲で調光可能なものとする。このような構成とすれば、点灯ブロック数は1~3ブロックであるので、紫外線の出力の最大値に対して、約10~100%の範囲で紫外線ランプの紫外線照射量を調整することができる。 The second ultraviolet oxidation device 13 has the same configuration as the first ultraviolet oxidation device 24 described above, and is composed of a plurality of blocks of ultraviolet lamps each including a plurality of ultraviolet lamps. It is preferable that the output of ultraviolet rays can be controlled by controlling the number of lit blocks and adjusting the illuminance of each ultraviolet lamp. Specifically, in this embodiment, each block consists of three blocks with two ultraviolet lamps, and the illuminance of the ultraviolet lamps can be adjusted in the range of 30 to 100% for each block. . With this configuration, the number of lighting blocks is 1 to 3, so the amount of ultraviolet rays from the ultraviolet lamp can be adjusted within a range of about 10 to 100% of the maximum output of ultraviolet rays. .
(超純水製造装置の運転方法)
 上述したような第二の実施形態の超純水製造装置1の運転方法について以下説明する。本実施形態の超純水製造装置1における超純水の製造工程は前述した第一の実施形態と同じであるので、その詳細な説明は省略する。
(How to operate ultrapure water production equipment)
A method of operating the ultrapure water production apparatus 1 of the second embodiment as described above will be described below. The ultrapure water production process in the ultrapure water production apparatus 1 of this embodiment is the same as that of the first embodiment described above, so detailed explanation thereof will be omitted.
 本実施形態の超純水製造装置1の製造工程において、一次純水装置3では、第三のTOC計46により第二の紫外線酸化装置13に流入する被処理水のTOC濃度を測定し、この測定値に基づいて制御手段45は、TOCの分解に必要な紫外線量となるように第二の紫外線酸化装置13の出力を制御する(図3中の(1))。このとき、本実施形態においては、第二の紫外線酸化装置13が、1ブロック当たり2本の紫外線ランプで、3ブロック程度の複数ブロックで構成されていて、このブロックごとに紫外線ランプの照度を30~100%の範囲で調光可能なものであるので、第二の紫外線酸化装置13の紫外線の出力の最大値に対して、約10~100%の範囲で紫外線ランプの紫外線照射量を調整することができる。 In the manufacturing process of the ultrapure water production device 1 of this embodiment, in the primary water purification device 3, the third TOC meter 46 measures the TOC concentration of the water to be treated flowing into the second ultraviolet oxidation device 13. Based on the measured value, the control means 45 controls the output of the second ultraviolet oxidizer 13 so that the amount of ultraviolet rays necessary for decomposing TOC is obtained ((1) in FIG. 3). At this time, in this embodiment, the second ultraviolet oxidation device 13 is composed of a plurality of blocks of about three blocks, with two ultraviolet lamps per block, and the illumination intensity of the ultraviolet lamp is adjusted to 30 Since the light can be adjusted within the range of ~100%, the amount of ultraviolet irradiation from the UV lamp is adjusted within the range of approximately 10~100% of the maximum output of the ultraviolet rays of the second ultraviolet oxidizer 13. be able to.
 また、サブシステム4では、第一のTOC計41により第一の紫外線酸化装置24に流入する一次純水W1のTOC濃度を測定し、この測定値に基づいて制御手段45は、TOCの分解に必要な紫外線量となるように第一の紫外線酸化装置24の出力を制御する(図3中の(2))。このとき、本実施形態においては、第一の紫外線酸化装置24が、1ブロック当たり2本の紫外線ランプで、3ブロック程度の複数ブロックで構成されていて、このブロックごとに紫外線ランプの照度を30~100%の範囲で調光可能なものであるので、第一の紫外線酸化装置24の紫外線の出力の最大値に対して、約10~100%の範囲で紫外線ランプの紫外線照射量を調整することができる。 Further, in the subsystem 4, the TOC concentration of the primary pure water W1 flowing into the first ultraviolet oxidation device 24 is measured by the first TOC meter 41, and based on this measurement value, the control means 45 controls the decomposition of TOC. The output of the first ultraviolet oxidizer 24 is controlled so that the required amount of ultraviolet rays is obtained ((2) in FIG. 3). At this time, in this embodiment, the first ultraviolet oxidation device 24 is composed of a plurality of blocks of about three blocks with two ultraviolet lamps per block. Since the light can be adjusted within the range of ~100%, the amount of ultraviolet rays from the UV lamp is adjusted within the range of approximately 10~100% of the maximum output of the ultraviolet rays of the first ultraviolet oxidizer 24. be able to.
 一方、一次純水装置3において、一次純水W1中のTOCが十分に低くなると、サブシステム4の第一の紫外線酸化装置24で分解するTOC量が少ないため、上述したような第一の紫外線酸化装置24における紫外線の出力の制御だけでは、TOCに対して紫外線照射量が非常に過剰となる場合がある。この場合、第一の紫外線酸化装置24において発生する過酸化水素(H)が多くなる。これが顕著となると白金族金属触媒樹脂塔25で処理した第二の処理水の溶存酸素濃度が高くなるとともに過酸化水素(H)もブレイクし、膜式脱気装置26処理水の溶存酸素濃度が上昇するか、非再生型混床式イオン交換装置28中のイオン交換樹脂に起因して第三の処理水の有機物(TOC)が増加することになる。そこで、本実施形態においては、膜式脱気装置26の後段で溶存酸素計43により溶存酸素濃度を測定するとともに、非再生型混床式イオン交換装置28の後段で第二のTOC計44により第三の処理水のTOC濃度を測定し、これらのいずれか一方、又は両方が上昇する傾向を示した場合には、制御手段45は、一次純水W1のTOC濃度が少なすぎると判断し、第一の紫外線酸化装置24の被処理水である一次純水W1のTOC濃度を上昇させる。具体的には、制御手段45は第二の紫外線酸化装置13の紫外線出力を減少させるように制御する(図3中の(3))。この紫外線の出力を減少度合いは、サブシステム4における一次純水W1の処理量と、溶存酸素計43及び第二のTOC計44の上昇傾向とにより、あらかじめ算出しておいた計算式により算出すればよい。これにより第一の処理水の溶存酸素濃度の上昇を改善することができる。 On the other hand, in the primary water purifier 3, when the TOC in the primary pure water W1 becomes sufficiently low, the amount of TOC decomposed in the first ultraviolet oxidizer 24 of the subsystem 4 is small, so that the first ultraviolet rays as described above If only the output of the ultraviolet rays in the oxidizer 24 is controlled, the amount of ultraviolet rays irradiated to the TOC may be extremely excessive. In this case, the amount of hydrogen peroxide (H 2 O 2 ) generated in the first ultraviolet oxidation device 24 increases. When this becomes noticeable, the dissolved oxygen concentration in the second treated water treated in the platinum group metal catalyst resin tower 25 increases and hydrogen peroxide (H 2 O 2 ) also breaks out, causing the dissolved oxygen in the treated water in the membrane deaerator 26 to increase. Either the oxygen concentration will increase or the organic matter (TOC) in the third treated water will increase due to the ion exchange resin in the non-regenerative mixed bed ion exchange device 28. Therefore, in this embodiment, the dissolved oxygen concentration is measured by a dissolved oxygen meter 43 downstream of the membrane deaerator 26, and a second TOC meter 44 is measured downstream of the non-regenerative mixed bed ion exchange device 28. If the TOC concentration of the third treated water is measured and one or both of them shows a tendency to increase, the control means 45 determines that the TOC concentration of the primary pure water W1 is too low, The TOC concentration of the primary pure water W1, which is the water to be treated in the first ultraviolet oxidation device 24, is increased. Specifically, the control means 45 controls the second ultraviolet oxidizer 13 to reduce its ultraviolet output ((3) in FIG. 3). The degree of reduction in the output of ultraviolet rays is calculated using a pre-calculated formula based on the amount of primary pure water W1 processed in the subsystem 4 and the rising tendency of the dissolved oxygen meter 43 and the second TOC meter 44. Bye. This can improve the increase in dissolved oxygen concentration in the first treated water.
 上述したような第二の実施形態の超純水製造装置によれば、第一の紫外線酸化装置24の被処理水である一次純水W1のTOC濃度に応じて、第一の紫外線酸化装置24において紫外線の出力を最適に制御するだけでなく、この第一の紫外線酸化装置24におけるTOCの分解が最適化するように、一次純水装置3の第二の紫外線酸化装置13をも制御するものであるので、第一の紫外線酸化装置24における紫外線の過剰照射を一層少なくし、過酸化水素の生成を抑制することで溶存酸素の上昇を防止してTOC濃度の低い超純水W2を安定して製造することができる。 According to the ultrapure water production apparatus of the second embodiment as described above, the TOC concentration of the primary pure water W1, which is the water to be treated by the first ultraviolet oxidation apparatus 24, is In addition to optimally controlling the output of ultraviolet rays in the first ultraviolet oxidizer 24, it also controls the second ultraviolet oxidizer 13 of the primary water purification device 3 so that the decomposition of TOC in the first ultraviolet oxidizer 24 is optimized. Therefore, by further reducing excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device 24 and suppressing the generation of hydrogen peroxide, an increase in dissolved oxygen is prevented and the ultrapure water W2 with a low TOC concentration is stabilized. It can be manufactured using
〔第三の実施形態〕
 さらに、本発明の超純水製造装置の第三の実施形態について図1及び図4を参照して説明する。
[Third embodiment]
Furthermore, a third embodiment of the ultrapure water production apparatus of the present invention will be described with reference to FIGS. 1 and 4.
(超純水製造装置)
 本実施形態の超純水製造装置は、基本的な全体構成は、前述した図1に示したものと同じである。
(Ultrapure water production equipment)
The basic overall configuration of the ultrapure water production apparatus of this embodiment is the same as that shown in FIG. 1 described above.
 図4に示すように本実施形態では、一次純水装置3の第二の紫外線酸化装置13の入口側のTOC濃度を計測する第三のTOC計46と、再生型イオン交換装置14の処理水のTOC濃度を計測する第四のTOC計47とを有し、第四のTOC計47は、制御手段45に測定データを送信可能となっていて、制御手段45は、この第四のTOC計47のデータに基づき第二の紫外線酸化装置13を制御可能となっている。 As shown in FIG. 4, in this embodiment, a third TOC meter 46 that measures the TOC concentration on the inlet side of the second ultraviolet oxidation device 13 of the primary water purification device 3 and the treated water of the regenerative ion exchange device 14 are used. The fourth TOC meter 47 is capable of transmitting measurement data to the control means 45, and the control means 45 is configured to measure the TOC concentration of the fourth TOC meter 47. The second ultraviolet oxidation device 13 can be controlled based on the data of 47.
 また、サブシステム4は、第一の紫外線酸化装置24の入口側のTOC濃度を計測する第一のTOC計41と、白金族金属触媒樹脂塔25の処理水(第二の処理水)の過酸化水素濃度を計測する過酸化水素計42と、溶存酸素酸素(DO)濃度を計測する溶存酸素計43と、非再生型混床式イオン交換装置28の処理水(第三の処理水)の溶存酸素酸素(DO)濃度を計測する溶存酸素計43とTOC濃度を計測する第二のTOC計44とを有する。そして、溶存酸素計43と第二のTOC計44は、制御手段45に測定データを送信可能となっていて、制御手段45は、第二のTOC計44の測定データに基づいて、第一の紫外線酸化装置24の紫外線の出力を制御可能となっているとともに、溶存酸素計43と第二のTOC計44の測定データに基づいて、第二の紫外線酸化装置13の紫外線の出力を補正可能となっている。 The subsystem 4 also includes a first TOC meter 41 that measures the TOC concentration on the inlet side of the first ultraviolet oxidizer 24, and a filter for treating water (second treated water) in the platinum group metal catalyst resin column 25. A hydrogen peroxide meter 42 that measures hydrogen oxide concentration, a dissolved oxygen meter 43 that measures dissolved oxygen (DO) concentration, and treated water (third treated water) of non-regenerative mixed bed ion exchange device 28. It has a dissolved oxygen meter 43 that measures dissolved oxygen (DO) concentration and a second TOC meter 44 that measures TOC concentration. The dissolved oxygen meter 43 and the second TOC meter 44 are capable of transmitting measurement data to the control means 45, and the control means 45 transmits the measurement data to the first TOC meter 44 based on the measurement data of the second TOC meter 44. The ultraviolet output of the ultraviolet oxidizer 24 can be controlled, and the ultraviolet output of the second ultraviolet oxidizer 13 can be corrected based on the measurement data of the dissolved oxygen meter 43 and the second TOC meter 44. It has become.
(超純水製造装置の運転方法)
 上述したような第三の実施形態の超純水製造装置1の運転方法について以下説明する。
 本実施形態の超純水製造装置1における超純水の製造工程は前述した第一の実施形態と同じであるので、その詳細な説明は省略する。
(How to operate ultrapure water production equipment)
A method of operating the ultrapure water production apparatus 1 of the third embodiment as described above will be described below.
The ultrapure water production process in the ultrapure water production apparatus 1 of this embodiment is the same as that of the first embodiment described above, so detailed explanation thereof will be omitted.
 本実施形態の超純水製造装置1の運転工程において、一次純水装置3では、第四のTOC計47により測定された再生型イオン交換装置14の処理水のTOC濃度と、あらかじめ想定しておいた再生型イオン交換装置14の処理水のTOC濃度との差異に基づいて、第二の紫外線酸化装置13のTOC分解量の過不足を判断し、フィードバック制御により、TOCの分解に必要な紫外線量となるように第二の紫外線酸化装置13の出力を制御する(図4中の(1))。このとき、本実施形態においては、第二の紫外線酸化装置13が、1ブロック当たり2本の紫外線ランプで、3ブロック程度の複数ブロックで構成されていて、このブロックごとに紫外線ランプの照度を30~100%の範囲で調光可能なものであるので、第二の紫外線酸化装置13の紫外線の出力の最大値に対して、約10~100%の範囲で紫外線ランプの紫外線照射量を調整することができる。 In the operation process of the ultrapure water production apparatus 1 of this embodiment, the primary water purification apparatus 3 assumes in advance the TOC concentration of the treated water of the regenerative ion exchange apparatus 14 measured by the fourth TOC meter 47. The amount of TOC decomposed by the second ultraviolet oxidation device 13 is determined based on the difference in the TOC concentration of the treated water from the regenerative ion exchange device 14, and feedback control is performed to determine whether the amount of TOC decomposed by the second ultraviolet oxidation device 13 is too much or not. The output of the second ultraviolet oxidizer 13 is controlled so that the amount of UV oxidation is maintained ((1) in FIG. 4). At this time, in this embodiment, the second ultraviolet oxidation device 13 is composed of a plurality of blocks of about three blocks, with two ultraviolet lamps per block, and the illumination intensity of the ultraviolet lamp is adjusted to 30 Since the light can be adjusted within the range of ~100%, the amount of ultraviolet irradiation from the UV lamp is adjusted within the range of approximately 10~100% of the maximum output of the ultraviolet rays of the second ultraviolet oxidizer 13. be able to.
 また、サブシステム4では、最終的な水質である非再生型混床式イオン交換装置28の処理水(第三の処理水)の第二のTOC計44の測定データと、あらかじめ想定しておいた非再生型混床式イオン交換装置28の処理水のTOC濃度との差異に基づいて、フィードバック制御により第一の紫外線酸化装置24の出力を制御する(図4中の(2))。このとき、本実施形態においては、第一の紫外線酸化装置24が、1ブロック当たり2本の紫外線ランプで、3ブロック程度の複数ブロックで構成されていて、このブロックごとに紫外線ランプの照度を30~100%の範囲で調光可能なものであるので、第一の紫外線酸化装置24の紫外線の出力の最大値に対して、約10~100%の範囲で紫外線ランプの紫外線照射量を調整することができる。 In addition, in the subsystem 4, the measurement data of the second TOC meter 44 of the treated water (third treated water) of the non-regenerative mixed bed ion exchanger 28, which is the final water quality, and the data assumed in advance are used. The output of the first ultraviolet oxidation device 24 is controlled by feedback control based on the difference in the TOC concentration of the treated water from the non-regenerative mixed bed ion exchange device 28 ((2) in FIG. 4). At this time, in this embodiment, the first ultraviolet oxidation device 24 is composed of a plurality of blocks of about three blocks with two ultraviolet lamps per block. Since the light can be adjusted within the range of ~100%, the amount of ultraviolet rays from the UV lamp is adjusted within the range of approximately 10~100% of the maximum output of the ultraviolet rays of the first ultraviolet oxidizer 24. be able to.
 一方、一次純水装置3において、一次純水W1中のTOCが十分に低くなると、サブシステム4の第一の紫外線酸化装置24で分解するTOCが少ないため、上述したような第一の紫外線酸化装置24における紫外線の出力の制御だけでは、TOCに対して紫外線照射量が非常に過剰となる場合がある。この場合、第一の紫外線酸化装置24において発生する過酸化水素(H)が多くなる。これが顕著となると白金族金属触媒樹脂塔25を過酸化水素(H)がブレイクし、膜式脱気装置26処理水の溶存酸素濃度が上昇するか、非再生型混床式イオン交換装置28中のイオン交換樹脂に起因して有機物(TOC)が生じることになる。そこで、本実施形態においては非再生型混床式イオン交換装置28の後段で溶存酸素計43により溶存酸素濃度を測定するとともに第二のTOC計44によりTOC濃度を測定し、これらのいずれか一方、又は両方が上昇する傾向を示した場合には、第一の紫外線酸化装置24の被処理水である一次純水W1のTOC濃度を上昇させる(図4中の(3))。具体的には、制御手段45は第二の紫外線酸化装置13の紫外線出力を減少させるように制御する。この紫外線出力を減少度合いは、サブシステム4における一次純水W1の処理量と、溶存酸素計43及び第二のTOC計44の上昇傾向とにより、あらかじめ算出しておいた計算式により算出すればよい。 On the other hand, in the primary water deionization device 3, when the TOC in the primary deionization water W1 becomes sufficiently low, less TOC is decomposed in the first ultraviolet oxidation device 24 of the subsystem 4. If only the output of the ultraviolet rays in the device 24 is controlled, the amount of ultraviolet rays irradiated to the TOC may be extremely excessive. In this case, the amount of hydrogen peroxide (H 2 O 2 ) generated in the first ultraviolet oxidation device 24 increases. If this becomes noticeable, hydrogen peroxide (H 2 O 2 ) will break through the platinum group metal catalyst resin column 25, and the dissolved oxygen concentration of the treated water in the membrane deaerator 26 will increase, or the non-regenerative mixed bed ion exchange Organic matter (TOC) will be generated due to the ion exchange resin in device 28. Therefore, in this embodiment, the dissolved oxygen concentration is measured by the dissolved oxygen meter 43 at the latter stage of the non-regenerative mixed bed type ion exchange device 28, and the TOC concentration is also measured by the second TOC meter 44, and either one of these is used. , or both show a tendency to increase, the TOC concentration of the primary pure water W1, which is the water to be treated in the first ultraviolet oxidation device 24, is increased ((3) in FIG. 4). Specifically, the control means 45 controls the second ultraviolet oxidizer 13 to reduce its ultraviolet output. The degree of reduction in the ultraviolet output can be calculated using a pre-calculated formula based on the amount of primary pure water W1 processed in the subsystem 4 and the rising tendency of the dissolved oxygen meter 43 and the second TOC meter 44. good.
 上述したような第三の実施形態によれば、最終的な処理水である非再生型混床式イオン交換装置28の処理水(第三の処理水)における溶存酸素濃度及びTOC濃度に応じて、第一の紫外線酸化装置24をフィードバック制御により適切な紫外線の出力に調整するだけでなく、この第一の紫外線酸化装置24におけるTOCの分解が最適化するように、一次純水装置3の第二の紫外線酸化装置13を制御するものであるので、第一の紫外線酸化装置24における紫外線の過剰照射を一層少なくし、過酸化水素の生成を抑制することで溶存酸素の上昇を防止してTOC濃度の低い超純水W2を安定して製造することができる。 According to the third embodiment as described above, depending on the dissolved oxygen concentration and TOC concentration in the final treated water, the treated water of the non-regenerative mixed bed ion exchange device 28 (third treated water). In addition to adjusting the first ultraviolet oxidation device 24 to an appropriate ultraviolet output through feedback control, the Since it controls the second ultraviolet oxidation device 13, excessive irradiation of ultraviolet rays in the first ultraviolet oxidation device 24 is further reduced, and by suppressing the generation of hydrogen peroxide, an increase in dissolved oxygen is prevented and the TOC is Ultrapure water W2 with low concentration can be stably produced.
 以上、本実施形態の超純水製造装置及びその運転方法について添付図面を参照してきたが、本発明はサブシステム4に紫外線酸化装置と白金族金属触媒樹脂塔とを有してれば適用可能であり、特に一次純水装置にも紫外線酸化装置を有する超純水製造装置に特に好適に適用可能であるが、それ以外の構成については、特に制限はなく、逆浸透膜装置や電気脱イオン装置など汎用的な装置を適宜配置してもよい。また、第二の実施形態のようなフィードフォワード制御と、第三の実施形態のようなフィードバック制御とを併用してもよい。 Above, reference has been made to the attached drawings regarding the ultrapure water production apparatus and its operating method according to the present embodiment, but the present invention can be applied as long as the subsystem 4 includes an ultraviolet oxidation device and a platinum group metal catalyst resin column. Therefore, it can be particularly suitably applied to ultrapure water production equipment that has an ultraviolet oxidation device in the primary water purification equipment, but there are no particular restrictions on other configurations, and reverse osmosis membrane equipment or electrodeionization equipment can be used. General-purpose devices such as devices may be appropriately arranged. Further, feedforward control as in the second embodiment and feedback control as in the third embodiment may be used together.
1 超純水製造装置
2 前処理装置
3 一次純水装置
4 二次純水装置(サブシステム)
5 ユースポイント
11 タンク
12 逆浸透膜装置
13 紫外線(UV)酸化装置(第二の紫外線酸化装置)
14 再生型イオン交換装置
15 膜式脱気装置
16 予熱器
17 配管
21 サブタンク
22 ポンプ
23 熱交換器
24 紫外線酸化装置(第一の紫外線酸化装置)
25 白金族金属触媒樹脂塔
26 膜式脱気装置
27 逆浸透膜装置
28 非再生型混床式イオン交換装置
29 限外濾過(UF)膜(膜濾過装置)
30 送給管
31 返送管
41 第一のTOC計
42 過酸化水素計
43 溶存酸素計
44 第二のTOC計
45 制御手段
46 第三のTOC計
47 第四のTOC計
W 原水
W0 前処理水
W1 一次純水
W2 超純水(二次純水)
1 Ultrapure water production equipment 2 Pre-treatment equipment 3 Primary water purification equipment 4 Secondary water purification equipment (subsystem)
5 Use point 11 Tank 12 Reverse osmosis membrane device 13 Ultraviolet (UV) oxidation device (second ultraviolet oxidation device)
14 Regenerative ion exchange device 15 Membrane deaerator 16 Preheater 17 Piping 21 Sub-tank 22 Pump 23 Heat exchanger 24 Ultraviolet oxidation device (first ultraviolet oxidation device)
25 Platinum group metal catalyst resin column 26 Membrane deaerator 27 Reverse osmosis membrane device 28 Non-regenerative mixed bed ion exchange device 29 Ultrafiltration (UF) membrane (membrane filtration device)
30 Feed pipe 31 Return pipe 41 First TOC meter 42 Hydrogen peroxide meter 43 Dissolved oxygen meter 44 Second TOC meter 45 Control means 46 Third TOC meter 47 Fourth TOC meter W Raw water W0 Pretreated water W1 Primary pure water W2 Ultra pure water (secondary pure water)

Claims (10)

  1.  一次純水装置と、この一次純水装置で処理された一次純水をさらに処理する二次純水装置とからなる超純水製造装置であって、
     前記二次純水装置は、前記一次純水に紫外線を照射して第一の処理水を生成させる第一の紫外線酸化装置と、
     前記第一の処理水を処理して第二の処理水を生成させる白金族金属触媒樹脂装置と、
     前記第一の紫外線酸化装置の入口側に設けられた一次純水のTOC濃度を計測する第一のTOC計と、
     前記第一のTOC計の測定値に基づいて前記第一の紫外線酸化装置の出力を制御可能な制御手段と
     を有する超純水製造装置。
    An ultrapure water production device comprising a primary water purification device and a secondary water purification device that further processes the primary pure water treated with the primary water purification device,
    The secondary water deionization device includes a first ultraviolet oxidation device that generates first treated water by irradiating the primary deionization water with ultraviolet rays;
    a platinum group metal catalyst resin device that processes the first treated water to generate second treated water;
    a first TOC meter that measures the TOC concentration of primary pure water provided on the inlet side of the first ultraviolet oxidation device;
    An ultrapure water production device comprising: control means capable of controlling the output of the first ultraviolet oxidation device based on the measured value of the first TOC meter.
  2.  前記一次純水装置が、第二の紫外線酸化装置と、前記第二の紫外線酸化装置の被処理水のTOC濃度を計測する第三のTOC計とを備え、前記二次純水装置が、前記白金族金属触媒樹脂装置の後段に前記第二の処理水を処理して脱気水を生成する膜式脱気装置と、前記膜式脱気装置の後段に設けられた溶存酸素計と、この脱気水を処理して第三の処理水を生成する非再生式混合イオン交換装置と、前記非再生式混合イオン交換装置の後段に設けられた前記第三の処理水のTOC濃度を計測する第二のTOC計とを備え、前記制御手段は、前記第三のTOC計の測定値に基づいて前記第二の紫外線酸化装置の出力を制御可能であり、さらに前記溶存酸素計と第二のTOC計の測定値に基づいて、前記第二の紫外線酸化装置の出力を補正可能である、請求項1に記載の超純水製造装置。 The primary water deionization device includes a second ultraviolet oxidation device and a third TOC meter that measures the TOC concentration of the water to be treated in the second ultraviolet oxidation device; a membrane-type deaerator that processes the second treated water to generate deaerated water after the platinum group metal catalyst resin device; a dissolved oxygen meter provided after the membrane-type deaerator; A non-regenerative mixed ion exchange device that processes degassed water to produce third treated water, and a TOC concentration of the third treated water provided at a downstream stage of the non-regenerative mixed ion exchange device. a second TOC meter, and the control means is capable of controlling the output of the second ultraviolet oxidation device based on the measured value of the third TOC meter, and further includes a second TOC meter and a second TOC meter. The ultrapure water production device according to claim 1, wherein the output of the second ultraviolet oxidation device can be corrected based on the measured value of the TOC meter.
  3.  一次純水装置と、この一次純水装置で処理された一次純水をさらに処理する二次純水装置とからなる超純水製造装置であって、
     前記二次純水装置が、前記一次純水に紫外線を照射して第一の処理水を生成させる第一の紫外線酸化装置と、前記第一の処理水を処理して第二の処理水を生成させる白金族金属触媒樹脂装置と、前記白金族金属触媒樹脂装置の後段に設けられた前記第二の処理水を処理して脱気水を生成する膜式脱気装置と、前記膜式脱気装置の後段に設けられた溶存酸素計と、前記脱気水を処理して第三の処理水を生成する非再生式混合イオン交換装置と、前記非再生式混合イオン交換装置の後段に設けられた前記第三の処理水のTOC濃度を計測する第二のTOC計とを備え、
     前記第二のTOC計の測定値に基づいて、前記第一の紫外線酸化装置の出力を制御可能である制御手段を有する超純水製造装置。
    An ultrapure water production device comprising a primary water purification device and a secondary water purification device that further processes the primary pure water treated with the primary water purification device,
    The secondary water purification device includes a first ultraviolet oxidation device that irradiates the primary pure water with ultraviolet rays to generate first treated water, and a first ultraviolet oxidation device that processes the first treated water to generate second treated water. a platinum group metal catalyst resin device for generating degassed water; a membrane deaerator for treating the second treated water to generate degassed water provided after the platinum group metal catalyst resin device; a dissolved oxygen meter installed downstream of the gas device; a non-regenerative mixed ion exchange device that processes the degassed water to produce third treated water; and a dissolved oxygen meter installed downstream of the non-regenerative mixed ion exchange device. a second TOC meter that measures the TOC concentration of the third treated water,
    An ultrapure water production device comprising a control means capable of controlling the output of the first ultraviolet oxidation device based on the measured value of the second TOC meter.
  4.  前記一次純水装置が、第二の紫外線酸化装置と、前記第二の紫外線酸化装置の処理水のTOC濃度を計測する第四のTOC計とを備え、前記二次純水装置が、前記膜式脱気装置の後段に溶存酸素計を有し、前記制御手段が、前記第四のTOC計の測定値に基づいて前記第二の紫外線酸化装置の出力を制御可能であるとともに、前記溶存酸素計と第二のTOC計の測定値に基づいて、前記第二の紫外線酸化装置の出力を補正可能である、請求項3に記載の超純水製造装置。 The primary water deionization device includes a second ultraviolet oxidation device and a fourth TOC meter that measures the TOC concentration of the water treated by the second ultraviolet oxidation device; A dissolved oxygen meter is provided downstream of the type deaerator, and the control means is capable of controlling the output of the second ultraviolet oxidation device based on the measured value of the fourth TOC meter, and The ultrapure water production device according to claim 3, wherein the output of the second ultraviolet oxidation device can be corrected based on the measured values of the TOC meter and the second TOC meter.
  5.  前記第一の紫外線酸化装置及び第二の紫外線酸化装置が紫外線ランプの複数のブロックから構成されるとともに、各紫外線ランプの照度が制御可能である、請求項2又は4に記載の超純水製造装置。 The ultrapure water production according to claim 2 or 4, wherein the first ultraviolet oxidation device and the second ultraviolet oxidation device are composed of a plurality of blocks of ultraviolet lamps, and the illuminance of each ultraviolet lamp is controllable. Device.
  6.  処理原水を一次純水装置で処理して一次純水を製造し、この一次純水をさらに二次純水装置で処理して二次純水を製造する超純水製造方法であって、
     前記一次純水に紫外線を照射して第一の処理水を生成させる第一の紫外酸化工程と、
     この第一の処理水中の過酸化水素を分解して第二の処理水を生成する白金族金属触媒樹脂処理工程と、
     前記紫外酸化工程前の一次純水のTOC濃度を測定してこのTOC濃度に基づいて前記一次純水に照射する紫外線の照射量を制御する工程と
     を備えた、超純水製造装置の運転方法。
    An ultrapure water production method in which treated raw water is processed with a primary water purification device to produce primary pure water, and this primary pure water is further processed with a secondary water purification device to produce secondary pure water, the method comprising:
    a first ultraviolet oxidation step of generating first treated water by irradiating the primary pure water with ultraviolet rays;
    a platinum group metal catalyst resin treatment step of decomposing hydrogen peroxide in the first treated water to generate second treated water;
    A method for operating an ultrapure water production apparatus, comprising: measuring the TOC concentration of the primary pure water before the ultraviolet oxidation step and controlling the amount of ultraviolet rays irradiated to the primary pure water based on the TOC concentration. .
  7.  前記一次純水装置において、被処理水に紫外線を照射する第二の紫外酸化工程と、この第二の紫外酸化工程の被処理水のTOC濃度を測定して、前記第二の紫外酸化工程における紫外線の照射量を制御する工程とを有し、前記二次純水装置において、前記白金族金属触媒樹脂処理工程の後、前記第二の処理水中の溶存ガスを除去して脱気水を生成する脱ガス工程と、この脱気水からイオン性不純物を除去して第三の処理水を生成する脱イオン工程とにより、第三の処理水を生成させるに際し、前記脱気水の溶存酸素濃度を測定するとともに、第三の処理水のTOC濃度を測定し、前記溶存酸素濃度と第三の処理水の中のTOC濃度とに基づいて、前記第二の紫外酸化工程における紫外線の照射量を調整する、請求項6に記載の超純水製造装置の運転方法。 In the primary water purification device, a second ultraviolet oxidation step is performed in which the water to be treated is irradiated with ultraviolet rays, and the TOC concentration of the water to be treated in this second ultraviolet oxidation step is measured, and and controlling the amount of ultraviolet irradiation, and in the secondary water purification device, after the platinum group metal catalyst resin treatment step, remove the dissolved gas in the second treated water to generate degassed water. and a deionization step to remove ionic impurities from this degassed water to generate third treated water, the dissolved oxygen concentration of the degassed water is At the same time, the TOC concentration of the third treated water is measured, and the amount of ultraviolet irradiation in the second ultraviolet oxidation step is determined based on the dissolved oxygen concentration and the TOC concentration in the third treated water. The method for operating an ultrapure water production apparatus according to claim 6, wherein the ultrapure water production apparatus is adjusted.
  8.  処理原水を一次純水装置で処理して一次純水を製造し、この一次純水をさらに二次純水装置で処理して二次純水を製造する超純水製造方法であって、
     前記二次純水装置において、前記一次純水に紫外線を照射して第一の処理水を生成させる第一の紫外酸化工程と、この第一の処理水中の過酸化水素を分解して第二の処理水を生成する白金族金属触媒樹脂処理工程と、前記白金族金属触媒樹脂処理工程の後、前記第二の処理水中の溶存ガスを除去して脱気水を生成する脱ガス工程と、この脱気水からイオン性不純物を除去して第三の処理水を生成する脱イオン工程とを有し、
     前記第三の処理水のTOC濃度を測定する工程と、該第三の処理水のTOC濃度に基づいて前記第一の紫外線酸化装置の出力を制御する工程とを備えた、超純水製造装置の運転方法。
    An ultrapure water production method in which treated raw water is processed with a primary water purification device to produce primary pure water, and this primary pure water is further processed with a secondary water purification device to produce secondary pure water, the method comprising:
    In the secondary water purification device, a first ultraviolet oxidation step is performed in which the primary pure water is irradiated with ultraviolet rays to produce first treated water, and hydrogen peroxide in this first treated water is decomposed to produce a second treated water. a platinum group metal catalyst resin treatment step for producing treated water; and a degassing step for removing dissolved gas in the second treated water to generate degassed water after the platinum group metal catalyst resin treatment step; and a deionization step of removing ionic impurities from this degassed water to generate third treated water,
    An ultrapure water production device comprising: measuring the TOC concentration of the third treated water; and controlling the output of the first ultraviolet oxidation device based on the TOC concentration of the third treated water. How to drive.
  9.  前記一次純水装置において、被処理に紫外線を照射する第二の紫外酸化工程と、この第二の紫外酸化工程の処理水のTOC濃度を測定して、前記第二の紫外酸化工程における紫外線の照射量を制御する工程とを有し、前記二次純水装置において、前記脱気水の溶存酸素濃度を測定するとともに、前記第三の処理水のTOC濃度を測定し、前記溶存酸素濃度及び第三の処理水のTOC濃度に基づいて前記第二の紫外酸化工程における紫外線の照射量を調整する、請求項8に記載の超純水製造装置の運転方法。 In the primary water purification apparatus, a second ultraviolet oxidation step is performed in which the treated object is irradiated with ultraviolet rays, and the TOC concentration of the treated water in this second ultraviolet oxidation step is measured to determine the amount of ultraviolet rays in the second ultraviolet oxidation step. In the secondary water purification device, the dissolved oxygen concentration of the degassed water is measured, and the TOC concentration of the third treated water is measured, and the dissolved oxygen concentration and 9. The method of operating an ultrapure water production apparatus according to claim 8, wherein the amount of ultraviolet ray irradiation in the second ultraviolet oxidation step is adjusted based on the TOC concentration of the third treated water.
  10.  前記第一の紫外酸化工程及び第二の紫外酸化工程が、紫外線酸化装置によるものであり、前記紫外線酸化装置が紫外線ランプの複数のブロックから構成されるとともに、各紫外線ランプの照度が制御可能であり、紫外線の照射量の制御を紫外線ランプの稼働ブロック数と各紫外線ランプの照度とにより行う、請求項7又は9に記載の超純水製造装置の運転方法。 The first ultraviolet oxidation step and the second ultraviolet oxidation step are performed using an ultraviolet oxidation device, and the ultraviolet oxidation device is composed of a plurality of blocks of ultraviolet lamps, and the illuminance of each ultraviolet lamp is controllable. 10. The method of operating an ultrapure water production apparatus according to claim 7, wherein the amount of ultraviolet irradiation is controlled by the number of operating blocks of the ultraviolet lamps and the illuminance of each ultraviolet lamp.
PCT/JP2023/021987 2022-07-14 2023-06-13 Ultrapure water production apparatus and method for operating ultrapure water production apparatus WO2024014218A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023536138A JP7513213B2 (en) 2022-07-14 2023-06-13 Ultrapure water production apparatus and method for operating the ultrapure water production apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-113246 2022-07-14
JP2022113246 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024014218A1 true WO2024014218A1 (en) 2024-01-18

Family

ID=89536683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021987 WO2024014218A1 (en) 2022-07-14 2023-06-13 Ultrapure water production apparatus and method for operating ultrapure water production apparatus

Country Status (3)

Country Link
JP (1) JP7513213B2 (en)
TW (1) TW202402687A (en)
WO (1) WO2024014218A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030939A1 (en) * 1996-02-20 1997-08-28 Nomura Micro Science Co., Ltd. Method and apparatus for producing ultrapure water
WO2018105188A1 (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Ultrapure water production apparatus and operation method for ultrapure water production apparatus
WO2020179426A1 (en) * 2019-03-05 2020-09-10 栗田工業株式会社 Pure water production device and operation method of pure water production device
WO2021070573A1 (en) * 2019-10-07 2021-04-15 栗田工業株式会社 Toc treatment apparatus and treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030939A1 (en) * 1996-02-20 1997-08-28 Nomura Micro Science Co., Ltd. Method and apparatus for producing ultrapure water
WO2018105188A1 (en) * 2016-12-05 2018-06-14 栗田工業株式会社 Ultrapure water production apparatus and operation method for ultrapure water production apparatus
WO2020179426A1 (en) * 2019-03-05 2020-09-10 栗田工業株式会社 Pure water production device and operation method of pure water production device
WO2021070573A1 (en) * 2019-10-07 2021-04-15 栗田工業株式会社 Toc treatment apparatus and treatment method

Also Published As

Publication number Publication date
JP7513213B2 (en) 2024-07-09
JPWO2024014218A1 (en) 2024-01-18
TW202402687A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
WO2018092832A1 (en) Water treatment method and device
WO2020184045A1 (en) Apparatus for removing boron, method for removing boron, apparatus for producing pure water and method for producing pure water
WO2018092831A1 (en) Water treatment method and device
WO2021070573A1 (en) Toc treatment apparatus and treatment method
JP4635827B2 (en) Ultrapure water production method and apparatus
JP2015073923A (en) Ultrapure water production method and system
JP5211414B2 (en) Ultrapure water production equipment
WO2024014218A1 (en) Ultrapure water production apparatus and method for operating ultrapure water production apparatus
JP5678436B2 (en) Ultrapure water production method and apparatus
JP6629383B2 (en) Ultrapure water production method
JP2016005829A (en) Method and apparatus for producing ultrapure water
JP3941139B2 (en) Ultrapure water production equipment
JP7347556B2 (en) Pure water production equipment and operating method for pure water production equipment
JP7368310B2 (en) Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
WO2021161569A1 (en) Ultrapure water production device and ultrapure water production method
JPH0929251A (en) Ultrapure water preparing apparatus
JPH1128482A (en) Production of pure water
WO2024080079A1 (en) Apparatus for producing pure water
WO2022264479A1 (en) Pure water production apparatus and pure water production method
WO2024057697A1 (en) Water treatment system and water treatment method
JP2020037088A (en) Operational method of ultrapure water production apparatus
WO2021235130A1 (en) Device for removing toc and method for removing toc
JP4264681B2 (en) Production equipment for ozone water for wet cleaning process of electronic materials
US20240246834A1 (en) Pure water production apparatus and pure water production method
WO2023047732A1 (en) Method for treating raw water for producing purified water

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023536138

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839393

Country of ref document: EP

Kind code of ref document: A1